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(a) TCA integrated with RF (b) TCA integrated with NoRF

Fig. 1: Dataflow for a tightly-coupled accelerator (TCA) that

uses RF vs. NoRF. Without reuse in the RF, RF requires many

more steps of data movement external to the TCA.

I. INTRODUCTION AND MOTIVATION

Accelerators are often used to increase performance and/or

energy efficiency of general-purpose CPUs. However, Tightly-

Coupled Accelerators (TCAs) often perform computations on

data structures that may not be a natural fit for general-purpose

registers. The designer can either use the existing register

file (RF), a RF tailored for the accelerator, or eschew a RF

entirely (NoRF), accessing operands directly from the memory

hierarchy. Designers for embedded and edge devices are

particularly conscientious towards energy-efficient compute

and data transfer. We explore the possibility of mini-DGEMM

accelerators (example TCAs) within the context of CPUs

and edge devices, which also have increasing applications

for DGEMM compute. At a high level, register files help

reduce memory accesses (steps 1, 2, 5, and 6 in Figure 1)

when the compiler finds reuse of operands in the program

dataflow. On the other hand, direct memory access simplifies

the data movement by completely eliminating the intermediate

reads and writes to a register file but issues more memory

requests. This paper evaluates the difference between these

options of operand delivery. Figure 2 shows that all recent

vector extensions use a register file implementation. By this

trend, it may seem natural to incorporate mini-matrices into the

RF. However, we present quantitative and qualitative evidence

to advocate for direct cache access for operands.

II. RELATED WORK

Google’s TPU [6] is a large-scale DNN accelerator for

CNN/RNN inference that uses a systolic two-dimensional

matrix-matrix multiplication array. DaDianNao [3] is a cus-

tomized chip that uses both custom compute and storage to
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Fig. 2: Evolution of adding wide vector operations

gain large speedups. EyeRiss [2] is a reconfigurable accelerator

aimed at speeding up CNN inference computation (matrix

multiplication) through optimized data movement through a

row stationary processing dataflow on a spatial architecture.

Compared to these accelerators, which perform matrix oper-

ations orders of magnitude larger, we look at how the archi-

tecture should change when implementing fine-grained TCAs.

The MANIC architecture [4] reduces RF reads and writes of

intermediate and dead registers by forwarding intermediate

results, but all data from memory is still required to be inserted

into the RF, whereas NoRF completely eschews the RF. Both

coarse- and fine-grained matrix operations can be beneficial for

different types of use case applications, where smaller matrix

operations may have additional use in edge and embedded

devices.

III. TCAS WITH RF VS NORF IMPLEMENTATIONS

One TCA implementation passes operands through a RF.

When there is temporal reuse, RFs reduce the number of

requests to the memory hierarchy. However, without reuse,

RFs cause unnecessary data movement reads and writes. Reuse

can be made through optimizing the software/compiler to tile

algorithms to reuse registers before accessing memory again.

Concurrent operations can be made through the use of vector,

instead of scalar, registers. A TCA (doing matrix operations,

for example) could additionally specialize a register file to

have each register hold an entire ’unit’ worth of data, such

as an entire 8x8 submatrix. We assume an RF that holds

submatrices as elements, with an optimized compiler for reuse,

as our baseline.

Through diagrams and intuition, it is unclear whether or

not the register file is actually providing benefit to the TCA

for data movement. Having a register file as an intermediate

changes a datapath of the L1D$ to the TCA from 2 total

reads/writes to 6 total reads/writes (Figure 1). If a register file

element is read and immediately removed, it seems beneficial
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(a) DGEMM (b) SpGEMM

Fig. 3: Energy breakdown of data transfer in both DGEMM and SpGEMM algorithms for RF (R), NoRF (N), and NoRF with

M$ (M$) TCA implementations varied with different bit widths (64, 32, 16) and different TCA sizes (2x2, 4x4, 8x8).

Fig. 4: Block-sparse SGEMM performance with random-

(solid line) and ideally-blocked (dotted line) matrices.

to completely bypass the register file. This implementation of

using No Register File can be called a NoRF implementation.

A potential downside of eliminating the register file is less

operand reuse. However, TCAs that buffer loaded operands

(which we deem a matrix cache, or M$), capture reuse in

memory-to-memory operations in the same way that reuse can

be done through the register file. At first it may seem like

buffering data causes similar overheads to the RF, but by hav-

ing a known datapath and access patterns (ie, having different

banks for A, B, and C matrix elements), this implementation

eliminates the multi-ported nature of the RF.

IV. RESULTS

We use CACTI [7] to estimate the energy associated for L1

cache access, at 40nm with a design focus on low power.

In order to test execution performance of the TCA design

with a cycle-accurate simulator, we use gem5 [1]. We con-

figure gem5 to mimic Intel’s Sunnycove [8] architecture. We

then use Eigen [5] as an existing software library designed

to exploit SIMD and vector registers as a SW alternative. We

manually insert the specialized TCA instruction as well as

specialized RF load/store instructions for comparison.

Speedup from Eigen is limited (2x-4x improvement) by the

width of vector registers and the number of floating point

execution units. As expected, custom TCAs which supply ad-

ditional floating point MACs and custom logic to supply those

MACs see additional speedup (5x-80x in 2x2-8x8 TCAs), with

significant speedups for the larger DGEMM TCAs, as the work

done each invocation grows by a factor of O(n3), reducing

control flow operation and utilizing larger vector loads (graph

removed in WiP paper due to space limitations).

Sparse matrices can still utilize the TCAs proposed by

utilizing a blocked-sparse format. We test both ideal case

(a) DGEMV TCA
performance

(b) DGEMV TCA energy breakdown

Fig. 5: DGEMV performance and energy consumption.

(where all non-zero elements are fully packed into TCA

blocks), as well as a pessimistic, randomly distributed sparse

matrix (no local density). Figure 4 shows that for very sparse

matrices, the highest speedups are achieved, since limited

calculations are required. Interestingly enough, however, when

non-ideal packing is involved, the 1x1 (traditional CSR algo-

rithm) surpasses each of the TCA execution times at a specific

crossover point for each TCA size.

Figure 3a demonstrates up to a 39% reduction in energy

consumption of data movement by completely eliminating

the register file, and instead implementing a specialized TCA

datapath with a matrix cache. Fig. 3a and Fig. 3b show that

the larger the TCA (8x8), the more inherent energy reduction

there is in data movement. This is because the number of

partial producs grows O(n3). In other words, the more work

the accelerator can do per access, the smaller the inefficiencies

in data movement. In blocked sparse matrix multiplication

(SpGEMM), the output element partial products are calculated

out of order. For this reason, disabling the M$ provides the

best energy wins, up to 60% over the RF design.

The main takeaway from Figure 5 is that the M$ does not

capture reuse in the DGEMV algorithm, and maximum energy

reduction occurs by using NoRF without the M$ enabled. The

DGEMV geomean energy reduction for NoRF with the M$ is

21%, and NoRF without M$ has a geomean energy reduction

of 41%. All around, these advantages build a case for NoRF-

based implementations in these TCAs, which goes against the

long-lived tradition of register files for operand delivery in

compute within the core.
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