2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES) | 978-1-6654-7296-8/22/$31.00 ©2022 IEEE | DOI: 10.1109/CASES55004.2022.00028

2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)

Work-in-Progress: NoRF: A Case Against Register
File Operands in Tightly-Coupled Accelerators

David J. Schlais, Heng Zhuo, Mikko H. Lipasti
University of Wisconsin-Madison
schlais2 @wisc.edu, hzhuo2 @wisc.edu, mikko@engr.wisc.edu

Operand Year Bits RF Memory
Burroughs Scientific 1982 48 (17 banks) No Yes
TCA Processor
X86 SSE 2000 128 Yes No
ARM Neon SIMD 2008 128 Yes No
s AVX-256 2011 256 Yes No
= AVX-512 2013 512 Yes No
TensorCore 16FP 2017 256 (4x4x16) Yes No
TensorCore 64FP 2020 512 (4x2x64) Yes No
TCA:RF N/A 512 Yes No
TCA: NoRF N/A 512 No Yes

(a) TCA integrated with RF

(b) TCA integrated with NoRF

Fig. 1: Dataflow for a tightly-coupled accelerator (TCA) that
uses RF vs. NoRF. Without reuse in the RF, RF requires many
more steps of data movement external to the TCA.

I. INTRODUCTION AND MOTIVATION

Accelerators are often used to increase performance and/or
energy efficiency of general-purpose CPUs. However, Tightly-
Coupled Accelerators (TCAs) often perform computations on
data structures that may not be a natural fit for general-purpose
registers. The designer can either use the existing register
file (RF), a RF tailored for the accelerator, or eschew a RF
entirely (NoRF), accessing operands directly from the memory
hierarchy. Designers for embedded and edge devices are
particularly conscientious towards energy-efficient compute
and data transfer. We explore the possibility of mini-DGEMM
accelerators (example TCAs) within the context of CPUs
and edge devices, which also have increasing applications
for DGEMM compute. At a high level, register files help
reduce memory accesses (steps 1, 2, 5, and 6 in Figure 1)
when the compiler finds reuse of operands in the program
dataflow. On the other hand, direct memory access simplifies
the data movement by completely eliminating the intermediate
reads and writes to a register file but issues more memory
requests. This paper evaluates the difference between these
options of operand delivery. Figure 2 shows that all recent
vector extensions use a register file implementation. By this
trend, it may seem natural to incorporate mini-matrices into the
RF. However, we present quantitative and qualitative evidence
to advocate for direct cache access for operands.

II. RELATED WORK
Google’s TPU [6] is a large-scale DNN accelerator for
CNN/RNN inference that uses a systolic two-dimensional
matrix-matrix multiplication array. DaDianNao [3] is a cus-
tomized chip that uses both custom compute and storage to

This work was supported in part by the National Science Foundation under
grants CCF-1615014, CCF-1628384, and CCF-1813434.

Fig. 2: Evolution of adding wide vector operations

gain large speedups. EyeRiss [2] is a reconfigurable accelerator
aimed at speeding up CNN inference computation (matrix
multiplication) through optimized data movement through a
row stationary processing dataflow on a spatial architecture.
Compared to these accelerators, which perform matrix oper-
ations orders of magnitude larger, we look at how the archi-
tecture should change when implementing fine-grained TCAs.
The MANIC architecture [4] reduces RF reads and writes of
intermediate and dead registers by forwarding intermediate
results, but all data from memory is still required to be inserted
into the RF, whereas NoRF completely eschews the RF. Both
coarse- and fine-grained matrix operations can be beneficial for
different types of use case applications, where smaller matrix
operations may have additional use in edge and embedded
devices.

III. TCAs wWiITH RF vs NORF IMPLEMENTATIONS

One TCA implementation passes operands through a RF.
When there is temporal reuse, RFs reduce the number of
requests to the memory hierarchy. However, without reuse,
RFs cause unnecessary data movement reads and writes. Reuse
can be made through optimizing the software/compiler to tile
algorithms to reuse registers before accessing memory again.
Concurrent operations can be made through the use of vector,
instead of scalar, registers. A TCA (doing matrix operations,
for example) could additionally specialize a register file to
have each register hold an entire ’unit’ worth of data, such
as an entire 8x8 submatrix. We assume an RF that holds
submatrices as elements, with an optimized compiler for reuse,
as our baseline.

Through diagrams and intuition, it is unclear whether or
not the register file is actually providing benefit to the TCA
for data movement. Having a register file as an intermediate
changes a datapath of the L1D$ to the TCA from 2 total
reads/writes to 6 total reads/writes (Figure 1). If a register file
element is read and immediately removed, it seems beneficial

2643-1726/22/$31.00 ©2022 IEEE 43
DOI 10.1109/CASES55004.2022.00028
Authorized licensed use limited to: University of Wisconsin. Downloaded on July 20,2023 at 14:26:46 UTC from IEEE Xplore. Restrictions apply.

Data Movement Dynamic Energy Breakdown (DGEMM)

64 bit 32 bit 16 bit

NORF

NoRF_M$

22

R—M$

Relative Dynamic Energy

0

axa 8x8

W R-mem IW mem MR- Reg W Reg

(a) DGEMM

W-M$ m Tag-M$

Data Movement Dynamic Energy Breakdown (bSparse)

=
=

o
@
&

64 bit

w
=4
<]
III Z

HR-mem B W-mem

32 bit 16 bit

R—MS

o

o
N
bl

°

NoRF_M$

o
=}

Relative Dynamic Energy
B

o
=
=

0

R*Reg W—Reg W*MS u Tag—MS

(b) SPGEMM

Fig. 3: Energy breakdown of data transfer in both DGEMM and SpGEMM algorithms for RF (R), NoRF (N), and NoRF with
M$ (M$) TCA implementations varied with different bit widths (64, 32, 16) and different TCA sizes (2x2, 4x4, 8x8).

1000000
Speedup vs DGEMM

100000 -
10000
1000

100

10

Relative Speedup

Density (0.01=1%)
0.01

e |
_0.001

Random Sparsity:

Ix1
-1x1

2x2
e D

4x4
4x4

8x8

Ideal blocking: 8x8

Fig. 4: Block-sparse SGEMM performance with random-
(solid line) and ideally-blocked (dotted line) matrices.

to completely bypass the register file. This implementation of
using No Register File can be called a NoRF implementation.
A potential downside of eliminating the register file is less
operand reuse. However, TCAs that buffer loaded operands
(which we deem a matrix cache, or M$), capture reuse in
memory-to-memory operations in the same way that reuse can
be done through the register file. At first it may seem like
buffering data causes similar overheads to the RF, but by hav-
ing a known datapath and access patterns (ie, having different
banks for A, B, and C matrix elements), this implementation
eliminates the multi-ported nature of the RF.

IV. RESULTS

We use CACTI [7] to estimate the energy associated for L1
cache access, at 40nm with a design focus on low power.

In order to test execution performance of the TCA design
with a cycle-accurate simulator, we use gem5 [1]. We con-
figure gem5 to mimic Intel’s Sunnycove [8] architecture. We
then use Eigen [5] as an existing software library designed
to exploit SIMD and vector registers as a SW alternative. We
manually insert the specialized TCA instruction as well as
specialized RF load/store instructions for comparison.

Speedup from Eigen is limited (2x-4x improvement) by the
width of vector registers and the number of floating point
execution units. As expected, custom TCAs which supply ad-
ditional floating point MACs and custom logic to supply those
MAC:s see additional speedup (5x-80x in 2x2-8x8 TCAs), with
significant speedups for the larger DGEMM TCAs, as the work
done each invocation grows by a factor of O(n?), reducing
control flow operation and utilizing larger vector loads (graph
removed in WiP paper due to space limitations).

Sparse matrices can still utilize the TCAs proposed by
utilizing a blocked-sparse format. We test both ideal case

44

DGEMV Speedup DGEMV data movement dynamic energy
25 B 64 bit 32 bit 16 bit
14
20 &
N o 12 %g
315 § &
T Sos ég
v a $=
a 10 5 06
@]
5 I i III III
5 ||| i ||| III
0 5, III lll

DGEMV
2x2 W4x4 W8x8

(a) DGEMV TCA
performance

R-RF = W-RF #R-M$ ~W-M$ HTag-M$
(b) DGEMV TCA energy breakdown

HR-mem HW-mem

Fig. 5: DGEMYV performance and energy consumption.

(where all non-zero elements are fully packed into TCA
blocks), as well as a pessimistic, randomly distributed sparse
matrix (no local density). Figure 4 shows that for very sparse
matrices, the highest speedups are achieved, since limited
calculations are required. Interestingly enough, however, when
non-ideal packing is involved, the 1x1 (traditional CSR algo-
rithm) surpasses each of the TCA execution times at a specific
crossover point for each TCA size.

Figure 3a demonstrates up to a 39% reduction in energy
consumption of data movement by completely eliminating
the register file, and instead implementing a specialized TCA
datapath with a matrix cache. Fig. 3a and Fig. 3b show that
the larger the TCA (8x8), the more inherent energy reduction
there is in data movement. This is because the number of
partial producs grows O(n?). In other words, the more work
the accelerator can do per access, the smaller the inefficiencies
in data movement. In blocked sparse matrix multiplication
(SpGEMM)), the output element partial products are calculated
out of order. For this reason, disabling the M$ provides the
best energy wins, up to 60% over the RF design.

The main takeaway from Figure 5 is that the M$ does not
capture reuse in the DGEMYV algorithm, and maximum energy
reduction occurs by using NoRF without the M$ enabled. The
DGEMYV geomean energy reduction for NoRF with the M$ is
21%, and NoRF without M$ has a geomean energy reduction
of 41%. All around, these advantages build a case for NoRF-
based implementations in these TCAs, which goes against the
long-lived tradition of register files for operand delivery in
compute within the core.

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 20,2023 at 14:26:46 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti er al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1-7, 2011.

[2] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127-138,
2016.

[3]1 Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun et al., “Dadiannao: A machine-learning supercomputer,”
in Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture. 1EEE Computer Society, 2014, pp. 609-622.

[4] G. Gobieski, A. Nagi, N. Serafin, M. M. Isgenc, N. Beckmann, and
B. Lucia, “Manic: A vector-dataflow architecture for ultra-low-power
embedded systems,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, 2019, pp. 670—
684.

[5]1 G. Guennebaud, B. Jacob et al., “Eigen: a c++ linear algebra library,”
URL http://eigen. tuxfamily. org, Accessed, vol. 22, 2014.

[6] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Ba-
jwa, S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” arXiv preprint
arXiv:1704.04760, 2017.

[71 S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “Cacti
5.1, Technical Report HPL-2008-20, HP Labs, Tech. Rep., 2008.

[8] Wikichip, “Sunny cove - microarchitectures,” 2019,
last accessed 25 November 2019. [Online]. Available:
https://en.wikichip.org/wiki/intel/microarchitectures/sunny .ove

45

Authorized licensed use limited to: University of Wisconsin. Downloaded on July 20,2023 at 14:26:46 UTC from IEEE Xplore. Restrictions apply.

