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This article introduces turn-based spatiotemporal coherence. Spatiotemporal coherence is a novel coherence
implementation that assigns write permission to epochs (or turns) as opposed to a processor core. This para-
digm shift in the assignment of write permissions satisfies all conditions of a coherence protocol with virtually
no coherence overhead. We discuss the implementation of this coherence mechanism on a baseline GPU. The
evaluation shows that spatiotemporal coherence achieves a speedup of 7.13% for workloads with read data
reuse across kernels compared to the baseline software-managed GPU coherence implementation while also
providing write atomicity and avoiding the need for software inserted acquire-release operations.!
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1 INTRODUCTION

A cache coherence protocol keeps the private caches coherent in a multi-processor system. Tradi-
tional coherence protocols rely on invalidation messages to prevent the processors from reading
stale data [52]. In this article, we make the observation that these invalidation messages are not
essential for write propagation. If all the processors can agree upon an ordering for address modi-
fications, then the writes can be propagated without invalidation messages. Leveraging this obser-
vation, we propose a new cache coherence protocol called spatiotemporal coherence that satisfies
all conditions of a coherence protocol but without any invalidation traffic.

Spatiotemporal coherence grants write permissions to groups of addresses called address bands.
Each band is granted write permission in a specific interval of time called an epoch. A band gets
its write permission in an epoch that is mutually agreed upon by all the processors. Since all
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processors have mutually agreed on the address modification epochs, the processors know the
modified addresses at any given time without explicit coherence messages.

Spatiotemporal coherence is characteristically different from traditional coherence protocols
with regard to granting write permissions. Traditional coherence protocols grant write permis-
sions on an address to a modifying processor but spatiotemporal coherence grants write permis-
sions to an epoch. Moreover, the write permissions are granted within an address band. Thus,
spatiotemporal coherence fundamentally changes the processor-centric write permission to an
epoch- and band-centric write permission. An epoch has temporal properties and an address band
has spatial properties, hence the name spatiotemporal coherence (STC).

Timestamp-based coherence protocols also avoid invalidation messages by getting a time lease
on an address and self-invalidating that address after the time lease has expired [42, 51, 58]. How-
ever, even these coherence protocols provide exclusive modification permission to a processor
by giving it an exclusive time lease for an address. Thus, although the mechanism for recalling
write permissions is different (expired timestamps versus invalidation messages), the underlying
idea of having an exclusive modifying processor per address is still preserved. STC does not grant
modification rights to a processor and hence differs from timestamp-based coherence.

Removing coherence traffic has profound implications in a massively many-core system like
a graphics processor (GPU). Current GPUs avoid strict hardware coherence implementations
because of their coherence traffic overhead [37, 42, 51]. Instead, GPUs today implement caches
that maintain coherence at release consistency (RC) synchronization markers inserted by the
software [15, 22, 27, 31]. Naturally, they adhere to the release consistency memory model. Here, we
refer to such cache coherence implementations as software-managed cache coherence. Software-
managed cache coherence does not satisfy all conditions of a coherence protocol [1]. For example,
write atomicity is not guaranteed by this mechanism. While the cache design becomes simple and
coherence traffic is eliminated with software-managed cache coherence, programmers will have to
deal with the non-intuitive nature of weak models, complicating the programming of such systems
and increasing the likelihood of software bugs.

STC retains all the hardware advantages of a software-managed cache coherence implementa-
tion while also satisfying the properties of a strict hardware cache coherence protocol [1]. In this
article, our objective is to introduce the basic concepts of STC, provide an implementation of STC,
and demonstrate that even a simple implementation of STC achieves performance comparable to
the software-managed baseline cache coherence. Since write atomicity [1]—which is a precondi-
tion for implementing strong models—is also provided, STC could support strong memory models
as well, though we do not explore this opportunity here. As compared to the baseline, STC can
perform well for workloads that have read data reuse across kernel launches. Software-managed
coherence invalidates the private caches before a kernel launch (acquire operation) and each kernel
in these types of workloads will incur cold misses accessing the read data set. Figure 1 compares
the private L1 cache hit rate of a few workloads with acquire operation against a version without
acquire operation. Suppressing the acquire operation nearly doubled the hit rate for most of these
benchmarks. STC private caches do not cache stale data and hence acquire operation is not needed
to maintain coherence (details in later sections). Consequently, these types of workloads benefit
from STC. The major contributions of this article are:

e We introduce STC for GPUs.

e We provide an implementation of STC that adheres to the RC memory model. This imple-
mentation grants write permission to the epochs in turns and retains all advantages of the
software-managed cache coherence.

e We show that STC improves performance by 7.13% for workloads with read data reuse across
kernels, and provides performance comparable to the software-managed baseline coherence
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Fig. 1. Impact of acquire operation.

implementation for the rest of the evaluated workloads. STC also performs better than prior
work. STC achieves this without software assistance while providing write atomicity.

2 SPATIOTEMPORAL COHERENCE

This section introduces spatiotemporal coherence. STC is implemented with address bands and
epochs. We start this section by defining both.

2.1 Address Bands and Epochs

In STC, an address band is simply a group of addresses. All addresses in an address band, hereafter
referred simply as a band, share the same write coherence permission. An epoch is defined as a
time window in which a band is given write permission. Thus, each band will have at least one
epoch associated with it. For example, band 4 will have at least an epoch 4 when stores to addresses
belonging to band, are allowed to be issued to the memory hierarchy.

An epoch differs from the modified (M) state of a coherence protocol although both grant write
permission [52]. An epoch grants write permission fo the band associated with it but M state grants
write permission of an address to a processor. STC shifts the processor-centric write permissions in
traditional protocols to epoch-centric write permissions.

2.2 STC Rules
STC works with four simple epoch rules (ER):

(1) ER1: Addresses in band4 cannot be cached in epochy.

(2) ER2: Addresses in band 4 can be written only in epoch4.

(3) ER3: At any (logical) time, all processors should be in the same epoch (or epochs).
(4) ER4: Addresses in a band can be read in any epoch.

ER1 ensures that a potentially modifiable cache block is not cached in a private cache and hence
no processor will see stale data as long as all processors are observing the same epoch. Private
caches can still cache data from bands when the processors are not in that band’s epoch. ER2
ensures that writes are visible to the memory side cache or memory. ER3 makes sure all processors
observe the same epoch (or epochs) and there is no conflict among the processors about the current
epoch (or epochs). ER4 ensures that reads are never blocked.

We will illustrate these rules with the help of an example. Figure 2 shows the epoch transition
from epochy to epochp for two private caches PC1 and PC2. That figure also shows the loads and
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Epoch: A Epoch : B
Requests to PC1 Requests to PC2 Requests to PC1 Requests to PC2
1. Load Al 1. Load A2 1. Store D3 (blocked) 1. Store B3 (unblocked)
2.Lload B1 2. Load B2 2.load B1 2. Load A2
3. Store A3 3. Store A3 3.load D1 3. Load D2
4. Store B3 (blocked)
Al:1 A2:1 Al:l A2:V
B1:V B2:V Bl:I B2:1
D1:V D2:V
PC:1 PC:2 PC:1 PC:2
(a) (b)

Fig. 2. STC epoch transition from epoch4 to epochp.

stores arriving at these caches in that epoch. Figure 2(a) shows both PC1 and PC2 after encounter-
ing the memory request sequence in epoch4. The loads to band4 (A1, A2) are issued to memory
but they are not cached adhering to ER1. However, loads to bandg (B1, B2) are cached in the pri-
vate caches and the addresses B1 and B2 are in valid (V) state. The store to address A3 belonging
to band is issued to the memory but the store to bandp is blocked by ER2. Figure 2(b) shows the
epoch transition to epochg. The bandg addresses (B1, B2) are invalidated and the store to B3 from
epoch, is now unblocked and issued to the memory. The loads to epochs other than epochp can
now cache data in private caches.

2.3 STC Satisfies Cache Coherence

The two conditions associated with cache coherence protocols are: (a) a write is eventually made
visible to all processors, and (b) the writes to the same address should be visible to all processors in
the same order (write atomicity) [1]. STC’s epoch rules are sufficient to satisfy these two conditions.

Writes are eventually made visible to all processors: ER1 allows a band to cache its data
only when the processors are not in that band’s epoch. However, ER2 allows writes to a band only
in that band’s epoch. ER3 ensures that all processors agree on the current epoch. Thus, these three
STC rules ER1, ER2, and ER3 ensure that no potentially modifiable data is cached in the private
caches, and all processors agree which addresses are going to be modified at any given time. ER1
does not allow a store to be cached in a private cache. Consequently, every store updates the
memory side cache (or memory) and every load reads the most up-to-date data from that shared
cache. Thus, STC satisfies the first condition of making a write eventually visible to all processors.

Write atomicity: Write atomicity comes naturally with STC. The very essence of the STC rules
is that no modifiable data is cached in the private caches. Thus, every single write to a band and
consequently every address in a band is visible to all processors in the system.

In addition to the above-mentioned conditions, a third condition is often associated with cache
coherence protocols: a coherence protocol should inform the writing processor about the comple-
tion of a store [1, 51]. Satisfying this condition is required to maintain program order between the
write instruction and younger instructions. Toward this, STC sends an acknowledgment back to
the writing processor when a store is completed. However, unlike traditional protocols that have
to wait for the invalidation of private copies before sending this acknowledgment back, STC can
immediately respond with the acknowledgment when the store reaches the memory side cache (or
memory). Maintaining program order between the write instructions is a requirement for strong
models such as sequential consistency (SC) and total store order (TSO), and not a requirement
for a weak model such as release consistency [1]. Thus, even though STC sends the write comple-
tion ack, a strong model implementation will use it for enforcing ordering but a relaxed model
implementation does not need to do it.
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3 IMPLICATIONS OF STC

STC allows processors to take localized decisions based on the current epoch and based on the in-
formation about that epoch’s band. However, for STC to function correctly, all processors should
be in the same epoch. Irrespective of the mechanism employed to synchronize the current epoch
across all processors, this synchronizing mechanism can be stateless. Since STC does not rely on
invalidation messages for write propagation, there is no need for a centralized structure to track
the sharers of an address. Additionally, since processors do not own write permissions in STC,
tracking global cacheline permissions is not necessary either. Contrast this to a traditional coher-
ence directory that stores the sharer list and global cacheline states for maintaining coherence or
a snooping protocol that relies on broadcast snoops and responses for maintaining coherence [52].
Thus, STC eliminates the need for broadcasts or structures such as a global directory. In directory-
based coherence protocols, even a null directory (stateless directory) has to broadcast invalidations
on receiving a write request, whereas STC does not need invalidation messages for maintaining
coherence.

3.1 STC and Write-through Caches

In a traditional protocol with write-through caches, a write request can be issued directly to the
memory without that processor acquiring the write permission. However, the write can complete
only after the sharers are invalidated by invalidation messages. STC does not require these in-
validation messages and the memory-side cache (or memory) can send the write completion ack
immediately after seeing the write request. Thus, STC is not a mere optimization of the traditional
protocol for write-through caches.

STC and GPU Caches: STC with write-through private cache has profound implications.
Typically, GPU caches are write-through with a simple VI (valid/invalid) protocol for coher-
ence [5, 6, 25, 37, 51]. Previous studies have suggested that a write-through L1 cache performs
much better than a write-back L1 for GPUs because of the streaming data access pattern of a
GPU [51]. Even commercial GPUs employ write-through private caches [6, 15, 31, 35].

However, implementing strict hardware coherence on a GPU is challenging because of the over-
whelming number of the invalidation, eviction and recall messages from traditional directory-
based coherence protocols [37, 51]. Because of this, GPUs today adhere to RC model, which makes
the L1 caches coherent only at synchronization points with the help of software inserted synchro-
nization primitives [5, 6, 25, 37].

The STC eliminates all the above-mentioned challenges of hardware cache coherence in a GPU.
STC does not rely on invalidation messages for making the caches coherent. Since invalidations are
not needed, sharers need not be tracked, and since the need for sharer tracking is eliminated, the
private L1 caches can now perform silent evictions. Thus, STC implements hardware coherence
without invalidation traffic, eviction notifications, and recall traffic. Since STC is a natural fit for
GPUs, we will implement and evaluate STC on them.

3.2  Write Atomicity

In traditional protocols, write atomicity is implemented with invalidation or update messages that
propagate a new write to all processors in the system. This approach is not easy to scale and can
incur a severe performance penalty in a many-core system like a GPU [37, 51]. However, STC does
not have this limitation. Since the epoch rules ensure that the processors have agreed on the band
to be modified in each epoch, and since the epochs themselves are synchronized, the processors do
not cache a potentially modifiable address in the cache. Thus, the processors need not be notified
about a write but they fetch the updated value from a memory-side cache (or memory). Thus, the
STC implementation provides write atomicity without any additional coherence traffic.
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3.3 Deadlocks

Epoch rule ER2 states that a band can write only in its epoch. Thus, a write reaching the cache
controller on a different epoch is blocked till its epoch arrives. Consequently, a processor may
deadlock if an epoch for a write never arrives. Thus, to prevent deadlocks and to ensure forward
progress for all writes, an STC implementation should adhere to the following deadlock avoid-
ance rules (DARSs): DARI: There must be at least one epoch for every band. DAR2: All epochs must
eventually terminate. DAR3: All epochs must be granted repeatedly.

DARI1 ensures that all bands have at least one epoch, DAR2 ensures that an epoch will eventually
end and DAR3 ensures that every band’s epoch will be eventually granted. Thus, they ensure a
write will eventually complete.

3.4 Performance Pitfalls and Optimizations

To eliminate the possibility of reading stale data, a band is not allowed to cache its data during
its epoch. Thus, if a processor enters an epoch in which no writes are issued to the correspond-
ing band, then the band unnecessarily lost its opportunity to cache data, adversely impacting the
performance of the processor. Another potential performance pitfall with STC is a band with read-
only addresses. Since epochs are only needed to grant write permissions to a band, a read-only
band does not need an epoch. Hence, granting an epoch for a read-only band is unnecessary, and
since that band is non-cacheable in that epoch, it is undesirable as well from a performance stand-
point. To solve these performance pitfalls, we introduce two optimizations (a) epoch skipping and
(b) adaptive bands.

Epoch skipping: The epoch skipping optimization grants an epoch only if there is a demand for
it. A demand to an epoch indicates that at least one write is pending to that epoch from a processor.
With epoch skipping, the epochs that did not have any requests to them are skipped. Thus, epoch
skipping avoids the performance penalty of granting epochs to a band with no demand. Since a
read-only band will not issue any write-request, epoch skipping will avoid granting permissions
to read-only epochs as well.

Epoch skipping does not violate rules DAR2 and DARS3. It can be treated as an optimization that
terminates the current epoch adhering to DAR2 and grants zero cycles for all epochs with no write
demands, adhering to DAR3.

Adaptive bands: The effectiveness of epoch skipping is amplified if the bands are clearly sep-
arated into read-only bands and non-read-only bands (write and read-write bands). The adaptive
band optimization dynamically changes the addresses in a band to regroup read-only addresses to-
gether. Coupled with the epoch-skipping implementation, this dynamic identification of read-only
datasets enables sustained caching of blocks across otherwise unnecessary write epochs, since
there are no pending writes to such read-only bands.

4 IMPLEMENTATION

We implement STC on a GPU with per compute unit (CU) write-through private L1 caches and
a shared L2 cache as shown in Figure 3. The GPU adheres to the RC model and implements a
valid/invalid (VI) protocol for making L1s coherent at RC synchronization points [5, 6, 25, 30, 35,
37, 54].

4.1 RC Implementation on Baseline GPU

Our baseline GPU executes GCN3 ISA [7] and implements RC with two instructions: (a) s_waitcnt
and (b) buffer_wbinvli_vol [7, 10]. The s_waitcnt vmcnt(0) stalls the wavefront till all pending
memory operations are completed and hence used for ensuring the ordering requirements of
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Fig. 4. Epoch and band implementation.

acquire/release operations in the GCN3-based GPUs. To track the pending stores, the store com-
pletion acknowledgments are forwarded to the execution pipeline. The pending loads are simply
tracked by load data returns. The buffer_wbinvl1_vol instruction performs the L1 cache invalida-
tion part of the acquire operation. The baseline flash invalidates all valid L1 entries in one cycle
by flipping the valid bits. An acquire-release operation is implemented by a combination of these
two instructions. A more detailed discussion of the acquire-release operations with GCN3 ISA can
be found elsewhere [7, 10].

Our STC implementation adheres to the RC model. The release operation is implemented similar
to the baseline GPU with the write completion acknowledgments forwarded to the GPU pipeline
and the s_waitcnt vment(0) instruction stalling the wavefront till the write completion. However,
the buffer_wbinvll_vol instruction is treated as a no-op, since STC private caches do not cache
stale data.

4.2 STC Baseline

STC relies on two concepts: epochs that subdivide time and bands that subdivide the address space.
The potential design space for these is large, as STC will operate correctly for very flexible defini-
tions of each, as long as the epoch rules are satisfied. In this section, as a starting point, we define
both epochs and bands in the simplest possible way: as fixed-duration windows of time and as con-
tiguous regions of the address space. More complex and flexible definitions of epochs and bands
may provide additional advantages, but, as we will show, even the simplest definitions presented
here enable the correct operation with high performance.

In our implementation, we use N contiguous bits of an address to identify a band, with matching
address bits in that set of N bits forming a band. We then associate an epoch in time for every such
band. Thus, our implementation will have 2V total epochs. The start epoch bits (SEB) identify the
position from which these N contiguous bits should be extracted to form a band. This simple imple-
mentation guarantees that every band has one epoch conforming to the deadlock avoidance rule
DARI. Figure 4 shows the epoch and band with N = 4 and SEB = 12 for an address 0xXDEAD_BEEF.
Since the four bits from 12th bit is 0xB (11 in decimal), this address corresponds to epoch;; and
the set of addresses with bits[15:12] = 0xB forms band;;. Thus, this simple band implementation
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Fig. 5. Epoch transition and synchronization.

allows individual CUs to identify the band of a request from only its address for a given N and
SEB.

A CU tracks the current epoch with an N-bit current epoch register (CER). For implementing
the epoch rules, a CU compares the band of a memory request to the current epoch stored in CER.
Only stores with bands matching the current epoch are issued to the cache and the remaining stores
are blocked. All blocked stores are moved to a blocked store queue (BSQ) and they are reanalyzed
on an epoch change. The BSQ is banked so that multiple stores can be analyzed in a cycle. The
store data is kept in the coalescing buffers [33, 39] and only addresses of the blocked stores are
moved to BSQ. If this coalescing buffer (or BSQ) gets full, then the backpressure mechanism will
stall the GPU pipeline, thus preventing the overflow of these buffers. The coalescing unit can only
coalesce requests from the same wavefront instruction [39]. It also blocks requests to an address
when there are older outstanding requests to that address. Thus, since the coalescing unit blocks
loads under a pending write to the same address from being issued, the younger loads need not
access the BSQ for reading the last store. The loads belonging to the current epoch’s band are not
allowed to cache and hence are issued as non-cacheable loads.

To synchronize epochs across all the CUs, we implemented a epoch management unit (EMU),
which plays a conceptually simple role in STC: ensuring that all CUs transition across epochs
correctly at well-defined epoch boundaries. The epochs are defined as a fixed duration of time in
this implementation. More complex implementations can have a dynamic epoch duration, but, as
we will show, even this fixed duration epoch provided good performance for the benchmarks we
evaluated. The EMU periodically wakes up at this fixed time intervals and changes the epoch in a
round-robin fashion for all CUs, thus ensuring writes to all bands corresponding to these epochs
are completed eventually. Figure 3 shows the STC baseline after adding the EMU and BSQ. For
synchronizing the new epoch with all the CUs, the EMU uses a four-way handshake. This four-
way handshake involves two epoch requests and the acks to these requests. Figure 5 illustrates
this operation in detail. The EMU wakes up and broadcasts a PrepareEpochChange request to all
the CUs@. Each CU then stops issuing stores, waits for the outstanding writes to complete, and
responds back with the ReadyAck notifying the EMU that they are ready for an epoch change
®@. The EMU on receiving ReadyAcks from all CUs broadcasts the ChangeEpoch request Q). The
ChangeEpoch request carries the new epoch value and the CUs on receiving this ChangeEpoch
request transition to the new epoch after responding with a DoneAck @. The epoch transitioning
ends after the EMU receives DoneAck from all CUs.

On receiving a PrepareEpochChange message, the CUs block all stores and wait for all out-
standing stores to complete. Moving to a new epoch with pending stores will result in those stores
modifying a band that does not belong to the current epoch violating ER2. When all outstanding
stores are complete, the CU responds back to the EMU with a ReadyAck. Thus, ReadyAck is a guar-
antee given by that CU to the EMU that no further modifications to any band will be carried out
by that CU. Once EMU receives ReadyAcks from all CUs, EMU broadcasts the new epoch value to
all the CUs with a ChangeEpoch message.
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Fig. 6. Need for adaptive bands.

On receiving the ChangeEpoch message, the CUs update their CER with the new epoch from
that message. The blocked stores in the BSQ are now reanalyzed and the stores to the new epoch’s
band are removed from BSQ and issued to the caches. An epoch transition also requires valid en-
tries that belong to the current epoch’s band to be invalidated. A lazy invalidation mechanism is
implemented that delays these invalidations till the first access to a cache set. Whenever a demand
request reaches a cache set, the tags are read, and they are compared against the tag of the de-
mand request. We leverage this normal cache operation to additionally compare the bands of the
addresses stored in that cache set and if the bands match the current epoch, that entry is invali-
dated (only needs to be done once per cache set per epoch transition). However, in rare situations,
it may happen that not all the cache sets are accessed in an entire epoch. So, during the end of
every epoch, the cache sets that are still untouched during the entire epoch are read and the cached
addresses with bands corresponding to the current epoch are invalidated. After these actions, the
CU moves to the new epoch by responding with DoneAck.

4.3 Epoch Skipping Implementation

The baseline STC implementation imposes epochs for all bands in the address space, regardless
of whether there are any pending writes to those bands. Epoch skipping considers this case and
elides epochs without any pending writes. As described, STC blocks the writes not belonging to the
current epoch. With the epoch skipping optimization, the blocked writes send an EpochDemand re-
quest to the EMU. The EMU keeps track of the epoch demands in an epoch request vector (ERV).
The ERV is a bit vector with one bit per epoch. On receiving the epoch demand request, the entry
corresponding to the requested epoch is set in the ERV. When the EMU wakes up, it increments
the epoch counter till it finds an epoch with an outstanding demand in the ERV. This epoch then
becomes the new epoch and EMU sends the PrepareEpochChange to initiate the transition to this
new epoch after resetting the ERV entry. If no entry is set in the ERV, then EMU does not change
the current epoch and goes back to sleep again.

On receiving an EpochDemand request, the EMU responds back with an EpochDemandAck no-
tifying the requesting CU that its request is acknowledged. The CU issues only one EpochDemand
per band, thus avoiding duplicate EpochDemand requests to the same epoch for that band. This
EpochDemand request filtering is implemented with an epoch demand bit vector. Each CU has
its own epoch demand vector and this vector has one entry for every epoch. A blocked store is-
sues an EpochDemand request only when the corresponding entry in the epoch demand vector is
empty. An entry is set after the first EpochDemand request thus preventing duplicate EpochDe-
mand requests to the same epoch from a CU. The EpochDemand request vector is reset during the
beginning of an epoch. This epoch filtering mechanism thus keep an upper bound on the number
of outstanding EpochDemand requests from a CU and filters out duplicate requests, significantly
reducing the number of such requests.

4.4 Adaptive Band Implementation

The adaptive band mechanism attempts to regroup addresses in a band in a way that avoids co-
mingling of read-only addresses with read-write addresses using a simple dynamic search heuristic.
Figure 6(a) shows an example where the first 256 addresses are allocated for read datasets and
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the next 256 addresses are allocated for write datasets. These types of contiguous allocations are
common for GPU data structures with programmers optimizing the data layout for better reference
coalescing. Figure 6(b) shows an example where both these read and write data sets share the same
band with N = 4 and SEB = 4. With SEB = 4, both the read_addr and write_addr are in band;, and
this read_addr in epoch;, will be issued as a non-cacheable read (adhering to epoch rules) because
of this sub-optimal band formation. We call this epoch;y a conflicted epoch and its occurrence
an epoch conflict. However, if the SEB is increased to 8, the read and write data addresses fall
into different bands, that is to bandy and bandy, respectively, as shown in Figure 6(c). With epoch
skipping, an EpochDemand request to band, will not be issued and consequently, band, will never
become the current epoch enabling read datasets to be cached throughout the execution.

Our implementation of adaptive bands dynamically increases or decreases the SEB to reduce
epoch conflicts. The epoch conflict detection requires both the conflicting read and write addresses
for calculating the adaptive SEB. Toward this, we modified the EpochDemand request to send the
entire write address and added an EpochConflict message to send the conflicting read address to
EMU. EpochConflict message is generated when a CU has a blocked write to a band and then a
subsequent read to the same band happens. To store the write address, each entry of the ERV is
enhanced with a 32-bit address field. When an EpochConflict message arrives, the read address
from that message is compared against the stored write address to identify the optimal SEB. The
decision to shift up/down is based on whether the bits lower to the band position bits are different
or not. If the lower bits are different, then band position bits must be moved to lower bits so that the
reads and writes will be in different bands, and vice versa. In our implementation, each adaptive
band formation increases or decreases the SEB by only one bit. So, to move from a band formation
shown in Figures 6(b) to 6(c), our implementation will require four adaptive band transitions. But
an aggressive implementation may shift multiple bits at a time and can reach the optimal band
positioning much faster. Additionally, to reduce the number of EpochConflict messages from a
CU, only the first conflicting read access generates an EpochConflict message. The EMU informs
the CUs about the updated SEB by sending it along with the ChangeEpoch request. With the adap-
tive band formation, there may be overlap between the new bands and old bands. So, if there are
pending memory operations during adaptive band transition, the memory operations may return
in a different band than when they were issued. However, the four-way handshaking mechanism
ensures that the CUs have no pending stores during epoch transition, thus avoiding such a situa-
tion for a store. The load may return in a different band, but the load data is not installed in the
cache if it belongs to the current epoch (the current epoch check is done based on the new band
definitions). Thus, overlap of bands during adaptive band transition does not violate STC rules.

Our adaptive band implementation only changes the start bit used for the address to band map-
ping. Thus, this new mapping ensures that all the addresses have a corresponding band and an
epoch. The EMU, like before, round-robins through all the epochs thus ensuring writes to any
address will eventually complete.

MultiBands: Once adaptive band optimization filters out the read-only bands, epochs are
granted only to write or read-write bands. Multi-band optimization grants epochs corresponding
to multiple bands at the same time so that stores belonging to these bands can be issued with-
out moving to the BSQ. Thus, with this optimization, stores are completed faster. To implement
this multi-band optimization, CER is enhanced to store multiple concurrent epochs. Also, the com-
parators that determine if a load/store is in the current epoch are enhanced to check for multiple
epochs. The lazy invalidation mechanism discussed earlier is also augmented to check for multiple
concurrent epochs. Other than the enhancements to these comparators and the CER, the multi-
band implementation works similar to the adaptive band implementation. The additional epochs
to be granted are determined similarly to the adaptive band optimization. However, instead of just
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Table 1. State Transition Table

Store Load | Load_U | Data | Data_E | WA
1 I/PW++ |1V I1I PW——
A\ I/ PW++ | Hit LI PW——
LV V/LD |I/LD PW——
II I/LD |1I/LD PW——

selecting one epoch with pending epoch demand in a round-robin fashion, its adjacent epochs
with pending epoch demands are also selected, and these epochs are granted together with the
multi-band optimization.

Increasing the band range by combining bands together is an alternate approach that may
achieve the same benefits as multi-band optimization. However, increasing the band range may
also result in combining multiple dissimilar bands together, adversely impacting STC’s per-
formance. For example, suppose there are three adjacent independent bands A (0000_1010),
B (0000_1011), and C (0000_1100). Suppose B is a read-only band whereas A and C are either
write-only or read-write bands. Now, based on our simple N contiguous bits-based band mapping,
combining A and C will require us to move the start bit for address to band mapping to bit position
3 and this newly formed band (0000_1XXX) will also include band B. That means increasing the
band range (or combining bands) may group multiple read-only and read-write bands together,
and the newly formed read-write band cannot provide caching benefits to the read-only addresses
in that band. In the above scenario, a multiband optimization can simultaneously grant epochs to
bands A and C, and still preserve the read-only band B retaining the caching benefits.

4.5 STC and Cache States

The STC cache controller state transition table is given in Table 1. The epoch messages do not
interfere with the cache states and hence are omitted from the table. In that table, pending writes,
load done, and write completion ack are abbreviated as PW, LD, and WA, respectively. I is the invalid
state, V is the valid state, and I_V is the transient state when the cache is waiting on a load return
to move to V from I This transition table is similar to a GPU VI protocol except for the two events
Load_U and Data_E, and one transient state I_I. A Load_U is a non-cacheable load issued when
the current epoch matches the load’s band and hence does not allow installation of the data in
the cache. I_I is the transient state that tracks this pending Load_U and moves to I when the load
returns, making it non-cacheable. The Data_E is the Data response to a load whose band matches
the current epoch and hence the data from that epoch is also not installed in the cache even if that
load was issued as a cacheable load (Load) in one of the previous epochs (I_I to I).

Atomic operations are resolved in the shared L2 in GPUs [10]. In STC, atomics are treated as
regular writes. Atomics that return a value generate a Data_E response along with a write com-
pletion ack (WA) wheres atomics with no return value only generate a WA. Hence, atomics do not
have additional states in the cache transition table.

Protocol Complexity: STC adds one transient state I_I to the RC managed baseline. However,
an invalidation-based hardware GPU VI protocol will add 4 to 9 transient states to the baseline [51]
depending on the optimizations involved. Transient states increase the protocol verification com-
plexity [21, 55]. Additionally, race transitions [55] that further add to the verification complexity
are also absent in STC. Because of these reasons, STC is easier to verify than any invalidation-based
coherence protocol. STC is a rule-based system and adhering to the rules provides correctness.
Hence, the correctness invariant is to check against the STC rules, which is straightforward.
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4.6 Hardware Additions

The EMU has an epoch counter and a wakeup counter. The epoch skipping and adaptive band
optimization add ERV and ETV to the EMU. The ETV is a 1-bit vector with one entry per epoch.
ERV has 33-bits (32 bits for address, 1-bit to store epoch demand to that address) per entry and has
one entry per epoch. The CU is augmented with a 32-bits per entry BSQ. All these structures can
be implemented with logic cells and does not require SRAMs.

4.7 Working Example

We explain our implementation enforcing RC with the code snippet in Figures 7(al) and 7(a2).
Figure 7(al) is the CPU implementation of the code and Figure 7(a2) is the GPU implementation of
the same code with the GPU wavefront performing all three memory operations with one wave-
front instruction. We will explain the implementation using CPU terminology but the working is
exactly similar for the GPU as well. Addresses U, V, W and X belong to bands with the epochs
U, W, W, and X, respectively. Figure 7(b) shows the BSQ of thread 0 (BSQ 0) and cache of thread
1 (Cache 1) after these threads executed the first three stores in some epoch Z. The transition from
this epoch Z to epochs W->V->U->Z->X->Z are shown in Figures 7(c)-7(h). Since thread 0 is only
doing stores, nothing is cached in thread 0’s cache and hence not shown in these figure. Similarly,
thread 1 is only doing loads and hence its empty BSQ is not shown either. Since U, V and W do not
have write permissions in epoch Z (Figure 7(b)), these stores are moved to thread0’s BSQ. Also, the
loads to U, V, and W by thread 1 install these lines in the cache with the initial value 0, whereas the
load acquire (LdAcq, line:4) installs X = 0 in to the cache. Since X != 1, the load acquire condition is
not satisfied and the load acquire will retry. The acquire/release ordering is implemented with the
s_waitcnt instruction inserted by the finalizer [10] (Section 4.1). This s_waitcnt stalls the pipeline
till all the older memory operations are completed. Hence the StRel of thread 0 (line:4) is blocked
from execution till all the previous stores are completed. Later, when Epoch W arrives, the store
to W completes and that entry is removed from BSQ (Figure 7(c)). Additionally, the line W is in-
validated from thread 1’s private cache adhering to STC rules. Similarly, stores to addresses V and
U are completed in epochs V and U, respectively, and the cachelines V and U are invalidated from
the private caches in these epochs (Figures 7(c) and 7(d)). Thus, by the end of epoch U, all stores
are completed and the cachelines U, V, and W are invalidated. Throughout these epoch changes,
thread 1’s LdAcq is reading X = 0 and thread 1 continues to spin at that instruction. The store
completion acknowledgements are sent to the core after the stores are completed in their own
respective epochs and the store release can now be executed by thread 1 as shown in Figure 7(f).
However, the released store (X = 1) sits in the BSQ till epoch X arrives and is drained from the BSQ
later in epoch X (Figure 7(g)) marking its completion. At the beginning of epoch X, the cacheline
X is invalidated in thread 1’s private cache and a subsequent read to address X will now see the
updated value (Figure 7(h)). Only after the load acquire condition is satisfied, the loads to U, V and
W (lines 5, 6, and 7 of Figure 7(al)) are executed by thread 1. These loads will also see the most up
to date value from the shared L2 cache and the outcome will be (UV,W) = (1,1,1) thus enforcing
RC. It should be noted here that a load acquire did not invalidate private caches (as discussed in
Section 4.1) and still achieved the write propagation by following the STC’s epoch rules.
Ordering of writes: In the previous example, the stores are executed in the order U->V->W
(Figure 7(al)) but are completed in the order W->V->U (Figures 7(c)-7(e)). Since the implementa-
tion was adhering to RC model, maintaining store->store ordering was not a requirement. The
only requirement was to order stores U, V and W before the RC synchronization marker, that is
the store release to X, and that requirement was enforced by the core by blocking the execution
of the store release till the completion of older stores. A strong model implementation on top of
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Fig. 7. Working example.

the STC can enforce a stricter store->store ordering by blocking the issue of a younger store till
the older store completes. However, our RC implementation did not have that requirement and
hence allowed out of order store completion within RC model permitted synchronization marker
boundaries.

Correctness with multiband optimization: In the above example, bands W, V and U took
three epochs to complete the stores. With multi-band optimization, epochs of these three bands
can be granted simultaneously. That means epochs U, V, and W can be granted simultaneously and
all three writes from the BSQ can be drained in this multiband epoch. The BSQ may be drained and
stores may be completed in a different order compared to the above example. But granting epochs
W, V, and U simultaneously still functions correctly and produces the same outcome (UV,W) =
(1,1,1).

5 DISCUSSION
5.1 Timestamp Coherence Protocols and STC

STC differs substantially from related prior work in timestamp-based coherence protocols [42, 46,
51, 53, 58]. The timestamp-based coherence protocols avoid invalidation messages by getting a time
lease on an address and self-invalidating them after the time lease has expired. These protocols
still follow the idea of an exclusive modifier or single writer for an address. The logical timestamp
versions of these protocols also enforce the single-writer property, although in logical time. Thus,
these timestamp-based protocols also grant processor-centric write permissions. STC does not
grant write permission to a processor but to an epoch.

Moreover, storing time lease information as metadata in every cache block consumes space in
both the private and shared caches [42, 51, 53, 58]. STC does not require cache blocks to store
their lease information or any other metadata in their caches or controllers. Thus, STC is stateless
whereas timestamp-based protocols are not.

Additionally, since these protocols need to store the timestamp metadata of all cache blocks
in a shared cache, the shared cache is forced to be designed as an inclusive cache [51]. Since the
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Table 2. Comparison of STC with Other Protocols

Software | Need exclusive

. . . Metadata overhead | Scalability Write atomicity
assisted | write permission
GPUlIn [25, 51] No
Coherence by invalidation messages No Yes No (invalidation messages) Yes
TC [51] N Y Yes No/Limited Yes
Temoporal coherence © es (timestamp) (inclusive cache) (in the strong version)
RCC [42] N Yes Yes Limited Ye
Relativistic coherence © (in logical time) | (timestamp) (untracked blocks) s
GTSC [53] No Yes Yes Limited Yes
Global timestamp coherence (in logical time) | (timestamp) (untracked blocks) (in the strong version)
23,2
SRC [5, 23, 5 39 Yes No No Yes No
Release consistency managed caches
STC
Spatiotemporal coherence No No No Yes Yes

size of an inclusive cache increases with the number of private caches, an inclusive cache is not
scalable. Also, inclusive caches face the challenge of cache evictions. Since the timestamp-based
protocols do not employ recall messages to solve the shared inclusive cache eviction challenge,
they resort to the use of MSHRs to store the lease information of the evicted blocks [51]. This again
leads to scalability challenges, because the MSHR demand will increase, perhaps dramatically. An
alternate solution is to use a non-inclusive cache and then keep a single lease information for
all the untracked cache blocks [42, 53]. However, this solution is not scalable either, because as
the number of private caches increases, the fraction of tracked cache blocks decreases in the non-
inclusive cache. Since all the untracked cache blocks now share the longest lease among them, a
modifying processor will be forced to advance its current logical time beyond this long lease time
resulting in lease expiry induced invalidations of cache blocks in its private cache.

Table 2 compares STC with some of the GPU protocols proposed in the past [25, 42, 51, 53].
The GPUln is an invalidation-based GPU protocol that propagates a new write by invalidation
messages [25, 51]. This is not a protocol optimized for GPUs 25, 51] but added to this comparison
to highlight the characteristics of an invalidation-based protocol. RCC is the relativistic coherence
proposed by Ren and Lis [42], GTSC is the coherence protocol for GPUs proposed by Tabbakh et al.
[53] and temporal coherence (TC) is the coherence protocol proposed by Singh et al. [51]. All
these protocols build on top of the timestamp-based coherence with the former two using logical
timestamps proposed by Yu and Devadas [58]. The SRC is our baseline protocol with RC-managed
caches and used in many previous studies [5, 23, 25, 39].

The GPUlIn approach is not scalable because of the need for invalidation messages for every
write and hence cannot be employed in a GPU. The timestamp-based coherence protocols provide
write atomicity and avoid invalidation messages. Hence, scalability of these protocols is better than
the GPUIn protocol. However, the need for a large inclusive cache to store lease information or
the increasing number of untracked blocks with a non-inclusive cache limits their scalability. They
also have the additional storage overhead of tracking the lease information of every cache line in
the metadata of a cache. SRC is scalable but requires software assistance and cannot provide write
atomicity. STC is scalable and provides write atomicity without software assistance and without
incurring metadata overhead.

5.2 Global Ordering with STC

Global ordering is dictated by a directory in traditional protocols. The directory serves as the order-
ing point for coherence requests. However, since coherence messages are completely eliminated
in STC, an explicit ordering point like a directory or snooping bus is not necessary. An ordering
point is needed when the processors do not have any agreement on the modifying addresses and
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the time of modification. With epochs and bands, the processors have mutually agreed upon the
time and addresses they are modifying. As such, the only requirement is to synchronize epochs
across all processors. This synchronization is the only purpose of EMU. Hence, EMU is not an
ordering point.

5.3 Programmability of RC

Weak models are difficult to program and verify [2, 3, 11, 16-18, 26, 47, 48, 60, 61]. They rely on
programmers to explicitly insert synchronization primitives to initiate communication. However,
there are testimony from programmers about their struggles with relaxed model’s synchronization
primitives, including spending days trying to get code with just 2 addresses and 4 accesses to
work [48].

The heterogeneous-race-free (HRF) model [27] of today’s GPUs not only asks the program-
mer to initiate the communication but also to specify the communication scope. Scopes are essen-
tial for faster synchronization operations in a GPU. Today, these scopes are defined in terms of GPU
execution hierarchy. However, recent works on GPU initiated networking [32] and fine-grained
task scheduling [36] employ the command processor (CP) [7] (traditionally used for launching
work on GPU) as a compute element in a GPU, making it difficult to define precise scopes, because
CP threads are not part of the GPU execution hierarchy. A detailed discussion on this can be found
elsewhere [40].

A strong model avoids all the above mentioned issues in a GPU. However, strong models require
implicit coherence support and traditional hardware coherence mechanisms are not suitable for
GPUs [51]. STC provides such implicit coherence support with low implementation and verifica-
tion overhead.

5.4 Applicability of STC

STC allows writes only in their corresponding epochs and hence will delay write completion.
While this is acceptable for latency tolerant GPUs, this may not be acceptable for latency sen-
sitive CPUs. Hence, STC is better suited for GPUs. Among GPU applications, STC is generally
suited for applications with sparse writes (write overhead from STC will not be pronounced) and
high read locality (taking advantage of STC’s invalidation-free acquire operation). Based on these
observations, we list few GPU applications that are better suited for STC and few others that are
less suited for STC.

Applications Better Suited for STC: Applications with back-to-back kernel launches and
with read-data reuse across these kernels can benefit from STC. The baseline GPU invalidates the
private caches at the beginning of every kernel launch (acquire operation), but the STC caches pro-
vide invalidation-free acquire operations thus allowing caching of data across kernel launches and
consequently increasing the private cache hit rate. This scenario is observed in snapc application
and is discussed in the result section. Also, task-parallel applications are a class of emerging GPU
applications from the high-performance computing (HPC) domain that launches GPU kernels
as dependent tasks and these applications, because of their high data reuse across kernels, can get
benefited from STC [13, 14, 38, 41, 56].

Applications Less Suited for STC: One of the limitation of STC as compared to the baseline
RC coherence is its inability to avoid coherence overhead for private data. In a GPU, the compiler
produces spills to private segment when the data set cannot fit into the available registers. Spills
may also be generated by a compiler for increasing the GPU occupancy by reducing per-workgroup
register pressure. Irrespective of the reason for spills, STC may not be well-suited for applications
with large amount of spills (private data). However, STC can leverage some of the classification
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from prior work [12, 24, 49, 50] and allow the private data writes to complete without waiting for
their epoch. This optimization is left for future work.

STC is generally not expected to perform well on applications with fine-grained synchronization
and heavy data sharing. The write updates to the synchronization variables and shared data sets
will be slow with STC. However, even the RC baseline performs poorly with data sharing because
of the frequent synchronizations with acquire-release operations. Additionally, the STC’s multi-
band optimization can grant epochs for the synchronization variable and shared data structure
simultaneously enabling faster write completion. Thus, STC can perform better than the baseline
for fine-grained data sharing workloads as observed with the fg-share benchmark (discussed in
the result section). Additionally, STC may not perform well for write-intensive workloads. For ex-
ample, vector copy workload that copies one buffer to another observed a performance drop with
STC (vec-cpy workload is discussed in the result section).

5.5 Suppressing the Acquire Operation

STC benefits from invalidation-free acquire operation for benchmarks with read-data reuse across
kernel invocations. STC achieves this by avoiding caching of stale data in private caches thus
making cache invalidation unnecessary during an acquire operation. The RC managed private
caches cache both modified (by a peer core) and unmodified data. An acquire operation is needed
only to invalidate the modified data and the baseline can get away by suppressing the acquire
operation if there is a way to ensure the private cache is only caching unmodified data. But dis-
tinguishing between the modified and unmodified data is difficult. Hence the baseline resorts
to the entire cache invalidation. There are mechanisms like Denovo protocol [21] that identify
read-only regions similar to STC but with the help of software assistance and/or programmer in-
serted hints. Such models either put the onus on the programmer to annotate the access type of a
data region and/or add constraints to the model such as data-race-freedom for their correct oper-
ation. STC’s invalidation-free acquire operation ensures correct operation without software assis-
tance, without relying on programmer inserted hints and without imposing any constraints on the
model.

5.6 Address Bands

In our implementation, all addresses with the same contiguous N-bits starting from the SEB are
grouped to the same band. However, it should be noted that the address to band mapping can
be implemented in multiple ways with several other hashing schemes to map an address to a
band including software/programmer defined address to band mapping. We are employing a sim-
ple hardware-only contiguous N-bit address to band mapping scheme. This will result in non-
contiguous addresses grouped together to the same band. Although adaptive band optimization
tries to minimize addresses with dissimilar read-write characteristics from being grouped in to
the same band, there may be situations where adaptive band optimization could not separate ad-
dresses with dissimilar characteristics because of this address to band mapping scheme. Such situ-
ations may impact the performance but functional correctness is still ensured by the STC’s epoch
rules.

Also, since the epochs are granted in a round robin fashion, the bands are given write permission
in ascending order (i.e., band-0, band-1, ... ,band-N). This may also result in performance degrada-
tion if the cores write to these bands in a different order. However, epoch skipping optimization
mitigates this issue by granting epochs to bands with pending write requests. This issue can be
mitigated further by exposing the bands to the programmer. A programmer can then optimize a
code’s access pattern for band locality—that is consecutive accesses are issued to the same band—
for additional performance benefits. This optimization is left for future work.
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Table 3. Simulation Parameters

GPU CUs and Clock 8 CUs @ 1 GHz

GPU L1 D-Cache 64 KB (64-way associative)
GPU L1 I-Cache 16 KB (16-way associative)
GPU Shared L2 Cache 512 KB (16-way associative)
GPU L2 Latency 160 GPU cycles roundtrip
GPU Memory Latency 260 GPU cycles roundtrip
Number of Epochs 16 (N = 4 bits)

EMU Clock 2 GHz

EMU Wakeup Cycles 100 GPU cycles

Default SEB 12

BSQ (and coalescing buffer) | 256 entries

6 METHODOLOGY

Simulator: We used the gem5 GPU simulator [23] that simulates the GCN3 ISA [7]. The simulated
GPU has 8 CUs and each CU hosts a 64 KB private L1 data cache. The 16 KB instruction cache is
shared by 4 CUs and the 512KB L2 cache is shared by all CUs. This cache hierarchy is modeled in
Ruby [34]. Table 3 lists the remaining simulation parameters.

The baseline GPU is discussed in Section 4.1 and is extensively used in many previous studies [5,
23, 25, 37]. We implemented STC on this baseline GPU and evaluated STC against it. We evaluated
four versions of STC:

(1) STC-NV: Naive STC implementation without any optimizations.

(2) STC-ES: STC with epoch skipping optimization.

(3) STC-AB: STC-ES with adaptive band optimization.

(4) STC-MB: STC-AB with multiband optimization. In our implementation, we allowed up to 4
simultaneous bands.

Additionally, we also compare STC against the temporal coherence proposed in the prior work [51].
We also evaluated a cacheless baseline (disabling L1 but keeping L2), but it performed so poorly for
some benchmarks (up to 62.13% slower), we decided to instead baseline against a realistic current-
generation design [5, 23, 25, 37].

The EMU in our STC implementation wakes up every 100 cycles and changes the epoch. We
simulate STC with 16 epochs (4 bits to identify a band/epoch, that is N = 4). The default SEB is 12.
The SEB is modified dynamically by the adaptive band optimization. However, since 12 bits indicate
the page boundary and 32 bits (4 GB) is the maximum addressable physical memory available in
some GPUs, we decided to limit the SEB in the range of 12 to 32.

Workloads: We evaluated STC with benchmarks from AMD Compute App [9], HCC Example
App [8], Rodinia [20] and Pannotia benchmark suites [19]. We also developed a fine-grain data
sharing benchmark (fg-share) in which all workgroups (thread blocks in CUDA) attempt to enter
a critical section, and then read and update a shared data structure in place, emulating a central-
ized ledger update. With the workgroups contending to enter into the mutually exclusive critical
section implemented with atomic compare-and-swap, and with in-place updates, this benchmark
significantly pressurizes the coherence mechanism. We also evaluated a cache-reuse benchmark
that launches 10 kernels with each kernel reading the same read-only array and updating a second
array. Additionally, a write-intensive vector copy (vec-cpy) benchmark that copies a buffer to
another is also evaluated.
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Fig. 8. GPU execution time normalized to the baseline.

7 RESULTS
7.1 Execution Time

Figure 8 shows the GPU execution time of benchmarks normalized to the baseline. It can be seen
that the unoptimized STC (STC-NV) performed significantly worse than the baseline with the
mean runtime increasing by as much as 39.04% across all evaluated benchmarks. However, the
epoch skipping optimization alone regained most of the lost performance and STC-ES was only
12.29% slower than the baseline. STC-AB further brought down the performance penalty to 2.93%.
However, the full optimization enabled STC-MB improved the performance by 1.63% compared to
the baseline.

STC-NV blocks the writes and invalidates the caches during every epoch. Additionally, the av-
erage time to change an epoch was observed to be 36 cycles (including time for the four-way
handshake), and writes are blocked during this epoch transition as well. All of these contributed
to the execution slow down. STC-ES filters out the epochs without any write requests and miti-
gates both these problems, thus improving performance. The reduction in the number of epoch
transitions as compared to STC-NV is shown in Figure 10. Both STC-ES and STC-AB observed
extreme reductions in the number of epoch transitions. With epoch skipping optimization, both
STC-ES and STC-AB only transition to epochs that have writes pending to them and this eliminates
unnecessary epoch transitions. Figure 10 also shows that the STC-AB optimization reduces epoch
transitions by three orders of magnitude, which is also reflected in the execution time reduction
shown in Figure 8.

Figure 9 shows the L1 hit rate of the baseline compared to the STC-AB. That figure also shows
the hit rate after disabling the acquire operation. The benchmarks that show increased hit rate
without acquire operation have read data reuse across kernel launches and can potentially benefit
from STC’s acquire-less operation. From that figure, lulesh, hpgmg, snapc, bc, and cache-reuse
exhibit this behavior. For these benchmarks, it can be seen that STC-AB improved the hit rate
compared to the baseline.

Figure 9 also shows that STC-AB restored the hit rate to baseline levels for most benchmarks.
However, the performance (Figure 8) was still behind the baseline. This suggests that the cache hit
rate has little impact on the performance degradation and the impact was mainly caused by blocked
writes as opposed to cache invalidations in an epoch. We mitigated this issue with the STC-MB
optimization by allowing concurrent writes from multiple bands, reducing the number of blocked
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Fig. 9. GPU L1 cache hit rate.

writes waiting on their epoch. This directly translated to performance as seen in Figure 8. With this
final optimization applied, STC-MB achieved 1.63% speedup over the baseline across all evaluated
workloads. More significantly, the benchmarks with increased cache hit rate (lulesh, hpgmg, snapc,
be, cache-reuse) because of data reuse across kernels observed a geomean speedup of 7.13%. Next,
we delve deeper into the performance of a few benchmarks.

snapc, lulesh: The computation progresses in time steps in snapc, with multiple kernels
(2,992 kernels) launched to complete a time step. Similarly, lulesh launches 3,380 kernels. However,
many of these kernels have read data reuse. Since the baseline GPU employs software-managed
cache coherence, the caches are invalidated at every kernel boundary (acquire operation at the
beginning of a kernel) and the baseline cannot take advantage of this reuse. Thus, STC achieves a
higher cache hit rate and better performance for these benchmarks.

fg-share, hpgmg: fg-share uses atomic operations to synchronize the workgroups that are
contending to enter into the critical section. Inside the critical section, each workgroup reads the
updates from the previous workgroup and then modifies them. Since the shared data structure is
updated in place, the read and write datasets are not separate. Consequently, the STC-AB could not
identify a read-only dataset and performed similar to the STC-ES (Figure 8). The performance loss
can be attributed to the write propagation delay of the atomic synchronization. This synchroniza-
tion has to wait for its turn behind the shared data structure’s epoch. But with STC-MB granting
epochs for synchronization variable and shared data structure simultaneously, STC achieved 4.75%
speedup against the baseline.

The read-modify-write access pattern of the shared data structure does not provide any caching
benefit (Figure 9). However, the baseline allocates these loads in the caches, creating alloca-
tion/deallocation overhead (tag array lookup and associated port/bank conflicts, data allocation
overhead including data array port/bank conflicts, eviction overhead) and thus delaying the load
completion [29, 54]. STC-MB issues these loads as uncached, thus completely bypassing the cache
(after all cache sets are accessed once for lazy invalidation mechanism, Section 4.2). Thus, loads
are completed faster with STC-MB, resulting in speedup against the baseline.

hpgmg benefited from both read-data reuse across kernel launches as seen from its improved
hit rate (Figure 9) and also from issuing 33.75% loads as uncached similar to fg-share.

vec-cpy: Each work-item in a vector copy benchmark copies one data element from a source
to a destination buffer. This presents a pathological case for STC, because the compute to memory
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Fig. 10. Decrease in the number of epoch transitions compared to STC-NV.

ratio is low, and the GPU has less opportunity to overlap long-latency memory accesses with
work. Since simultaneous writes from multiple work-items across the GPU result in writes to
multiple epochs at all times, epoch skipping could not find many epochs to skip as observed from
a large number of epoch changes by STC-ES in Figure 10. Consequently, STC-ES performed poorly
(Figure 8). However, the adaptive band optimization could take advantage of the read-only source
and write-only destination buffers, thus regaining most of the lost performance (within 11.1% of
baseline). STC-MB further improved the performance to within 1.3% of the baseline even for this
pathological benchmark.

To summarize, the take away is that STC provides performance gains to read-data reuse kernels
without negatively impacting the performance of other kernels. It should be noted that the main
objective of STC is to simplify the hardware-only coherence mechanism in a GPU while provid-
ing comparable performance to that of a software-managed coherence mechanism, and STC has
achieved this objective.

7.2 Sensitivity Analysis

Sensitivity to Epoch Configurations and Cache Size: We experimented with 50-, 100-, 150-,
300-, and 450-cycle epochs, and the performance varied by 3%. The best performing 100-cycle
epoch was used for our evaluations as mentioned in Table 3. The epoch duration primarily impacts
the latency of the stores blocked by STC. Store completion delay can stall a wavefront if either
(a) dependent reads are delayed because of pending older writes or (b) wavefront is waiting on
a release operation. Even stalling one wavefront will not impact performance, because the GPU
pipeline has the ability to switch execution to the next ready wavefront. Because of these GPU
characteristics, store latency, and consequently epoch cycle duration had little impact on the GPU
performance. Also, we ran experiments with 8, 16, and 32 epochs, and the performance variation
was less than 2%. With 16 kB private cache, STC outperformed the baseline by 1.97%.
Sensitivity to BSQ Size: The max occupancy of the 256-entry BSQ was found to be between
5 and 250 entries and the mean occupancy was between 0.5 and 102 entries for the evaluated
benchmarks. The 16-banked BSQ is capable of draining up to 32 entries in 1 cycle (2 entries drained
per bank per cycle, 8 cycles for draining all 256 entries) and most of the benchmarks (14 of 16) have
a mean occupancy of less than 32. Thus, these benchmarks were able to cycle through the BSQ in 1
cycle on average. Even for the benchmark with a mean occupancy of 102 entries (fft), the draining
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Fig. 11. STC bandwidth consumption compared to the baseline.

overhead was 4 cycles, indicating that draining BSQ is not a bottleneck during epoch transitions.
Additionally, only entries to the current epoch are issued to the cache. Thus, the issue rate to cache
is much less.

We compared the performance of benchmarks for BSQ sizes ranging from 64 entries to the base-
line 256 entries. The performance was relatively insensitive to BSQ size with the geomean across
all benchmarks comparable to the 256-entry baseline. As mentioned earlier, 14 of 16 benchmarks
only had a mean BSQ occupancy of less than 32 entries and hence the benchmarks remained
insensitive to the evaluated BSQ sizes. A BSQ size of less than 32 entries could have made a perfor-
mance impact. However, the evaluated GPU has a 64 thread wavefront and hence the BSQ must
have atleast 64 entries to accommodate up to 64 uncoalesced stores originating from the same
wavefront instruction.

7.3 Bandwidth and Hardware Cost

Figure 11 shows the increase in bandwidth consumption due to epoch requests. STC-NV consumes
significant bandwidth, because it changes the epochs even when the GPU is idle (e.g., between
two kernel launches). The figure also shows the bandwidth consumption of STC-ES and STC-AB.
With STC-ES, epochs are changed only when the GPU demands an epoch and hence the epoch
change is naturally stopped when the GPU is inactive, resulting in the reduction of bandwidth.
STC-AB further reduces the epoch transitions by changing the bands to epoch mapping. As such,
the GPU bandwidth increased by only 0.43%, despite these optimizations sending additional mes-
sages. Hence, the impact of the optimized STC implementations on bandwidth can be considered
a nonissue.

The bandwidth cost of a purely hardware-based implementation for a similar set of benchmarks
(8 of the 16 benchmarks are common) is discussed in prior work [40]. Compared to the 17% increase
in GPU bandwidth reported there, STC is far better with only 0.43% increase in bandwidth con-
sumption over the baseline.

STC’s low bandwidth consumption even for fine-grained data sharing benchmarks can be ex-
plained by a comparison of its operation to a traditional coherence protocol. Suppose few cores
are performing a producer-consumer data sharing via a data structure. In a traditional protocol,
the modifying cores send write requests to the directory, the directory then sends invalidations
to the sharers and the owners forwards the latest data along with exclusive permissions to the
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Table 4. Hardware Cost

4-bit epoch and 8-bit wakeup counters
EMU | 16-entry ERV (33 bits per entry)
16-entry ETV (1 bit per entry)

BSQ | 1 per CU, 256-entry, 32 bits per entry

requestors. This sequence is performed for every single address being modified in that data struc-
ture and most importantly repeats for every single producer-consumer exchange. With STC, an
epoch or few epochs (if the entire data structure cannot be grouped into the same band) are granted
to this data structure in response to epoch request(s), and the producer-consumer exchange can
continue without any further coherence messages. With multiband optimization, the epoch(s) to
this data structure can be always granted and these cores can perform repeated producer-consumer
exchanges without issuing any further coherence messages for all addresses in that data structure.
This is the reason STC’s bandwidth overhead was only 0.43% even with fine-grain data sharing
benchmarks (fg-share, bc), and coarse-grain data sharing benchmarks (snapc, fw, mis).

Table 4 lists the hardware cost for implementing the optimized STC-AB protocol with 16 epochs
and the EMU waking up every 100 cycles. It can be seen from the table that the hardware cost of
implementing the EMU is negligible.

7.4 Scalability

Figure 12 shows the performance of benchmarks for 8, 16, and 32 CUs normalized to their re-
spective baselines. The geomean1 reports the mean performance across all evaluated benchmarks
whereas geomean2 reports the mean performance of STC friendly benchmarks with data reuse
across kernels (lulesh, hpgmg, snapc, bc). The mean performance was observed to be relatively sim-
ilar across configurations with different numbers of CUs. However, benchmarks like nn, dgemm
and vector-copy observed a performance slowdown due to the increase in the epoch synchroniza-
tion overhead (increased from 36 GPU cycles with 8 CUs to 79 GPU cycles with 32 CUs at steady
state after the read-only bands are separated by the adaptive band optimization). The STC friendly
benchmarks still observed performance benefits across the range, because they were able to ex-
ploit STC’s caching benefits and nullify the negative impact of the higher epoch synchronization
overhead. Thus, it can be concluded that STC scales well for workloads with read-data reuse across
kernels. The two benchmarks fg-share and cache-reuse did not have enough workgroups to scale
to 32 CUs with the same occupancy (number of wavefronts simultaneously active on a CU) as the
baseline. Running GPU with a lower occupancy will hamper its ability to hide memory latency
and hence these benchmarks are omitted from the results. In summary, since the epoch synchro-
nization overhead increases with CUs in general, STC is better suited for small GPUs with limited
numbers of CUs such as the ones used in embedded platforms and mobile SoCs.

7.5 Comparison with Prior Work

We compared STC with the strong variant of the timestamp-based temporal coherence protocol
(temporal coherence strong - TCS) [51], because it also provides write-atomicity similar to STC.
Across all evaluated benchmarks, the TCS was slower than the STC by 3.46%. Although both STC
and TCS avoid invalidation messages, TCS’s exclusive modifier requirement delays a write till the
global lease on a block expires. This makes the TCS slower than STC, especially for fine-grain data
sharing operations.

While performance advantage is not significant, STC has storage overhead and hardware com-
plexity advantages. TCS requires every cache block to store additional 32-bit lease information.
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Additionally, to store the lease information of evicted blocks from the shared L2, the TCS employs
MSHRs (we used 128-entry MSHRs per L2 bank). Thus, for the simulated system with 8,192 (8 CUs
and 1,024 cache blocks per CU) cache blocks in both GPU L1 and L2, and with 512 MSHR entries
across four L2 banks, the TCS requires 66 kB of storage to store lease information whereas STC
requires only 8 kB additional storage for its BSQs (8 BSQs and 256 32-bit entries per BSQ). The
MSHRs not only add storage overhead but these associatively looked-up structures are difficult
and costly to implement beyond a few entries [37, 39]. STC does not require metadata storage
and associative structures for its implementation. Additionally, TCS sends 32-bit timestamp infor-
mation with every read request resulting in a bandwidth increase of 3.57% whereas STC’s epoch
requests increased it by only 0.43% across all evaluated benchmarks.

8 RELATED WORK

The reduction of coherence traffic in GPUs has been the subject of many studies in the past [5, 12,
25, 37, 42, 51, 53]. Prior work has also explored coherence across multiple GPUs [43, 57]. Power
et al. and Basu et al. proposed tracking addresses at larger granularities called regions to reduce
the number of invalidation messages [12, 37]. Both these techniques track coherence permissions
over a larger region granularity. STC bands are different from regions in three ways: (a) regions
track coherence permissions whereas bands do not, (b) regions are modified by processors with
exclusive/private permissions but STC bands are modified exclusively in its epoch (processor ver-
sus epoch centric write permissions), and (c) regions are contiguous addresses whereas grouping
addresses into a band is entirely implementation-specific. Denovo protocol [21] also identifies read-
only regions similar to STC but STC does it without any software assistance. Sinclair et al. provided
a taxonomy of commonly used CPU/GPU coherence protocols based on (a) invalidation initiator,
and (b) tracking up-to-date copy of the data [47]. Since invalidation initiator is an epoch in STC
and the up-to-date copy is maintained by write-through operation, STC differentiates itself from
those protocols. Finally, Alisafaee proposed Spatiotemporal Coherence Tracking directory [4] that
tracks private data at region granularity. However, this proposal is an efficient directory design to
reduce the directory capacity, not a coherence protocol.

The timestamp-based coherence protocols [42, 51, 53, 59] eliminate invalidation messages by
self-invalidation based on expiring time lease. Although this method eliminates invalidation traffic,
it suffers from scalability and storage overheads as previously discussed in Section 5. STC does
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not have these drawbacks. Finally, the Racer protocol by Ros and Kaxiras provides store atomicity
without invalidations and per-processor write permission [44]. Racer achieves this by dynamically
detecting read-after-write data races and self invalidating the racing reader’s cache on a data race.
STC avoids the need for dynamic race detection and self invalidation by restricting writes to an
epoch and making the potentially modifiable data non-cacheable in private caches.

STC simplifies the coherence mechanism by establishing a mutual agreement among all the
processors about the modification of addresses. Ros and Kaxiras also leveraged a similar concept
for non-speculative store coalescing without deadlocks [45]. The globally agreed lexicographical
order for acquiring cache permissions prevents cyclic cache permission dependencies making the
implementation deadlock-free. Ibrahim et al. [28] proposed a shared L1 architecture for GPUs that
obviates the need for coherence among the L1-sharer CUs. However, when such a system scales
with shared L1 clusters, the STC can provide coherence across these clusters with negligible hard-
ware cost.

9 CONCLUSION

We introduce turn-based STC in this article. STC grants modification rights to an address to epochs
as opposed to processor cores. This novel way of assigning write permissions enables STC to
behave like traditional hardware cache coherence but with negligible coherence traffic. Evaluation
of our implementation of optimized STC shows that our implementation improves performance
compared to the baseline GPU RC coherence while providing write atomicity, without needing
any software assistance.
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