2022 IEEE 38th International Conference on Data Engineering (ICDE)

Toward Responsive DBMS: Optimal Join
Algorithms, Enumeration, Factorization, Ranking,
and Dynamic Programming

Nikolaos Tziavelis
Northeastern University
Boston, USA
0000-0001-8342-2177

Abstract— When processing join queries over big data, a
DBMS can become unresponsive, i.e., it takes very long until
any output tuples appear. Ranked enumeration addresses this
problem by attempting to return the most important answers as
quickly as possible, ideally in time that is linear (or quasilinear) in
input size, even if the complete output is much larger. Aside from
its practical usefulness, ranked enumeration is closely related to,
and in a way unifies, several other problems involving joins.
The common goal is the design of optimal algorithms that are
guaranteed to avoid large intermediate results and thus achieve
time or space complexity close to a lower bound. Arguably,
avoiding query plans that produce huge intermediate results has
been an overarching goal of database optimizers, which is part
of the reason why optimal join algorithms, enumeration, and
factorized representations have generated a lot of excitement.
In this tutorial, we embark on an exploration of these topics,
showing how they are intimately connected with a wide range of
fundamental problems in computer science.

Index Terms—ranked enumeration, join queries, ranking func-
tion, factorized representations

[. INTRODUCTION

In many data science applications, a query may have a
combinatorially large number of answers or intermediate re-
sults, especially if it involves joins of more than 2 relations.
As a consequence, traditional join techniques can take too
long until they return any tuple to the user. To tackle this
issue, approaches like enumeration have emerged that aim to
return some answer early, followed by all the others in quick
succession [1], [2]. Enumeration is particularly useful in the
presence of some notion of importance, i.e., a way to decide
which answers are preferred over others. This paradigm of
query answering is called ranked enumeration [3], and it may
avoid wasting resources on low-ranked answers. This is similar
in spirit to classic top-k algorithms [4], but now &k does not
need to be known in advance and the goal is to give strong
guarantees for time and space complexity.

Solving the general problem of ranked enumeration is chal-
lenging because, in addition to joins, the query may involve
other operators such as selection, projection, union, and aggre-
gation, or complex join predicates such as inequalities. These
challenges provide an opportunity to survey classic results and
recent developments, such as those in the theory of optimal
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join algorithms [5], [6], enumeration [1], [7], and factorized
representations of query results [2], [8]. We revisit several of
these areas, which all aim for optimality and contain necessary
ingredients to the unifying problem of ranked enumeration. To
get a sense of the fascinating questions that arise when looking
at these areas through the lens of ranked enumeration, consider
the widely used Dynamic Programming (DP) approach [9].
The strength of DP is an efficient search for the best answer
in a combinatorially large search space. The question ranked
enumeration asks is: how can we efficiently find the second-
best answer, then the third-best, and so on?

II. TUTORIAL INFORMATION

Audience. This tutorial is aimed at anybody who has ever
worried about the time it takes for their query to return any
answer. Long delays are quite common when joining large
input, especially when more than 2 relations are involved
or when the join predicate contains conditions other than
equality. In addition to theoretical results with strong asymp-
totic guarantees, we also discuss encouraging recent empirical
results [3], [8] that show the practicality of ranked enumeration
and the shortcomings of existing DBMS approaches.

Prerequisites. This tutorial does not have a hands-on com-
ponent and no software tools are required by the audience.
To make all material accessible to those interested in the
practical impact of the techniques, the tutorial will favor
intuitive examples and explanations over low-level technical
details. We only assume familiarity with concepts covered in
typical undergraduate database and algorithms classes.

Qutline. This 3-hour tutorial consists of six main parts:

1) Shortest Paths and the “Top-1” Problem

2) Acyclic Queries and Unranked Enumeration
3) Cyclic Queries

4) Ranked Enumeration

5) Factorizeed Join Representations

6) Relationship to Other Problems



We will conclude with a variety of open research problems.
Slides and videos of the tutorial will be made available on the
tutorial web page.!

Prior Offerings. We presented a related 1.5 hour tutorial at
SIGMOD 2020 [10].> That previous shorter version focused
on the distinction between classic top-k algorithms and the
recent paradigm of ranked enumeration. Aside from greater
depth and breadth in covering ranked enumeration, this tutorial
includes a broader range of closely related problems, including
optimization problems, unranked enumeration, factorized join
representations, and direct access to query query answers.

III. TUTORIAL CONTENT

Throughout the tutorial, » denotes input size (e.g., the
number of tuples in a database), r denotes the number of
possible solutions (e.g., the number of query answers) and
we generally express results in terms of data complexity.

A. Shortest Paths and the “Top-1" Problem

Dynamic Programming (DP) [9] is the archetypical ap-
proach for problems whose solutions have a shared structure.
In a weighted graph, we may want to count the number of
paths between 2 nodes or to find the shortest one. For DAGs,
the Bellman-Ford algorithm [11] finds the shortest path in
linear time using DP. The benefit of DP is that typically
its running time is close to the problem’s representation size
(e.g., the number of edges) and that it avoids looking at all
possible solutions, which can be exponentially many (e.g., the
paths). The shortest-path problem is conceptually similar to
optimization problems that ask for “the best” solution among
the possible ones. We call these problems “top-1" because they
have a second-best solution, and third-best and so on. These
are the problems that admit ranked enumeration.

In databases, aggregation tasks over joins display a similar
shared structure. For example, a query may ask for the
COUNT of a join or to find the MIN over the SUM of the join
answer attributes. The latter is a top-1 problem since there is a
join answer with the second-best SUM. Like paths in a graph,
join answers have a shared structure: In the same way that an
edge may participate in several paths, a database tuple may
participate in several join answers. Thus, it is not surprising
that similar techniques have been developed for aggregation
tasks over joins: For example, if the joining relations can be
organized in a path, DP finds the top-1 SUM in time linear
in database size [12], [13]. However, the path analogy does
not capture the full generality of queries. Even for queries
that are acyclic, the structure of joining relations can be a tree
instead of a path. For these tree-structured problems, Non-
Serial Dynamic Programming (NSDP) [14], a generalization
of DP from paths to trees, can solve top-1 problems efficiently.

A natural question to ask is which tasks can be solved by
this general algorithm. The answer lies in algebraic structures
called (commutative) semirings, which are at the core of
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efficient algorithms across computer science [15]. General
frameworks have been developed for incorporating any such
semiring [13], [16], [17]. Going back to the MIN-SUM exam-
ple, the (min, +) operators indeed belong to a semiring. The
algebraic abstraction is powerful because the same algorithm
can be used for many different problems by simply plugging in
a different semiring. As aforementioned, ranked enumeration
is restricted to top-1 problems, where the semiring needs to
have an additional property called selectivity [18].

B. Acyclic Queries and Unranked Enumeration

A fundamental algorithm for acyclic joins is due to Yan-
nakakis [5]: It returns the complete output in O(n + r)
time, which is optimal since it is necessary to read the input
and write the output. Its secret of success lies in semi-join
reductions [19]: With two passes over the data, it removes all
dangling tuples and guarantees that any intermediate join result
can be extended to a valid output tuple. As it turns out, these
semi-join reductions are also a special case of the general DP
algorithm using an appropriate (Boolean) semiring.

After reducing the input relations, the Yannakakis algorithm
joins them to produce the full result. A small modification to
this second phase gives rise to constant-delay enumeration [1].
This modification requires a shift of perspective: instead of
breath-first (one table at-a-time), the input tuples are traversed
depth-first. This delivers some answers very quickly, while
maintaining the time complexity for returning all output tuples.
The situation is more tricky with projections. Bagan et al. [1]
show that queries called free-connex allow constant-delay enu-
meration after linear-time preprocessing, and (under common
complexity-theoretic assumptions) these are the only queries
(without self-joins) that admit such an algorithm. Later work
pursued similar dichotomies for more general settings such as
unions of queries [20], allowing database updates [21], [22],
or incorporating functional dependencies [23]. Interestingly,
even though the task here is to enumerate answers in no
particular order, most of these algorithms have an underlying
lexicographic order on the attributes.

C. Cyclic Queries

Even though the optimality guarantees of Yannakakis and
its adoptions to enumeration only apply to acyclic queries,
the same tools can be leveraged for cyclic queries using
tree decompositions [24], albeit with a complexity penalty.
Originating from the concept of the treewidth of a graph
[25], the key idea is to eliminate cycles by grouping multiple
elements of a cycle together into a “bag” and treating them as
one element. The goal is then to reduce the problem structure
to an acyclic one that can be handled efficiently, only at the
cost of computing these bags of elements—known as the
width of the decomposition. In the case of queries, a bag
of relations implies that their complete join output must be
materialized and the width parameter determines the size of the
intermediate result. A flurry of decomposition techniques with
ever-decreasing width parameters have been developed, [26]—
[32], with the current frontier being the submodular-width



decompositions [32]. The key innovation, from a practical
point of view, is that they decompose a cyclic query into a
union of multiple trees, each receiving a subset of the input.
This enables lower widths: for a query that computes 4-
cycles in a graph, a single-tree decomposition must materialize
O(n?)-size bags, while a decomposition into multiple trees is
possible with O(n'-?)-size bags.

Tree-decomposition techniques do not eliminate the need
for cyclic-join evaluation, since each bag still needs to be
materialized. Unfortunately, as Ngo et al. [6] show, for join
queries with cycles the optimal O(n+r) bound of Yannakakis
is unattainable based on well-accepted complexity-theoretic
assumptions. They therefore propose the notion of worst-
case-optimal join (WCOJ) algorithms [33] of time complexity
O(n+rwc), where rwc denotes the size of the largest possible
output of a query over any database instance of size n. For
rwc, Atserias, Grohe, and Marx [34] provide a tight upper
bound by connecting join-output size to the fractional edge
cover of the corresponding query hypergraph, now known
as the AGM bound. Several WCOJ algorithms have been
proposed to match the AGM bound [6], [35]-[37].

D. Ranked Enumeration

Ranked enumeration [3], [8], [38]-[43] for join queries is
the problem at the center of the tutorial. A ranked-enumeration
algorithm returns the join answers in the order of importance
as imposed by a ranking function. Its goal is to minimize
the time for returning the k top-ranked answers for every
value of k. This paradigm generalizes the more well-known
top-k and is also reminiscent of the general concept of an
anytime algorithm [44]. In order to emphasize this, we refer
to ranked-enumeration algorithms also as “any-k” algorithms
as a shorthand for “anytime top-k” or “top-k for any k.”

Due to the relationship of the top-1 problem to the shortest-
path problem and DP, any-k is closely connected to ranked
enumeration of paths in a weighted graph [3]. This view
allows us to reveal common foundations between a variety
of solutions that had been proposed in isolation, often re-
inventing the wheel. We will demonstrate how most existing
algorithms rely on two different major techniques. The first
is the Lawler-Murty procedure [45], [46] that had been used
in the database community to design algorithms for ranked
enumeration [40] and for graph-pattern search [41], [47].
The second technique exploits a generalization of the DP
principle of optimality to enumerate paths recursively [48],
[49]. The same recursive call structure has been rediscovered
in recent work on ranked enumeration for join queries [39].
While it was previously believed [3] that these two approaches
have unique advantages and are incomparable (when query
complexity is also accounted for), we will present a single
unified algorithm that combines the best of both worlds [50].

We will focus on the simpler case of ranked enumeration
for paths because it allows us to decouple the core algorithmic
techniques of ranking from other concerns that are relevant
to general queries. To lift any-k from paths to general join
queries, we make full use of the toolbox discussed in other
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parts of the tutorial. Paths are generalized to tree structures via
NSDP, cyclic queries are decomposed to trees via tree decom-
positions, free-connex queries are handled by eliminating the
projections, and complex join predicates are factorized into
efficient representations.

E. Factorized Join Representations

This part of the tutorial focuses on how to construct, from
a database instance and given join query with complex join
conditions, intermediate representations that are compact and
quickly traversable. These representations are not limited to
ranked enumeration, but extend to many other tasks such as
answering Boolean queries, aggregates, and unranked enu-
meration. While earlier parts of the tutorial illustrate how
these are captured by different forms of DP and shortest-
paths, this section focuses on the graph construction itself.
Already for equi-joins, obtaining the best possible bounds for
any-k requires a careful representation that groups tuples with
the same join-attribute-value together [3]. This fundamental
insight, present in all equi-join algorithms such as a hash-join,
is also the key idea behind factorized databases [2], [51].

This framework can accommodate more complex join pred-
icates and gives rise to interesting questions about their most
efficient representation. These predicates include inequali-
ties [52] (<), non-equalities [1] (#), DNF formulas thereof
[8], as well as higher-arity predicates (Not-all-equal) [53]. As
an example, the inequality A < B can be naively represented
as a single O(n?) relation containing all A, B value pairs that
satisfy the predicate. A more efficient representation as a join
of two relations can lower the size to O(nlogn) [8].

F. Relationship to Other Problems

To conclude the tutorial, we discuss related problems that
do not fit under the general framework of ranked enumeration.
One such problem is selection [54]: instead of enumerating
the answers to a query in order until some position (say,
the median), is it possible to directly “jump” to that answer
efficiently? And what changes if, akin to the enumeration
framework, we require multiple such accesses after a pre-
processing phase [55]? Perhaps surprisingly, these kinds of
problems had not been explored until recently and many
questions remain open.

Another direction that has been heavily studied is that of
top-k. Existing work on top-k for joins [4], [56] adopted a
cost model that does not penalize large intermediate results.
In our previous tutorial [10], we extensively compared the
implications of such a model on the design and perfor-
mance of algorithms. Finally, top-k techniques for single-table
queries [57] are different than the topic of this tutorial. These
often have a geometric nature [58] and rely on early pruning.

IV. PRESENTERS

Nikolaos Tziavelis is a PhD candidate at Khoury College
of Computer Sciences of Northeastern University. His research
aims to extend database technology with improved algorithms
that achieve non-trivial guarantees. He received a MEng in



Electrical and Computer Engineering from the National Tech-
nical University of Athens.

Wolfgang Gatterbauer is an Associate Professor at Khoury
College of Computer Sciences at Northeastern University. His
research aims to develop scalable algorithms that can leverage
structure in data. He received his PhD in Computer Science
from Vienna University of Technology, and held positions as
PostDoc at University of Washington and Assistant Professor
at Carnegie Mellon’s Tepper School of Business.

Mirek Riedewald is an Associate Professor at Khoury
College of Computer Sciences at Northeastern University. He
received his PhD from the University of California at Santa
Barbara and held positions as Research Associate at Cornell
University as well as visiting positions at Microsoft Research
in Redmond and at the Max Planck Institute for Informatics
(MPI-I) in Germany. His research is focused on distributed
data-intensive computations and algorithms and systems that
scale in the size, dimensionality, and arrival speed of data.
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