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Self-supervised Cloth Reconstruction
via Action-conditioned Cloth Tracking

Zixuan Huang', Xingyu Lin', David Held'

Abstract— State estimation is one of the greatest challenges
for cloth manipulation due to cloth’s high dimensionality and
self-occlusion. Prior works propose to identify the full state
of crumpled clothes by training a mesh reconstruction model
in simulation. However, such models are prone to suffer from
a sim-to-real gap due to differences between cloth simulation
and the real world. In this work, we propose a self-supervised
method to finetune a mesh reconstruction model in the real
world. Since the full mesh of crumpled cloth is difficult to
obtain in the real world, we design a special data collection
scheme and an action-conditioned model-based cloth tracking
method to generate pseudo-labels for self-supervised learning.
By finetuning the pretrained mesh reconstruction model on
this pseudo-labeled dataset, we show that we can improve the
quality of the reconstructed mesh without requiring human
annotations, and improve the performance of downstream
manipulation task. More visualizations and results can be found
on our project website.

I. INTRODUCTION

Despite the ubiquitous presence of cloth in the real-
world, manipulating it with a robot remains a difficult task.
Specifically, the high dimensionality and self-occlusion of
cloth pose significant challenges for precise state estimation.
Prior works [1], [2], [3], [4], [5] try to reconstruct the
full mesh of cloth from RGB or depth observations; the
mesh reconstruction model can be used for robot cloth
manipulation [6], [7], [8], [9], [8], [10]. However, the mesh
reconstruction model is typically trained in simulation and
suffers from a sim2real gap between simulated cloth and
real cloth. One approach to mitigate the distribution shift
from sim2real is to finetune the model with real world data.
On the other hand, obtaining the ground-truth full mesh
of crumpled clothes is extremely challenging, because the
occluded regions are not observable; this presents a challenge
for real-world finetuning.

In this work, we present a self-supervised method that
leverages a dynamics model and test-time optimization to
generate a pseudo-ground-truth mesh. We use a human to
collect real-world trajectories via a sequence of pick-and-
place actions. We assume that we are able to reconstruct the
initial cloth mesh (from a flattened configuration); we then
track the motion of the cloth during action execution. If we
can successfully track the cloth, then we can obtain the full
mesh configuration in the real world.

However, tracking the full cloth reliably is a challenging
problem. Motivated by the theory of Bayes Filtering, we
propose an action-conditioned model-based tracking method.
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Fig. 1: We propose a self-supervised cloth reconstruction method that uses
action-conditioned cloth tracking to generate pseudo-labels of the full mesh
on real world data.

First, we roll out a dynamics (motion) model conditioned on
the action to obtain an initial estimate of the motion. This
estimate of motion is grounded in physics and accounts for
all particles, including the occluded ones.

However, there will inevitably be gaps between the dynam-
ics model and the real world [11], [12], [13], due to incorrect
physical parameters and simplified dynamics. To account
for dynamics model errors, we further design a test-time
optimization method to minimize the discrepancy with the
observations at each rollout step, similar to a measurement
model of Bayes Filtering.

Our primary contributions are as follows; we:

1) Introduce an action-conditioned cloth tracking method

that is robust to occlusions and dynamics errors

2) Use this tracker for self-supervised fine-tuning in the

real world of a mesh reconstruction model.

3) Show improved performance of robot cloth flattening.

We use our tracking method to fine-tune a mesh recon-
struction model on unlabeled real world data. Our experi-
ments demonstrate that our method is able to generate plau-
sible pseudo-labels for cloth with complex configurations.
We also examine the importance of each component of our
method using an ablation study.

II. RELATED WORKS

Cloth Perception and Manipulation. Perception and
manipulation of clothes has a long history [14]. Earlier works
design heuristic features for specific tasks [15], [16], [17].
More recently, data-driven methods have shown promising
results in learning policies [18], [19], [20] or dynamics
model [21], [22], [10] for cloth smoothing and folding.
Particularly for model-based approaches, prior works have
shown that learning a dynamics model over the full mesh



with occlusion reasoning can significantly improve the plan-
ning performance [10]. While there has been a line of re-
search dedicated to estimating the full mesh of the cloth [5],
[101, [1], [2], [23], [3], [4], [6], [24], most of these methods
are trained on synthetic data and then transfer to the real
world, since obtaining mesh data in the real world can be
difficult [25]. As such, this work aims to narrow the sim2real
gap by training on real world data collected from cloth
tracking.

Deformable Object Tracking. Numerous deformable
object tracking algorithms have been developed, such as
template-based tracking [26], [27], simultaneous tracking
and reconstruction [28], [29], or point set registration [30],
[31], [32], [33]. However, these model-free methods are not
guaranteed to satisfy physical constraints; further, they do
not explicitly model occluded regions. To circumvent these
drawbacks, Tang et al. [34] propose to refine the results of
model-free method by inputting it to a physical simulator.
Schulman er al. [35] designed a modified expectation-
maximization (EM) algorithm and perform inference through
calls to a physics simulator. These approaches are applied
to track rope, sponge, and folded cloth. In contrast, we are
able to track the configuration of cloth in highly crumpled
configurations, which has not been achieved in prior work.
We also demonstrate how model-based tracking can be
used for self-supervised fine-tuning of a mesh reconstruction
model.

Closing the Gap Between Sim and Real. Simulation has
shown considerable promise for generating large amounts
of labelled data at low cost, especially for domains where
groundtruth supervision is difficult to obtain, such as optical
flow and scene flow estimation [36], [37], [38] or 3D recon-
struction [39], [5]. However, models trained in simulation
do not always readily transfer to the real-world due to the
sim2real distribution shift. Prior works [33], [10] shows that
when applied to real world data, the performance of cloth
reconstruction model drops significantly. One strategy to
bridge this gap (“sim2real”) is to randomize the simulation
parameters to create a diverse set of training data [40], [41],
[42], [43], with an underlying assumption that the random-
ized simulation data will cover the distribution of real data.
However, for cloth reconstruction, the source of distribution
shift remains unclear. In other words, how to randomize cloth
simulation properly might be a more difficult problem.

In this paper, we seek to resolve the distribution shift
by fine-tuning a pre-trained simulation-trained model with
real world data. The main challenges for fine-tuning a mesh
reconstruction model in the real-world is the absence of
ground-truth data (i.e., the full mesh). While there exists
several real world datasets [44], [45] for on-body cloth
reconstruction, directly obtaining the ground-truth full mesh
of crumpled clothes in the real-world is very challenging due
to self-occlusion, i.e., the occluded portion of the clothes is
not observable. To tackle this issue, we propose to generate
pseudo labels using a action-conditioned tracking technique.
Although the proposed tracking method relies on that the
initial configuration of the cloth to be flattened, our learned

cloth reconstruction model can be applied to any cloth
configurations.

III. METHOD

The goal of this project is to track the mesh of a cloth;
we then use the tracked mesh to train a model to reconstruct
the mesh of a (possibly crumpled) cloth from a depth
image observation. Past work in this area has trained a
mesh reconstruction model in simulation and transferred the
trained model to the real world [1], [2], [3], [4], [5], [6], [10],
[23]. However, such methods can suffer from a performance
drop in the real-world due to the sim2real gap between
simulated cloths and real cloths. To circumvent the issue,
we design a self-supervised learning method for finetuning
a mesh reconstruction model with unlabeled real data.

The high-level idea of our method is as follows: suppose
that we know the full configuration of the initial mesh and
a dynamics model of the cloth. If we take an action on the
cloth, then we can use the dynamics model to estimate the
configuration of the cloth at the next timestep. However,
since the dynamics model might not be perfect, we refine
the prediction by aligning the predicted mesh with the
observation through an optimization procedure. We view this
procedure as similar to the motion update and measurement
update of Bayesian filtering.

Given an initial mesh reconstruction model trained in sim,
the whole system can be divided into 3 stages:

1) Collect real-world trajectories.

2) Track the motion of the cloth with our action-
conditioned model-based tracking method.

3) Use the tracking output to generate pseudo-ground-
truth (pseudo-gt) meshes and finetune the mesh recon-
struction model.

We describe our method in more detail below.

A. Data Collection in the Real-world

In this section, we ex-
plain how we instrument
and collect real-world tra-
jectories. In order to fine-
tune the mesh reconstruc-
tion model, we need to col-
lect real-world data of cloths
in random configurations.
We use a top-down camera
placed above the workspace
to capture all the observa-
tions. We initialize the state
of the cloth into some con-
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figuration in which our mesh
reconstruction model works
reasonably accurately (such

Fig. 2: A human collector uses a
tweezer to conduct pick-and-place
actions. RGB-D videos are captured

by a top-down camera.
as a flattened state); we then v atop

perform a sequence of pick-and-place actions. Then we reset
the cloth into a new configuration in which our mesh recon-
struction model works reasonably accurately (e.g., another
flattened state) and repeat. When executing each action, we
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Fig. 3: Left: The workflow for generating pseudo-ground-truth (pseudo-gt) meshes for one trajectory. We first reconstruct the initial mesh by using the
pretrained mesh reconstruction model fy. Then, we estimate the deformation caused by each pick-and-place action through action-conditioned tracking.
By tracking all transitions sequentially, we obtain the pseudo mesh for crumpled cloths. Right: Before the tracking starts, we first run a parameter search
to calibrate the dynamics model. Then we iterate over all low-level actions by: 1) rolling out the dynamics model with the picker action for one step; 2)
running test-time optimization (TTO1) to align the model prediction result with observation, which produces a per-vertex “pseudo action”; 3) running the
simulation again with a line search. After all the low-level actions within a pick-and-place action are executed, we run another optimization step (TTO2)

to account for the tracking errors.

record a full RGB-D video including the intermediate states.
The point cloud of the clothes is computed through color
segmentation. The actions are conducted with a tweezer,
which helps reduce the amount of occlusions compared to a
robot gripper or human hand (Fig. 2).

For each pick and place action, since we record the
intermediate states, we obtain a sequence of point clouds
P,.7 and low-level picker actions aj.r. Note that the entire
sequence ai.p corresponds to intermediate actions within a
single pick and place action. We record a separate action
and point cloud sequence for each pick and place action. In
our experiments, we apply 3 pick-and-place actions (N =
3) in each trajectory, which takes around one minute (per
trajectory) for an experienced human collector; after each 3
pick-and-place actions, we reset the cloth to a flattened state.

B. Pseudo-gt Mesh Estimation by Model-based Cloth Track-
ing

Given an initial depth image D°, a pretrained mesh
reconstruction model, an (imperfect) dynamics model, as
well as the action and point cloud sequences recorded in
the previous section, our next goal is to estimate the full
mesh for every state recorded in the dataset. We assume that
the initial depth image D° is recorded from the cloth in a
flattened state in which the pre-trained mesh reconstruction
model is reasonably accurate. Let us denote the estimated
reconstruction of this initial mesh as M, where a mesh
is defined as M = (V,E) with vertices V' and edges
ECV xV.

Given the initial estimated mesh My, a sequence of point
clouds P;.7, and a sequence of actions, aj.7, our objective
is to estimate a sequence of meshes corresponding to each
timestep M;.7. To obtain an accurate estimate of the motion
of the cloth, we developed an action-conditioned model-
based cloth tracking method that is robust to occlusions. We

first simulate each action with the imperfect dynamics model
to obtain an initialization of the motion. We then run an
optimization to match the visible mesh with the observed
point cloud. Finally, we use the dynamics model again to
obtain the final prediction (see Fig. 3).

1) Initialize the Motion with a Dynamics Model: Our
method falls under “model-based tracking” [35], [34], [46].
Compared to model-free tracking, one of the most appealing
properties of model-based tracking is that it models the whole
object, including the occluded part. This is significant when
we track double-layer cloths, because part of the cloths might
be occluded throughout the entire trajectory. In this case,
model-free tracking is only able to estimate the motion of
the visible part while leaving occluded portion of the mesh
unchanged. On the other hand, model-based tracking can
use a physics prior of cloth to estimate the motion of the
occluded regions and estimate the configuration of the full
mesh that satisfies physical motion constraints.

At each timestep ¢, we directly modify the position of
the picked particle according to the recorded picker action,
at. We then run the dynamics model dyn for one step to
propagate the effect to the whole cloth, holding fixed the
position of the picked particle. Suppose z; € RIVI*3 are
the positions of all vertices; given the vertices z; and action
a;, the dynamics model will predict the next state xﬁ? =
dyn(zs, a;). We define Az = z¥"} — 2, to denote the
motion of all vertices, which will be used as an initialization
for the test-time optimization, as described in Sec. III-B.2.

In order to make the dynamics model as realistic as pos-
sible, we calibrate the dynamics model by searching for the
optimal physical parameters (such as friction and stiffness).
To do so, we first simulate the entire action sequence aj.7
to obtain the final predicted mesh Mryp. We then use a z-
buffer to compute the visible portion of the predicted mesh
Mi}iis. Next, we run a grid search over the dynamics model



parameters to minimize the Chamfer distance between the
visible portion of the simulated mesh M and the point
cloud at the final step Pr. Then we use the optimized
parameters to obtain xtdff as explained above. Dynamics
calibration is carried out in an online fashion: we calibrate the
dynamics model separately for each pick-and-place action.
We show the necessity of online calibration in Appendix
Sec. 2.1 (see our website). For our dynamics model, we use
a position-based cloth dynamics model implemented in the
Nvidia FleX simulator [47], [20].

2) Augment Imperfect Dynamics Model by Aligning with
Measurement: Due to the complexity of real-world dynamics
and the challenges of system -calibration, our dynamics
model will have errors. Even with accurate estimation of
the initial state, it will deviate from the real-world rollout
with errors accumulating over time. To tackle this challenge,
we draw inspiration from the measurement update step
of Bayesian Tracking [48]: we eliminate the compounding
errors due to the inaccurate dynamics model by running a
test-time optimization (TTOI in Fig. 3) and thereby reduce
the discrepancy between the dynamics prediction and the
measurement (the observed pointcloud).

From the dynamics model (Sec. III-B.1), we obtain an
initial estimate of the state of cloth z{¥7. The goal of the
test-time optimization step is to compute a correction term
Axg?" that adjusts the predicted mesh to better match the
observed point cloud. We optimize a 3-D translation for each
vertex Azoy so that zp1 = oY} + Az is aligned with
the observation. The specific optimization objectives are:

Chamfer Loss. The first objective we have is the one-
way Chamfer distance [10], [49] between the next point
cloud Py; and the visible portion of the mesh xf{fl,
given by L:Chamf = Dchams (Pt+1, Iﬁi)- We use the one-
way Chamfer distance because the observed point cloud is
incomplete due to occlusions induced by the tweezer. For
each point on the observed point cloud, we find the nearest
neighbor within the visible set of mesh vertices.

Rigidity Loss. As-Rigid-As-Possible (ARAP) [50], [51],
[52], [53] is a common assumption for modeling cloth-like
shapes. In TTO1I, the correction term Az¢{"{" can be viewed
as motion that transforms the mesh to match the partial point
cloud at the next timestep. Based on ARAP, we assume
the cloth nodes in neighboring regions move as rigidly as
possible. Intuitively, this loss helps improve the consistency
of motions of adjacent particles. Since we only model the
motion by a translation (Az{{"{"), we obtain a simplified
rigidity loss:

1 2
Lrig = 1y 2 e - 20y
1,jEE

At each step, we optimize Ax{?"]" with respect to Eq. 2
for 200 iterations with the Adam optimizer [54]. In our
experiment, we set « = 1 and 8 = 10.

arg min aLchamys + BLRig )

corr
Awt+1

3) Rollout Augmented Dynamics with Line Search: In the
previous section, we described how to compute a correction
term for the predicted mesh based on the observed mea-
surement. However, the optimized mesh is not guaranteed to
satisfy all physical constraints. Similar to [34], [55], we use
the dynamics model again to verify the physical plausibility
of the mesh. We rollout the dynamics model again from the
original state x;; this time, we use both the picker action a; as
well as a “pseudo-action” G; = Az{¥} + Az§'". The picker
action is executed as described in Sec. III-B.1. This time,
the pseudo-action a; is applied to all visible particles (not
just the picked particle). We then use the dynamics model to
adjust the positions of the occluded particles.

Although the pseudo action a; helps align the rollout with
observation, it may potentially create physically infeasible
configurations. Therefore, we run a line search on the
correction component Ax{°"". If the simulation explodes,
i.e., the velocities of cloth particles exceed a pre-defined
threshold, we multiply Ax{°"" with a decaying factor v (we
set v = 0.7). If the simulation fails for 10 times, we set
a; = 0, which means the pseudo action is not used.

As shown in Alg.1 line 4-8, we iterate over all action
segments to track a single pick-and-place action. In our
experience, even after the pseudo-action, the tracking result
(estimated mesh) may still deviate from the observation due
to compounding errors. To ensure that the estimated mesh is
well aligned with the observation, we run another test-time
optimization (TTO2) with an identical set of losses as before.
Finally, we use the optimized mesh as the initial state for the
next pick-and-place action and iterate until all pick-and-place
actions have been tracked. We ablate TTO2 in Appendix
Sec. 2.2 (see the website) and show that it also improves the
robustness to the errors of the dynamics model.

C. Model finetuning

Using the above tracking model, we obtain a pseudo-
labeled dataset, with an estimated mesh for each observed
point cloud or depth image. Our dataset consists of the final
estimated mesh at the end of each pick and place action My
and the corresponding point cloud Pr. After curating this
pseudo-ground-truth dataset, we use it to finetune the mesh
reconstruction model. In our experiments, we finetune the
mesh-reconstruction model in MEDOR [10], which is built
off GarmentNets [5]. Given a depth image, GarmentNets [5]
and MEDOR [10] first predict the canonical coordinates
of each pixel. They then complete the shape in canonical
space and finally transform the completed shape back to
observation space. It should be noted that our method not
only provides the pseudo ground-truth mesh for the obser-
vation space, but our method also can compute a pseudo-
ground-truth mesh in the canonical space. This is because
GarmentNets [5S] and MEDOR [10] simultaneously recon-
struct both meshes in the initial configuration; tracking the
meshes helps preserve the mapping between canonical space
and observation space. Thus, we are able to fine-tune both
the model that maps from observation space to canonical
space as well as the model that maps from canonical space



Algorithm 1: Pseudo-gt mesh generation

Input : A sequence of depth image sequences
{D1.7}Y,, picker actions {a.7}, point
cloud sequence {PLT}?LO, a pretrained
mesh reconstruction model fy, and a
dynamics model dyn.

Output: A pseudo-labeled dataset that includes
paired observations and pseudo-gt mesh:
B={(Ds, M)},

1 Reconstruct initial mesh M{ by pre-trained model fy

2 Initialize the pseudo-labeled dataset B with (D°, M)

3fori« 0to N do

4 fort < 1t T do

Mtdq’"” —dyn(M}_,,al)

5

6 ai < GetPseudoActionByTTO(M¥™" | P
(Sec. 11I-B.2)

7 M} < dyn(M}_,,al,at) \\with line search

8 end

9 Optimize M with test-time optimization

10 Add depth image D!, and pseudo mesh M? to
the pseudo-labeled dataset B

11 Use the final mesh in the current iteration as the
initialization of next iteration: M < MZ.

12 end
return Pseudo-labeled dataset B

[
w

back to the observation space (i.e. both parts of the mesh
reconstruction model). In terms of the GarmentNets [33]
components, we train the canonicalization model, as well
as the shape completion and warp field prediction models.
For details, please refer to GarmentNets [33].

IV. EXPERIMENTS

Through the experiments, we seek to the answer the
following questions:

1) Can our method generate approximately correct
pseudo-gt meshes for mesh reconstruction and dynam-
ics learning?

2) Can our model adapt quickly after being finetuned on
the pseudo-gt meshes?

A. Evaluation on the Quality of Pseudo Labels

Setup. We collect 50 trajectories in the real world, each of
which contains 3 pick-and-place actions. Including the initial
state, there are 200 pseudo labels in total.

Baselines. We compare our method to 4 baselines:

e No Pseudo Action. The goal of pseudo action a; is
to “patch” the inaccuracies of the dynamics model. We
verify its effectiveness by removing it from the method
and only using the recorded picker action aj.7.

o No Action Conditioning. In this baseline, we assume
the picker action information is not known, which has
two implications. 1) When computing the pseudo action,
since we don’t know the picker action, we cannot
roll out the simulator to initialize TTO; 2) When we

simulate the pseudo action with line search, we only
apply the pseudo action alone (not the picker action).

e No Dyn Init. In this baseline, we directly run TTO on
the current mesh M, instead of the simulated next mesh
Mtdfr’? This is to verify whether using the dynamics
model to bootstrap the optimization is critical to the
performance.

e No Test-time Finetuning (TTO2). Although we con-
duct TTO in between the dynamics rollout, the roll-
out may still drift due to imperfect dynamics. In this
baseline, we remove the optimization step at the end
of the tracking procedure (TTO2) to see whether this
component is necessary.

Metrics. Evaluating the quality of the pseudo label is
challenging, due to the absence of the ground-truth mesh.
To evaluate the quality of the pseudo label, we use the
bidirectional Chamfer distance between the visible surface
of the pseudo mesh and the observed point cloud. Our
assumption is that if the tracking is accurate, then the visible
surface of the pseudo mesh should match the observed
point cloud, which is the visible surface of ground-truth
mesh. We compute the metric with the mesh before Test-
time Optimization 2. This is because, even for a completely
erroneous prediction, the shape can match the observation
after TTO2 and achieve a low cost. Therefore, comparing the
loss after TTO2 is not very indicative of accurate tracking.

Results. In

Method Chamfer PC |

the Fig. 4, we (1x107* m)

show the side-by- No Pseudo Act (No TTO1) | 1.62 + 0.98

side comparison No Dyn Init 1.40 £1.21

. No Act Cond 3.72 + 2.32

of the tracking No TTO2 2.19 + 1.69

results of the o 1\(/;E11130Rth 0 s 31g i 3-124
. urs (full method . .

different methods.

Videos and 3D TABLE I: Quantitative results of different
. .. variants of our method.

visualizations of

the pseudo mesh can be found on our website. Our full
method (second row) is able to track the clothes even under
complicated configurations, i.e., multiple folds (right figure).
In contrast, the other methods all produce pseudo meshes
that don’t align with the observations.

In Table. I, we show the quantitative results of the base-
lines and our method. Means and standard deviations of the
generated pseudo meshes are computed across the whole
dataset. Comparing our method with No Pseudo Act, we see
that dynamics errors can be significantly reduced by aligning
with measurements during the rollout. By comparing No
Dyn Init with our method, we see the importance of using
dynamics prior as the initialization for the optimization
problem. Since tracking is a correspondence problem, our
conjecture is that initializing with a dynamics rollout makes it
easier to find correspondences. Looking at No Act Cond, we
see the benefits for tracking deformable objects conditioned
on the action, and a pure optimization method failed in this
case. Comparing No TTO2 with our method, we observe that
TTO?2 helps reduce the compounding error; thus removing it
hurts the performance.
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Fig. 4: Qualitative results of pseudo-gt mesh generation. First row is the real-world rollout, with pick points and place points denoted by red and green

circles respectively.

Method | Chamfer PC | | Chamfer Mesh | | Flattening 1
MEDOR [10] w/o ft 3.0£2.1 22+1.7 0.23
MEDOR [10] w/ ft 1.6+14 1.2+0.8 0.3

TABLE II: Performance before and after finetuning.
B. Model Performance After Finetuning

In this section, we investigate whether the pseudo-gt mesh
generated from our proposed workflow is beneficial for the
self-supervised learning of a mesh reconstruction model. We
finetune MEDOR [10] which is purely trained in simulation,
and show its performance before and after finetuning.

1) Mesh reconstruction: In Table II, we show 2 metrics.
The Chamfer PC is the bidirectional Chamfer distance be-
tween the visible predicted mesh and the partial point cloud,
which is the same metric as in Table. I. Chamfer PC indicates
how well the prediction aligns with the observation. Chamfer
Mesh is the chamfer distance between the full predicted mesh
and the pseudo mesh, which indicates how well the model
learns from the pseudo labels. As we can see from Table II,
both metrics are significantly improved after finetuning (46%
for Chamfer PC and 45% for Chamfer Mesh).

2) Robot Cloth Flattening: In order to demonstrate the
effectiveness of our method in robotic manipulation, we also
deployed the finetuned model for a physical robot experi-
ment: robot cloth flattening. The goal of this task is to maxi-
mize the coverage of a T-shirt by using a 7-DoF Franka robot
and pick-and-place action. We use normalized improvement
as the metric: 0 means no improvement and 1 means the

T-shirt is completely flattened. Following MEDOR [10],
we integrate the fine-tuned mesh reconstruction model with
a learned mesh-based dynamics model for planning. The
details of the task can be found in the appendix.

We test the model with and without finetuning for 6
trajectories separately, and calculate the average normalized
improvement. Each trajectory contains 10 pick-and-place
actions. We observe a performance gain of 30.4% after
finetuning with the pseudo-labeled dataset (Table II). This
shows that the quality of pseudo mesh is sufficiently accurate
for improving the downstream manipulation task.

V. CONCLUSIONS

We proposed a self-supervised mesh reconstruction
method in the real world, via action-conditioned cloth track-
ing. We show that by leveraging a dynamics model and opti-
mization, we can accurately track cloth and compute pseudo-
labels of the reconstructed mesh for crumpled cloths. By
finetuning a simulation-trained mesh reconstruction model
on the real-world pseudo labels, we can partially close
the sim2real gap and improve the performance of cloth
reconstruction and manipulation in the real world.
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Supplementary Material

VI. REAL-WORLD CLOTH FLATTENING

In order to further demonstrate the potential of our self-
supervised mesh reconstruction method for robotic applica-
tion, we deploy it in real world for a cloth flattening task.

A. Experiment Setup

The objective of the experiment is to flatten a crumpled
Tshirt by using a 7-DoF Franka robot and pick-and-place ac-
tion. The evaluation metric is the normalized improvements
of coverage (0 if no changes, 1 if maximum coverage is
reached). Since our goal is to evaluate whether the pseudo
label sufficiently accurate to improve the performance of
manipulation task, we use the same Tshirt for flattening as
we collect the pseudo label dataset.

B. Model-based Cloth Manipulation System

After finetuning the mesh reconstruction model with
pseudo label dataset, we integrate it with a learned graph
dynamics model for planning. At each step, we first re-
construct the cloth with mesh reconstruction model. Then
we sample 100 random pick-and-place actions and roll out
with the dynamics model. We use cloth coverage as the
reward function and execute the action the results in highest
coverage.

VII. ABLATION
A. Online vs offline dynamics calibration

Due to the simplification of dynamics model and complex-
ity of real world environment, it’s difficult to find a single
set of simulation parameters that work well for different
configurations. In this section, we investigate the necessity
of online simulation calibration.

Online dynamics calibration: identify the dynamics pa-
rameters for each pick-and-place actions separately, in an
online fashion. We adopt online dynamics calibration in our
main method.

Offline dynamics calibration: identify the modes of the
dynamics parameters on an offline dataset and transfer them
to individual trajectories. In our experiment, we find the
modes of dynamics parameters on the entire dataset

B. Ablation on Test-time Optimization 2 (TTO2)

In Fig. 5, we show a qualitative comparison between with
and without TTO2: TTO2 alleviates the compounding error
over several pick-and-place actions. Additionally, we also
find that TTO2 minimizes the need for a good model. We
conduct an ablation to verify this assumption. During sim-
ulation calibration, instead of choosing the best simulation
parameters, we intentionally choose parameters that result



in a worse dynamics model. As shown in the table below,
we found that TTO2 improves the robustness of our method
towards model quality. The column “Top 50%* or “Top 90%*
refers to the ranking of the dynamics parameters that we
have sampled. As shown, with TTO2, there is only a drop
of 19.5% when using the incorrect dynamics parameters (top
90%) compared to using the best parameters; without TTO2,
there is a much larger drop of 30.1% when using the incorrect
dynamics parameters.

C. Qualitative results of fine-tuned model

In Fig. 6, we visualize the results of state of the art cloth
reconstruction model, MEDOR [10] (2nd row), and MEDOR
after being finetuned (3rd row) by the pseudo-gt mesh (4th
row). It shows that our self-supervised approach can reliably
generate pseudo-gt mesh from partial observation (depth
image). This pseudo-gt mesh can be used for finetuning cloth
reconstruction model and improves its performance in real-
world.

D. Ablation on Collision

To better motivate the adoption of rigidity loss, we conduct
a collision test on the pseudo-gt mesh, generated with or
without rigidity loss in TTO1 and TTO2. We define a “colli-
sion* as when the distance between two vertices is less than
a predefined threshold (0.005). In Nvidia Flex, the distances
between adjacent vertices are set to be the particle radius by
default. Therefore, we use the particle radius (0.005) as the
threshold. The average number of vertices for the pseudo-gt
mesh is 3,906. Without rigidity loss, there are 33,765 pairs of
collisions. After adding rigidity loss, the average number of
collisions reduces to 4,099, which is approximately 9 times
less frequent.

VIII. ADDITIONAL DETAILS
A. Simulation Calibration

Before we start to track to motion of cloth, we firstly
calibrate the simulation by identifying the values of several
critical physical parameters. Due to the simplified dynamics
of simulation, one may not able to find a single set of
parameters that allow the simulation to match real world in
every possible transitions. Therefore, for each pick-and-place
action, we search for the optimal system parameters that best
simulate the current action.

We use Nvidia Flex as our simulator, and we find clothes
stiffness and friction to be the most parameters. During the
simulation calibration, we directly roll out the dynamics
model with actions a;.p, without any bells and whistles. We
run a grid search over all combinations of parameters (see
Table. V). On a single Nvidia GTX 2080Ti, it takes around
70 seconds to run over the 125 combinations of parameters.

B. Test-time Optimization

Test-time Optimization (TTO) is an important compo-
nent in our framework. It is applied twice in our action-
conditioned tracking pipeline. TTO1 is applied iteratively
inside the simulation loop of tracking process. The main goal

of TTO1 is to augment the dynamics model by computing
a pseudo action that aligns the simulated result with the
measurement. Due to the inevitable gap between real world
and simulation, it is possible that simulation cannot fully
match the real world even with the help of pseudo action.
For example, if the clothes in the simulation is thicker than
the real world’s, then the simulated mesh will always differ
from the real mesh, otherwise the physics constraint will be
violated. Therefore, after the inner simulation loop, we apply
another test-time optimization, which we refer as T702.

C. Finetuning for MEDOR

MEDOR [10], [5] consists of 3 components, a canoni-
calization network that maps pixel from observation space
to canonical space, a implicit shape completion network
that predicts winding number field [56], and a warp field
prediction network that predicts a per-vertex transformation
from canonical pose to observation space. The model is
finetuned in a two-stage process similar to training [10], [5].

In the first stage, we train the canonicalization network
alone. It should be noted that at the beginning of the tracking
procedure, we use a pretrained MEDOR model to reconstruct
the flattened mesh. This can be seen as registrating the
mesh to canonical space because we have the correspondence
between observation space to canonical space. Then, by
tracking the positions of vertices in the subsequent steps,
we obtain the pseudo training label for the canonicalization
network.

In the second stage, we train the shape completion net-
work, and warp field prediction network with the recon-
structed mesh in the canonical space and observation space
separately. We use Adam [54] optimizer with cyclic learning
rate [57] between le—® and le—%. The model is trained for
1000 epochs in the first stage and 2000 epochs in the second
training stage.For model finetuning, we split the trajectories
randomly into train and test set by a ratio of 9:1. Each
trajectory contains 3 pick-and-place actions, which contains
3 crumpled cloth configurations.



Fig. 5: Qualitative results for ablation on TTO2. After removing TTO2 (second row), the errors compounded over the pick-and-place actions. The final
mesh (4th column) notably deviates from the observation.

Model Quality

Method | Best | Top 50% | Top90%
w/o TTO2 2.194+1.69 | 2.67+2.04 | 2.85+2.32
w/ TTO2 1.13+1.24 | 1.18 £1.20 | 1.35+1.29

TABLE IV: TTO2 improves the robustness to model error.
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Fig. 6: Qualitative results for ablation on TTO2. After removing TTO2 (second row), the errors compounded over the pick-and-place actions. The final
mesh (4th column) notably deviates from the observation.

MEDOR
(w/o fine-tuning)

MEDOR
(w/ fine-tuning)

Parameters | Range

h Stiffness [0.2, 0.55, 0.9, 1.25, 1.6]
Dynamic Friction Coefficient | [0.5, 1.4, 2.3, 3.2, 4.1, 5]
Particle Friction Coefficient [0.5, 1.4, 2.3, 3.2, 4.1, 5]

TABLE V: Types and range of physical parameters that we optimize during simulation calibration phase.
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