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Abstract— State estimation is one of the greatest challenges
for cloth manipulation due to cloth’s high dimensionality and
self-occlusion. Prior works propose to identify the full state
of crumpled clothes by training a mesh reconstruction model
in simulation. However, such models are prone to suffer from
a sim-to-real gap due to differences between cloth simulation
and the real world. In this work, we propose a self-supervised
method to finetune a mesh reconstruction model in the real
world. Since the full mesh of crumpled cloth is difficult to
obtain in the real world, we design a special data collection
scheme and an action-conditioned model-based cloth tracking
method to generate pseudo-labels for self-supervised learning.
By finetuning the pretrained mesh reconstruction model on
this pseudo-labeled dataset, we show that we can improve the
quality of the reconstructed mesh without requiring human
annotations, and improve the performance of downstream
manipulation task. More visualizations and results can be found
on our project website.

I. INTRODUCTION

Despite the ubiquitous presence of cloth in the real-

world, manipulating it with a robot remains a difficult task.

Specifically, the high dimensionality and self-occlusion of

cloth pose significant challenges for precise state estimation.

Prior works [1], [2], [3], [4], [5] try to reconstruct the

full mesh of cloth from RGB or depth observations; the

mesh reconstruction model can be used for robot cloth

manipulation [6], [7], [8], [9], [8], [10]. However, the mesh

reconstruction model is typically trained in simulation and

suffers from a sim2real gap between simulated cloth and

real cloth. One approach to mitigate the distribution shift

from sim2real is to finetune the model with real world data.

On the other hand, obtaining the ground-truth full mesh

of crumpled clothes is extremely challenging, because the

occluded regions are not observable; this presents a challenge

for real-world finetuning.

In this work, we present a self-supervised method that

leverages a dynamics model and test-time optimization to

generate a pseudo-ground-truth mesh. We use a human to

collect real-world trajectories via a sequence of pick-and-

place actions. We assume that we are able to reconstruct the

initial cloth mesh (from a flattened configuration); we then

track the motion of the cloth during action execution. If we

can successfully track the cloth, then we can obtain the full

mesh configuration in the real world.

However, tracking the full cloth reliably is a challenging

problem. Motivated by the theory of Bayes Filtering, we

propose an action-conditioned model-based tracking method.
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Fig. 1: We propose a self-supervised cloth reconstruction method that uses
action-conditioned cloth tracking to generate pseudo-labels of the full mesh
on real world data.

First, we roll out a dynamics (motion) model conditioned on

the action to obtain an initial estimate of the motion. This

estimate of motion is grounded in physics and accounts for

all particles, including the occluded ones.

However, there will inevitably be gaps between the dynam-

ics model and the real world [11], [12], [13], due to incorrect

physical parameters and simplified dynamics. To account

for dynamics model errors, we further design a test-time

optimization method to minimize the discrepancy with the

observations at each rollout step, similar to a measurement

model of Bayes Filtering.

Our primary contributions are as follows; we:

1) Introduce an action-conditioned cloth tracking method

that is robust to occlusions and dynamics errors

2) Use this tracker for self-supervised fine-tuning in the

real world of a mesh reconstruction model.

3) Show improved performance of robot cloth flattening.

We use our tracking method to fine-tune a mesh recon-

struction model on unlabeled real world data. Our experi-

ments demonstrate that our method is able to generate plau-

sible pseudo-labels for cloth with complex configurations.

We also examine the importance of each component of our

method using an ablation study.

II. RELATED WORKS

Cloth Perception and Manipulation. Perception and

manipulation of clothes has a long history [14]. Earlier works

design heuristic features for specific tasks [15], [16], [17].

More recently, data-driven methods have shown promising

results in learning policies [18], [19], [20] or dynamics

model [21], [22], [10] for cloth smoothing and folding.

Particularly for model-based approaches, prior works have

shown that learning a dynamics model over the full mesh
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with occlusion reasoning can significantly improve the plan-

ning performance [10]. While there has been a line of re-

search dedicated to estimating the full mesh of the cloth [5],

[10], [1], [2], [23], [3], [4], [6], [24], most of these methods

are trained on synthetic data and then transfer to the real

world, since obtaining mesh data in the real world can be

difficult [25]. As such, this work aims to narrow the sim2real

gap by training on real world data collected from cloth

tracking.

Deformable Object Tracking. Numerous deformable

object tracking algorithms have been developed, such as

template-based tracking [26], [27], simultaneous tracking

and reconstruction [28], [29], or point set registration [30],

[31], [32], [33]. However, these model-free methods are not

guaranteed to satisfy physical constraints; further, they do

not explicitly model occluded regions. To circumvent these

drawbacks, Tang et al. [34] propose to refine the results of

model-free method by inputting it to a physical simulator.

Schulman et al. [35] designed a modified expectation-

maximization (EM) algorithm and perform inference through

calls to a physics simulator. These approaches are applied

to track rope, sponge, and folded cloth. In contrast, we are

able to track the configuration of cloth in highly crumpled

configurations, which has not been achieved in prior work.

We also demonstrate how model-based tracking can be

used for self-supervised fine-tuning of a mesh reconstruction

model.

Closing the Gap Between Sim and Real. Simulation has

shown considerable promise for generating large amounts

of labelled data at low cost, especially for domains where

groundtruth supervision is difficult to obtain, such as optical

flow and scene flow estimation [36], [37], [38] or 3D recon-

struction [39], [5]. However, models trained in simulation

do not always readily transfer to the real-world due to the

sim2real distribution shift. Prior works [33], [10] shows that

when applied to real world data, the performance of cloth

reconstruction model drops significantly. One strategy to

bridge this gap (“sim2real”) is to randomize the simulation

parameters to create a diverse set of training data [40], [41],

[42], [43], with an underlying assumption that the random-

ized simulation data will cover the distribution of real data.

However, for cloth reconstruction, the source of distribution

shift remains unclear. In other words, how to randomize cloth

simulation properly might be a more difficult problem.

In this paper, we seek to resolve the distribution shift

by fine-tuning a pre-trained simulation-trained model with

real world data. The main challenges for fine-tuning a mesh

reconstruction model in the real-world is the absence of

ground-truth data (i.e., the full mesh). While there exists

several real world datasets [44], [45] for on-body cloth

reconstruction, directly obtaining the ground-truth full mesh

of crumpled clothes in the real-world is very challenging due

to self-occlusion, i.e., the occluded portion of the clothes is

not observable. To tackle this issue, we propose to generate

pseudo labels using a action-conditioned tracking technique.

Although the proposed tracking method relies on that the

initial configuration of the cloth to be flattened, our learned

cloth reconstruction model can be applied to any cloth

configurations.

III. METHOD

The goal of this project is to track the mesh of a cloth;

we then use the tracked mesh to train a model to reconstruct

the mesh of a (possibly crumpled) cloth from a depth

image observation. Past work in this area has trained a

mesh reconstruction model in simulation and transferred the

trained model to the real world [1], [2], [3], [4], [5], [6], [10],

[23]. However, such methods can suffer from a performance

drop in the real-world due to the sim2real gap between

simulated cloths and real cloths. To circumvent the issue,

we design a self-supervised learning method for finetuning

a mesh reconstruction model with unlabeled real data.

The high-level idea of our method is as follows: suppose

that we know the full configuration of the initial mesh and

a dynamics model of the cloth. If we take an action on the

cloth, then we can use the dynamics model to estimate the

configuration of the cloth at the next timestep. However,

since the dynamics model might not be perfect, we refine

the prediction by aligning the predicted mesh with the

observation through an optimization procedure. We view this

procedure as similar to the motion update and measurement

update of Bayesian filtering.

Given an initial mesh reconstruction model trained in sim,

the whole system can be divided into 3 stages:

1) Collect real-world trajectories.

2) Track the motion of the cloth with our action-

conditioned model-based tracking method.

3) Use the tracking output to generate pseudo-ground-

truth (pseudo-gt) meshes and finetune the mesh recon-

struction model.

We describe our method in more detail below.

A. Data Collection in the Real-world

Top-down Camera

(Azure Kinect)

Tweezer

Fig. 2: A human collector uses a
tweezer to conduct pick-and-place
actions. RGB-D videos are captured
by a top-down camera.

In this section, we ex-

plain how we instrument

and collect real-world tra-

jectories. In order to fine-

tune the mesh reconstruc-

tion model, we need to col-

lect real-world data of cloths

in random configurations.

We use a top-down camera

placed above the workspace

to capture all the observa-

tions. We initialize the state

of the cloth into some con-

figuration in which our mesh

reconstruction model works

reasonably accurately (such

as a flattened state); we then

perform a sequence of pick-and-place actions. Then we reset

the cloth into a new configuration in which our mesh recon-

struction model works reasonably accurately (e.g., another

flattened state) and repeat. When executing each action, we
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ãt

Fig. 3: Left: The workflow for generating pseudo-ground-truth (pseudo-gt) meshes for one trajectory. We first reconstruct the initial mesh by using the
pretrained mesh reconstruction model fθ . Then, we estimate the deformation caused by each pick-and-place action through action-conditioned tracking.
By tracking all transitions sequentially, we obtain the pseudo mesh for crumpled cloths. Right: Before the tracking starts, we first run a parameter search
to calibrate the dynamics model. Then we iterate over all low-level actions by: 1) rolling out the dynamics model with the picker action for one step; 2)
running test-time optimization (TTO1) to align the model prediction result with observation, which produces a per-vertex ”pseudo action”; 3) running the
simulation again with a line search. After all the low-level actions within a pick-and-place action are executed, we run another optimization step (TTO2)
to account for the tracking errors.

record a full RGB-D video including the intermediate states.

The point cloud of the clothes is computed through color

segmentation. The actions are conducted with a tweezer,

which helps reduce the amount of occlusions compared to a

robot gripper or human hand (Fig. 2).

For each pick and place action, since we record the

intermediate states, we obtain a sequence of point clouds

P1:T and low-level picker actions a1:T . Note that the entire

sequence a1:T corresponds to intermediate actions within a

single pick and place action. We record a separate action

and point cloud sequence for each pick and place action. In

our experiments, we apply 3 pick-and-place actions (N =
3) in each trajectory, which takes around one minute (per

trajectory) for an experienced human collector; after each 3

pick-and-place actions, we reset the cloth to a flattened state.

B. Pseudo-gt Mesh Estimation by Model-based Cloth Track-

ing

Given an initial depth image D0, a pretrained mesh

reconstruction model, an (imperfect) dynamics model, as

well as the action and point cloud sequences recorded in

the previous section, our next goal is to estimate the full

mesh for every state recorded in the dataset. We assume that

the initial depth image D0 is recorded from the cloth in a

flattened state in which the pre-trained mesh reconstruction

model is reasonably accurate. Let us denote the estimated

reconstruction of this initial mesh as M̄0, where a mesh

is defined as M = (V,E) with vertices V and edges

E ⊆ V × V .

Given the initial estimated mesh M̄0, a sequence of point

clouds P1:T , and a sequence of actions, a1:T , our objective

is to estimate a sequence of meshes corresponding to each

timestep M̄1:T . To obtain an accurate estimate of the motion

of the cloth, we developed an action-conditioned model-

based cloth tracking method that is robust to occlusions. We

first simulate each action with the imperfect dynamics model

to obtain an initialization of the motion. We then run an

optimization to match the visible mesh with the observed

point cloud. Finally, we use the dynamics model again to

obtain the final prediction (see Fig. 3).

1) Initialize the Motion with a Dynamics Model: Our

method falls under “model-based tracking” [35], [34], [46].

Compared to model-free tracking, one of the most appealing

properties of model-based tracking is that it models the whole

object, including the occluded part. This is significant when

we track double-layer cloths, because part of the cloths might

be occluded throughout the entire trajectory. In this case,

model-free tracking is only able to estimate the motion of

the visible part while leaving occluded portion of the mesh

unchanged. On the other hand, model-based tracking can

use a physics prior of cloth to estimate the motion of the

occluded regions and estimate the configuration of the full

mesh that satisfies physical motion constraints.

At each timestep t, we directly modify the position of

the picked particle according to the recorded picker action,

at. We then run the dynamics model dyn for one step to

propagate the effect to the whole cloth, holding fixed the

position of the picked particle. Suppose xt ∈ R
|V |×3 are

the positions of all vertices; given the vertices xt and action

at, the dynamics model will predict the next state x
dyn
t+1 =

dyn(xt, at). We define ∆x
dyn
t+1 = x

dyn
t+1 − xt to denote the

motion of all vertices, which will be used as an initialization

for the test-time optimization, as described in Sec. III-B.2.

In order to make the dynamics model as realistic as pos-

sible, we calibrate the dynamics model by searching for the

optimal physical parameters (such as friction and stiffness).

To do so, we first simulate the entire action sequence a1:T
to obtain the final predicted mesh M̂T . We then use a z-

buffer to compute the visible portion of the predicted mesh

M̂vis
T . Next, we run a grid search over the dynamics model



parameters to minimize the Chamfer distance between the

visible portion of the simulated mesh M̂vis
T and the point

cloud at the final step PT . Then we use the optimized

parameters to obtain x
dyn
t+1 as explained above. Dynamics

calibration is carried out in an online fashion: we calibrate the

dynamics model separately for each pick-and-place action.

We show the necessity of online calibration in Appendix

Sec. 2.1 (see our website). For our dynamics model, we use

a position-based cloth dynamics model implemented in the

Nvidia FleX simulator [47], [20].

2) Augment Imperfect Dynamics Model by Aligning with

Measurement: Due to the complexity of real-world dynamics

and the challenges of system calibration, our dynamics

model will have errors. Even with accurate estimation of

the initial state, it will deviate from the real-world rollout

with errors accumulating over time. To tackle this challenge,

we draw inspiration from the measurement update step

of Bayesian Tracking [48]: we eliminate the compounding

errors due to the inaccurate dynamics model by running a

test-time optimization (TTO1 in Fig. 3) and thereby reduce

the discrepancy between the dynamics prediction and the

measurement (the observed pointcloud).

From the dynamics model (Sec. III-B.1), we obtain an

initial estimate of the state of cloth x
dyn
t+1 . The goal of the

test-time optimization step is to compute a correction term

∆xcorr
t+1 that adjusts the predicted mesh to better match the

observed point cloud. We optimize a 3-D translation for each

vertex ∆xcorr
t+1 so that xt+1 = x

dyn
t+1+∆xcorr

t+1 is aligned with

the observation. The specific optimization objectives are:

Chamfer Loss. The first objective we have is the one-

way Chamfer distance [10], [49] between the next point

cloud Pt+1 and the visible portion of the mesh xvis
t+1,

given by LChamf = Dchamf (Pt+1, x
vis
t+1). We use the one-

way Chamfer distance because the observed point cloud is

incomplete due to occlusions induced by the tweezer. For

each point on the observed point cloud, we find the nearest

neighbor within the visible set of mesh vertices.

Rigidity Loss. As-Rigid-As-Possible (ARAP) [50], [51],

[52], [53] is a common assumption for modeling cloth-like

shapes. In TTO1, the correction term ∆xcorr
t+1 can be viewed

as motion that transforms the mesh to match the partial point

cloud at the next timestep. Based on ARAP, we assume

the cloth nodes in neighboring regions move as rigidly as

possible. Intuitively, this loss helps improve the consistency

of motions of adjacent particles. Since we only model the

motion by a translation (∆xcorr
t+1 ), we obtain a simplified

rigidity loss:

LRig =
1

|Et|

∑

i,j∈Et

∥

∥∆xcorr
t+1,i −∆xcorr

t+1,j

∥

∥

2

2 (1)

At each step, we optimize ∆xcorr
t+1 with respect to Eq. 2

for 200 iterations with the Adam optimizer [54]. In our

experiment, we set α = 1 and β = 10.

argmin
∆xcorr

t+1

αLChamf + βLRig (2)

3) Rollout Augmented Dynamics with Line Search: In the

previous section, we described how to compute a correction

term for the predicted mesh based on the observed mea-

surement. However, the optimized mesh is not guaranteed to

satisfy all physical constraints. Similar to [34], [55], we use

the dynamics model again to verify the physical plausibility

of the mesh. We rollout the dynamics model again from the

original state xt; this time, we use both the picker action at as

well as a “pseudo-action” ãt = ∆x
dyn
t+1+∆xcorr

t . The picker

action is executed as described in Sec. III-B.1. This time,

the pseudo-action ãt is applied to all visible particles (not

just the picked particle). We then use the dynamics model to

adjust the positions of the occluded particles.

Although the pseudo action ãt helps align the rollout with

observation, it may potentially create physically infeasible

configurations. Therefore, we run a line search on the

correction component ∆xcorr
t . If the simulation explodes,

i.e., the velocities of cloth particles exceed a pre-defined

threshold, we multiply ∆xcorr
t with a decaying factor γ (we

set γ = 0.7). If the simulation fails for 10 times, we set

ãt = 0, which means the pseudo action is not used.

As shown in Alg.1 line 4-8, we iterate over all action

segments to track a single pick-and-place action. In our

experience, even after the pseudo-action, the tracking result

(estimated mesh) may still deviate from the observation due

to compounding errors. To ensure that the estimated mesh is

well aligned with the observation, we run another test-time

optimization (TTO2) with an identical set of losses as before.

Finally, we use the optimized mesh as the initial state for the

next pick-and-place action and iterate until all pick-and-place

actions have been tracked. We ablate TTO2 in Appendix

Sec. 2.2 (see the website) and show that it also improves the

robustness to the errors of the dynamics model.

C. Model finetuning

Using the above tracking model, we obtain a pseudo-

labeled dataset, with an estimated mesh for each observed

point cloud or depth image. Our dataset consists of the final

estimated mesh at the end of each pick and place action M̄T

and the corresponding point cloud PT . After curating this

pseudo-ground-truth dataset, we use it to finetune the mesh

reconstruction model. In our experiments, we finetune the

mesh-reconstruction model in MEDOR [10], which is built

off GarmentNets [5]. Given a depth image, GarmentNets [5]

and MEDOR [10] first predict the canonical coordinates

of each pixel. They then complete the shape in canonical

space and finally transform the completed shape back to

observation space. It should be noted that our method not

only provides the pseudo ground-truth mesh for the obser-

vation space, but our method also can compute a pseudo-

ground-truth mesh in the canonical space. This is because

GarmentNets [5] and MEDOR [10] simultaneously recon-

struct both meshes in the initial configuration; tracking the

meshes helps preserve the mapping between canonical space

and observation space. Thus, we are able to fine-tune both

the model that maps from observation space to canonical

space as well as the model that maps from canonical space



Algorithm 1: Pseudo-gt mesh generation

Input : A sequence of depth image sequences

{D1:T }
N
i=0, picker actions {a1:T }

N
i=0, point

cloud sequence {P1:T }
N
i=0, a pretrained

mesh reconstruction model fθ, and a

dynamics model dyn.

Output: A pseudo-labeled dataset that includes

paired observations and pseudo-gt mesh:

B={(Di, M̄ i)}Ni=0

1 Reconstruct initial mesh M̄0
0 by pre-trained model fθ

2 Initialize the pseudo-labeled dataset B with (D0, M̄0
0 )

3 for i← 0 to N do

4 for t← 1 to T do

5 M
dyn,i
t ← dyn(M̄ i

t−1, a
i
t)

6 ãit ← GetPseudoActionByTTO(M
dyn,i
t , P i

t )

(Sec. III-B.2)

7 M̄ i
t ← dyn(M̄ i

t−1, a
i
t, ã

i
t) \\with line search

8 end

9 Optimize M̄ i
T with test-time optimization

10 Add depth image Di
T and pseudo mesh M̄ i

T to

the pseudo-labeled dataset B

11 Use the final mesh in the current iteration as the

initialization of next iteration: M̄ i+1
0 ← M̄ i

T

12 end

13 return Pseudo-labeled dataset B

back to the observation space (i.e. both parts of the mesh

reconstruction model). In terms of the GarmentNets [33]

components, we train the canonicalization model, as well

as the shape completion and warp field prediction models.

For details, please refer to GarmentNets [33].

IV. EXPERIMENTS

Through the experiments, we seek to the answer the

following questions:

1) Can our method generate approximately correct

pseudo-gt meshes for mesh reconstruction and dynam-

ics learning?

2) Can our model adapt quickly after being finetuned on

the pseudo-gt meshes?

A. Evaluation on the Quality of Pseudo Labels

Setup. We collect 50 trajectories in the real world, each of

which contains 3 pick-and-place actions. Including the initial

state, there are 200 pseudo labels in total.

Baselines. We compare our method to 4 baselines:

• No Pseudo Action. The goal of pseudo action ãt is

to “patch” the inaccuracies of the dynamics model. We

verify its effectiveness by removing it from the method

and only using the recorded picker action a1:T .

• No Action Conditioning. In this baseline, we assume

the picker action information is not known, which has

two implications. 1) When computing the pseudo action,

since we don’t know the picker action, we cannot

roll out the simulator to initialize TTO; 2) When we

simulate the pseudo action with line search, we only

apply the pseudo action alone (not the picker action).

• No Dyn Init. In this baseline, we directly run TTO on

the current mesh Mt instead of the simulated next mesh

M
dyn
t+1 . This is to verify whether using the dynamics

model to bootstrap the optimization is critical to the

performance.

• No Test-time Finetuning (TTO2). Although we con-

duct TTO in between the dynamics rollout, the roll-

out may still drift due to imperfect dynamics. In this

baseline, we remove the optimization step at the end

of the tracking procedure (TTO2) to see whether this

component is necessary.

Metrics. Evaluating the quality of the pseudo label is

challenging, due to the absence of the ground-truth mesh.

To evaluate the quality of the pseudo label, we use the

bidirectional Chamfer distance between the visible surface

of the pseudo mesh and the observed point cloud. Our

assumption is that if the tracking is accurate, then the visible

surface of the pseudo mesh should match the observed

point cloud, which is the visible surface of ground-truth

mesh. We compute the metric with the mesh before Test-

time Optimization 2. This is because, even for a completely

erroneous prediction, the shape can match the observation

after TTO2 and achieve a low cost. Therefore, comparing the

loss after TTO2 is not very indicative of accurate tracking.

Method Chamfer PC ↓

(1 × 10
−4 m)

No Pseudo Act (No TTO1) 1.62 ± 0.98

No Dyn Init 1.40 ± 1.21

No Act Cond 3.72 ± 2.32

No TTO2 2.19 ± 1.69

MEDOR 3.0 ± 2.1

Ours (full method) 1.13 ± 1.24

TABLE I: Quantitative results of different
variants of our method.

Results. In

the Fig. 4, we

show the side-by-

side comparison

of the tracking

results of the

different methods.

Videos and 3D

visualizations of

the pseudo mesh can be found on our website. Our full

method (second row) is able to track the clothes even under

complicated configurations, i.e., multiple folds (right figure).

In contrast, the other methods all produce pseudo meshes

that don’t align with the observations.

In Table. I, we show the quantitative results of the base-

lines and our method. Means and standard deviations of the

generated pseudo meshes are computed across the whole

dataset. Comparing our method with No Pseudo Act, we see

that dynamics errors can be significantly reduced by aligning

with measurements during the rollout. By comparing No

Dyn Init with our method, we see the importance of using

dynamics prior as the initialization for the optimization

problem. Since tracking is a correspondence problem, our

conjecture is that initializing with a dynamics rollout makes it

easier to find correspondences. Looking at No Act Cond, we

see the benefits for tracking deformable objects conditioned

on the action, and a pure optimization method failed in this

case. Comparing No TTO2 with our method, we observe that

TTO2 helps reduce the compounding error; thus removing it

hurts the performance.
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circles respectively.

Method Chamfer PC ↓ Chamfer Mesh ↓ Flattening ↑

MEDOR [10] w/o ft 3.0± 2.1 2.2± 1.7 0.23
MEDOR [10] w/ ft 1.6± 1.4 1.2± 0.8 0.3

TABLE II: Performance before and after finetuning.

B. Model Performance After Finetuning

In this section, we investigate whether the pseudo-gt mesh

generated from our proposed workflow is beneficial for the

self-supervised learning of a mesh reconstruction model. We

finetune MEDOR [10] which is purely trained in simulation,

and show its performance before and after finetuning.

1) Mesh reconstruction: In Table II, we show 2 metrics.

The Chamfer PC is the bidirectional Chamfer distance be-

tween the visible predicted mesh and the partial point cloud,

which is the same metric as in Table. I. Chamfer PC indicates

how well the prediction aligns with the observation. Chamfer

Mesh is the chamfer distance between the full predicted mesh

and the pseudo mesh, which indicates how well the model

learns from the pseudo labels. As we can see from Table II,

both metrics are significantly improved after finetuning (46%
for Chamfer PC and 45% for Chamfer Mesh).

2) Robot Cloth Flattening: In order to demonstrate the

effectiveness of our method in robotic manipulation, we also

deployed the finetuned model for a physical robot experi-

ment: robot cloth flattening. The goal of this task is to maxi-

mize the coverage of a T-shirt by using a 7-DoF Franka robot

and pick-and-place action. We use normalized improvement

as the metric: 0 means no improvement and 1 means the

T-shirt is completely flattened. Following MEDOR [10],

we integrate the fine-tuned mesh reconstruction model with

a learned mesh-based dynamics model for planning. The

details of the task can be found in the appendix.

We test the model with and without finetuning for 6

trajectories separately, and calculate the average normalized

improvement. Each trajectory contains 10 pick-and-place

actions. We observe a performance gain of 30.4% after

finetuning with the pseudo-labeled dataset (Table II). This

shows that the quality of pseudo mesh is sufficiently accurate

for improving the downstream manipulation task.

V. CONCLUSIONS

We proposed a self-supervised mesh reconstruction

method in the real world, via action-conditioned cloth track-

ing. We show that by leveraging a dynamics model and opti-

mization, we can accurately track cloth and compute pseudo-

labels of the reconstructed mesh for crumpled cloths. By

finetuning a simulation-trained mesh reconstruction model

on the real-world pseudo labels, we can partially close

the sim2real gap and improve the performance of cloth

reconstruction and manipulation in the real world.
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[27] M. Zollhöfer, M. Nießner, S. Izadi, C. Rehmann, C. Zach, M. Fisher,
C. Wu, A. Fitzgibbon, C. Loop, C. Theobalt et al., “Real-time non-
rigid reconstruction using an rgb-d camera,” ACM Transactions on

Graphics (ToG), vol. 33, no. 4, pp. 1–12, 2014.

[28] R. A. Newcombe, D. Fox, and S. M. Seitz, “Dynamicfusion: Recon-
struction and tracking of non-rigid scenes in real-time,” in Proceedings

of the IEEE conference on computer vision and pattern recognition,
2015, pp. 343–352.

[29] M. Slavcheva, M. Baust, and S. Ilic, “Sobolevfusion: 3d reconstruction
of scenes undergoing free non-rigid motion,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2018,
pp. 2646–2655.

[30] H. Chui and A. Rangarajan, “A new algorithm for non-rigid point
matching,” in Proceedings IEEE Conference on Computer Vision and

Pattern Recognition. CVPR 2000 (Cat. No. PR00662), vol. 2. IEEE,
2000, pp. 44–51.

[31] ——, “A feature registration framework using mixture models,” in
Proceedings IEEE Workshop on Mathematical Methods in Biomedical

Image Analysis. MMBIA-2000 (Cat. No. PR00737). IEEE, 2000, pp.
190–197.

[32] A. Myronenko, X. Song, and M. Carreira-Perpinan, “Non-rigid point
set registration: Coherent point drift,” Advances in neural information

processing systems, vol. 19, 2006.

[33] C. Chi and D. Berenson, “Occlusion-robust deformable object tracking
without physics simulation,” in 2019 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS). IEEE, 2019, pp.
6443–6450.

[34] T. Tang, Y. Fan, H.-C. Lin, and M. Tomizuka, “State estimation for
deformable objects by point registration and dynamic simulation,” in
2017 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE, 2017, pp. 2427–2433.

[35] J. Schulman, A. Lee, J. Ho, and P. Abbeel, “Tracking deformable
objects with point clouds,” in 2013 IEEE International Conference on

Robotics and Automation. IEEE, 2013, pp. 1130–1137.

[36] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. Van Der Smagt, D. Cremers, and T. Brox, “Flownet: Learning
optical flow with convolutional networks,” in Proceedings of the IEEE

international conference on computer vision, 2015, pp. 2758–2766.

[37] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
“Flownet 2.0: Evolution of optical flow estimation with deep net-
works,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2017, pp. 2462–2470.

[38] Z. Teed and J. Deng, “Raft: Recurrent all-pairs field transforms for
optical flow,” in European conference on computer vision. Springer,
2020, pp. 402–419.

[39] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove,
“Deepsdf: Learning continuous signed distance functions for shape
representation,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2019, pp. 165–174.

[40] F. Sadeghi and S. Levine, “Cad2rl: Real single-image flight without a
single real image,” arXiv preprint arXiv:1611.04201, 2016.



[41] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ international con-

ference on intelligent robots and systems (IROS). IEEE, 2017, pp.
23–30.

[42] S. James, A. J. Davison, and E. Johns, “Transferring end-to-end
visuomotor control from simulation to real world for a multi-stage
task,” in Conference on Robot Learning. PMLR, 2017, pp. 334–343.

[43] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew,
A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas et al., “Solving
rubik’s cube with a robot hand,” arXiv preprint arXiv:1910.07113,
2019.

[44] B. L. Bhatnagar, G. Tiwari, C. Theobalt, and G. Pons-Moll, “Multi-
garment net: Learning to dress 3d people from images,” in Proceedings

of the IEEE/CVF international conference on computer vision, 2019,
pp. 5420–5430.

[45] H. Zhu, Y. Cao, H. Jin, W. Chen, D. Du, Z. Wang, S. Cui, and X. Han,
“Deep fashion3d: A dataset and benchmark for 3d garment reconstruc-
tion from single images,” in European Conference on Computer Vision.
Springer, 2020, pp. 512–530.

[46] Y. Wang, D. McConachie, and D. Berenson, “Tracking partially-
occluded deformable objects while enforcing geometric constraints,”
in 2021 IEEE International Conference on Robotics and Automation

(ICRA). IEEE, 2021, pp. 14 199–14 205.
[47] X. Lin, Y. Wang, J. Olkin, and D. Held, “SoftGym: Benchmarking

deep reinforcement learning for deformable object manipulation,” in
Conference on Robot Learning, 2020.

[48] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-gaussian bayesian tracking,”
IEEE Transactions on signal processing, vol. 50, no. 2, pp. 174–188,
2002.

[49] P. Sundaresan, R. Antonova, and J. Bohg, “Diffcloud: Real-to-sim
from point clouds with differentiable simulation and rendering of
deformable objects,” arXiv preprint arXiv:2204.03139, 2022.

[50] O. Sorkine and M. Alexa, “As-rigid-as-possible surface modeling,” in
Symposium on Geometry processing, vol. 4, 2007, pp. 109–116.

[51] H. Su, C. R. Qi, Y. Li, and L. J. Guibas, “Render for cnn: Viewpoint
estimation in images using cnns trained with rendered 3d model
views,” in Proceedings of the IEEE international conference on

computer vision, 2015, pp. 2686–2694.
[52] K. Park, U. Sinha, J. T. Barron, S. Bouaziz, D. B. Goldman, S. M.

Seitz, and R. Martin-Brualla, “Nerfies: Deformable neural radiance
fields,” in Proceedings of the IEEE/CVF International Conference on

Computer Vision, 2021, pp. 5865–5874.
[53] M. Slavcheva, M. Baust, D. Cremers, and S. Ilic, “Killingfusion: Non-

rigid 3d reconstruction without correspondences,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 1386–1395.

[54] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[55] T. Tang and M. Tomizuka, “Track deformable objects from point
clouds with structure preserved registration,” The International Journal

of Robotics Research, p. 0278364919841431, 2018.
[56] A. Jacobson, L. Kavan, and O. Sorkine-Hornung, “Robust inside-

outside segmentation using generalized winding numbers,” ACM

Transactions on Graphics (TOG), vol. 32, no. 4, pp. 1–12, 2013.
[57] L. N. Smith, “Cyclical learning rates for training neural networks,”

in 2017 IEEE winter conference on applications of computer vision

(WACV). IEEE, 2017, pp. 464–472.

fTABLE III: Ablation on the necessity of online simulation calibration.
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(1× 10
−4)

Online (Ours) 1.13± 1.24
Offline 1.90± 1.53
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VI. REAL-WORLD CLOTH FLATTENING

In order to further demonstrate the potential of our self-

supervised mesh reconstruction method for robotic applica-

tion, we deploy it in real world for a cloth flattening task.

A. Experiment Setup

The objective of the experiment is to flatten a crumpled

Tshirt by using a 7-DoF Franka robot and pick-and-place ac-

tion. The evaluation metric is the normalized improvements

of coverage (0 if no changes, 1 if maximum coverage is

reached). Since our goal is to evaluate whether the pseudo

label sufficiently accurate to improve the performance of

manipulation task, we use the same Tshirt for flattening as

we collect the pseudo label dataset.

B. Model-based Cloth Manipulation System

After finetuning the mesh reconstruction model with

pseudo label dataset, we integrate it with a learned graph

dynamics model for planning. At each step, we first re-

construct the cloth with mesh reconstruction model. Then

we sample 100 random pick-and-place actions and roll out

with the dynamics model. We use cloth coverage as the

reward function and execute the action the results in highest

coverage.

VII. ABLATION

A. Online vs offline dynamics calibration

Due to the simplification of dynamics model and complex-

ity of real world environment, it’s difficult to find a single

set of simulation parameters that work well for different

configurations. In this section, we investigate the necessity

of online simulation calibration.

Online dynamics calibration: identify the dynamics pa-

rameters for each pick-and-place actions separately, in an

online fashion. We adopt online dynamics calibration in our

main method.

Offline dynamics calibration: identify the modes of the

dynamics parameters on an offline dataset and transfer them

to individual trajectories. In our experiment, we find the

modes of dynamics parameters on the entire dataset

B. Ablation on Test-time Optimization 2 (TTO2)

In Fig. 5, we show a qualitative comparison between with

and without TTO2: TTO2 alleviates the compounding error

over several pick-and-place actions. Additionally, we also

find that TTO2 minimizes the need for a good model. We

conduct an ablation to verify this assumption. During sim-

ulation calibration, instead of choosing the best simulation

parameters, we intentionally choose parameters that result



in a worse dynamics model. As shown in the table below,

we found that TTO2 improves the robustness of our method

towards model quality. The column “Top 50%“ or “Top 90%“

refers to the ranking of the dynamics parameters that we

have sampled. As shown, with TTO2, there is only a drop

of 19.5% when using the incorrect dynamics parameters (top

90%) compared to using the best parameters; without TTO2,

there is a much larger drop of 30.1% when using the incorrect

dynamics parameters.

C. Qualitative results of fine-tuned model

In Fig. 6, we visualize the results of state of the art cloth

reconstruction model, MEDOR [10] (2nd row), and MEDOR

after being finetuned (3rd row) by the pseudo-gt mesh (4th

row). It shows that our self-supervised approach can reliably

generate pseudo-gt mesh from partial observation (depth

image). This pseudo-gt mesh can be used for finetuning cloth

reconstruction model and improves its performance in real-

world.

D. Ablation on Collision

To better motivate the adoption of rigidity loss, we conduct

a collision test on the pseudo-gt mesh, generated with or

without rigidity loss in TTO1 and TTO2. We define a “colli-

sion“ as when the distance between two vertices is less than

a predefined threshold (0.005). In Nvidia Flex, the distances

between adjacent vertices are set to be the particle radius by

default. Therefore, we use the particle radius (0.005) as the

threshold. The average number of vertices for the pseudo-gt

mesh is 3,906. Without rigidity loss, there are 33,765 pairs of

collisions. After adding rigidity loss, the average number of

collisions reduces to 4,099, which is approximately 9 times

less frequent.

VIII. ADDITIONAL DETAILS

A. Simulation Calibration

Before we start to track to motion of cloth, we firstly

calibrate the simulation by identifying the values of several

critical physical parameters. Due to the simplified dynamics

of simulation, one may not able to find a single set of

parameters that allow the simulation to match real world in

every possible transitions. Therefore, for each pick-and-place

action, we search for the optimal system parameters that best

simulate the current action.

We use Nvidia Flex as our simulator, and we find clothes

stiffness and friction to be the most parameters. During the

simulation calibration, we directly roll out the dynamics

model with actions a1:T , without any bells and whistles. We

run a grid search over all combinations of parameters (see

Table. V). On a single Nvidia GTX 2080Ti, it takes around

70 seconds to run over the 125 combinations of parameters.

B. Test-time Optimization

Test-time Optimization (TTO) is an important compo-

nent in our framework. It is applied twice in our action-

conditioned tracking pipeline. TTO1 is applied iteratively

inside the simulation loop of tracking process. The main goal

of TTO1 is to augment the dynamics model by computing

a pseudo action that aligns the simulated result with the

measurement. Due to the inevitable gap between real world

and simulation, it is possible that simulation cannot fully

match the real world even with the help of pseudo action.

For example, if the clothes in the simulation is thicker than

the real world’s, then the simulated mesh will always differ

from the real mesh, otherwise the physics constraint will be

violated. Therefore, after the inner simulation loop, we apply

another test-time optimization, which we refer as TTO2.

C. Finetuning for MEDOR

MEDOR [10], [5] consists of 3 components, a canoni-

calization network that maps pixel from observation space

to canonical space, a implicit shape completion network

that predicts winding number field [56], and a warp field

prediction network that predicts a per-vertex transformation

from canonical pose to observation space. The model is

finetuned in a two-stage process similar to training [10], [5].

In the first stage, we train the canonicalization network

alone. It should be noted that at the beginning of the tracking

procedure, we use a pretrained MEDOR model to reconstruct

the flattened mesh. This can be seen as registrating the

mesh to canonical space because we have the correspondence

between observation space to canonical space. Then, by

tracking the positions of vertices in the subsequent steps,

we obtain the pseudo training label for the canonicalization

network.

In the second stage, we train the shape completion net-

work, and warp field prediction network with the recon-

structed mesh in the canonical space and observation space

separately. We use Adam [54] optimizer with cyclic learning

rate [57] between 1e−5 and 1e−6. The model is trained for

1000 epochs in the first stage and 2000 epochs in the second

training stage.For model finetuning, we split the trajectories

randomly into train and test set by a ratio of 9:1. Each

trajectory contains 3 pick-and-place actions, which contains

3 crumpled cloth configurations.



No TTO2

W/ TTO2 W/ TTO2

No TTO2

Fig. 5: Qualitative results for ablation on TTO2. After removing TTO2 (second row), the errors compounded over the pick-and-place actions. The final
mesh (4th column) notably deviates from the observation.

Method

Model Quality
Best Top 50% Top90%

w/o TTO2 2.19 ± 1.69 2.67 ± 2.04 2.85 ± 2.32

w/ TTO2 1.13 ± 1.24 1.18 ± 1.20 1.35 ± 1.29

TABLE IV: TTO2 improves the robustness to model error.

RGB

MEDOR

(w/o fine-tuning)

MEDOR

(w/ fine-tuning)

Pseudo-gt

Mesh

Fig. 6: Qualitative results for ablation on TTO2. After removing TTO2 (second row), the errors compounded over the pick-and-place actions. The final
mesh (4th column) notably deviates from the observation.

h

Parameters Range

Stiffness [0.2, 0.55, 0.9, 1.25, 1.6]
Dynamic Friction Coefficient [0.5, 1.4, 2.3, 3.2, 4.1, 5]
Particle Friction Coefficient [0.5, 1.4, 2.3, 3.2, 4.1, 5]

TABLE V: Types and range of physical parameters that we optimize during simulation calibration phase.
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