
Vol.:(0123456789)1 3

Interdisciplinary Sciences: Computational Life Sciences (2022) 14:639–651 
https://doi.org/10.1007/s12539-022-00510-6

ORIGINAL RESEARCH ARTICLE

Identifying Visual Attention Features Accurately Discerning Between 
Autism and Typically Developing: a Deep Learning Framework

Jin Xie1,2 · Longfei Wang1 · Paula Webster5 · Yang Yao1 · Jiayao Sun1,2 · Shuo Wang4 · Huihui Zhou1,3 

Received: 16 October 2021 / Revised: 10 March 2022 / Accepted: 15 March 2022 / Published online: 12 April 2022 
© International Association of Scientists in the Interdisciplinary Areas 2022

Abstract
Atypical visual attention is a hallmark of autism spectrum disorder (ASD). Identifying the attention features accurately dis-
cerning between people with ASD and typically developing (TD) at the individual level remains a challenge. In this study, we 
developed a new systematic framework combining high accuracy deep learning classification, deep learning segmentation, 
image ablation and a direct measurement of classification ability to identify the discriminative features for autism identifi-
cation. Our two-stream model achieved the state-of-the-art performance with a classification accuracy of 0.95. Using this 
framework, two new categories of features, Food & drink and Outdoor-objects, were identified as discriminative attention 
features, in addition to the previously reported features including Center-object and Human-faces, etc. Altered attention to 
the new categories helps to understand related atypical behaviors in ASD. Importantly, the area under curve (AUC) based on 
the combined top-9 features identified in this study was 0.92, allowing an accurate classification at the individual level. We 
also obtained a small but informative dataset of 12 images with an AUC of 0.86, suggesting a potentially efficient approach 
for the clinical diagnosis of ASD. Together, our deep learning framework based on VGG-16 provides a novel and power-
ful tool to recognize and understand abnormal visual attention in ASD, which will, in turn, facilitate the identification of 
biomarkers for ASD.

Graphical abstract

Keywords  Autism spectrum disorder · Visual attention · Eye movement · Deep learning

1  Introduction

People with autism spectrum disorder (ASD) exhibit altered 
attention to specific features of visual information. Reduced 
attention to socially relevant stimuli [1–6], increased image 
center bias [7–9], and impaired joint attention [10–15] have 
been reported in people with ASD. For example, it has 
been shown that people with ASD demonstrate a stronger 
attention bias towards the center of images regardless of 
the object distribution in the images but they demonstrate 
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reduced attention to faces in the stimuli [7]. These atypical 
attention behaviors were revealed by statistical compari-
sons of averaged gaze patterns on images between people 
with ASD and typically developing (TD) groups. However, 
because of the large variability of eye movement within 
ASD and TD groups and overlaps in the behaviors across 
the groups [7], there is still an inconsistency about the visual 
features of images associated with altered attention in ASD 
[16], and it is difficult to accurately separate ASD from TD 
at the individual level based on the averaged difference in 
gaze patterns on these features.

Recently, deep learning methods have been highly suc-
cessful in solving these classification problems [17–22]. 
Machine learning has been applied to discern between ASD 
and TD at the individual level based on brain activity, motor 
behaviors, facial expressions, and body gestures [23–29]. 
Based on eye movement data, machine learning using 
support vector machine (SVM) [30], random forest [31], 
and shallow neural network with 2 hidden layers [32] has 
achieved a good accuracy close to 0.9, while test accuracy 
using deep learning approaches [33, 34] was around 0.6. 
Jiang et al. [35] designed a combined convolutional neural 
network (CNN) and SVM framework that achieved an accu-
racy of 0.85. Within this framework, the CNN was used to 
reconstruct the eye movement pattern differences between 
ASD and TD and the SVM was used for classification. How-
ever, these reconstructed eye movement differences from 
training subjects also served as input to the SVM during 
testing. Furthermore, Ruan et al. [36] designed a modified 
VGG-16 network to classify photos taken by individuals 
with ASD and TD, which revealed systematic differences 
related to visual attention between groups. However, there 
is still a need for a highly accurate deep learning framework 
for discriminating between ASD and TD based on eye move-
ment data.

Built upon these models, researchers have investigated 
the discriminative features discerning between ASD and TD. 
For example, Ruan et al. [36] applied a layer-wise relevance 
propagation (LRP) [37] visualization method to identify 
features with a positive and negative contribution to the 
predication of ASD. Li et al. [32] adopted a SHAP (Shapley 
Additive exPlanations) value to identify features with high 
influence on their model’s predication probabilities. Regard-
ing traditional methods such as SVM, the weights of the 
linear SVM classifier [35] and the difference of mean feature 
histograms [30] were used to identify discriminative features 
for the classification of ASD and TD. However, there is still 
a lack of direct evaluation of the information from these 
features during the classification in these studies, especially 
using deep learning models.

To address the above issues and investigate the dis-
criminative features discerning between ASD and TD, we 
reanalyzed a dataset from our previous study [7] using a 

newly developed deep learning framework that combined 
deep learning classification, deep learning segmentation, 
image ablation and a direct measurement of classification 
ability. We designed a novel two-stream deep learning net-
work based on VGG-16 using 700 natural scene images and 
corresponding human fixation maps (HFMs) and achieved 
a classification accuracy of 0.95. Twelve categories of fea-
tures were segmented from the images by a deep learning 
segmentation method of Mask R-CNN [38] model, and the 
area under curve (AUC) of each category during the clas-
sification was calculated based on information only from the 
feature through an image ablation method. The AUC of the 
combined top-9 features was 0.92, which allowed an accu-
rate classification of ASD and TD at the individual level, 
suggesting important roles of these features in the classi-
fication. We also obtained a small but informative dataset 
including 12 images to achieve an AUC of 0.86 through a 
recursive feature elimination (RFE) method [39]. Together, 
we have developed a systemic approach to identify and inter-
pret atypical visual attention in ASD.

2 � Methods

2.1 � Participants

We reanalyzed an eye-tracking dataset from our previous 
study [7]. Twenty high-functioning participants with ASD 
and 19 matched participants who are Typically Developing 
(TD) were recruited. We assessed IQ for participants using 
the Wechsler Abbreviated Scale of Intelligence (WASI). The 
ASD group had a full-scale IQ of 108.0 ± 15.6 (mean ± SD) 
and a mean age of 30.8 ± 11.1 years, while the TD group had 
a comparable full-scale IQ of 108.2 ± 9.6 and a comparable 
mean age of 32.3 ± 10.4 years. The two groups were also 
matched on gender, race, and education. Autism was evalu-
ated using the Autism Diagnostic Observation Schedule 
(ADOS) [40] and the autism diagnostic interview-revised 
(ADI-R) [41] or social communication questionnaire (SCQ) 
when an informant was available (see [7] for details). All 
ASD participants met the DSM-IV/ICD-10 diagnostic cri-
teria. Participants gave written informed consent, and the 
experiments were approved by the Caltech Institutional 
Review Board.

2.2 � Task and Dataset

To use a novel computational framework to identify visual 
attention features accurately discerning between ASD and 
TD at the individual level, we reanalyzed our dataset col-
lected previously [7]. In the eye-tracking experiment, sub-
jects freely viewed 700 static natural scene images from the 
OSIE database [42]. Each image was viewed for 3 s, with 
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a random presentation order. Eye movement data were col-
lected using a non-invasive infrared remote Tobii ×300 sys-
tem with a sampling rate of 300 Hz. The dimensions of the 
images were 800 × 600 pixels. Based on eye movement data, 
an 800 × 600 human fixation map (HFM) containing the total 
gaze time at each pixel location was constructed, smoothed 
with a Gaussian filter and normalized to the range from 0 to 
1 according to [7]. We calculated HFMs based on eye move-
ment data during observations of all 700 images by all sub-
jects. Figure 1 shows HFMs of all subjects while observing 
a natural scene image, which showed a strong within-group 
variability in eye movement patterns, and substantial overlap 
of the patterns between ASD and TD. Because each partici-
pant viewed the images differently, we created an HFM for 
each participant and each image, totaling 27,300 HFMs for 
20 participants with ASD and 19 TD participants.

2.3 � Deep Learning Model for ASD Recognition

We proposed a two-stream VGG-16 network architec-
ture, which was inspired by the previous models for eye-
movement classification or prediction [35, 43–45]. In our 
network architecture, the first stream extracted deep fea-
tures of natural scene images, which represented visual 
stimulus information, and the second stream was used for 
extracting deep features of human fixation maps, which 
accounted for eye-movement information. Our two-stream 
network (Fig. 2b) included two of the same VGGNets 
modified from the VGG-16 network[46]. We removed the 
last fully connected layer from the VGG-16, therefore, 
the VGGNet included 13 convolutional layers (Conv), 5 
Max-pooling layers, and 2 fully connected layers (Fc). The 

two feature maps from the two VGGNets were combined 
and fed into a three-layer network (ASDNet) including 1 
convolutional layer and 2 fully connected layers. In the 
ASDNet, the convolutional layer had a 1 × 1 filter, and 
the length of two fully connected layers were 512 and 2, 
respectively. Together, our two-stream network contained 
18 layers excluding the Max-pooling layers. At the end 
of our two-stream network, a softmax layer was applied 
to transform real values into probabilities. The activation 
function of a rectified linear unit (ReLU) [22] was used 
in the two-stream network. A sample from each subject 
included 700 images and their corresponding HFMs, and 
each image and its corresponding HFM were fed into the 
network simultaneously. The features exacted by the VGG-
Nets from 700 images and 700 HFMs were concatenated 
by the Concatenation in our two-stream network and were 
integrated by the first convolutional layer in the ASDNet. 
In this way, information from 700 images and 700 HFMs 
were integrated for classification.

We adapted a transfer learning strategy by using the 
VGGNet [46] pre-trained on the ImageNet challenge 
dataset [47]. During training, we fixed weights in the two 
VGGNets, and trained the ASDNet from scratch. The 
authors tried the commonly used optimizers, including 
stochastic gradient descent (SGD) [48] and Adam [49]. 
To obtain the best performance, we finally chose the SGD 
optimizer with the base learning rate of 10–5 and the learn-
ing rate policy of “inv” [50]. The weight initializers of the 
ASDNet were “xavier” and “gaussian” [50]. A 0.5 dropout 
rate was applied to avoid overfitting. The maximum num-
ber of training iterations was 1000. All network training 
and testing were conducted on the Caffe platform [50].

Fig. 1   HFMs during observing a natural scene image. a TD subjects. b ASD subjects
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2.4 � Data Augmentation

To improve the performance of our two-stream network, 
we applied data augmentation by cropping and flipping 
the original dataset with the label preserved [22]. The pre-
trained VGGNet required a fixed-size input of 224 × 224. 
The original size of the natural scene images and Human 
Fixation Maps (HFMs) were 800 × 600, which were resized 
to 256 × 256. We extracted five 224 × 224 crops from each 
256 × 256 image covering its 4 corners and its center, respec-
tively [51]. Flipping augmentation was conducted by mirror-
ing all crops across their vertical axes. Together, we obtained 
a ten-fold augmentation of the original dataset. We applied 
the same augmentation procedures in our training and test 
data.

2.5 � Cross‑validation

Leave-one-out and 13-fold cross-validation were used 
in this study. During the leave-one-out cross-validation, 
one out of 39 subjects was selected sequentially for test-
ing, and the model was trained on the dataset from the 
remaining 38 subjects, which returned the probabilities 
of that subject being designated as ASD and TD. There 
was no overlap between the training and test datasets. This 
process was repeated for 39 rounds. During the 13-fold 
cross-validation, the 39 subjects were randomly split into 

13 3-subject subsets. One of the 13 subsets was selected 
sequentially for testing, and the model was trained on the 
dataset from the 36 subjects of the remaining 12 subsets. 
We repeated this process for 13 rounds.

2.6 � Performance Metric

A test was defined as correct if the probability of the sub-
ject belonging to its true group was > 0.5. Each subject was 
tested 10 times because of the ten-fold augmentation, and 
a classification score was the proportion that the subject 
was correctly predicted in those 10 times. The model-level 
accuracy was the averaged classification score across all 
test subjects in the leave-one-out or 13-fold cross-valida-
tion. A subject was correctly recognized when the clas-
sification score of the subject was ≥ 0.6. The subject-level 
Accuracy was the ratio of correctly recognized test sub-
jects to all test subjects in the leave-one-out or 13-fold 
cross-validation. We also calculated the Sensitivity and 
Specificity according to [52]. The sensitivity measured the 
rate of ASD subjects correctly predicted as ASD, while 
the specificity measured the rate of TD subjects correctly 
predicted as TD. We plotted the receiver operating char-
acteristic (ROC) curve and computed the corresponding 
AUC [53] to evaluate the classification performance of our 
two-stream network.

Fig. 2   The architectures of the deep learning framework and clas-
sification model. a The deep learning framework for identification 
of visual attention features discerning between ASD and TD that 

included deep learning segmentation (Mask R-CNN[38]), image 
ablation, and deep learning classification. b The deep learning clas-
sification model in (a)
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2.7 � t‑distributed Stochastic Neighbor Embedding 
(t‑SNE) Visualization

To visualize internal features learned by the two-stream 
CNN, we applied a t-SNE method to convert high-dimen-
sional features in the two-stream network into 2-dimen-
sional maps. t-SNE is a variation of Stochastic Neighbor 
Embedding (SNE) [54], a commonly used method for 
multiple class high-dimensional data visualization [55]. 
We applied t-SNE visualization for the last two fully con-
nected layers of our two-stream network, converting the 
512-dimensional and 2-dimensional representations in the 
two layers to two 2-dimensional maps, respectively.

2.8 � Image Segmentation

We ran a pre-trained Mask R-CNN [38] to segment mul-
tiple categories of objects from images on a TensorFlow 
platform. Next, we wrote a Matlab program to manu-
ally fine-tune the segmentation of the Mask R-CNN. In 
this study, we segmented 12 categories of features: (1) 
Center-object: the central 2-degree circular area of images 
with semantic objects; (2) Center-non-object: the central 
2-degree circular area of images without semantic objects; 
(3) Animals: animal faces/heads and bodies; (4) Human-
faces: profile and frontal faces of human; (5) Upper-
bodies: the human body below the neck and above the 
waist; (6) Lower-bodies: the human body below the waist; 
(7) Action-objects: objects that interacted with persons 
including gaze and operation; (8) Food & drink: anything 
that can be eaten and drunk except (1)-(7) features; (9) 
Text: digits, letters, words, and sentences; (10) Indoor-
objects: indoor objects except (1–9) features; (11) Out-
door-objects: open-air objects except (1–9) features; (12) 
Uniform-background: uniform regions without any object.

2.9 � Image Ablation

With the parameters of the trained two-stream network fixed, 
we applied an image ablation method to investigate the con-
tribution of the 12 categories of local features segmented 
from images to the classification. We retained the regions 
that contained one category of local feature and occluded all 
other portions of input images and HFMs with noise masks 
(Gaussian noise of 0 mean and 0.05 variance) to remove 
information from the masked areas [56–58]. We constructed 
the input from all 700 images and HFMs retaining only one 
category of local feature and passed the input through the 
trained two-stream network to calculate the AUC score, 
which was used to measure the classification ability of 
information from the retained local feature. Classification 

abilities of the 12 categories of features were quantitatively 
evaluated by the image ablation using the AUC score.

Noise masks could also be applied to whole images to 
remove information from the masked images. We retained 
one or multiple images and masked all other images and 
HFMs within the 700 images and HFMs to evaluate the clas-
sification ability of the retained single image or multiple 
images.

2.10 � Classification Ability Based on Three Levels 
of Features

The AUC that depicts the tradeoff between hit rates and false 
alarm rates of classifiers has been commonly used as an 
objective measure of the classification ability of classifiers 
[59], with a higher AUC reflecting better classification abil-
ity of a classifier. With the classifier fixed, these highly dis-
criminative input data should give rise to high AUC values. 
With our two-stream network fixed, we used the AUC to 
measure the classification ability of three levels of features: 
single-image level, multi-image level, and local-feature 
level. We used the sklearn library in Python to calculate 
the AUC.

In our study, we constructed the input from the integrated 
information of all 700 images and HFMs, and passed them 
through the trained two-stream network to calculate AUC 
scores. To investigate the classification ability based on 
the single image, we calculated the AUC based on a single 
image, in which we retained the stimulus image and its cor-
responding HFM, and masked the remaining 699 images and 
HFMs with Gaussian noise. At the multi-image level, we 
retained the multiple images and their corresponding HFMs, 
and masking other images and HFMs with Gaussian noise. 
At the local-feature level, we retained the regions of images 
and HFMs containing the same category of the local feature 
and masked the remaining regions with Gaussian noise.

3 � Results

Figure 2a shows the deep learning framework to investigate 
the discriminative features discerning between ASD and 
TD. Visual features were segmented from the natural scene 
images using a Mask R-CNN model [38]. Image ablation 
retained information only from the area of the feature in the 
image and corresponding HFM with the remaining areas 
replaced by Gaussian noise. Data containing information of 
the same category of the feature with multiple images and 
HFMs was constructed and passed through a two-stream 
deep learning model to obtain the AUC, which quantitatively 
evaluated the classification ability of the information from 
the feature.
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3.1 � Performance of The Two‑stream Classification 
Model

The model-level accuracy and cross-entropy loss were 
plotted against the training iterations in the leave-one-out 
and 13-fold cross-validation (Fig. 3a–d). The classification 
accuracies on training and test datasets gradually increased 
to stable levels, whereas the corresponding losses gradu-
ally decreased to stable levels as the training iterations 
increased. Our two-stream network achieved 0.92 and 0.84 
model-level accuracy in the leave-one-out and 13-fold 
cross-validation tests, respectively (Fig. 3a, b). As shown 
in Fig. 3e, f, we plotted the ROC curves of the leave-one-
out cross-validation (Fig. 3e) and 13-fold cross-validation 
(Fig. 3f). In the leave-one-out cross-validation, our model 
obtained 0.95 subject-level Accuracy, 1.00 Sensitivity, 
0.89 Specificity, and 0.93 AUC. In the 13-fold cross-vali-
dation, the subject-level Accuracy reached 0.85, with 0.80 
Sensitivity, 0.89 Specificity and 0.91 AUC, respectively. 
As shown in Table 1.  

We compared our method with other state-of-the-art 
methods [30, 31, 35]. Liu et al. [30] used a K-means + SVM 
method while Jiang et al. adopted a CNN + SVM framework 
[35] and random forest method [31] to recognize those with 
ASD using eye movement data. Our new two-stream deep 
learning network outperformed other models in Accuracy, 
Sensitivity, Specificity (as shown in Table 1; and the AUC 
was only 0.01 lower than that from [31]).

3.2 � t‑SNE Visualization

To visualize internal features in the two-stream CNN asso-
ciated with the classification, we applied t-SNE to visual-
ize the high-dimensional features in the last two layers of 
the ASDNet (Fig. 3g–j). Figure 3G–H shows two t-SNE 
plots of the two layers from a typical leave-one-out model, 
respectively. Figure 3i, j show the t-SNE plots from a typical 
13-fold cross-validation model. Each point in these t-SNE 
plots represented a subject. In the leave-one-out model, 
t-SNE distribution of features from ASD and TD subjects 

Fig. 3   The performance of 
the two-stream deep learning 
network. a The accuracy curves 
of the network in the leave-one-
out validation. b The accuracy 
curves in the 13-fold validation. 
c The loss curves in the leave-
one-out validation. d The loss 
curves in the 13-fold validation. 
e–f The ROC curves of our two-
stream network in the leave-
one-out cross-validation (e) and 
the 13-fold cross-validation (f). 
g–h The t-SNE visualization of 
high-dimensional features of the 
second last (g) and the last layer 
(h) in a leave-one-out valida-
tion. Each dot represents a sub-
ject. i–j The t-SNE visualization 
of the second last (i) and the last 
layer (j) in a 13-fold validation

Table 1   A quantitative 
comparison between our model 
and other state-of-the-art 
models

Bold values indicate results of two-stream network

Methods Models Cross-validation Accuracy Sensitivity Specificity AUC​

Liu et al.[30] K-means + SVM Leave-one-out 0.89 0.93 0.86 0.90
Jiang et al.[35] CNN + SVM Leave-one-out 0.85 0.83 0.87 0.89
Jiang et al.[31] Random forest Leave-one-out 0.86 0.91 0.83 0.94
Ours Two-stream network Leave-one-out 0.95 1.00 0.89 0.93

13-fold (three-out) 0.85 0.80 0.89 0.91
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was well separated in the last two layers, demonstrating 
that category representation in the two-stream network was 
unambiguous. In the 13-fold model, the vast majority of data 
from ASD and TD subjects were again well separated, with 
only one TD subject misclassified (Fig. 3i), which was con-
sistent with the lower accuracy of 13-fold cross-validation 
compared with the results of leave-one-out. In addition, bet-
ter separation was found in the last layer in the two exam-
ples, suggesting that ASD and TD features became more 
distinguishable along the network.

3.3 � Classification Ability Based on Single‑image 
Level

The previous classification results relied on all 700 images 
and corresponding HFMs. Here, we evaluated the clas-
sification ability of information from a single image (see 
details in Sect. 2). Figure 4a shows the AUC values based 
on information from the 700 single images in a descending 

order. Figure 4b shows images with the top 10 and bottom 
5 AUC values. These AUC values in Fig. 4a (< 0.55) were 
far smaller than the AUC value of our two-stream network 
(0.93) based on all 700 images and HFMs, suggesting the 
contribution of information from a single image was limited 
and the combined information from multiple images played 
an important role in our model.

3.4 � Classification Ability Based on Multi‑image 
Level

We calculated AUCs based on multiple images and HFMs 
(Fig. 4c). The AUC was about 0.74 based on data from the 
top 50 images and gradually increased to 0.96 with the top 
250 images. It stayed around this high level with more data 
integrated until all 700 images and HFMs were included. In 
fact, the AUC value based on all 700 images and HFMs was 
0.93, which was smaller than the value based on informa-
tion from the top 250 images, suggesting that the combined 

Fig. 4   Classification ability of information from single and multiple 
images. a The AUCs based on information from a single image. X: 
the index of data from a single image according to its AUC values 
in a descending order; Y: AUC values of information from a single 

image. b Images with the top 10 and bottom 5 AUCs. c The AUCs 
based on data from multiple images. X: the number of data from a 
single image combined; Y: the AUC values of the combined data. d 
The 12 image dataset with an AUC of 0.86
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information from all 700 images was redundant, and there 
were both synergistic and antagonistic interactions between 
information from single images during the integration. To 
find an efficient image dataset for the classification by a RFE 
method [39], we started from the top 250 images, and each 
time replaced data of one image with Gaussian noise if this 
replacement caused the smallest AUC reduction. We con-
tinued this process and found a dataset including 12 images 
with an AUC of 0.86 (Fig. 4d), suggesting the potential to 
find a highly efficient image dataset to discern between ASD 
and TD.

3.5 � Classification Ability Based on Local‑feature 
Level

We segmented the top 250 images through a pre-trained 
Mask R-CNN model [38]. After manually fine-tuning the 
segmentation, we classified the segmented features into 12 
categories (Fig. 5). To investigate the classification ability 
of information from these features, we calculated the AUCs 
based on each category of these features while replacing 
all remaining parts of the images with Gaussian noise. Fig-
ure 6a showed these features with the other parts of images 
replaced with Gaussian noise. A baseline AUC was calcu-
lated for each feature by randomly retaining image parts with 
the same size of the feature in each image. The classification 
ability based on a feature was higher than that of randomly 
selected areas if its AUC was greater than its baseline. As 
shown in Fig. 6b, there were 10 features with AUCs higher 
than baseline, including Center-object, Center-non-object, 
Animals, Human-faces, Lower-bodies, Food & drink, 
Action-objects, Text, Indoor-objects, and Outdoor-objects. 

However, AUCs of Upper-bodies and Uniform-background 
were lower than their baselines. The averaged AUC of the 
11 features (excluding the Uniform-background) was sig-
nificantly higher than the average of their baselines (Rank-
sum test, p = 0.015), as shown in the rightmost of Fig. 6b. 
We combined information from the 11 features sequentially 
according to their AUCs in a high-to-low sequence. As the 
number of combined features increased, the values of AUC 
gradually increased (Fig. 6c) and reached its peak of 0.92 
with the top-9 features combined (excluding the Action-
objects and Lower-bodies) that consisted of 44% of the top 
250 images in size. The AUC based on the 11 combined 
features was 0.91. These AUC values were very close to 
the AUC value of 0.93 based on data from all 700 images, 
suggesting that these features played an important role in 
distinguishing ASD from TD during the classification.

4 � Discussion

In this study, we developed a new systematic framework 
to identify discriminative features for the classification of 
ASD and TD, which combined deep learning classifica-
tion, deep learning segmentation, image ablation and a 
direct measurement of classification ability (AUC). In the 
framework, we designed a novel two-stream deep learn-
ing network based on VGG-16 combining image and eye 
movement information for discerning between ASD and 
TD, and obtained accuracies of 0.95 and 0.85 in the leave-
one-out and 13-fold cross-validation, respectively. We 
used VGG-16 [46] in our two-stream network, because it 
has been one of the most popular CNN models [44], and 

Fig. 5   The 12 categories of features segmented from images (outlined in red lines). a Center-object. b Center-non-object. c Animals. d Human-
faces. e Upper-bodies. f Lower-bodies. g Food & drink. h Action-objects. i Text. j Indoor-objects. k Outdoor-objects. l Uniform-background
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has been used in studies on recognition of atypical eye-
movement behavior in ASD [35, 36, 60] and prediction 
of the saliency maps based on eye-movements in control 
subjects [43–45, 61–63]. Our two-stream network achieved 
the state-of-the-art performance with a gain of 6% in clas-
sification accuracy [30, 31, 35]. It is worth noting that 
although our VGG-16 based model outperformed prior 
models in predicting eye movement, our present model 
was more complex (in both its structure and number of 
parameters) than prior models and was thus more likely to 
fit the data. Deep learning networks have also been devel-
oped for ASD recognition based on fMRI signals including 
auto-encoders [19, 64–67], one or multi-stream CNNs [29, 
68] with accuracies at about 0.70–0.96. The accuracy of 
our model is comparable with the best accuracy of these 
deep learning models.

Leveraging the high predication accuracy of our two-
stream model, we evaluated the classification ability (AUC) of 
a feature based on information only from the feature through 
an image ablation method that retained the area of the fea-
ture with the remaining areas replaced by Gaussian noise. 
These features were segmented from the images by the Mask 
R-CNN model and were slightly fine-tuned manually. Within 
this framework, the high accuracy of our model made a good 
basis for finding these discriminative features, and deep learn-
ing segmentation allowed us to consistently segment features 
from images with high localization precision, and the image 
ablation combined with AUC measurement allowed us to 
evaluate the classification ability of each feature and that of 
their combination directly and quantitatively. The group aver-
aging methods have been commonly used to identify impor-
tant features of ASD in previous studies, while it could not 

Fig. 6   Classification ability of information from features segmented 
from images. a Examples of 12 categories of features segmented 
from images with the remainder of the images masked by Gaussian 
noise. b The AUCs of the 12 categories of features (red) and corre-

sponding baselines (blue), and the averaged AUC of the 11 catego-
ries of features (Mean) with the Uniform-background excluded. c The 
AUCs based on combined features. X: the number of features com-
bined; Y: the AUC values of combined features
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accurately classify ASD and TD at the individual level based 
on these group differences [69–72]. In contrast, the combined 
top-9 features identified in this study gave rise to an AUC 
of 0.92 in our network, permitting an accurate classification. 
Recently, the LRP method [36] and SHAP method [32] have 
been applied to identify pixel-wise information important 
for ASD identification. These methods identified areas with 
high influence on the predication probabilities, but the tradeoff 
between hit rates and false alarm rates has not been considered 
in these methods. Thus, here we have developed a system-
atic framework to identify discriminative features discerning 
between ASD and TD. This framework could also be applied 
to the identification of discriminative image-related features 
in a variety of brain disorders beyond ASD.

Through this method, we evaluated 12 categories of fea-
tures in our natural scene images. Previous studies using 
natural scenes have found fixation pattern differences in: 
human faces[4, 7, 70, 73, 74]; faces of animals and cartoons 
[7]; person and people [2, 72, 75–77]; bodies [4, 71, 78]; 
gazed objects [79]; motion, smell, touch objects [7]; non-
uniform background [4, 7, 72]; and image center [7] by group 
averaging and statistical analysis. Consistent with previous 
findings, Human-faces, Center-object, Center-Non-object, 
Action-objects, and Text were identified as discriminative 
features in this study, but we find that Center-object was more 
discriminative than the Center-non-object, which was not dis-
tinguished in previous studies. Animal faces were included in 
the Face category in previous studies, this time we identified 
the Animals including face/head and the whole body as a dis-
criminative feature, and further analysis showed that animal 
face was not more discriminative than the body of the animal 
(AUC of face vs body: 0.68 vs 0.70). To evaluate the discrim-
inability of these features more accurately, a baseline AUC 
was calculated for each feature by randomly retaining image 
parts with the same size of the feature in each image. We 
found that AUCs of 2 categories (the Uniform-background 
and Upper-bodies) were lower than their baselines, suggest-
ing that the two features were not more discriminative than 
the randomly selected areas in the images and played a less 
important role in the classification. We found two new cate-
gories of discriminative features: Food & drink and Outdoor-
objects, which have not been clearly identified in previous 
studies. Food selectivity has been described as a common 
feature of ASD [80], such as eating a narrow variety of foods, 
requiring specific presentations of foods and specific utensils, 
and eating only low texture foods [81, 82], which have also 
been classified as part of repetitive behaviors in ASD [83]. 
Our result suggests that altered attention to stimuli of Food 
& drink may contribute to the food selectivity in ASD, which 
may stem from different food selectivity. The altered atten-
tion to the Outdoor-objects might be related to less outdoor 
experience in children with ASD, who spend more than twice 
as much time indoors compared to TD children [84–86]. The 

value of AUC based on the combined top-9 features reached 
0.92, which was very close to the AUC value of 0.93 based on 
data from all 700 images, confirming the importance of these 
features during the classification. Together, the Center-object, 
Food & drink, Outdoor-objects, Animals, and Human-faces 
were the most discriminative features by considering both the 
AUC values of these features and corresponding baselines.

We also characterized the classification ability of infor-
mation from single image, and found that information from 
multiple images was necessary for accurate ASD identifica-
tion. Recently, Liaqat et al. [34] developed deep-learning 
approaches to predict ASD with an accuracy of 0.62 based 
on a single image and scan-path data. The high accuracy 
of that study might result from more information being 
derived from a scan-path than that from an HFM or a dif-
ference between the image-based division of training and 
test datasets in their study and the subject-based division in 
our study. We found a twelve-image dataset with an AUC 
of 0.86, suggesting that it was possible to recognize abnor-
mal eye movements in ASD based on a small but informa-
tive dataset. A limitation is that the size of our dataset (39 
subjects) is still small. The scarce availability and difficulty 
of acquiring eye-movement datasets have been a key chal-
lenge in ASD research [87]. In the present study, we applied 
the data augmentation methods of cropping and flipping to 
increase the dataset size as in previous studies [60, 87, 88] 
for eye-movement data. But visual attention behaviors may 
be changed with the images cropped or flipped. Further 
investigation is required to test the robustness and generali-
zation of these discriminative features. However, it is worth 
noting that one advantage of our deep learning model is 
to exact features from a large dataset, and the performance 
of our model will be improved with more data from ASD 
and TD participants. Together, our present approach will 
not only provide a novel and powerful tool to identify and 
interpret abnormal visual attention in ASD but also facilitate 
the identification of eye-movement biomarkers for ASD.
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