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Abstract — Turbulence in two-phase flows drives many important natural and engineering processes, from
geophysical flows to nuclear power generation. Strong interphase coupling between the carrier fluid and disperse
phase precludes the use of classical turbulence models developed for single-phase flows. In recent years, there has
been an explosion of machine learning techniques for turbulence closure modeling, though many rely on
augmenting existing models. In this work, we propose an approach that blends sparse regression and gene
expression programming (GEP) to generate closed-form algebraic models from simulation data. Sparse regres-
sion is used to determine a minimum set of functional groups required to capture the physics, and GEP is used to
automate the formulation of the coefficients and dependencies on operating conditions. The framework is
demonstrated on homogeneous turbulent gas-particle flows in which two-way coupling generates and sustains

carrier-phase turbulence.

Keywords — Multiphase flow, data-driven modeling, turbulence, gene expression programming.

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

In the last decade, data-driven approaches have
become the predominant tool for developing turbulence
models.! Of these approaches, neural networks have gained
a considerable amount of traction.” '! In contrast, fewer
approaches have elected to pursue strategies that enable
a compact, algebraic closure. Formulating models in this
way has several important properties including increased
interpretability, ease of dissemination, and straightforward
integration into existing solvers. These techniques gener-
ally fall into two categories: (1) symbolic regression and (2)
gene expression programming (GEP).

Reference 12 developed a strategy based on sparse
regression that identifies the underlying functional form

*E-mail: sbeetham@oakland.edu

of the nonlinear systems by optimizing a coefficient
matrix that acts upon a matrix of trial functions. This
construct has the important benefit of including the user
in the modeling process through selection of the trial
functions. References 13 and 14 extended the sparse
identification framework of Ref. 12 to infer algebraic
stress models for closure of the Reynolds-averaged
Navier-Stokes (RANS) equations. In Ref. 13, the models
were written as tensor polynomials and built from
a library of candidate functions. In Ref. 14, Galilean
invariance of the resulting models was guaranteed
through thoughtful tailoring of the feature space.

Gene expression programming, a data-driven techni-
que inspired by the Darwinian concept of survival of the
fittest, heuristically evolves symbolic models until the
error is reduced beyond a threshold. GEP has demon-
strated success in modeling large-eddy simulation
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subgrid-scale closures,'>'® boundary layer theory,'” tur-
bulent pipe flow,'® and informing RANS closures.'*"*

While these data-driven techniques have been increas-
ingly utilized for modeling single-phase turbulence, their
application to multiphase turbulence modeling is still rela-
tively uncharted. Despite this, multiphase flows present a rich
and diverse class of problems for which machine learning can
prove useful. Because of the large parameter space frequently
attributed to such flows, traditional modeling techniques have
historically failed, especially beyond dilute regimes, where
models extended from single-phase turbulence breakdown
(see, e.g., Ref. 21 and discussion therein). At moderate
volume fractions, particles are capable of generating turbulent
kinetic energy (TKE) at the smallest scales.”> This is the
direct antithesis to the classical notion of the turbulent energy
cascade and precludes the use of the Boussinesq hypothesis
for modeling the Reynolds stress. This motivates the need for
methodologies capable of formulating closures “from
scratch” rather than augmenting existing models. These chal-
lenges, along with the societal importance and pervasiveness
of these flows,”* make them excellent candidates for improve-
ments in data-driven modeling techniques.

In this work, we propose a blended modeling approach
that combines the strengths of both sparse regression and GEP
to inform turbulence closures in a manner that leverages the
physical knowledge of the modeler and automates the deter-
mination of model components for which physical insight is
not obvious or does not exist. The approach is applied to
disperse two-phase flows where the carrier phase is laden
with spherical rigid particles at moderate volume fractions.
Strong two-way coupling between fluid and particles gener-
ates and sustains turbulence. This configuration has been
discussed extensively in prior work (see Refs. 14, 25, and
26 for more details) and serves as a case study here.

Il. METHODOLOGY

It is well established?’ that any tensor quantity D;
can be exactly described by an infinite sum given as

Dy =Y prTy, (1)

n=1

where B(") represents the n’th coefficient associated with
a corresponding basis tensor 7 ,(-;1). The coefficients may

range in complexity from constants to nonlinear functions
of the principal invariants of the tensor bases. For many
configurations, this infinite sum can be reduced to a finite
sum by leveraging the Cayley-Hamilton theorem. This
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results in a reduced set of tensors termed a “minimal invariant
basis” (e.g., Ref. 28). Using knowledge of the system phy-
sics, a minimal invariant basis can be derived. Once this basis
is established, modeling exercises must address two key
questions. (1) Which of the basis tensors are most important
for capturing the physics at play? (2) How do the coefficients
depend on principal invariants or system parameters?

Sparse regression has been shown to be successful at
addressing the first task'*** and works well for the second
task when constant coefficients are sufficient. However,
when the system has a complex and large parameter
space, as is the case for multiphase turbulence, constant
coefficients are no longer sufficient for capturing physics
across scales. In this situation, sparse regression is not
efficient at determining the form of the coefficients and
requires the modeler to supply all potential test functions to
the algorithm manually. While this has important benefits
for embedding physics-based reasoning and properties into
the resultant model (e.g., form invariance), it implies
a tedious, “guess-and-check” exercise if physics-based
arguments can no longer be used to supply test functions.
In the present method, we propose to offload this work to
a gene expression algorithm when naivety in functional
form is unavoidable. This effectively automates the process
of evaluating trial functions for the coefficients while pre-
serving the benefits of using sparse regression to inform the
tensorial building blocks of the model.

The method can be summarized by three distinct
modeling steps, as shown in Fig. 1, and outlined here
for data spanning s unique conditions in the parameter
space (in the context of multiphase, turbulent flows, these
parameters might include the solids volume fraction and
Reynolds number):

1. Use sparse regression to identify the basis
tensors required to describe physics by optimizing

ﬁergn\|D—TB\|§+7»||BIII (2)

and assuming constant coefficients. Each base associated
with a nonzero coefficient in ,/B\ is deemed to be “essen-
tial” and is retained in the final model. The surviving
bases are then condensed into a subset of T, denoted 7.

2. For each of the s conditions, compute the ideal
constant coefficients associated with the p essential bases,
using ordinary least squares (OLS):

~C X 2
po = minliD, ~ TR G)
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Fig. 1. The modeling approach has three steps. 1: Sparse regression identifies the important basis tensors. 2: OLS provides the
ideal coefficients for each of the data sets for each of the identified bases. 3: GEP collapses the ideal coefficients for each case

into a compact, algebraic closure.

where ESC is of size p x 1; Dy is of size ¢ x 1, where ¢ is
the amount of data in the dataset (e.g., the number of time
steps); and T is of size ¢ x p. Note that both 7 and D
require tensorial data to be reorganized as vertical vec-
tors; see Ref. 14 for details. After this process has been

done for all s conditions, concatenate each of the ESC
vectors into a matrix of size p X s.

3. Finally, provide each p’th row of < and matrix
of parameters P associated with the s conditions as input
to the GEP algorithm. The resulting functional model for
/ﬁ\c effectively collapses the vector of discrete values for
,EC to a continuous, closed form with algebraic depen-
dence on system parameters.

This modeling flow is illustrated in Fig. 1, where s = 3
and p = 2 for demonstration purposes. Pseudocode for
this workflow is provided in the Supplementary Material.

I1l. SYSTEM UNDER CONSIDERATION

Multiphase flows span large parameter spaces, mak-
ing modeling challenging. Thus, we use a simple gas-
solid flow in which two-way coupling between the phases
drives the underlying turbulence as a case study to

NUCLEAR TECHNOLOGY - VOLUME 00 - XXXX 2023

evaluate the effectiveness of the proposed modeling fra-
mework. The same methodology will span bubbly flows
in future work. In this configuration, rigid spherical par-
ticles are suspended in an unbounded (triply periodic)
domain containing an initially quiescent gas. As particles
settle under the influence of gravity, they spontaneously
form clusters. Because of momentum exchange between
phases, particles entrain the fluid, generating turbulence
therein.>~%*® A frame of reference with the fluid phase
is considered such that the mean streamwise fluid velo-
city is null. Key nondimensional numbers that character-
ize the system include the Reynolds number, as well as
the Archimedes number, defined as

Ar=(p,/p; — D)dog/v; . (4)

Alternatively, a Froude number can be introduced to charac-
terize the balance between gravitational and inertial forces,
defined as Fr = tlzjg/dp, where 1, = ppdg/(ISpf\{f) is the
particle response time.

The mean particle-phase volume fraction is varied
from 0.001 < (g,) < 0.05, and gravity is varied from
0.8 < g < 8.0. Here, angled brackets denote an average
in all three spatial dimensions and time. Because of the

@ANS
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large density ratios under consideration, the mean mass
loading, ¢ = <8p>pp/(<8f>pf-), ranges from O(10) to
O(10%), and consequently, two-way coupling between
the phases is important. A large enough domain with
a sufficiently large number of particles is needed to
observe clustering. To enable simulations on this scale,
we use an Eulerian-Lagrangian approach.’! The fluid
equations are solved on a staggered grid with second-
order spatial accuracy and advanced in time with second-
order accuracy using the semi-implicit Crank-Nicolson
scheme. Particles are tracked individually in
a Lagrangian frame of reference and integrated using
a second-order Runge-Kutta method. Particle data
(volume fraction and drag) are projected to the Eulerian
mesh using a Gaussian filter described in Ref. 31.

IV. MULTIPHASE RANS EQUATIONS

Derivation of the single-phase RANS equations is
done by directly averaging the Navier-Stokes equations.
Derivation of the multiphase RANS equations, however,
will retain additional physics if averaging is performed on
the volume-filtered Navier-Stokes equations.?’ Volume
fraction—weighted averages, or phase averaging (PA),
analogous to Favre averaging of variable density flows,
was previously derived.?® For the relatively simple con-
figuration used here, which is homogeneous in all spatial
directions, statistically stationary in time, and symmetric
in the counter-gravity direction, the transport equations
for the fluid-phase Reynolds stresses can be reduced to
two unique, nonzero components. In the streamwise
(gravity-driven) direction, this equation is given as

10?1/ au\ ou
2 Ot Pr P ox Pr Fl ox;

pressure strain (PS)

viscous dissipation (VD)

mon ) "

+rgi (<“f”p>p — ( >p) * riiwf )y Stp)y

drag exchange (DE) drag production (DP)

o, 36, ..

(p " pf (p " f.1i

v 2Ly SRRy (s
pp< ! Ox >p pp< ! aXi >p

pressure exchange (PE)

viscous exchange (VE)

where u, is the particle-phase velocity in an Eulerian
frame of reference and ¢ is the viscous stress tensor.
The modified particle response time 7, is given as the

particle response time 1, normalized by the particle-

@ANS

phase—averaged drag correction <Fd>p (see Ref. 29 for

details). () = (&())/{en)-
Fluctuations about PA terms are denoted with a double
prime. In a similar fashion, the PA operator in the fluid
phase is defined as ((-)), = (&/("))/(gr). Fluctuations

about the PA fluid wvelocity are given by

up = ur(x,t) — (uy),. With this, the fluid-phase TKE is

given by k; = (u, -u,) /2. These definitions and nota-

additional Here,

tions are illustrated further in Fig. 2.

It is notable that all the terms appearing on the right-
hand side of Eq. (5) are unclosed and require modeling.
This work has already been carried out using sparse
regression exclusively.”” Here, we select the drag produc-
tion (DP) term to demonstrate the present methodology.
This term is chosen due to its importance in this class of
flows. In the absence of mean shear, it is the only source
of fluid-phase TKE. Additionally, all components of the
DP tensor are identically zero, except for the contribution
in the gravity aligned direction.

Several recent efforts have proposed closures for DP
across both gas-solid and bubbly flows. These closures
are generally postulated in the following form:

"

2 (), (), = (), ) = Cr Calwy), = (), I (6)

where Cy is the drag coefficient, |(u,), — (ur),| is the
mean slip velocity between the phases, and 0 < C; < 1 is
a model constant. In the case of bubbly flows, C; has
been postulated as min(O.lSReg'B, 1)0.75p,(e,) /dp
(Ref.  32), 0.25(0.75Cups(e,)/d, (Ref. 33), and
1.44(0.75Cppy(e,) /dp) (Ref. 34). For gas-solid flows,
a similar closure structure was previously postulated by
Ref. 21 in which the drift velocity was modeled as

<u}')p = Cg((up>p - <uf>f), where Cy =~ 0.6 for homo-
geneous gravity-driven flows?® and has a nonlinear
dependence on (g/) in the channel flow.>®

V. RESULTS AND DISCUSSION

We now demonstrate the modeling methodology pre-
sented in Sec. II on the multiphase case study summar-
ized in Sec. III, focusing on the DP term R’ in
particular. Here, we follow the three modeling steps as
outlined previously.

In the first step, we conduct modeling of DP using
sparse regression with embedded invariance and the
assumption of constant coefficients to inform the bases

NUCLEAR TECHNOLOGY - VOLUME 00 - XXXX 2023
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gas-phase velocity

fluid phase quantity, ) /
e.g. velocity, uy

Fluid phase-averaged quant n‘\‘.x
(&ous)

(up)y = ——
(&)
where g, is the fluid-phase
volume fraction and
( ) is a Reynolds average.

Statistically stationary dimension,
e.g., time and space, t, x;

ﬁolid particles ‘

( A note on mixed terms:

When fluid-phase fluctuations are
subject to a particle-phase average

{uy

This denotes the fluid-phase velocity

k fluctuations seen by the particles.

particle-phase quantity,
e.g. velocity, u,

™

Statistically stationary dimension,

where g, is the fluid-phase volume

Particle phase-averaged quantity,
(e“,,u‘.,)

{e,)

(), =

5

e.g., time and space, t, x;

A

fraction. )

Exemplary case of
fully-developed,

gas-solid flow

Fig. 2. Tllustration of the PA definitions and notations used in the multiphase RANS equations, Eq. (5).

that comprise the reduced set 7<. The model consisting
of the reduced basis tensors is given as

RP =B,1 +p,0, | (7)

~

where U, is a tensor formulated using the mean slip
velocity between the phases, I is the identity tensor,
and the coefficients B, and B, have functional depen-
dency upon configuration parameters that are unknown
and cannot be informed by physics-based reasoning.

Next, we evaluate the ideal constant coefficients
for each unique configuration studied, by conducting
OLS and allowing the coefficients §; and B, to take
on unique values for each configuration. In other
words, the values of ;, and B, associated with the
case for (g,) =0.001 and g =0.8 need not be the
same as the values for (g,) = 0.05 and g =2.4.

As described in Sec. II, the ideal coefficients are
arranged into two vectors: one for each of the basis

tensors I and U,. Each vector of ideal coefficients is

NUCLEAR TECHNOLOGY - VOLUME 00 - XXXX 2023

used as input, along with the associated parameters and
invariants, to the GEP algorithm.*® Here, the GEP algo-
rithm selects models that reduce the R? between the ideal
coefficient values and the candidate models, which are all
functions of the parameters and invariants. This effec-
tively collapses the vector of ideal coefficients to a single,
compact algebraic expression.

The resultant model learned from this methodology is
given as

RPP = (0.258(p +(0.039)* + 1.9 %)]1

i (®)
+ (1.9(p - 5.8@1/2)Ur ,

where 8@ is a principal invariant, defined as

tr (@r@fﬂij), and the basis tensor [[AJr is defined by the

normalized slip tensor. This slip tensor is given as the
outer product of the mean slip velocity,

~

U = ((u,,)p — <uf>f) ® ((up)p — (uf)f). The two other

@ANS
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basis tensors f@f and HAQP are the anisotropic stress tensors
associated with the fluid and particle phases, respectively.
In terms of solution variables, the mean phase velocities
are solved by associated momentum equations, and the
Reynolds stresses are informed by transport equations in
the multiphase RANS equations (see Ref. 29).This model
has an error of 0.012, where the error is defined as

D — Tg|
1D

This is comparable performance to the model learned
using sparse regression exclusively (e = 0.013); how-
ever, the proposed method does not require a manual
selection of trial functions for the coefficients, thus mak-
ing it far more efficient from a modeling perspective.

Following the same method as is shown for DP, all
the other terms appearing in the fluid-phase multiphase
RANS equation [shown in Eq. (5)] are also modeled.
Since the remaining terms in this equation [namely, pres-
sure strain (PS), viscous dissipation (VD), and drag
exchange (DE)] demonstrate more complex models
when carrying out the sparse regression—only approach,
some additional considerations are needed.

In order to determine a minimal set of basis tensors,
sparse regression is carried out with a decreasing sparsity
parameter A until error is moderately reduced and a small
subset of the basis tensors is selected. Since GEP will be
used to infer the coefficients, it is no longer necessary to
select A such that the model error is minimized to the
limit of zero. To choose A such that the error approaches
zero would unnecessarily increase the number of basis
tensors included in the model. In other words, the sparse
regression portion of the blended modeling approach acts
as a “coarse tuning” knob, and the GEP portion conducts
“fine tuning.”

Once the reduced basis is identified, OLS is carried
out to infer the ideal coefficients for each realization of
the data. It is worth noting here that for this problem, and
many others in engineering systems, the basis tensor
matrix is rank deficient, making the OLS computation
underdetermined. The reason OLS is underdetermined is
that the number of candidate tensor bases exceeds the
number of nonzero entries in D.

Thus, a minimum-norm solution to OLS is carried
out to circumvent this issue. Namely, the basis tensor
subset, TS with rank k, is decomposed using singular
value decomposition (SVD) as T€ = UXVT. Then, the
leading submatrix of X, which includes the & singular
values of T€, is used to write a compact SVD of T’ as
T€ = U'S'V'". While this step introduces an unrecover-
able error, since T’ is properly an approximation of T€,
it also allows all of the idealized coefficients for the basis
subset to have nonzero values, without the ad hoc parti-
tioning of data.

Once the idealized set of coefficients corresponding
to each basis has been determined, GEP is used to infer
the compact, algebraic model. A summary of these steps
and resulting models for all the nontrivial terms that
appear in Eq. (5) are summarized in Tables I through V.
For all the terms considered, the blended modeling
approach results in models with similar or better accuracy
and similar or increased simplicity compared with
a sparse regression—only approach. Specifically, the
model errors using a sparse regression—only approach
for PS, VD, DE, and DP are 0.15, 0.07, 0.15, and 0.01,
respectively. Using the blended GEP and sparse regres-
sion approach, resultant models for the previously listed
terms are 0.06, 0.09, 0.08, and 0.01, respectively.
Additionally, the number of basis tensors required for
the blended models is maintained at 3 and 2 for PS and
DP and reduced from 4 to 2 basis tensors for each of
viscous diffusion and DE.

TABLE I

Summary of Reduced Order Forms for the Fluid-Phase Reynolds Stress Transport Equation®

Term

Reduced Model Form

Pressure strain
Viscous dissipation
Drag exchange

Drag production

RIS =B 0+ B R + BT B,

RV = B> (RR, + R,R/) + BY° (RR/R, + R,RR)
RPE _ I])E I+ B?E @r

RPP =PI + 57 T,

*Here, sparse regression is used to determine a minimal basis set for modeling. Coefficients p are then determined using OLS and

GEP.

@ANS
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TABLE I
Summary of the Coefficients Learned by the GEP Algorithm for PS*

Coefficient Learned Closure

S = 0.07¢ — 146" — 0.855%) ¢ — (0.026¢)* + 1.26
S = 0.069 — 0.728% ¢ — (0.0229)* — 0.03
= 12980 572(g,) — (25.16(z,)) — 0.04

*The resultant model using the blended approach yields a model error that is over twofold less than that with the sparse regression
approach (0.06 and 0.15, respectively).

TABLE III

Summary for the Coefficients Learned by the GEP Algorithm for Viscous Diffusion*

Coefficient Learned Closure

VP = 0.7885W¢ — 56.9(¢,) + 0.0002(g,)* — 0.158
Y0 = 0.4078®) — 15.4(g,) — 20.8¢~? — 3.29In((g,)) + 0.776SVp — 15.7

*Model errors between a sparse regression—only approach and the blended approach are similar (0.07 and 0.09, respectively),
However, the blended modeling method resulted in a model with increased simplicity (two basis tensors required compared with
five), for a similar accuracy.

TABLE IV
Summary of the Coefficients Learned by the GEP Algorithm for DE*

Coefficient Learned Closure

3
PE_ 0.142— 1.6 S(l)q)) ~ 0299

2
pe— —17(sWe) 2.8

*These closures reduce model error by nearly half compared with sparse regression alone (e = 0.08 and 0.15, respectively).

In considering the resultant models, it is notable that
in the limit of no particles (ie., U., R, = 0), the PS
reduces to a form similar to what is seen in traditional
single-phase turbulence modeling.*” Namely, for single-
phase PS, the slow PS correlation is most generally

model in this work, is responsible for models following
linear paths on the anisotropy invariant map in single-
phase flows. The second term captures nonlinear effects.

written as

1
R = Byby + B, (bikbkj - g”bf’y) ; (10)

where b; is the Reynolds stress anisotropy tensor

(equivalent to ]1@ in the case of no particles). The first
term in this model, which is echoed in the multiphase PS

NUCLEAR TECHNOLOGY - VOLUME 00 - XXXX 2023

V.A. Comparison with a Nonblended Approach

As a counter argument to the blended modeling
approach, we also allowed the GEP algorithm to learn
the full model without sparse regression (i.e., the mean
values of DP, all 24 basis tensors, the principal invariants,
and configuration parameters from the Euler-Lagrange
simulations were provided to the GEP algorithm as
input). The learned model is given as

@ANS



8  BEETHAM and CAPECELATRO - MULTIPHASE TURBULENCE MODELING

TABLE V
Summary of Model Error and Complexity for Each of the Terms Arising in Eq. (5)*
Sparse Regression Sparse Regression + GEP
Term € Number of Terms € Number of Terms

Pressure strain 0.15 3 0.06 3
Drag production 0.01 2 0.01 2
Viscous dissipation 0.07 4 0.09 2
Drag exchange 0.15 4 0.08 2

*In comparing sparse regression against a blended sparse regression and GEP approach, the blended approach results in similar or
better model errors and fewer tensor bases required for accuracy.

DP - R o~ s T\ /2
R = 2440, +304e % — 1.42(0.R, + (U.R)) )

5(TRD s T2 o
+1.41 x 10 (OB, + (URy) ) (s)” — 304,
(11)

with associated error 0.13 (an order of magnitude higher than
the blended or sparse regression—only approach). This degra-
dation in performance can be attributed to the fact that the

model now depends on I@p and ]ﬁf/, the particle and fluid-

phase Reynolds stress tensors, in addition to T[AJ,. On
a fundamental level, since the DP is a gravity-based phenom-
enon (i.e., TKE is generated solely due to the presence of

gravity in this configuration), we can anticipate that [[1 would
be the predominant tensor from the basis for describing the
physics. Additionally, since the Reynolds stresses contain
nonzero diagonal entries, including these terms makes it
difficult to drive the cross stream directions of the DP
model to zero. Finally, and perhaps most importantly, GEP
does not enforce the relation that the resultant model be linear
with respect to the basis tensors. The stipulation of linearity in
the basis tensors is critical for ensuring form invariance in the
resultant model and for ensuring a physics-based description
of the data, as described by Eq. (1). These results suggest that
sparse regression and GEP are both needed in order to select
a minimal set of tensors to describe physics and automate the
complex dependencies of the coefficients when physical
intuition cannot guide this process.

VI. CONCLUSIONS

As evidenced by this work, a modeling framework that
leverages both sparse regression and GEP has shown preli-
minary success in modeling complex flows. This methodol-
ogy combines the benefits of both modeling approaches.
Namely, it leverages the fact that sparse regression can

@ANS

incorporate known physical constraints (such as linearity in
a specified basis) and results in a compact algebraic model.
GEP automates the determination of algebraic models for
coefficients for which physical constraints are not known.
Combining these two modeling strategies results in models
with a high level of accuracy and, in some cases, improved
simplicity compared with a sparse regression—only approach.
Importantly, this method automates the portions of the mod-
eling process for which the practitioner cannot reasonably
provide superior oversight (for example, no physical insights
exist to constrain the solution).

Extending this blended framework to a more expan-
sive two-phase data set, spanning gas-solid flows and
liquid-gas flows, is the subject of current work. Because
of the automation properties of GEP combined with the
physics-based structure of sparse regression, we hypothe-
size that developing closures for data spanning particle-
laden to bubbly flows will result in models that are
invariant, intepretable, easy to use, and toward universal
applicability for two-phase flow.
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