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Abstract—This paper addresses the problem of characteriz-
ing statistical distributions of cellular shape populations using
shape samples from microscopy image data. This problem is
challenging because of the nonlinearity and high-dimensionality
of shape manifolds. The paper develops an efficient, nonpara-
metric approach using ideas from k-modal mixtures and kernel
estimators. It uses elastic shape analysis of cell boundaries to
estimate statistical modes and clusters given shapes around those
modes. (Notably, it uses a combination of modal distributions
and ANOVA to determine k automatically.) A population is
then characterized as k-modal mixture relative to this estimated
clustering and a chosen kernel (e.g., a Gaussian or a flat kernel).
One can compare and analyze populations using the Fisher-Rao
metric between their estimated distributions. We demonstrate
this approach for classifying shapes associated with migrations
of entamoeba histolytica under different experimental conditions.
This framework remarkably captures salient shape patterns and
separates shape data for different experimental settings, even
when it is difficult to discern class differences visually.

I. INTRODUCTION

Cellular morphogenesis during migration is an interesting
topic of research in cell biology. Cell migration is a com-
plex process influenced by changes in membrane dynamics,
polarization and restructuring of the cytoskeleton. The highly
deformable cell membrane aids the cells to adapt to a micro-
environment, switch between motility patterns and induce
positional advancement. This dynamic morphology introduces
significant variation in cellular shapes adopted during its
course of motion leading to various morphological modes of
cell migration. For cell morpho-dynamics study, shape analysis
has been primarily used for clustering [1], [2] and classi-
fication of migration patterns under different experimental
condition [3], [4], [5], [6], [7], [8]. Both static shapes and
shape evolution dynamics have been used in this problem area.

From a biological perspective, the focus here is on unicel-
lular amoebas and some cancer cells. These organisms exhibit
amoeboid migration patterns invading their surroundings or
escaping from the originating tissues. Such amoeboid motions
are characterized by alternate protrusions and retractions of
the cell membranes, resulting from intra-cellular bio-physical
changes and adhesion to the extracellular substrate. We focus
on single-cell Entamoeba histolytica as the prototype organism
to study cell motility. In the video frames, we will consider
amoeba as 2D objects represented by their boundaries (simple,

Fig. 1: Examples of extracted shape sequences of migrating amoeboid
cells from four different settings. Each row exhibits shows two sets
of shapes from an experimental class. From top to bottom, the classes
are Fibronectin w/o inhibitor, Fibronectin with inhibitor, Glass w/o
inhibitor, and Glass with inhibitor.

closed, planar curves). We employed an existing approach
[9] designed explicitly for segmenting amoeboid cells from
brightfield microscopy and extracting cell boundaries. Exam-
ples of extracted shape sequences from different experimental
conditions are shown in Fig. 1.

This discussion motivates the study of shapes as entire col-
lections rather than individual shapes associated with different
migration conditions. The underlying biological hypothesis
is that different settings often result in statistically different
distributions of shapes, even though some individual shapes
may appear similar across settings. Consequently, we are
interested in characterizing statistical distributions of cellular
shapes from given samples. These shape distributions can,
in turn, be used for inferences about the migration patterns
under different micro-environments. Therefore, we aim to
characterize and compare statistical distributions of shapes
using shape samples obtained from microscopy data.

The problem of characterizing shape distributions can be
approached in several ways. Let S represent a shape space,
endowed with a metric ds for quantifying shape differences.
For example, S can be the Kendall’s landmark-based shape
space [10], elastic shape space of curves [11], or some other
shape representation. In most approaches, S is a nonlinear and
high-dimensional Riemannian manifold or a quotient space
of such a manifold. Thus, standard (Euclidean) multivariate
statistical models do not apply.
• A Parametric Model: A simple and popular idea is to

define a parametric family, such as a Gaussian or its analog



adapted to the shape space S , for capturing given shape
variability. Given samples from an underlying distribution,
one can estimate shape summaries [12], [13] (mean, tan-
gent space covariance, etc.), perform tangent space PCA,
and use the results to estimate distribution parameters. This
approach may not be helpful if the underlying population
is complex and diverse, e.g., it is multimodal. The dynamic
membrane of motile cells generates considerable variation
in cellular shapes, which cannot be captured using a single
cluster or class mean solely.

• A Mixture Model: One can treat a multimodal density as
a mixture of unimodal distributions (each belonging to a
simple parametric family) and use an EM-type algorithm to
estimate mixture parameters [14]. One can also represent
shapes as linear models [15] and estimate model parame-
ters to characterize shapes in large datasets. The compu-
tational tools needed to analyze mixture models include
the k-mean clustering, hierarchical clustering, and EM-
type estimation algorithms [16], [17], [18], [19], [2]. There
are several limitations to these mean-based approaches
to shaping spaces. Firstly, computing the mean of a set
of shapes is computationally expensive, especially when
there is an additional outer loop for updating means, as in
the k-mean or EM-type algorithm. Secondly, shape means
or even shape medians denote an averaging result that
smooths out features of the observed cellular shapes. As
we demonstrate later, these shape means are not good
representatives of the sampled shapes. Lastly, determining
the optimal number of clusters or components in mixture
models to capture the data variability is a challenging
task by itself, and naı́vely selecting these parameters can
significantly alter the subsequent analysis.

• A Kernel method: Nonparametric approaches have gained
prominence in recent years because they don’t require any
assumption about the structure of the distribution. In fact,
one can estimate the underlying pdf in a nonparametric
form using a kernel K according to:

f̂(s) =
1

nϵ

n∑
i=1

Kϵ(ds(s, si)), (1)

where s, {si} denote a general shape and the sampled
shapes, respectively, and ϵ is the kernel bandwidth. (Tech-
nically, we are assuming that S is finite-dimensional and K
is a positive-definite kernel on S .) While this approach is
generic and robust, its computational cost is prohibitive in
practice. In order to compare two such shape distributions,
one needs to evaluate the shape metric ds between every
reference point s to every data point si, which can be
overwhelming.

A. Our Approach – k-Modal Mixtures of Shapes

In this paper, we develop a novel approach that combines the
strengths of mixture models and nonparametric estimation. We
seek an efficient, kernel-based estimation where the kernels
are placed only at a few salient shapes. The question is:
What should be the locations in S for centering these kernels?

The solution comes from mixture models that center distribu-
tions around a few pivot points. However, in contrast to mean
or median-based mixture models, we use the statistical modes
[20], [21], [22], [23]. These modes are statistically significant
local maxima of the underlying pdf. The advantage of using
modes (over means or medians) are numerous, including the
availability of a very efficient technique for estimating them
from the observed shapes, see Deng et al. [24]. We then define
a kernel-based density estimator for only these modal shapes,
according to:

f̂(s) =
1

mϵ

m∑
j=1

Kϵ(ds(s, sj)), (2)

where {sj , j = 1, 2, . . . ,m} is the set of modal shapes. Since
m << n, we get efficiency and compactness in representing
the shape population by mixtures. We term this expression as
a k-modal kernel mixture estimate of the underlying shape
density. We demonstrate a special case where the kernel is
simply an indicator function so that the estimated distributions
reduce to normalized histograms of the shapes relative to a
fixed shape clustering. Lastly, we can analyze and compare
estimated shape distributions associated with different shape
classes using the Fisher-Rao metric [25].

To demonstrate the strengths of this framework, we apply
this approach to cell populations associated with different
experimental conditions.

The main contributions of paper are as follows:
1) It develops a novel, nonparametric representation for pdfs

of shapes as a k-modal kernel mixture and derives an
efficient procedure for estimating the pdf. The proposed
estimate (Eqn. 2) is much more efficient to analyze and
compare than the original nonparametric estimate (Eqn. 1)
or a mixture of Gaussians. To the best of our knowledge,
this is the first use of k-modal mixture distributions to
represent and compare shape populations.

2) It uses a current framework for estimating shape modes
from sample data to develop a k-modal mixture estimate.
Here, one estimates modes of pdf directly from the data,
without first resorting to the estimation of pdf. An impor-
tant aspect is that the number of components k and the
bandwidth ϵ are determined automatically from the data
using ANOVA.

3) It further simplifies pdfs as histograms of cluster member-
ships when using an indicator function as a kernel. This
results in a fast comparison of distributions across shape
classes. The paper uses the Fisher-Rao metric to compare
estimated shape distributions, but one can use other metrics
instead.

4) The paper applies these techniques to comparisons of mi-
gration patterns of Entamoeba Histolytica under different
migration conditions, resulting in high classification perfor-
mance. This is the first result in the field that successfully
distinguishes (with rates ∼ 97%) biological classes using
comparisons of statistical shape distributions.



II. SHAPE DISTRIBUTIONS AS MODAL MIXTURES

In this section, we specify the shape space of planar curves
and use its geometry to define relevant statistics – modes,
means, etc. – and characterize pdfs on this shape space. The
key idea is to compute shape modes from the sample shapes
and use them to describe the underlying shape distribution as
a k-modal kernel mixture.

A. Background: Elastic Shape Analysis

We define a shape space S and consider a pdf f on S
associated with a shape population. Given a set of closed
planar curves β1, β2, . . . , βn, each representing an observed
cell boundary, we treat their shapes as samples from f on
S . Our goal is then to estimate the modes of f from this
sample data and use these modes to characterize dominant
shapes in the data. We start with a brief introduction of elastic
shape analysis [11], [26], [27] used for comparing cellular
shapes. This elastic shape analysis has been used extensively
in computer vision [28], biology [29], bioinformatics [30], and
functional data analysis [31].

In this approach, a planar closed curve β : S1 → R2

is represented by its Square-Root Velocity Function (SRVF)
q : S1 → R2 given by: q(t) = β̇(t)√

|β̇(t)|
. The use of

SRVF greatly simplifies shape analysis of curves, especially in
invariance to kinematics (rotation, translation, scaling, and re-
parameterization of β). Let [q] the set of all possible rotations
and re-parameterizations of SRVF q after rescaling q to have
the unit L2 norm. The set of all shapes is denoted by S =
{[q]|q ∈ S∞}. S is an infinite-dimensional, nonlinear space
that limits our ability to perform traditional statistical analysis.
Researchers have developed tools to study shapes as elements
of S . For any two shapes, one can compute a geodesic path be-
tween them and use the geodesic length as the shape distance
ds. Given a set of shapes, one can compute their mean and
perform tangent PCA analysis for dimension reduction. For
shapes {[q]1, [q]2, . . . , [q]n}, their Karcher or Fréchet mean is
defined by the quantity: [µ̂] = argmin[q]∈S

∑n
i=1 ds([q], [q]i)

2.
This mean is typically estimated using a gradient-based al-
gorithm that requires computing a shooting vector from the
current [µ̂] to each [qi] in every iteration. Thus, this calculation
is computationally expensive, especially in the elastic shape
analysis, which uses the Dynamic Programming algorithm for
registering the points across curves. We note that the resulting
statistical summaries – means, shape distances, PCA, etc. – are
invariant to global scale, rigid motions, and parameterizations,
and are instrumental in separating cell kinematics from its
morphology.

Before we proceed further, we point out that S is an infinite-
dimensional space, and one cannot simply integrate a positive
function on S or an open subset of S in a classical way. One
approach to handle this issue is to model curves as realizations
of a stochastic process. We bypass this problematic issue by
considering a non-standard interpretation of pdfs. We will not
insist on the pdf having an integral of one on S . Instead, we
will choose a different yet consistent way of normalizing these

“pdfs”. This normalization will be consistent across datasets
and pdfs to facilitate a comparison of shape distributions across
shape classes and experiments.

B. Nonparametric k-Modal Density Estimator

Given n closed curves {βi, i = 1, ..., n}, we treat their
shapes {[qi] ∈ S} as samples from an underlying density f
on S . As discussed earlier, one can choose a parametric or a
nonparametric form of f for statistical analysis.

The classic nonparametric approach, using a kernel, uses an
expression of the type given in Eqn. 1. One needs to specify
a kernel and a ”Gaussian” kernel is a popular choice. It takes
the form:

Kϵ([q], [qi]) = exp(−ds([q], [qi])
2/ϵ) .

However, the use of this estimator is cumbersome in practice.
In order to evaluate f̂ for any [q], we need to compute the
shape metrics (ds) n times, where n is the sample size. In
case n is large, and one needs to evaluate f̂ for many shapes,
this computation becomes a bottleneck. Another approach is
to represent f̂ as a mixture of distributions from a parametric
family (e.g., Gaussian). Using a mixture of Gaussians (with
Gaussian defined appropriately for the shape space S) is also
problematic, at least computationally. As noted earlier, the
computation of a mean of shapes on S is expensive, making
either k-mean clustering or an EM-type algorithm ineffective
on a large dataset.

Our approach combines the strengths of mixture models and
nonparametric approaches by developing a k-modal mixture
kernel distribution. We express the desired pdf as a mixture of
k-kernel functions, each centered around a significant mode of
the underlying density (see Eqn. 2). In order to estimate and
analyze this density, we first estimate statistical modes {[qj ]}
from sample shape data. Then, we construct f̂ around those
modes. (Note that this approach is in contrast to [22] where
they estimate f̂ nonparametrically first, then seek the modes of
the estimate distribution using a gradient-based optimization
of f̂ .)

We will investigate a particular case where the kernel is
simply an indicator function:

Kϵ(ds(si, sj)) = I(ds(s, sj) < ϵ) = I(s ∈ Bϵ(sj)),

where Bϵ(sj) is a ball of radius ϵ centered at sj ∈ S . With
this choice of kernel, f̂ is completely specified by a histogram
(frequency count) of a shape sample in each cluster. This
simplifies the original formulation, albeit at some loss of
information, and provides an efficient way to compare shape
distributions.

C. k-Mode Clustering of Shape Data

This section describes a recent discrete, nonparametric ap-
proach for estimating shape modes and clusterin shapes [24].
It is an iterative approach, similar to k-means clustering, where
one makes an initial guess about k modes and iteratively
refines the clustering. Using an elastic shape metric ds, it
defines ϵ-neighborhoods in the shape space S and shortlist



Algorithm 1 Shape Mode Estimation and Clustering

Require: Closed curves βi, i = 1, ..., n. Compute their shape
representations [qi] ∈ S , i = 1, 2, . . .

1: For each shape [qi], find it’s neighbors:
Ni = {[qj ] : ds([qi], [qj ]) < ϵ}, i ̸= j (3)

Let |Ni| denote the number of neighbors of [qi].
2: Find the kth mode [qMk

] as follows: Select the set
A = {[qj ]| |Nj | = max

i
(|Ni|)} and set [qMk

] =

min
[qj ]∈A

(∑
[qi]∈Nj

ds([qj ], [qi])
)

.

3: if |NMk
| < 2, we label [qMk

] an outlier, else it is called
mode. Remove [qMk

] and its neighbors NMk
from the data

set.
4: Repeat Step 1 to Step 3 until each curves is defined either

as a mode or a neighbor or an outlier.

shapes that are central and have the most neighbors. A critical
issue – How to automatically select the threshold ϵ? – is
resolved using a combination of ANOVA and empirical mode
distribution. In each iteration, the given shapes are assigned to
the nearest shape mode, automatically clustering the data. The
shapes that are far away from all modes are labeled as outliers.
Algorithm 1 summarizes the main steps of this procedure. This
discrete and nonparametric approach is an efficient solution to
seeking sample modes. We will present several illustrations of
the algorithm later. Once we have sample modes and data is
clustered around these modes, we can express the estimated
shape pdf using Eqn. 2.
D. Fisher-Rao Metric of Comparing Shape Distributions

Once we have estimated pdfs for different shape popula-
tions, we can use them to compare these populations. We
will use the Fisher-Rao metric (FRM) for this purpose. There
are several quantities for comparing densities, such as the
Kullback-Leibler divergence, but often they don’t form proper
distances. We will compute the FRM using the square-root

transformations as follows. Let g =

√
f̂ denote the point-by-

point, positive square root of a probability density function f .
Since f̂ is a pdf and integrates to a constant, the L2 norm
of g is also a constant. Hence, g is an element of the positive
orthant S+∞ of the infinite-dimensional sphere S∞, and referred
to as the half density of f̂ . It is well known that the FRM for
probability densities transforms to the L2 metric under the
square-root mapping, up to a constant [25]. Thus, given any
two density functions f̂1, f̂2, the FRM between them is:

df (f̂1, f̂2) = cos−1

(∫
S

√
f̂1([q])

√
f̂2([q])d[q]

)
. (4)

In case the densities are expressed as histograms with respect
to fixed shape clusters, the FRM is simply cosine inverse of
the inner-product of the weighted histogram vectors.

III. EXPERIMENTAL VALIDATION

This section presents some experimental results from our
method applied to several real cell-shape datasets. Cell shapes

(a) Experiment 1 (b) Experiment 2 (c) Experiment 3

Fig. 2: The three histograms display the numbers of cell shapes for
different datasets. Each histogram represents number of shapes per
class for four biological conditions used in the experiments. Blue
bars refer to training set and red refer to testing set.

in different biological experimental protocols are governed
by underlying conditions that dictate specific behavior. Deng
et al. [24] focused on individual dynamical shapes using
the dynamic shape and kinematic features. However, it is
possible that when some individual shapes are similar under
different settings, this method may fail and result in degraded
performance. In contrast, our k-modal kernel mixtures (Eqn. 2)
characterize the complete statistical distributions of shapes
rather than comparing individual shapes.

To evaluate classification performance using the proposed
framework, we perform experiments on brightfield microscopy
images of E. histolytica. The data were obtained for
four different biological conditions, where amoebas are
seeded on glass and fibronectin with or without a rho-
kinase inhibitor. These four biological classes are denoted
here as:’FibroCTRL’, ’FibroInhibitor’, ’GlassCTRL’, and
’GlassInhibitor’. The shape sequences are extracted from the
microscopy images using MultiCell-Net [9]. We perform three
sets of experiments with this data, and for each experiment,
we randomly select shapes from different cell sequences. As
shown in Fig. 2, the sizes of the four classes are unbalanced
for both the training set and testing, and the distributions of
shapes are also different in these three experiments.

A. Clustering and Shape Distribution

Experiment 1: Here we select 500 cell shapes from 10
different cell migration sequences, i.e., 50 shapes from each
sequence, with sequences taken from four classes. Fig. 3 shows
some examples at the top. We divide them randomly into
a training set (417 shapes) and testing set (83 shapes). The
distribution of shapes per class are shown in Fig. 2(a). For
the training set, we study the influence of ϵ on the number
of modes and the F-statistic. Fig. 3(a) shows the changes in
all-modes, significant modes, and the outliers as ϵ changes.
Fig. 3(b) displays the relation between ϵ and the number of
significant modes and the F-statistic. In Fig. 3(b), the peak of
the blue curve is at ϵM = 0.2218 and that of the orange curve
is at ϵF = 0.2776. The optimal ϵ = 0.5ϵM +0.5ϵF = 0.2497,
which yields five distinct clusters. An MDS plot (Fig. 3(d))
shows shapes as points in a 2D plane with colors showing
the groupings, and the five clusters are well separated from
each other. The Fig. 3(c) shows the overall Karcher mean



(a) (b)

(c)

(d)

Fig. 3: Top: Sample shapes used in the Experiment 1. Plot (a): shows
number of modes vs. ϵ. The blue curve refers to total number of
modes, yellow curve shows the outliers and red indicates significant
modes. Plot (b): the blue curve shows number of significant modes
and orange curve indicates F-statistic w.r.t ϵ. Plot (c): Overall Karcher
mean (red), overall Karcher median (blue), modes (black) and cluster
means (cyan). Plot (d): MDS plot.

(a) (b)

Fig. 4: Subfigure (a): It shows the Fisher metric for eight histograms
(including both training and testing datasets) which are shown in
the bottom plot. Subfigure (b): The first row shows the histograms
obtained using the clustering results for four different experimental
conditions for the training set. The second row shows the histogram
for the testing set using the cluster modes obtained for the experiment.

(red), overall Karcher median (blue) and the estimated modes
(black) overlaid on the group means (cyan). Due to significant
variation within the clusters, the overall Karcher mean and
median lose critical shape features while mode estimation
retains the features relevant to each cluster.

Fig. 5: Top: Sample shapes used in the Experiment 2. Bottom: Overall
Karcher mean (red), overall Karcher median (blue), modes (black)
and cluster means (cyan).

Fig. 4 shows the histograms of cluster memberships of
different classes and compares them using the FRM. In
Fig. 4(b), each plot displays the estimated pdf under the flat
kernel as normalized histograms. The x-axis is the cluster
labeling from zero to five, where the zeroth bin denotes the
outliers. The first row shows the clustering results for the
training set, and the second row shows the same for the
testing set. Fig. 4(a) visualizes the FRM, an 8 × 8 matrix,
for the eight shape distributions shown in the corresponding
histogram plots. Every two rows/columns are the FRM
for the training set and testing corresponding to the same
experimental condition/category. According to this plot, the
FRM between testing and training distribution in the same
class is the smallest compared to the training set from other
classes. That is, the probability densities within the classes
are more similar than across the classes.

Experiment 2: In this experiment, the dataset contains 1200
cell shapes from 24 different cell migration sequences -
50 shapes from each sequence. Some example shapes are
shown at the top of Fig. 5. We divide them randomly into
a training set (1000 shapes) and a testing set (200 shapes).
The distribution of shapes per class is given in Fig. 2(b).
For this data, we obtain ϵM = 0.2218, ϵF = 0.2776 and
the optimal ϵ = 0.2497. For this ϵ, we discover five modes.
Fig. 5 also shows the estimated modes and compares them
with the cluster means. Considering the relatively larger
variation in this dataset, the difference between the estimated
modes and cluster means is larger here than in Experiment
1. In Fig. 6 (b), the estimated pdfs are found to be similar
for within-class training and testing sets, except for the class
’GlassInhibitor,’ where the largest group is cluster 0 for the
training set while it is cluster 1 for the testing set. Noting
that cluster 0 is the group for outliers, the two densities can
be considered similar if the outliers are ignored. Fig. 6 (a)
shows class ’FibroCTRL’, ’FibroInhibitor’ ’GlassInhibitor’
have smaller FRM between the training and testing set.

Experiment 3: Similar to Experiment 2, we select 1200
cell shapes from 24 different cell migration sequences - 50
shapes in each sequence. These cell sequences are completely
different from those used in Experiment 2. The numbers of



TABLE I: Classification performance

Method Shape 2D Shape TSRVF+PCA TSRVF+PCA +VAR Kinematics TSRVF+PCA+VAR
Distribution + Conv NN + Conv NN + Conv NN [6] + Conv NN +Kinematic+Conv NN[6]

Class. Rate (%) 97.5 41.5 34.1 83.5 76.9 84.9

(a) (b)

Fig. 6: Same as Fig. 4, but for Experiment 2.

Fig. 7: Same as Fig. 5, but for Experiment 3.

shapes per class for training and testing are shown in Fig. 2.
Here we find ϵM = 0.2119, ϵF = 0.2432 and the optimal
being ϵ = 0.2276 resulting in four modes. Fig. 7 also shows
the estimated modes and their improvements over cluster
mean shapes. Fig. 8(b) shows that estimated pdfs (normalized
histograms) of the first three categories look similar between
the training and testing set. Again, for the GlassInhibitor
class, the histograms are slightly different, and the shape
distribution per cluster is significantly different from the other
classes. This is also evident from the FRM matrix in Fig. 8(a).

(a) (b)

Fig. 8: Same as Fig. 4, but for Experiment 3.

B. Classification Performance

Besides demonstrating clustering and labeling, we also
quantify our shape-distribution-based classification perfor-
mance. Table. I shows the classification performance obtained
using the dataset used in Experiment 3. In every run, we

randomly split the data into the training set (1000 shapes)
and testing set (200 shapes). We use the classification results
from the training set to find the nearest training distribution
for each testing distribution by selecting the smallest value
of FRM. The average accuracy is found to be 97.5% for 20
runs, demonstrating that our approach is highly effective. We
compare our method with classification performance using 2D
shape vectors and TSRVF-PCA shape features with SOTA
classifiers. In this case, we use the shape coordinates (or
TSRVF-PCA vectors) as input to a convolutional neural net-
work (CNN) to classify individual shapes rather than as shape
distributions. The architecture consists of three convolutional
layers (kernel size 3) sequentially followed by Batch-Norm,
ReLU activation, dropout, and max-pooling. This network is
trained using cross-entropy loss for 90 epochs with batch size
32 and learning rate 0.01.

To distinguish migration patterns in different experimental
conditions, we also list classification results using shape dy-
namics, cell kinematics, and a combination of the two. The
results were computed using the features described in [6] but
on a larger dataset and using the architecture mentioned above.
Here we employ the distance vector computed over training
and test data, unlike that in [6], where the distance vector
is computed only from the training data. Nevertheless, the
higher classification accuracy using shape distribution conveys
that the shape variations are distinctly different in the four
experimental conditions, and this is captured more efficiently
using our k-mode clustering approach. The confusion matrix
for classification is presented in Table II which demonstrates
that our method performs well with much higher classification
accuracy and fewer false positives.

TABLE II: Confusion matrix for multi-class classification problem.

Our Approach Using Individual Shapes Using Shape dynamics [6]
GC GI FC FI GC GI FC FI GC GI FC FI

GC 0.9 0.1 0 0 0.75 0.14 0.06 0.04 0.88 0.11 0 0
GI 0.2 0.7 0 0.1 0.43 0.49 0.00 008 0.02 0.79 0.16 0.02
FC 0 .1 0 0.9 0 0.12 0.49 0.35 0.04 0 0 0.90 0.10
FI 0 0 0 1 0.42 0.38 0.09 0.09 0.21 0 0.05 0.73

IV. CONCLUSION

This paper introduces an efficient approach for characteriz-
ing statistical distributions of cellular shapes in a population
using kernel-based, k-modal mixtures. This approach results
in a discrete, non-parametric representation of a shape distri-
bution and a fast comparison of distributions across categories
using the FRM. Because of its generality, this characterization
can be used in broad biological, bioinformatics, computer
vision, and other domains as a general tool in statistical
shape analysis. In future work, one can investigate using other
kernels, e.g., Gaussian-type kernels, on shape manifolds to
obtain performance improvements.
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