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Abstract

Atypical visual attention is a hallmark of autism spectrum disorder (ASD). Identifying the attention features accurately dis-
cerning between people with ASD and typically developing (TD) at the individual level remains a challenge. In this study, we
developed a new systematic framework combining high accuracy deep learning classification, deep learning segmentation,
image ablation and a direct measurement of classification ability to identify the discriminative features for autism identifi-
cation. Our two-stream model achieved the state-of-the-art performance with a classification accuracy of 0.95. Using this
framework, two new categories of features, Food & drink and Outdoor-objects, were identified as discriminative attention
features, in addition to the previously reported features including Center-object and Human-faces, etc. Altered attention to
the new categories helps to understand related atypical behaviors in ASD. Importantly, the area under curve (AUC) based on
the combined top-9 features identified in this study was 0.92, allowing an accurate classification at the individual level. We
also obtained a small but informative dataset of 12 images with an AUC of 0.86, suggesting a potentially efficient approach
for the clinical diagnosis of ASD. Together, our deep learning framework based on VGG-16 provides a novel and power-
ful tool to recognize and understand abnormal visual attention in ASD, which will, in turn, facilitate the identification of
biomarkers for ASD.
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1 Introduction

People with autism spectrum disorder (ASD) exhibit altered
attention to specific features of visual information. Reduced
attention to socially relevant stimuli [1-6], increased image

54 Shuo Wang center bias [7-9], and impaired joint attention [10—15] have
shuowang @wustl.edu been reported in people with ASD. For example, it has
54 Huihui Zhou been shown that people with ASD demonstrate a stronger
zhouhh@pcl.ac.cn attention bias towards the center of images regardless of
Extended author information available on the last page of the article the object distribution in the images but they demonstrate
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reduced attention to faces in the stimuli [7]. These atypical
attention behaviors were revealed by statistical compari-
sons of averaged gaze patterns on images between people
with ASD and typically developing (TD) groups. However,
because of the large variability of eye movement within
ASD and TD groups and overlaps in the behaviors across
the groups [7], there is still an inconsistency about the visual
features of images associated with altered attention in ASD
[16], and it is difficult to accurately separate ASD from TD
at the individual level based on the averaged difference in
gaze patterns on these features.

Recently, deep learning methods have been highly suc-
cessful in solving these classification problems [17-22].
Machine learning has been applied to discern between ASD
and TD at the individual level based on brain activity, motor
behaviors, facial expressions, and body gestures [23—29].
Based on eye movement data, machine learning using
support vector machine (SVM) [30], random forest [31],
and shallow neural network with 2 hidden layers [32] has
achieved a good accuracy close to 0.9, while test accuracy
using deep learning approaches [33, 34] was around 0.6.
Jiang et al. [35] designed a combined convolutional neural
network (CNN) and SVM framework that achieved an accu-
racy of 0.85. Within this framework, the CNN was used to
reconstruct the eye movement pattern differences between
ASD and TD and the SVM was used for classification. How-
ever, these reconstructed eye movement differences from
training subjects also served as input to the SVM during
testing. Furthermore, Ruan et al. [36] designed a modified
VGG-16 network to classify photos taken by individuals
with ASD and TD, which revealed systematic differences
related to visual attention between groups. However, there
is still a need for a highly accurate deep learning framework
for discriminating between ASD and TD based on eye move-
ment data.

Built upon these models, researchers have investigated
the discriminative features discerning between ASD and TD.
For example, Ruan et al. [36] applied a layer-wise relevance
propagation (LRP) [37] visualization method to identify
features with a positive and negative contribution to the
predication of ASD. Li et al. [32] adopted a SHAP (Shapley
Additive exPlanations) value to identify features with high
influence on their model’s predication probabilities. Regard-
ing traditional methods such as SVM, the weights of the
linear SVM classifier [35] and the difference of mean feature
histograms [30] were used to identify discriminative features
for the classification of ASD and TD. However, there is still
a lack of direct evaluation of the information from these
features during the classification in these studies, especially
using deep learning models.

To address the above issues and investigate the dis-
criminative features discerning between ASD and TD, we
reanalyzed a dataset from our previous study [7] using a
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newly developed deep learning framework that combined
deep learning classification, deep learning segmentation,
image ablation and a direct measurement of classification
ability. We designed a novel two-stream deep learning net-
work based on VGG-16 using 700 natural scene images and
corresponding human fixation maps (HFMs) and achieved
a classification accuracy of 0.95. Twelve categories of fea-
tures were segmented from the images by a deep learning
segmentation method of Mask R-CNN [38] model, and the
area under curve (AUC) of each category during the clas-
sification was calculated based on information only from the
feature through an image ablation method. The AUC of the
combined top-9 features was 0.92, which allowed an accu-
rate classification of ASD and TD at the individual level,
suggesting important roles of these features in the classi-
fication. We also obtained a small but informative dataset
including 12 images to achieve an AUC of 0.86 through a
recursive feature elimination (RFE) method [39]. Together,
we have developed a systemic approach to identify and inter-
pret atypical visual attention in ASD.

2 Methods
2.1 Participants

We reanalyzed an eye-tracking dataset from our previous
study [7]. Twenty high-functioning participants with ASD
and 19 matched participants who are Typically Developing
(TD) were recruited. We assessed 1Q for participants using
the Wechsler Abbreviated Scale of Intelligence (WASI). The
ASD group had a full-scale IQ of 108.0+ 15.6 (mean =+ SD)
and a mean age of 30.8 +11.1 years, while the TD group had
a comparable full-scale IQ of 108.2+9.6 and a comparable
mean age of 32.3 +10.4 years. The two groups were also
matched on gender, race, and education. Autism was evalu-
ated using the Autism Diagnostic Observation Schedule
(ADOS) [40] and the autism diagnostic interview-revised
(ADI-R) [41] or social communication questionnaire (SCQ)
when an informant was available (see [7] for details). All
ASD participants met the DSM-IV/ICD-10 diagnostic cri-
teria. Participants gave written informed consent, and the
experiments were approved by the Caltech Institutional
Review Board.

2.2 Task and Dataset

To use a novel computational framework to identify visual
attention features accurately discerning between ASD and
TD at the individual level, we reanalyzed our dataset col-
lected previously [7]. In the eye-tracking experiment, sub-
jects freely viewed 700 static natural scene images from the
OSIE database [42]. Each image was viewed for 3 s, with
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a random presentation order. Eye movement data were col-
lected using a non-invasive infrared remote Tobii X300 sys-
tem with a sampling rate of 300 Hz. The dimensions of the
images were 800 x 600 pixels. Based on eye movement data,
an 800 x 600 human fixation map (HFM) containing the total
gaze time at each pixel location was constructed, smoothed
with a Gaussian filter and normalized to the range from O to
1 according to [7]. We calculated HFMs based on eye move-
ment data during observations of all 700 images by all sub-
jects. Figure 1 shows HFMs of all subjects while observing
a natural scene image, which showed a strong within-group
variability in eye movement patterns, and substantial overlap
of the patterns between ASD and TD. Because each partici-
pant viewed the images differently, we created an HFM for
each participant and each image, totaling 27,300 HFMs for
20 participants with ASD and 19 TD participants.

2.3 Deep Learning Model for ASD Recognition

We proposed a two-stream VGG-16 network architec-
ture, which was inspired by the previous models for eye-
movement classification or prediction [35, 43—45]. In our
network architecture, the first stream extracted deep fea-
tures of natural scene images, which represented visual
stimulus information, and the second stream was used for
extracting deep features of human fixation maps, which
accounted for eye-movement information. Our two-stream
network (Fig. 2b) included two of the same VGGNets
modified from the VGG-16 network[46]. We removed the
last fully connected layer from the VGG-16, therefore,
the VGGNet included 13 convolutional layers (Conv), 5
Max-pooling layers, and 2 fully connected layers (Fc). The
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two feature maps from the two VGGNets were combined
and fed into a three-layer network (ASDNet) including 1
convolutional layer and 2 fully connected layers. In the
ASDNet, the convolutional layer had a 1 X 1 filter, and
the length of two fully connected layers were 512 and 2,
respectively. Together, our two-stream network contained
18 layers excluding the Max-pooling layers. At the end
of our two-stream network, a softmax layer was applied
to transform real values into probabilities. The activation
function of a rectified linear unit (ReLU) [22] was used
in the two-stream network. A sample from each subject
included 700 images and their corresponding HFMs, and
each image and its corresponding HFM were fed into the
network simultaneously. The features exacted by the VGG-
Nets from 700 images and 700 HFMs were concatenated
by the Concatenation in our two-stream network and were
integrated by the first convolutional layer in the ASDNet.
In this way, information from 700 images and 700 HFMs
were integrated for classification.

We adapted a transfer learning strategy by using the
VGGNet [46] pre-trained on the ImageNet challenge
dataset [47]. During training, we fixed weights in the two
VGGNets, and trained the ASDNet from scratch. The
authors tried the commonly used optimizers, including
stochastic gradient descent (SGD) [48] and Adam [49].
To obtain the best performance, we finally chose the SGD
optimizer with the base learning rate of 107> and the learn-
ing rate policy of “inv” [50]. The weight initializers of the
ASDNet were “xavier” and “gaussian” [50]. A 0.5 dropout
rate was applied to avoid overfitting. The maximum num-
ber of training iterations was 1000. All network training
and testing were conducted on the Caffe platform [50].
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Fig. 1 HFMs during observing a natural scene image. a TD subjects. b ASD subjects
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Fig.2 The architectures of the deep learning framework and clas-
sification model. a The deep learning framework for identification
of visual attention features discerning between ASD and TD that

2.4 Data Augmentation

To improve the performance of our two-stream network,
we applied data augmentation by cropping and flipping
the original dataset with the label preserved [22]. The pre-
trained VGGNet required a fixed-size input of 224 x224.
The original size of the natural scene images and Human
Fixation Maps (HFMs) were 800 X 600, which were resized
to 256 X 256. We extracted five 224 X 224 crops from each
256 X256 image covering its 4 corners and its center, respec-
tively [51]. Flipping augmentation was conducted by mirror-
ing all crops across their vertical axes. Together, we obtained
a ten-fold augmentation of the original dataset. We applied
the same augmentation procedures in our training and test
data.

2.5 Cross-validation

Leave-one-out and 13-fold cross-validation were used
in this study. During the leave-one-out cross-validation,
one out of 39 subjects was selected sequentially for test-
ing, and the model was trained on the dataset from the
remaining 38 subjects, which returned the probabilities
of that subject being designated as ASD and TD. There
was no overlap between the training and test datasets. This
process was repeated for 39 rounds. During the 13-fold
cross-validation, the 39 subjects were randomly split into
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included deep learning segmentation (Mask R-CNN[38]), image
ablation, and deep learning classification. b The deep learning clas-
sification model in (a)

13 3-subject subsets. One of the 13 subsets was selected
sequentially for testing, and the model was trained on the
dataset from the 36 subjects of the remaining 12 subsets.
We repeated this process for 13 rounds.

2.6 Performance Metric

A test was defined as correct if the probability of the sub-
ject belonging to its true group was > 0.5. Each subject was
tested 10 times because of the ten-fold augmentation, and
a classification score was the proportion that the subject
was correctly predicted in those 10 times. The model-level
accuracy was the averaged classification score across all
test subjects in the leave-one-out or 13-fold cross-valida-
tion. A subject was correctly recognized when the clas-
sification score of the subject was > 0.6. The subject-level
Accuracy was the ratio of correctly recognized test sub-
jects to all test subjects in the leave-one-out or 13-fold
cross-validation. We also calculated the Sensitivity and
Specificity according to [52]. The sensitivity measured the
rate of ASD subjects correctly predicted as ASD, while
the specificity measured the rate of TD subjects correctly
predicted as TD. We plotted the receiver operating char-
acteristic (ROC) curve and computed the corresponding
AUC [53] to evaluate the classification performance of our
two-stream network.
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2.7 t-distributed Stochastic Neighbor Embedding
(t-SNE) Visualization

To visualize internal features learned by the two-stream
CNN, we applied a t-SNE method to convert high-dimen-
sional features in the two-stream network into 2-dimen-
sional maps. t-SNE is a variation of Stochastic Neighbor
Embedding (SNE) [54], a commonly used method for
multiple class high-dimensional data visualization [55].
We applied t-SNE visualization for the last two fully con-
nected layers of our two-stream network, converting the
512-dimensional and 2-dimensional representations in the
two layers to two 2-dimensional maps, respectively.

2.8 Image Segmentation

We ran a pre-trained Mask R-CNN [38] to segment mul-
tiple categories of objects from images on a TensorFlow
platform. Next, we wrote a Matlab program to manu-
ally fine-tune the segmentation of the Mask R-CNN. In
this study, we segmented 12 categories of features: (1)
Center-object: the central 2-degree circular area of images
with semantic objects; (2) Center-non-object: the central
2-degree circular area of images without semantic objects;
(3) Animals: animal faces/heads and bodies; (4) Human-
faces: profile and frontal faces of human; (5) Upper-
bodies: the human body below the neck and above the
waist; (6) Lower-bodies: the human body below the waist;
(7) Action-objects: objects that interacted with persons
including gaze and operation; (8) Food & drink: anything
that can be eaten and drunk except (1)-(7) features; (9)
Text: digits, letters, words, and sentences; (10) Indoor-
objects: indoor objects except (1-9) features; (11) Out-
door-objects: open-air objects except (1-9) features; (12)
Uniform-background: uniform regions without any object.

2.9 Image Ablation

With the parameters of the trained two-stream network fixed,
we applied an image ablation method to investigate the con-
tribution of the 12 categories of local features segmented
from images to the classification. We retained the regions
that contained one category of local feature and occluded all
other portions of input images and HFMs with noise masks
(Gaussian noise of 0 mean and 0.05 variance) to remove
information from the masked areas [56-58]. We constructed
the input from all 700 images and HFMs retaining only one
category of local feature and passed the input through the
trained two-stream network to calculate the AUC score,
which was used to measure the classification ability of
information from the retained local feature. Classification

abilities of the 12 categories of features were quantitatively
evaluated by the image ablation using the AUC score.

Noise masks could also be applied to whole images to
remove information from the masked images. We retained
one or multiple images and masked all other images and
HFMs within the 700 images and HFMs to evaluate the clas-
sification ability of the retained single image or multiple
images.

2.10 Classification Ability Based on Three Levels
of Features

The AUC that depicts the tradeoff between hit rates and false
alarm rates of classifiers has been commonly used as an
objective measure of the classification ability of classifiers
[59], with a higher AUC reflecting better classification abil-
ity of a classifier. With the classifier fixed, these highly dis-
criminative input data should give rise to high AUC values.
With our two-stream network fixed, we used the AUC to
measure the classification ability of three levels of features:
single-image level, multi-image level, and local-feature
level. We used the sklearn library in Python to calculate
the AUC.

In our study, we constructed the input from the integrated
information of all 700 images and HFMs, and passed them
through the trained two-stream network to calculate AUC
scores. To investigate the classification ability based on
the single image, we calculated the AUC based on a single
image, in which we retained the stimulus image and its cor-
responding HFM, and masked the remaining 699 images and
HFMs with Gaussian noise. At the multi-image level, we
retained the multiple images and their corresponding HFMs,
and masking other images and HFMs with Gaussian noise.
At the local-feature level, we retained the regions of images
and HFMs containing the same category of the local feature
and masked the remaining regions with Gaussian noise.

3 Results

Figure 2a shows the deep learning framework to investigate
the discriminative features discerning between ASD and
TD. Visual features were segmented from the natural scene
images using a Mask R-CNN model [38]. Image ablation
retained information only from the area of the feature in the
image and corresponding HFM with the remaining areas
replaced by Gaussian noise. Data containing information of
the same category of the feature with multiple images and
HFMs was constructed and passed through a two-stream
deep learning model to obtain the AUC, which quantitatively
evaluated the classification ability of the information from
the feature.
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3.1 Performance of The Two-stream Classification
Model

The model-level accuracy and cross-entropy loss were
plotted against the training iterations in the leave-one-out
and 13-fold cross-validation (Fig. 3a—d). The classification
accuracies on training and test datasets gradually increased
to stable levels, whereas the corresponding losses gradu-
ally decreased to stable levels as the training iterations
increased. Our two-stream network achieved 0.92 and 0.84
model-level accuracy in the leave-one-out and 13-fold
cross-validation tests, respectively (Fig. 3a, b). As shown
in Fig. 3e, f, we plotted the ROC curves of the leave-one-
out cross-validation (Fig. 3e) and 13-fold cross-validation
(Fig. 3f). In the leave-one-out cross-validation, our model
obtained 0.95 subject-level Accuracy, 1.00 Sensitivity,
0.89 Specificity, and 0.93 AUC. In the 13-fold cross-vali-
dation, the subject-level Accuracy reached 0.85, with 0.80
Sensitivity, 0.89 Specificity and 0.91 AUC, respectively.
As shown in Table 1.

We compared our method with other state-of-the-art
methods [30, 31, 35]. Liu et al. [30] used a K-means+ SVM
method while Jiang et al. adopted a CNN + SVM framework
[35] and random forest method [31] to recognize those with
ASD using eye movement data. Our new two-stream deep
learning network outperformed other models in Accuracy,
Sensitivity, Specificity (as shown in Table 1; and the AUC
was only 0.01 lower than that from [31]).

3.2 t-SNE Visualization

To visualize internal features in the two-stream CNN asso-
ciated with the classification, we applied t-SNE to visual-
ize the high-dimensional features in the last two layers of
the ASDNet (Fig. 3g—j). Figure 3G-H shows two t-SNE
plots of the two layers from a typical leave-one-out model,
respectively. Figure 31, j show the t-SNE plots from a typical
13-fold cross-validation model. Each point in these t-SNE
plots represented a subject. In the leave-one-out model,
t-SNE distribution of features from ASD and TD subjects

Fig.3 The performance of (a) (b) (h)
the two-stream deep learning 1.0 1.0 50
network. a The accuracy curves 2 ,
of the network in the leave-one- ®© 10
out validation. b The accuracy 3 0.7 — Train
curves in the 13-fold validation. £ = Test
¢ The loss curves in the leave- 0.4— A s 0.4 A ’ -30
one-out validation. d The loss 2?? ?_00 1000 2(I)t0 t6 00 1000 -50 ¢ SI;I1EO 1 30
curves in the 13-fold validation. erations erations g
e—f The ROC curves of our two- :
c d i

stream network in the leave- ( 0).8 0{9 ) ( )30 3(‘!))
one-out cross-validation (e) and N .‘ L)
the 13-fold cross-validation (f). » 0 w15 .. ’
g-h The t-SNE visualization of § 0.4 5 (% QQ%. -10
high-dimensional features of the - 0 »
second last (g) and the last layer 0.0 01 a . ) .
(h) in a leave-one-out valida- " 200 600 1000 200 600 1000 -40 -10 20 -20 10 40
tion. Each dot represents a sub- Iterations Iterations t-SNE 1 t-SNE 1
ject. i—j The t-SNE visualization
of the second last (i) and the last (e) (f)
layer (j) in a 13-fold validation o 1 1

©
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2 0 0.5 1 0 0.5 1

F  False Positive Rate  False Positive Rate
Table 1 .A quantitative Methods Models Cross-validation Accuracy Sensitivity  Specificity AUC
comparison between our model
and other state-of-the-art Liuetal.[30]  K-means+SVM Leave-one-out 0.89 0.93 0.86 0.90
models Jiang et al.[35] CNN+SVM Leave-one-out  0.85 0.83 0.87 0.89

Jiang et al.[31] Random forest Leave-one-out 0.86 091 0.83 0.94
Ours Two-stream network Leave-one-out 0.95 1.00 0.89 0.93
13-fold (three-out) 0.85 0.80 0.89 0.91

Bold values indicate results of two-stream network
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was well separated in the last two layers, demonstrating
that category representation in the two-stream network was
unambiguous. In the 13-fold model, the vast majority of data
from ASD and TD subjects were again well separated, with
only one TD subject misclassified (Fig. 3i), which was con-
sistent with the lower accuracy of 13-fold cross-validation
compared with the results of leave-one-out. In addition, bet-
ter separation was found in the last layer in the two exam-
ples, suggesting that ASD and TD features became more
distinguishable along the network.

3.3 Classification Ability Based on Single-image
Level

The previous classification results relied on all 700 images
and corresponding HFMs. Here, we evaluated the clas-
sification ability of information from a single image (see
details in Sect. 2). Figure 4a shows the AUC values based
on information from the 700 single images in a descending

(@)

0.54

0.52f

AUC values

100 300 500 700
Index of data from single image

0.50

()

1.00p

0.85f

AUC values

100 300 500 700
Number of data from single image

0.70k

Fig.4 Classification ability of information from single and multiple
images. a The AUCs based on information from a single image. X:
the index of data from a single image according to its AUC values
in a descending order; Y: AUC values of information from a single

order. Figure 4b shows images with the top 10 and bottom
5 AUC values. These AUC values in Fig. 4a (<0.55) were
far smaller than the AUC value of our two-stream network
(0.93) based on all 700 images and HFMs, suggesting the
contribution of information from a single image was limited
and the combined information from multiple images played
an important role in our model.

3.4 Classification Ability Based on Multi-image
Level

We calculated AUCs based on multiple images and HFMs
(Fig. 4c). The AUC was about 0.74 based on data from the
top 50 images and gradually increased to 0.96 with the top
250 images. It stayed around this high level with more data
integrated until all 700 images and HFMs were included. In
fact, the AUC value based on all 700 images and HFMs was
0.93, which was smaller than the value based on informa-
tion from the top 250 images, suggesting that the combined

(b)

AUC top 10

image. b Images with the top 10 and bottom 5 AUCs. ¢ The AUCs
based on data from multiple images. X: the number of data from a
single image combined; Y: the AUC values of the combined data. d
The 12 image dataset with an AUC of 0.86
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information from all 700 images was redundant, and there
were both synergistic and antagonistic interactions between
information from single images during the integration. To
find an efficient image dataset for the classification by a RFE
method [39], we started from the top 250 images, and each
time replaced data of one image with Gaussian noise if this
replacement caused the smallest AUC reduction. We con-
tinued this process and found a dataset including 12 images
with an AUC of 0.86 (Fig. 4d), suggesting the potential to
find a highly efficient image dataset to discern between ASD
and TD.

3.5 Classification Ability Based on Local-feature
Level

We segmented the top 250 images through a pre-trained
Mask R-CNN model [38]. After manually fine-tuning the
segmentation, we classified the segmented features into 12
categories (Fig. 5). To investigate the classification ability
of information from these features, we calculated the AUCs
based on each category of these features while replacing
all remaining parts of the images with Gaussian noise. Fig-
ure 6a showed these features with the other parts of images
replaced with Gaussian noise. A baseline AUC was calcu-
lated for each feature by randomly retaining image parts with
the same size of the feature in each image. The classification
ability based on a feature was higher than that of randomly
selected areas if its AUC was greater than its baseline. As
shown in Fig. 6b, there were 10 features with AUCs higher
than baseline, including Center-object, Center-non-object,
Animals, Human-faces, Lower-bodies, Food & drink,
Action-objects, Text, Indoor-objects, and Outdoor-objects.

However, AUCs of Upper-bodies and Uniform-background
were lower than their baselines. The averaged AUC of the
11 features (excluding the Uniform-background) was sig-
nificantly higher than the average of their baselines (Rank-
sum test, p=0.015), as shown in the rightmost of Fig. 6b.
We combined information from the 11 features sequentially
according to their AUCs in a high-to-low sequence. As the
number of combined features increased, the values of AUC
gradually increased (Fig. 6¢) and reached its peak of 0.92
with the top-9 features combined (excluding the Action-
objects and Lower-bodies) that consisted of 44% of the top
250 images in size. The AUC based on the 11 combined
features was 0.91. These AUC values were very close to
the AUC value of 0.93 based on data from all 700 images,
suggesting that these features played an important role in
distinguishing ASD from TD during the classification.

4 Discussion

In this study, we developed a new systematic framework
to identify discriminative features for the classification of
ASD and TD, which combined deep learning classifica-
tion, deep learning segmentation, image ablation and a
direct measurement of classification ability (AUC). In the
framework, we designed a novel two-stream deep learn-
ing network based on VGG-16 combining image and eye
movement information for discerning between ASD and
TD, and obtained accuracies of 0.95 and 0.85 in the leave-
one-out and 13-fold cross-validation, respectively. We
used VGG-16 [46] in our two-stream network, because it
has been one of the most popular CNN models [44], and

N e

CLOSED |
RN W

Fig.5 The 12 categories of features segmented from images (outlined in red lines). a Center-object. b Center-non-object. ¢ Animals. d Human-
faces. e Upper-bodies. f Lower-bodies. g Food & drink. h Action-objects. i Text. j Indoor-objects. k Outdoor-objects. 1 Uniform-background
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Fig.6 Classification ability of information from features segmented
from images. a Examples of 12 categories of features segmented
from images with the remainder of the images masked by Gaussian
noise. b The AUCs of the 12 categories of features (red) and corre-

has been used in studies on recognition of atypical eye-
movement behavior in ASD [35, 36, 60] and prediction
of the saliency maps based on eye-movements in control
subjects [43—45, 61-63]. Our two-stream network achieved
the state-of-the-art performance with a gain of 6% in clas-
sification accuracy [30, 31, 35]. It is worth noting that
although our VGG-16 based model outperformed prior
models in predicting eye movement, our present model
was more complex (in both its structure and number of
parameters) than prior models and was thus more likely to
fit the data. Deep learning networks have also been devel-
oped for ASD recognition based on fMRI signals including
auto-encoders [19, 64-67], one or multi-stream CNNs [29,
68] with accuracies at about 0.70-0.96. The accuracy of
our model is comparable with the best accuracy of these
deep learning models.

Human-faces

Indoor-objects Outdoor-objects

Upper-bodies  Lower-bodies

']

Uniform-background

Text

0.92

0.82

AUC values

0.72 » » » » ]
1 3 5 7 9 11

Number of combined features

sponding baselines (blue), and the averaged AUC of the 11 catego-
ries of features (Mean) with the Uniform-background excluded. ¢ The
AUCs based on combined features. X: the number of features com-
bined; Y: the AUC values of combined features

Leveraging the high predication accuracy of our two-
stream model, we evaluated the classification ability (AUC) of
a feature based on information only from the feature through
an image ablation method that retained the area of the fea-
ture with the remaining areas replaced by Gaussian noise.
These features were segmented from the images by the Mask
R-CNN model and were slightly fine-tuned manually. Within
this framework, the high accuracy of our model made a good
basis for finding these discriminative features, and deep learn-
ing segmentation allowed us to consistently segment features
from images with high localization precision, and the image
ablation combined with AUC measurement allowed us to
evaluate the classification ability of each feature and that of
their combination directly and quantitatively. The group aver-
aging methods have been commonly used to identify impor-
tant features of ASD in previous studies, while it could not
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accurately classify ASD and TD at the individual level based
on these group differences [69—72]. In contrast, the combined
top-9 features identified in this study gave rise to an AUC
of 0.92 in our network, permitting an accurate classification.
Recently, the LRP method [36] and SHAP method [32] have
been applied to identify pixel-wise information important
for ASD identification. These methods identified areas with
high influence on the predication probabilities, but the tradeoff
between hit rates and false alarm rates has not been considered
in these methods. Thus, here we have developed a system-
atic framework to identify discriminative features discerning
between ASD and TD. This framework could also be applied
to the identification of discriminative image-related features
in a variety of brain disorders beyond ASD.

Through this method, we evaluated 12 categories of fea-
tures in our natural scene images. Previous studies using
natural scenes have found fixation pattern differences in:
human faces[4, 7, 70, 73, 74]; faces of animals and cartoons
[7]; person and people [2, 72, 75-77]; bodies [4, 71, 78];
gazed objects [79]; motion, smell, touch objects [7]; non-
uniform background [4, 7, 72]; and image center [7] by group
averaging and statistical analysis. Consistent with previous
findings, Human-faces, Center-object, Center-Non-object,
Action-objects, and Text were identified as discriminative
features in this study, but we find that Center-object was more
discriminative than the Center-non-object, which was not dis-
tinguished in previous studies. Animal faces were included in
the Face category in previous studies, this time we identified
the Animals including face/head and the whole body as a dis-
criminative feature, and further analysis showed that animal
face was not more discriminative than the body of the animal
(AUC of face vs body: 0.68 vs 0.70). To evaluate the discrim-
inability of these features more accurately, a baseline AUC
was calculated for each feature by randomly retaining image
parts with the same size of the feature in each image. We
found that AUCs of 2 categories (the Uniform-background
and Upper-bodies) were lower than their baselines, suggest-
ing that the two features were not more discriminative than
the randomly selected areas in the images and played a less
important role in the classification. We found two new cate-
gories of discriminative features: Food & drink and Outdoor-
objects, which have not been clearly identified in previous
studies. Food selectivity has been described as a common
feature of ASD [80], such as eating a narrow variety of foods,
requiring specific presentations of foods and specific utensils,
and eating only low texture foods [81, 82], which have also
been classified as part of repetitive behaviors in ASD [83].
Our result suggests that altered attention to stimuli of Food
& drink may contribute to the food selectivity in ASD, which
may stem from different food selectivity. The altered atten-
tion to the Outdoor-objects might be related to less outdoor
experience in children with ASD, who spend more than twice
as much time indoors compared to TD children [84—86]. The
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value of AUC based on the combined top-9 features reached
0.92, which was very close to the AUC value of 0.93 based on
data from all 700 images, confirming the importance of these
features during the classification. Together, the Center-object,
Food & drink, Outdoor-objects, Animals, and Human-faces
were the most discriminative features by considering both the
AUC values of these features and corresponding baselines.
We also characterized the classification ability of infor-
mation from single image, and found that information from
multiple images was necessary for accurate ASD identifica-
tion. Recently, Liaqat et al. [34] developed deep-learning
approaches to predict ASD with an accuracy of 0.62 based
on a single image and scan-path data. The high accuracy
of that study might result from more information being
derived from a scan-path than that from an HFM or a dif-
ference between the image-based division of training and
test datasets in their study and the subject-based division in
our study. We found a twelve-image dataset with an AUC
of 0.86, suggesting that it was possible to recognize abnor-
mal eye movements in ASD based on a small but informa-
tive dataset. A limitation is that the size of our dataset (39
subjects) is still small. The scarce availability and difficulty
of acquiring eye-movement datasets have been a key chal-
lenge in ASD research [87]. In the present study, we applied
the data augmentation methods of cropping and flipping to
increase the dataset size as in previous studies [60, 87, 88]
for eye-movement data. But visual attention behaviors may
be changed with the images cropped or flipped. Further
investigation is required to test the robustness and generali-
zation of these discriminative features. However, it is worth
noting that one advantage of our deep learning model is
to exact features from a large dataset, and the performance
of our model will be improved with more data from ASD
and TD participants. Together, our present approach will
not only provide a novel and powerful tool to identify and
interpret abnormal visual attention in ASD but also facilitate
the identification of eye-movement biomarkers for ASD.
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