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Abstract — Turbulence in two-phase flows drives many important natural and engineering processes, from 
geophysical flows to nuclear power generation. Strong interphase coupling between the carrier fluid and disperse 
phase precludes the use of classical turbulence models developed for single-phase flows. In recent years, there has 
been an explosion of machine learning techniques for turbulence closure modeling, though many rely on 
augmenting existing models. In this work, we propose an approach that blends sparse regression and gene 
expression programming (GEP) to generate closed-form algebraic models from simulation data. Sparse regres
sion is used to determine a minimum set of functional groups required to capture the physics, and GEP is used to 
automate the formulation of the coefficients and dependencies on operating conditions. The framework is 
demonstrated on homogeneous turbulent gas-particle flows in which two-way coupling generates and sustains 
carrier-phase turbulence.

Keywords — Multiphase flow, data-driven modeling, turbulence, gene expression programming. 

Note — Some figures may be in color only in the electronic version. 

I. INTRODUCTION

In the last decade, data-driven approaches have 
become the predominant tool for developing turbulence 
models.1 Of these approaches, neural networks have gained 
a considerable amount of traction.2–11 In contrast, fewer 
approaches have elected to pursue strategies that enable 
a compact, algebraic closure. Formulating models in this 
way has several important properties including increased 
interpretability, ease of dissemination, and straightforward 
integration into existing solvers. These techniques gener
ally fall into two categories: (1) symbolic regression and (2) 
gene expression programming (GEP).

Reference 12 developed a strategy based on sparse 
regression that identifies the underlying functional form 

of the nonlinear systems by optimizing a coefficient 
matrix that acts upon a matrix of trial functions. This 
construct has the important benefit of including the user 
in the modeling process through selection of the trial 
functions. References 13 and 14 extended the sparse 
identification framework of Ref. 12 to infer algebraic 
stress models for closure of the Reynolds-averaged 
Navier-Stokes (RANS) equations. In Ref. 13, the models 
were written as tensor polynomials and built from 
a library of candidate functions. In Ref. 14, Galilean 
invariance of the resulting models was guaranteed 
through thoughtful tailoring of the feature space.

Gene expression programming, a data-driven techni
que inspired by the Darwinian concept of survival of the 
fittest, heuristically evolves symbolic models until the 
error is reduced beyond a threshold. GEP has demon
strated success in modeling large-eddy simulation*E-mail: sbeetham@oakland.edu
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subgrid-scale closures,15,16 boundary layer theory,17 tur
bulent pipe flow,18 and informing RANS closures.19,20

While these data-driven techniques have been increas
ingly utilized for modeling single-phase turbulence, their 
application to multiphase turbulence modeling is still rela
tively uncharted. Despite this, multiphase flows present a rich 
and diverse class of problems for which machine learning can 
prove useful. Because of the large parameter space frequently 
attributed to such flows, traditional modeling techniques have 
historically failed, especially beyond dilute regimes, where 
models extended from single-phase turbulence breakdown 
(see, e.g., Ref. 21 and discussion therein). At moderate 
volume fractions, particles are capable of generating turbulent 
kinetic energy (TKE) at the smallest scales.22,23 This is the 
direct antithesis to the classical notion of the turbulent energy 
cascade and precludes the use of the Boussinesq hypothesis 
for modeling the Reynolds stress. This motivates the need for 
methodologies capable of formulating closures “from 
scratch” rather than augmenting existing models. These chal
lenges, along with the societal importance and pervasiveness 
of these flows,24 make them excellent candidates for improve
ments in data-driven modeling techniques.

In this work, we propose a blended modeling approach 
that combines the strengths of both sparse regression and GEP 
to inform turbulence closures in a manner that leverages the 
physical knowledge of the modeler and automates the deter
mination of model components for which physical insight is 
not obvious or does not exist. The approach is applied to 
disperse two-phase flows where the carrier phase is laden 
with spherical rigid particles at moderate volume fractions. 
Strong two-way coupling between fluid and particles gener
ates and sustains turbulence. This configuration has been 
discussed extensively in prior work (see Refs. 14, 25, and  
26 for more details) and serves as a case study here.

II. METHODOLOGY

It is well established27 that any tensor quantity Dij 
can be exactly described by an infinite sum given as

Dij ¼
X1

n¼1
βðnÞT

ðnÞ
ij ; ð1Þ

where βðnÞ represents the n’th coefficient associated with 
a corresponding basis tensor T

ðnÞ
ij . The coefficients may 

range in complexity from constants to nonlinear functions 
of the principal invariants of the tensor bases. For many 
configurations, this infinite sum can be reduced to a finite 
sum by leveraging the Cayley-Hamilton theorem. This 

results in a reduced set of tensors termed a “minimal invariant 
basis” (e.g., Ref. 28). Using knowledge of the system phy
sics, a minimal invariant basis can be derived. Once this basis 
is established, modeling exercises must address two key 
questions. (1) Which of the basis tensors are most important 
for capturing the physics at play? (2) How do the coefficients 
depend on principal invariants or system parameters?

Sparse regression has been shown to be successful at 
addressing the first task14,29 and works well for the second 
task when constant coefficients are sufficient. However, 
when the system has a complex and large parameter 
space, as is the case for multiphase turbulence, constant 
coefficients are no longer sufficient for capturing physics 
across scales. In this situation, sparse regression is not 
efficient at determining the form of the coefficients and 
requires the modeler to supply all potential test functions to 
the algorithm manually. While this has important benefits 
for embedding physics-based reasoning and properties into 
the resultant model (e.g., form invariance), it implies 
a tedious, “guess-and-check” exercise if physics-based 
arguments can no longer be used to supply test functions. 
In the present method, we propose to offload this work to 
a gene expression algorithm when naivety in functional 
form is unavoidable. This effectively automates the process 
of evaluating trial functions for the coefficients while pre
serving the benefits of using sparse regression to inform the 
tensorial building blocks of the model.

The method can be summarized by three distinct 
modeling steps, as shown in Fig. 1, and outlined here 
for data spanning s unique conditions in the parameter 
space (in the context of multiphase, turbulent flows, these 
parameters might include the solids volume fraction and 
Reynolds number):

1. Use sparse regression to identify the basis 
tensors required to describe physics by optimizing 

bβ ¼ min
β

jjD � Tβjj
2
2 þ λjjβjj1 ð2Þ

and assuming constant coefficients. Each base associated 
with a nonzero coefficient in bβ is deemed to be “essen
tial” and is retained in the final model. The surviving 
bases are then condensed into a subset of T, denoted T�.

2. For each of the s conditions, compute the ideal 
constant coefficients associated with the p essential bases, 
using ordinary least squares (OLS):

bβ
�

s ¼ min
bβ �

s

jjDs � T�
s β�

s jj
2
2 ; ð3Þ
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where bβ �
s is of size p � 1; Ds is of size q � 1, where q is 

the amount of data in the dataset (e.g., the number of time 
steps); and T�

s is of size q � p. Note that both T� and D 
require tensorial data to be reorganized as vertical vec
tors; see Ref. 14 for details. After this process has been 
done for all s conditions, concatenate each of the bβ �

s 
vectors into a matrix of size p � s.

3. Finally, provide each p’th row of bβ � and matrix 
of parameters P associated with the s conditions as input 
to the GEP algorithm. The resulting functional model for 
bβ � effectively collapses the vector of discrete values for 
bβ � to a continuous, closed form with algebraic depen
dence on system parameters.

This modeling flow is illustrated in Fig. 1, where s ¼ 3 
and p ¼ 2 for demonstration purposes. Pseudocode for 
this workflow is provided in the Supplementary Material.

III. SYSTEM UNDER CONSIDERATION

Multiphase flows span large parameter spaces, mak
ing modeling challenging. Thus, we use a simple gas- 
solid flow in which two-way coupling between the phases 
drives the underlying turbulence as a case study to 

evaluate the effectiveness of the proposed modeling fra
mework. The same methodology will span bubbly flows 
in future work. In this configuration, rigid spherical par
ticles are suspended in an unbounded (triply periodic) 
domain containing an initially quiescent gas. As particles 
settle under the influence of gravity, they spontaneously 
form clusters. Because of momentum exchange between 
phases, particles entrain the fluid, generating turbulence 
therein.25,26,30 A frame of reference with the fluid phase 
is considered such that the mean streamwise fluid velo
city is null. Key nondimensional numbers that character
ize the system include the Reynolds number, as well as 
the Archimedes number, defined as

Ar ¼ ðρp=ρf � 1Þd3
pg=ν2

f : ð4Þ

Alternatively, a Froude number can be introduced to charac
terize the balance between gravitational and inertial forces, 
defined as Fr ¼ τ2

pg=dp, where τp ¼ ρpd2
p=ð18ρf νf Þ is the 

particle response time.
The mean particle-phase volume fraction is varied 

from 0:001 � hεpi � 0:05; and gravity is varied from 
0:8 � g � 8:0. Here, angled brackets denote an average 
in all three spatial dimensions and time. Because of the

Fig. 1. The modeling approach has three steps. 1: Sparse regression identifies the important basis tensors. 2: OLS provides the 
ideal coefficients for each of the data sets for each of the identified bases. 3: GEP collapses the ideal coefficients for each case 
into a compact, algebraic closure.
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large density ratios under consideration, the mean mass 
loading, φ ¼ hεpiρp= hεf iρf

� �
, ranges from Oð10Þ to 

Oð102Þ, and consequently, two-way coupling between 
the phases is important. A large enough domain with 
a sufficiently large number of particles is needed to 
observe clustering. To enable simulations on this scale, 
we use an Eulerian-Lagrangian approach.31 The fluid 
equations are solved on a staggered grid with second- 
order spatial accuracy and advanced in time with second- 
order accuracy using the semi-implicit Crank-Nicolson 
scheme. Particles are tracked individually in 
a Lagrangian frame of reference and integrated using 
a second-order Runge-Kutta method. Particle data 
(volume fraction and drag) are projected to the Eulerian 
mesh using a Gaussian filter described in Ref. 31.

IV. MULTIPHASE RANS EQUATIONS

Derivation of the single-phase RANS equations is 
done by directly averaging the Navier-Stokes equations. 
Derivation of the multiphase RANS equations, however, 
will retain additional physics if averaging is performed on 
the volume-filtered Navier-Stokes equations.21 Volume 
fraction–weighted averages, or phase averaging (PA), 
analogous to Favre averaging of variable density flows, 
was previously derived.26 For the relatively simple con
figuration used here, which is homogeneous in all spatial 
directions, statistically stationary in time, and symmetric 
in the counter-gravity direction, the transport equations 
for the fluid-phase Reynolds stresses can be reduced to 
two unique, nonzero components. In the streamwise 
(gravity-driven) direction, this equation is given as

1
2

qhu0002
f i

f

qt
¼

1
ρf

pf
qu000

f

qx

* +

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
pressure strain ðPSÞ

�
1
ρf

σf ;1i
qu000

f

qxi

* +

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
viscous dissipation ðVDÞ

þ
φ
τ?

p
hu

000

f u
00

pi
p

� hu
0002
f i

p

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
drag exchange ðDEÞ

þ
φ
τ?

p
hu

000

f i
p
hupip

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
drag production ðDPÞ

þ
φ
ρp

u
000

f
qp0

f

qx

* +

p
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

pressure exchange ðPEÞ

�
φ
ρp

u
000

f
qσ0

f ;1i

qxi

* +

p
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
viscous exchange ðVEÞ

; ð5Þ

where up is the particle-phase velocity in an Eulerian 
frame of reference and σ is the viscous stress tensor. 
The modified particle response time τ?

p is given as the 
particle response time τp normalized by the particle- 

phase–averaged drag correction hFdip (see Ref. 29 for 
additional details). Here, hð�Þip ¼ hεpð�Þi=hεpi. 
Fluctuations about PA terms are denoted with a double 
prime. In a similar fashion, the PA operator in the fluid 
phase is defined as hð�Þif ¼ hεf ð�Þi=hεf i. Fluctuations 
about the PA fluid velocity are given by 
u000

f ¼ uf ðx; tÞ � huf if . With this, the fluid-phase TKE is 
given by kf ¼ hu000

f � u000

f if =2. These definitions and nota
tions are illustrated further in Fig. 2.

It is notable that all the terms appearing on the right- 
hand side of Eq. (5) are unclosed and require modeling. 
This work has already been carried out using sparse 
regression exclusively.29 Here, we select the drag produc
tion (DP) term to demonstrate the present methodology. 
This term is chosen due to its importance in this class of 
flows. In the absence of mean shear, it is the only source 
of fluid-phase TKE. Additionally, all components of the 
DP tensor are identically zero, except for the contribution 
in the gravity aligned direction.

Several recent efforts have proposed closures for DP 
across both gas-solid and bubbly flows. These closures 
are generally postulated in the following form:

φ
τ?

p
hu

000

f ip hupip � huf if

� �
¼ CI Cdjhupip � huf if j

3
; ð6Þ

where Cd is the drag coefficient, jhupip � huf if j is the 
mean slip velocity between the phases, and 0 � CI � 1 is 
a model constant. In the case of bubbly flows, CI has 
been postulated as minð0:18Re0:23

p ; 1Þ0:75ρf hεpi=dp 

(Ref. 32), 0:25ð0:75Cdρf hεpi=dp (Ref. 33), and 
1:44ð0:75CDρf hεpi=dpÞ (Ref. 34). For gas-solid flows, 
a similar closure structure was previously postulated by  
Ref. 21 in which the drift velocity was modeled as 
hu000

f ip ¼ Cg hupip � huf if

� �
; where Cg � 0:6 for homo

geneous gravity-driven flows26 and has a nonlinear 
dependence on hεf i in the channel flow.35

V. RESULTS AND DISCUSSION

We now demonstrate the modeling methodology pre
sented in Sec. II on the multiphase case study summar
ized in Sec. III, focusing on the DP term RDP in 
particular. Here, we follow the three modeling steps as 
outlined previously.

In the first step, we conduct modeling of DP using 
sparse regression with embedded invariance and the 
assumption of constant coefficients to inform the bases
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that comprise the reduced set T�. The model consisting 
of the reduced basis tensors is given as

RDP ¼ β1I þ β2
bU r ; ð7Þ

where bU r is a tensor formulated using the mean slip 
velocity between the phases, I is the identity tensor, 
and the coefficients β1 and β2 have functional depen
dency upon configuration parameters that are unknown 
and cannot be informed by physics-based reasoning.

Next, we evaluate the ideal constant coefficients 
for each unique configuration studied, by conducting 
OLS and allowing the coefficients β1 and β2 to take 
on unique values for each configuration. In other 
words, the values of β1 and β2 associated with the 
case for hεpi ¼ 0:001 and g ¼ 0:8 need not be the 
same as the values for hεpi ¼ 0:05 and g ¼ 2:4.

As described in Sec. II, the ideal coefficients are 
arranged into two vectors: one for each of the basis 
tensors I and bUr. Each vector of ideal coefficients is 

used as input, along with the associated parameters and 
invariants, to the GEP algorithm.36 Here, the GEP algo
rithm selects models that reduce the R2 between the ideal 
coefficient values and the candidate models, which are all 
functions of the parameters and invariants. This effec
tively collapses the vector of ideal coefficients to a single, 
compact algebraic expression.

The resultant model learned from this methodology is 
given as

RDP ¼ 0:258φ þ ð0:03φÞ
3

þ 1:9
hεpi

Sð2Þ

� �

I

þ 1:9φ � 5:8φ1=2
� �

bU r ;

ð8Þ

where Sð2Þ is a principal invariant, defined as 
tr bU r bR f bR 2

p

� �
, and the basis tensor bUr is defined by the 

normalized slip tensor. This slip tensor is given as the 
outer product of the mean slip velocity, 
bUr ¼ hupip � huf if

� �
� hupip � huf if

� �
. The two other

Fig. 2. Illustration of the PA definitions and notations used in the multiphase RANS equations, Eq. (5).
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basis tensors bRf and bRp are the anisotropic stress tensors 
associated with the fluid and particle phases, respectively. 
In terms of solution variables, the mean phase velocities 
are solved by associated momentum equations, and the 
Reynolds stresses are informed by transport equations in 
the multiphase RANS equations (see Ref. 29).This model 
has an error of 0.012, where the error is defined as

P ¼
jjD � Tbβjj

2
2

jjD jj
2
2

: ð9Þ

This is comparable performance to the model learned 
using sparse regression exclusively (P ¼ 0:013); how
ever, the proposed method does not require a manual 
selection of trial functions for the coefficients, thus mak
ing it far more efficient from a modeling perspective.

Following the same method as is shown for DP, all 
the other terms appearing in the fluid-phase multiphase 
RANS equation [shown in Eq. (5)] are also modeled. 
Since the remaining terms in this equation [namely, pres
sure strain (PS), viscous dissipation (VD), and drag 
exchange (DE)] demonstrate more complex models 
when carrying out the sparse regression–only approach, 
some additional considerations are needed.

In order to determine a minimal set of basis tensors, 
sparse regression is carried out with a decreasing sparsity 
parameter λ until error is moderately reduced and a small 
subset of the basis tensors is selected. Since GEP will be 
used to infer the coefficients, it is no longer necessary to 
select λ such that the model error is minimized to the 
limit of zero. To choose λ such that the error approaches 
zero would unnecessarily increase the number of basis 
tensors included in the model. In other words, the sparse 
regression portion of the blended modeling approach acts 
as a “coarse tuning” knob, and the GEP portion conducts 
“fine tuning.”

Once the reduced basis is identified, OLS is carried 
out to infer the ideal coefficients for each realization of 
the data. It is worth noting here that for this problem, and 
many others in engineering systems, the basis tensor 
matrix is rank deficient, making the OLS computation 
underdetermined. The reason OLS is underdetermined is 
that the number of candidate tensor bases exceeds the 
number of nonzero entries in D .

Thus, a minimum-norm solution to OLS is carried 
out to circumvent this issue. Namely, the basis tensor 
subset, T2 with rank k, is decomposed using singular 
value decomposition (SVD) as T2 ¼ UΣV T . Then, the 
leading submatrix of Σ; which includes the k singular 
values of T2; is used to write a compact SVD of T02 as 
T2 ¼ U 0Σ0V 0T . While this step introduces an unrecover
able error, since T02 is properly an approximation of T2, 
it also allows all of the idealized coefficients for the basis 
subset to have nonzero values, without the ad hoc parti
tioning of data.

Once the idealized set of coefficients corresponding 
to each basis has been determined, GEP is used to infer 
the compact, algebraic model. A summary of these steps 
and resulting models for all the nontrivial terms that 
appear in Eq. (5) are summarized in Tables I through V. 
For all the terms considered, the blended modeling 
approach results in models with similar or better accuracy 
and similar or increased simplicity compared with 
a sparse regression–only approach. Specifically, the 
model errors using a sparse regression–only approach 
for PS, VD, DE, and DP are 0.15, 0.07, 0.15, and 0.01, 
respectively. Using the blended GEP and sparse regres
sion approach, resultant models for the previously listed 
terms are 0.06, 0.09, 0.08, and 0.01, respectively. 
Additionally, the number of basis tensors required for 
the blended models is maintained at 3 and 2 for PS and 
DP and reduced from 4 to 2 basis tensors for each of 
viscous diffusion and DE.

TABLE I 

Summary of Reduced Order Forms for the Fluid-Phase Reynolds Stress Transport Equation*

Term   Reduced Model Form

Pressure strain RPS ¼ βPS
1

bUr þ βPS
2

bRf þ βPS
3

bRp

Viscous dissipation RVD ¼ βVD
1

bR f bR p þ bR p bR f

� �
þ βVD

2
bR f bR f bR p þ bR p bR f bR f

� �

Drag exchange RDE ¼ βDE
1 I þ βDE

2
bUr

Drag production RDP ¼ βDP
1 I þ βDP

2
bUr

*Here, sparse regression is used to determine a minimal basis set for modeling. Coefficients β are then determined using OLS and 
GEP. 
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In considering the resultant models, it is notable that 
in the limit of no particles (i.e., bUr, bR p ¼ 0), the PS 
reduces to a form similar to what is seen in traditional 
single-phase turbulence modeling.37 Namely, for single- 
phase PS, the slow PS correlation is most generally 
written as

RPS ¼ β1bij þ β2 bikbkj �
1
3

IIbδij

� �

; ð10Þ

where bij is the Reynolds stress anisotropy tensor 
(equivalent to bRf in the case of no particles). The first 
term in this model, which is echoed in the multiphase PS 

model in this work, is responsible for models following 
linear paths on the anisotropy invariant map in single- 
phase flows. The second term captures nonlinear effects.

V.A. Comparison with a Nonblended Approach

As a counter argument to the blended modeling 
approach, we also allowed the GEP algorithm to learn 
the full model without sparse regression (i.e., the mean 
values of DP, all 24 basis tensors, the principal invariants, 
and configuration parameters from the Euler-Lagrange 
simulations were provided to the GEP algorithm as 
input). The learned model is given as

TABLE IV 

Summary of the Coefficients Learned by the GEP Algorithm for DE*

Coefficient  Learned Closure

βDE
1 ¼ 0:142 � 1:6 Sð1Þφ

� �3
� 0:29φ

βDE
2 ¼ �1:7 Sð3Þφ

� �2
� 2:88

*These closures reduce model error by nearly half compared with sparse regression alone (P ¼ 0.08 and 0.15, respectively). 

TABLE II 

Summary of the Coefficients Learned by the GEP Algorithm for PS*

Coefficient  Learned Closure

βPS
1 ¼ 0:07φ � 1:46e�Sð3Þ

� 0:85Sð3Þφ � 0:026φð Þ
2

þ 1:26

βPS
2 ¼ 0:06φ � 0:72Sð3Þφ � 0:022φð Þ

2
� 0:03

βPS
3 ¼ 1:29 hεpi

Sð1Þ � 57:2hεpi � 25:16hεpi
� �

� 0:04

*The resultant model using the blended approach yields a model error that is over twofold less than that with the sparse regression 
approach (0.06 and 0.15, respectively). 

TABLE III 

Summary for the Coefficients Learned by the GEP Algorithm for Viscous Diffusion*

Coefficient  Learned Closure

βVD
1 ¼ 0:788Sð1Þφ � 56:9hεpi þ 0:0002hεpi

2
� 0:158

βVD
2 ¼ 0:407Sð3Þ � 15:4hεpi � 20:8e�φ � 3:29 ln hεpi

� �
þ 0:776Sð3Þφ � 15:7

*Model errors between a sparse regression–only approach and the blended approach are similar (0.07 and 0.09, respectively), 
However, the blended modeling method resulted in a model with increased simplicity (two basis tensors required compared with 
five), for a similar accuracy. 
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RDP ¼ 24:4bU r þ 30:4e�bR p � 1:42 bU r bR p þ ðbU r bR pÞ
T� �1=2

þ 1:41 � 105 bU 2
r

bR f þ ðbU 2
r

bR f Þ
T� �2

hεpi
2

� 30:4 ;

ð11Þ

with associated error 0.13 (an order of magnitude higher than 
the blended or sparse regression–only approach). This degra
dation in performance can be attributed to the fact that the 
model now depends on bRp and bRf , the particle and fluid- 
phase Reynolds stress tensors, in addition to bUr. On 
a fundamental level, since the DP is a gravity-based phenom
enon (i.e., TKE is generated solely due to the presence of 
gravity in this configuration), we can anticipate that bUr would 
be the predominant tensor from the basis for describing the 
physics. Additionally, since the Reynolds stresses contain 
nonzero diagonal entries, including these terms makes it 
difficult to drive the cross stream directions of the DP 
model to zero. Finally, and perhaps most importantly, GEP 
does not enforce the relation that the resultant model be linear 
with respect to the basis tensors. The stipulation of linearity in 
the basis tensors is critical for ensuring form invariance in the 
resultant model and for ensuring a physics-based description 
of the data, as described by Eq. (1). These results suggest that 
sparse regression and GEP are both needed in order to select 
a minimal set of tensors to describe physics and automate the 
complex dependencies of the coefficients when physical 
intuition cannot guide this process.

VI. CONCLUSIONS

As evidenced by this work, a modeling framework that 
leverages both sparse regression and GEP has shown preli
minary success in modeling complex flows. This methodol
ogy combines the benefits of both modeling approaches. 
Namely, it leverages the fact that sparse regression can 

incorporate known physical constraints (such as linearity in 
a specified basis) and results in a compact algebraic model. 
GEP automates the determination of algebraic models for 
coefficients for which physical constraints are not known. 
Combining these two modeling strategies results in models 
with a high level of accuracy and, in some cases, improved 
simplicity compared with a sparse regression–only approach. 
Importantly, this method automates the portions of the mod
eling process for which the practitioner cannot reasonably 
provide superior oversight (for example, no physical insights 
exist to constrain the solution).

Extending this blended framework to a more expan
sive two-phase data set, spanning gas-solid flows and 
liquid-gas flows, is the subject of current work. Because 
of the automation properties of GEP combined with the 
physics-based structure of sparse regression, we hypothe
size that developing closures for data spanning particle- 
laden to bubbly flows will result in models that are 
invariant, intepretable, easy to use, and toward universal 
applicability for two-phase flow.

Supplemental Data

Supplemental data for this article can be accessed online 
at https://doi.org/10.1080/00295450.2023.2178251.
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TABLE V 

Summary of Model Error and Complexity for Each of the Terms Arising in Eq. (5)*

Sparse Regression Sparse Regression + GEP

Term P Number of Terms P Number of Terms

Pressure strain 0.15 3 0.06 3
Drag production 0.01 2 0.01 2
Viscous dissipation 0.07 4 0.09 2
Drag exchange 0.15 4 0.08 2

*In comparing sparse regression against a blended sparse regression and GEP approach, the blended approach results in similar or 
better model errors and fewer tensor bases required for accuracy. 
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