
33

Turn-based Spatiotemporal Coherence for GPUs

SOORAJ PUTHOOR, University of Wisconsin-Madison, AMD Research

MIKKO H. LIPASTI, University of Wisconsin-Madison

This article introduces turn-based spatiotemporal coherence. Spatiotemporal coherence is a novel coherence

implementation that assigns write permission to epochs (or turns) as opposed to a processor core. This para-

digm shift in the assignment of write permissions satisfies all conditions of a coherence protocol with virtually

no coherence overhead. We discuss the implementation of this coherence mechanism on a baseline GPU. The

evaluation shows that spatiotemporal coherence achieves a speedup of 7.13% for workloads with read data

reuse across kernels compared to the baseline software-managed GPU coherence implementation while also

providing write atomicity and avoiding the need for software inserted acquire-release operations.1

CCS Concepts: • Computer systems organization→ Single instruction, multiple data; Multicore archi-

tectures;

Additional Key Words and Phrases: Cache coherency, GPU

ACM Reference format:

Sooraj Puthoor and Mikko H. Lipasti. 2023. Turn-based Spatiotemporal Coherence for GPUs. ACM Trans.

Arch. Code Optim. 20, 3, Article 33 (July 2023), 27 pages.

https://doi.org/10.1145/3593054

1 INTRODUCTION

A cache coherence protocol keeps the private caches coherent in a multi-processor system. Tradi-

tional coherence protocols rely on invalidation messages to prevent the processors from reading

stale data [52]. In this article, we make the observation that these invalidation messages are not

essential for write propagation. If all the processors can agree upon an ordering for address modi-

fications, then the writes can be propagated without invalidation messages. Leveraging this obser-

vation, we propose a new cache coherence protocol called spatiotemporal coherence that satisfies

all conditions of a coherence protocol but without any invalidation traffic.

Spatiotemporal coherence grants write permissions to groups of addresses called address bands.

Each band is granted write permission in a specific interval of time called an epoch. A band gets

its write permission in an epoch that is mutually agreed upon by all the processors. Since all

1New article, not an extension of a conference paper.

This work was supported in part by NSF Award No. CCF-2010830 and AFRL Award No. FA9550-18-1-0166.

Authors’ addresses: S. Puthoor, B100.2.407, 7171 Southwest Pkwy, Austin, TX 78735; email: Sooraj.Puthoor@amd.com; M.

H. Lipasti, Room 3621, Engineering Hall, 1415 Engineering Drive, Madison, WI 53706; email: mikko@engr.wisc.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1544-3566/2023/07-ART33 $15.00

https://doi.org/10.1145/3593054

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

https://orcid.org/0000-0003-0285-5742
https://orcid.org/0000-0002-8535-9244
https://doi.org/10.1145/3593054
mailto:permissions@acm.org
https://doi.org/10.1145/3593054
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593054&domain=pdf&date_stamp=2023-07-19

33:2 S. Puthoor and M. H. Lipasti

processors have mutually agreed on the address modification epochs, the processors know the

modified addresses at any given time without explicit coherence messages.

Spatiotemporal coherence is characteristically different from traditional coherence protocols

with regard to granting write permissions. Traditional coherence protocols grant write permis-

sions on an address to a modifying processor but spatiotemporal coherence grants write permis-

sions to an epoch. Moreover, the write permissions are granted within an address band. Thus,

spatiotemporal coherence fundamentally changes the processor-centric write permission to an

epoch- and band-centric write permission. An epoch has temporal properties and an address band

has spatial properties, hence the name spatiotemporal coherence (STC).

Timestamp-based coherence protocols also avoid invalidation messages by getting a time lease

on an address and self-invalidating that address after the time lease has expired [42, 51, 58]. How-

ever, even these coherence protocols provide exclusive modification permission to a processor

by giving it an exclusive time lease for an address. Thus, although the mechanism for recalling

write permissions is different (expired timestamps versus invalidation messages), the underlying

idea of having an exclusive modifying processor per address is still preserved. STC does not grant

modification rights to a processor and hence differs from timestamp-based coherence.

Removing coherence traffic has profound implications in a massively many-core system like

a graphics processor (GPU). Current GPUs avoid strict hardware coherence implementations

because of their coherence traffic overhead [37, 42, 51]. Instead, GPUs today implement caches

that maintain coherence at release consistency (RC) synchronization markers inserted by the

software [15, 22, 27, 31]. Naturally, they adhere to the release consistency memorymodel. Here, we

refer to such cache coherence implementations as software-managed cache coherence. Software-

managed cache coherence does not satisfy all conditions of a coherence protocol [1]. For example,

write atomicity is not guaranteed by this mechanism. While the cache design becomes simple and

coherence traffic is eliminated with software-managed cache coherence, programmers will have to

deal with the non-intuitive nature of weakmodels, complicating the programming of such systems

and increasing the likelihood of software bugs.

STC retains all the hardware advantages of a software-managed cache coherence implementa-

tion while also satisfying the properties of a strict hardware cache coherence protocol [1]. In this

article, our objective is to introduce the basic concepts of STC, provide an implementation of STC,

and demonstrate that even a simple implementation of STC achieves performance comparable to

the software-managed baseline cache coherence. Since write atomicity [1]—which is a precondi-

tion for implementing strong models—is also provided, STC could support strong memory models

as well, though we do not explore this opportunity here. As compared to the baseline, STC can

perform well for workloads that have read data reuse across kernel launches. Software-managed

coherence invalidates the private caches before a kernel launch (acquire operation) and each kernel

in these types of workloads will incur cold misses accessing the read data set. Figure 1 compares

the private L1 cache hit rate of a few workloads with acquire operation against a version without

acquire operation. Suppressing the acquire operation nearly doubled the hit rate for most of these

benchmarks. STC private caches do not cache stale data and hence acquire operation is not needed

to maintain coherence (details in later sections). Consequently, these types of workloads benefit

from STC. The major contributions of this article are:

• We introduce STC for GPUs.

• We provide an implementation of STC that adheres to the RC memory model. This imple-

mentation grants write permission to the epochs in turns and retains all advantages of the

software-managed cache coherence.

• We show that STC improves performance by 7.13% for workloads with read data reuse across

kernels, and provides performance comparable to the software-managed baseline coherence

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

Turn-based Spatiotemporal Coherence for GPUs 33:3

Fig. 1. Impact of acquire operation.

implementation for the rest of the evaluated workloads. STC also performs better than prior

work. STC achieves this without software assistance while providing write atomicity.

2 SPATIOTEMPORAL COHERENCE

This section introduces spatiotemporal coherence. STC is implemented with address bands and

epochs. We start this section by defining both.

2.1 Address Bands and Epochs

In STC, an address band is simply a group of addresses. All addresses in an address band, hereafter

referred simply as a band, share the same write coherence permission. An epoch is defined as a

time window in which a band is given write permission. Thus, each band will have at least one

epoch associated with it. For example, bandA will have at least an epochA when stores to addresses

belonging to bandA are allowed to be issued to the memory hierarchy.

An epoch differs from themodified (M) state of a coherence protocol although both grant write

permission [52]. An epoch grants write permission to the band associated with it but M state grants

write permission of an address to a processor. STC shifts the processor-centric write permissions in

traditional protocols to epoch-centric write permissions.

2.2 STC Rules

STC works with four simple epoch rules (ER):

(1) ER1: Addresses in bandA cannot be cached in epochA.

(2) ER2: Addresses in bandA can be written only in epochA.

(3) ER3: At any (logical) time, all processors should be in the same epoch (or epochs).

(4) ER4: Addresses in a band can be read in any epoch.

ER1 ensures that a potentially modifiable cache block is not cached in a private cache and hence

no processor will see stale data as long as all processors are observing the same epoch. Private

caches can still cache data from bands when the processors are not in that band’s epoch. ER2

ensures that writes are visible to the memory side cache or memory. ER3 makes sure all processors

observe the same epoch (or epochs) and there is no conflict among the processors about the current

epoch (or epochs). ER4 ensures that reads are never blocked.

We will illustrate these rules with the help of an example. Figure 2 shows the epoch transition

from epochA to epochB for two private caches PC1 and PC2. That figure also shows the loads and

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

33:4 S. Puthoor and M. H. Lipasti

Fig. 2. STC epoch transition from epochA to epochB .

stores arriving at these caches in that epoch. Figure 2(a) shows both PC1 and PC2 after encounter-

ing the memory request sequence in epochA. The loads to bandA (A1, A2) are issued to memory

but they are not cached adhering to ER1. However, loads to bandB (B1, B2) are cached in the pri-

vate caches and the addresses B1 and B2 are in valid (V) state. The store to address A3 belonging

to bandA is issued to the memory but the store to bandB is blocked by ER2. Figure 2(b) shows the

epoch transition to epochB . The bandB addresses (B1, B2) are invalidated and the store to B3 from

epochA is now unblocked and issued to the memory. The loads to epochs other than epochB can

now cache data in private caches.

2.3 STC Satisfies Cache Coherence

The two conditions associated with cache coherence protocols are: (a) a write is eventually made

visible to all processors, and (b) the writes to the same address should be visible to all processors in

the same order (write atomicity) [1]. STC’s epoch rules are sufficient to satisfy these two conditions.

Writes are eventually made visible to all processors: ER1 allows a band to cache its data

only when the processors are not in that band’s epoch. However, ER2 allows writes to a band only

in that band’s epoch. ER3 ensures that all processors agree on the current epoch. Thus, these three

STC rules ER1, ER2, and ER3 ensure that no potentially modifiable data is cached in the private

caches, and all processors agree which addresses are going to be modified at any given time. ER1

does not allow a store to be cached in a private cache. Consequently, every store updates the

memory side cache (or memory) and every load reads the most up-to-date data from that shared

cache. Thus, STC satisfies the first condition of making a write eventually visible to all processors.

Write atomicity:Write atomicity comes naturally with STC. The very essence of the STC rules

is that no modifiable data is cached in the private caches. Thus, every single write to a band and

consequently every address in a band is visible to all processors in the system.

In addition to the above-mentioned conditions, a third condition is often associated with cache

coherence protocols: a coherence protocol should inform the writing processor about the comple-

tion of a store [1, 51]. Satisfying this condition is required to maintain program order between the

write instruction and younger instructions. Toward this, STC sends an acknowledgment back to

the writing processor when a store is completed. However, unlike traditional protocols that have

to wait for the invalidation of private copies before sending this acknowledgment back, STC can

immediately respond with the acknowledgment when the store reaches the memory side cache (or

memory). Maintaining program order between the write instructions is a requirement for strong

models such as sequential consistency (SC) and total store order (TSO), and not a requirement

for a weak model such as release consistency [1]. Thus, even though STC sends the write comple-

tion ack, a strong model implementation will use it for enforcing ordering but a relaxed model

implementation does not need to do it.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

Turn-based Spatiotemporal Coherence for GPUs 33:5

3 IMPLICATIONS OF STC

STC allows processors to take localized decisions based on the current epoch and based on the in-

formation about that epoch’s band. However, for STC to function correctly, all processors should

be in the same epoch. Irrespective of the mechanism employed to synchronize the current epoch

across all processors, this synchronizing mechanism can be stateless. Since STC does not rely on

invalidation messages for write propagation, there is no need for a centralized structure to track

the sharers of an address. Additionally, since processors do not own write permissions in STC,

tracking global cacheline permissions is not necessary either. Contrast this to a traditional coher-

ence directory that stores the sharer list and global cacheline states for maintaining coherence or

a snooping protocol that relies on broadcast snoops and responses for maintaining coherence [52].

Thus, STC eliminates the need for broadcasts or structures such as a global directory. In directory-

based coherence protocols, even a null directory (stateless directory) has to broadcast invalidations

on receiving a write request, whereas STC does not need invalidation messages for maintaining

coherence.

3.1 STC and Write-through Caches

In a traditional protocol with write-through caches, a write request can be issued directly to the

memory without that processor acquiring the write permission. However, the write can complete

only after the sharers are invalidated by invalidation messages. STC does not require these in-

validation messages and the memory-side cache (or memory) can send the write completion ack

immediately after seeing the write request. Thus, STC is not a mere optimization of the traditional

protocol for write-through caches.

STC and GPU Caches: STC with write-through private cache has profound implications.

Typically, GPU caches are write-through with a simple VI (valid/invalid) protocol for coher-

ence [5, 6, 25, 37, 51]. Previous studies have suggested that a write-through L1 cache performs

much better than a write-back L1 for GPUs because of the streaming data access pattern of a

GPU [51]. Even commercial GPUs employ write-through private caches [6, 15, 31, 35].

However, implementing strict hardware coherence on a GPU is challenging because of the over-

whelming number of the invalidation, eviction and recall messages from traditional directory-

based coherence protocols [37, 51]. Because of this, GPUs today adhere to RC model, which makes

the L1 caches coherent only at synchronization points with the help of software inserted synchro-

nization primitives [5, 6, 25, 37].

The STC eliminates all the above-mentioned challenges of hardware cache coherence in a GPU.

STC does not rely on invalidationmessages for making the caches coherent. Since invalidations are

not needed, sharers need not be tracked, and since the need for sharer tracking is eliminated, the

private L1 caches can now perform silent evictions. Thus, STC implements hardware coherence

without invalidation traffic, eviction notifications, and recall traffic. Since STC is a natural fit for

GPUs, we will implement and evaluate STC on them.

3.2 Write Atomicity

In traditional protocols, write atomicity is implemented with invalidation or update messages that

propagate a new write to all processors in the system. This approach is not easy to scale and can

incur a severe performance penalty in a many-core system like a GPU [37, 51]. However, STC does

not have this limitation. Since the epoch rules ensure that the processors have agreed on the band

to be modified in each epoch, and since the epochs themselves are synchronized, the processors do

not cache a potentially modifiable address in the cache. Thus, the processors need not be notified

about a write but they fetch the updated value from a memory-side cache (or memory). Thus, the

STC implementation provides write atomicity without any additional coherence traffic.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

33:6 S. Puthoor and M. H. Lipasti

3.3 Deadlocks

Epoch rule ER2 states that a band can write only in its epoch. Thus, a write reaching the cache

controller on a different epoch is blocked till its epoch arrives. Consequently, a processor may

deadlock if an epoch for a write never arrives. Thus, to prevent deadlocks and to ensure forward

progress for all writes, an STC implementation should adhere to the following deadlock avoid-

ance rules (DARs): DAR1: There must be at least one epoch for every band. DAR2: All epochs must

eventually terminate. DAR3: All epochs must be granted repeatedly.

DAR1 ensures that all bands have at least one epoch, DAR2 ensures that an epochwill eventually

end and DAR3 ensures that every band’s epoch will be eventually granted. Thus, they ensure a

write will eventually complete.

3.4 Performance Pitfalls and Optimizations

To eliminate the possibility of reading stale data, a band is not allowed to cache its data during

its epoch. Thus, if a processor enters an epoch in which no writes are issued to the correspond-

ing band, then the band unnecessarily lost its opportunity to cache data, adversely impacting the

performance of the processor. Another potential performance pitfall with STC is a band with read-

only addresses. Since epochs are only needed to grant write permissions to a band, a read-only

band does not need an epoch. Hence, granting an epoch for a read-only band is unnecessary, and

since that band is non-cacheable in that epoch, it is undesirable as well from a performance stand-

point. To solve these performance pitfalls, we introduce two optimizations (a) epoch skipping and

(b) adaptive bands.

Epoch skipping: The epoch skipping optimization grants an epoch only if there is a demand for

it. A demand to an epoch indicates that at least one write is pending to that epoch from a processor.

With epoch skipping, the epochs that did not have any requests to them are skipped. Thus, epoch

skipping avoids the performance penalty of granting epochs to a band with no demand. Since a

read-only band will not issue any write-request, epoch skipping will avoid granting permissions

to read-only epochs as well.

Epoch skipping does not violate rules DAR2 and DAR3. It can be treated as an optimization that

terminates the current epoch adhering to DAR2 and grants zero cycles for all epochs with no write

demands, adhering to DAR3.

Adaptive bands: The effectiveness of epoch skipping is amplified if the bands are clearly sep-

arated into read-only bands and non-read-only bands (write and read-write bands). The adaptive

band optimization dynamically changes the addresses in a band to regroup read-only addresses to-

gether. Coupled with the epoch-skipping implementation, this dynamic identification of read-only

datasets enables sustained caching of blocks across otherwise unnecessary write epochs, since

there are no pending writes to such read-only bands.

4 IMPLEMENTATION

We implement STC on a GPU with per compute unit (CU) write-through private L1 caches and

a shared L2 cache as shown in Figure 3. The GPU adheres to the RC model and implements a

valid/invalid (VI) protocol for making L1s coherent at RC synchronization points [5, 6, 25, 30, 35,

37, 54].

4.1 RC Implementation on Baseline GPU

Our baseline GPU executes GCN3 ISA [7] and implements RC with two instructions: (a) s_waitcnt

and (b) buffer_wbinvl1_vol [7, 10]. The s_waitcnt vmcnt(0) stalls the wavefront till all pending

memory operations are completed and hence used for ensuring the ordering requirements of

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

Turn-based Spatiotemporal Coherence for GPUs 33:7

Fig. 3. STC baseline with EMU.

Fig. 4. Epoch and band implementation.

acquire/release operations in the GCN3-based GPUs. To track the pending stores, the store com-

pletion acknowledgments are forwarded to the execution pipeline. The pending loads are simply

tracked by load data returns. The buffer_wbinvl1_vol instruction performs the L1 cache invalida-

tion part of the acquire operation. The baseline flash invalidates all valid L1 entries in one cycle

by flipping the valid bits. An acquire-release operation is implemented by a combination of these

two instructions. A more detailed discussion of the acquire-release operations with GCN3 ISA can

be found elsewhere [7, 10].

Our STC implementation adheres to the RCmodel. The release operation is implemented similar

to the baseline GPU with the write completion acknowledgments forwarded to the GPU pipeline

and the s_waitcnt vmcnt(0) instruction stalling the wavefront till the write completion. However,

the buffer_wbinvl1_vol instruction is treated as a no-op, since STC private caches do not cache

stale data.

4.2 STC Baseline

STC relies on two concepts: epochs that subdivide time and bands that subdivide the address space.

The potential design space for these is large, as STC will operate correctly for very flexible defini-

tions of each, as long as the epoch rules are satisfied. In this section, as a starting point, we define

both epochs and bands in the simplest possible way: as fixed-duration windows of time and as con-

tiguous regions of the address space. More complex and flexible definitions of epochs and bands

may provide additional advantages, but, as we will show, even the simplest definitions presented

here enable the correct operation with high performance.

In our implementation, we use N contiguous bits of an address to identify a band, with matching

address bits in that set of N bits forming a band. We then associate an epoch in time for every such

band. Thus, our implementation will have 2N total epochs. The start epoch bits (SEB) identify the

position fromwhich these N contiguous bits should be extracted to form a band. This simple imple-

mentation guarantees that every band has one epoch conforming to the deadlock avoidance rule

DAR1. Figure 4 shows the epoch and band with N = 4 and SEB = 12 for an address 0xDEAD_BEEF.

Since the four bits from 12th bit is 0xB (11 in decimal), this address corresponds to epoch11 and

the set of addresses with bits[15:12] = 0xB forms band11. Thus, this simple band implementation

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

33:8 S. Puthoor and M. H. Lipasti

Fig. 5. Epoch transition and synchronization.

allows individual CUs to identify the band of a request from only its address for a given N and

SEB.

A CU tracks the current epoch with an N-bit current epoch register (CER). For implementing

the epoch rules, a CU compares the band of a memory request to the current epoch stored in CER.

Only storeswith bandsmatching the current epoch are issued to the cache and the remaining stores

are blocked. All blocked stores aremoved to a blocked store queue (BSQ) and they are reanalyzed

on an epoch change. The BSQ is banked so that multiple stores can be analyzed in a cycle. The

store data is kept in the coalescing buffers [33, 39] and only addresses of the blocked stores are

moved to BSQ. If this coalescing buffer (or BSQ) gets full, then the backpressure mechanism will

stall the GPU pipeline, thus preventing the overflow of these buffers. The coalescing unit can only

coalesce requests from the same wavefront instruction [39]. It also blocks requests to an address

when there are older outstanding requests to that address. Thus, since the coalescing unit blocks

loads under a pending write to the same address from being issued, the younger loads need not

access the BSQ for reading the last store. The loads belonging to the current epoch’s band are not

allowed to cache and hence are issued as non-cacheable loads.

To synchronize epochs across all the CUs, we implemented a epochmanagement unit (EMU),

which plays a conceptually simple role in STC: ensuring that all CUs transition across epochs

correctly at well-defined epoch boundaries. The epochs are defined as a fixed duration of time in

this implementation. More complex implementations can have a dynamic epoch duration, but, as

we will show, even this fixed duration epoch provided good performance for the benchmarks we

evaluated. The EMU periodically wakes up at this fixed time intervals and changes the epoch in a

round-robin fashion for all CUs, thus ensuring writes to all bands corresponding to these epochs

are completed eventually. Figure 3 shows the STC baseline after adding the EMU and BSQ. For

synchronizing the new epoch with all the CUs, the EMU uses a four-way handshake. This four-

way handshake involves two epoch requests and the acks to these requests. Figure 5 illustrates

this operation in detail. The EMU wakes up and broadcasts a PrepareEpochChange request to all

the CUs 1©. Each CU then stops issuing stores, waits for the outstanding writes to complete, and

responds back with the ReadyAck notifying the EMU that they are ready for an epoch change
2©. The EMU on receiving ReadyAcks from all CUs broadcasts the ChangeEpoch request 3©. The
ChangeEpoch request carries the new epoch value and the CUs on receiving this ChangeEpoch

request transition to the new epoch after responding with a DoneAck 4©. The epoch transitioning

ends after the EMU receives DoneAck from all CUs.

On receiving a PrepareEpochChange message, the CUs block all stores and wait for all out-

standing stores to complete. Moving to a new epoch with pending stores will result in those stores

modifying a band that does not belong to the current epoch violating ER2. When all outstanding

stores are complete, the CU responds back to the EMUwith a ReadyAck. Thus, ReadyAck is a guar-

antee given by that CU to the EMU that no further modifications to any band will be carried out

by that CU. Once EMU receives ReadyAcks from all CUs, EMU broadcasts the new epoch value to

all the CUs with a ChangeEpoch message.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

Turn-based Spatiotemporal Coherence for GPUs 33:9

Fig. 6. Need for adaptive bands.

On receiving the ChangeEpoch message, the CUs update their CER with the new epoch from

that message. The blocked stores in the BSQ are now reanalyzed and the stores to the new epoch’s

band are removed from BSQ and issued to the caches. An epoch transition also requires valid en-

tries that belong to the current epoch’s band to be invalidated. A lazy invalidation mechanism is

implemented that delays these invalidations till the first access to a cache set. Whenever a demand

request reaches a cache set, the tags are read, and they are compared against the tag of the de-

mand request. We leverage this normal cache operation to additionally compare the bands of the

addresses stored in that cache set and if the bands match the current epoch, that entry is invali-

dated (only needs to be done once per cache set per epoch transition). However, in rare situations,

it may happen that not all the cache sets are accessed in an entire epoch. So, during the end of

every epoch, the cache sets that are still untouched during the entire epoch are read and the cached

addresses with bands corresponding to the current epoch are invalidated. After these actions, the

CU moves to the new epoch by responding with DoneAck.

4.3 Epoch Skipping Implementation

The baseline STC implementation imposes epochs for all bands in the address space, regardless

of whether there are any pending writes to those bands. Epoch skipping considers this case and

elides epochs without any pendingwrites. As described, STC blocks the writes not belonging to the

current epoch.With the epoch skipping optimization, the blocked writes send an EpochDemand re-

quest to the EMU. The EMU keeps track of the epoch demands in an epoch request vector (ERV).

The ERV is a bit vector with one bit per epoch. On receiving the epoch demand request, the entry

corresponding to the requested epoch is set in the ERV. When the EMU wakes up, it increments

the epoch counter till it finds an epoch with an outstanding demand in the ERV. This epoch then

becomes the new epoch and EMU sends the PrepareEpochChange to initiate the transition to this

new epoch after resetting the ERV entry. If no entry is set in the ERV, then EMU does not change

the current epoch and goes back to sleep again.

On receiving an EpochDemand request, the EMU responds back with an EpochDemandAck no-

tifying the requesting CU that its request is acknowledged. The CU issues only one EpochDemand

per band, thus avoiding duplicate EpochDemand requests to the same epoch for that band. This

EpochDemand request filtering is implemented with an epoch demand bit vector. Each CU has

its own epoch demand vector and this vector has one entry for every epoch. A blocked store is-

sues an EpochDemand request only when the corresponding entry in the epoch demand vector is

empty. An entry is set after the first EpochDemand request thus preventing duplicate EpochDe-

mand requests to the same epoch from a CU. The EpochDemand request vector is reset during the

beginning of an epoch. This epoch filtering mechanism thus keep an upper bound on the number

of outstanding EpochDemand requests from a CU and filters out duplicate requests, significantly

reducing the number of such requests.

4.4 Adaptive Band Implementation

The adaptive band mechanism attempts to regroup addresses in a band in a way that avoids co-

mingling of read-only addresses with read-write addresses using a simple dynamic search heuristic.

Figure 6(a) shows an example where the first 256 addresses are allocated for read datasets and

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

33:10 S. Puthoor and M. H. Lipasti

the next 256 addresses are allocated for write datasets. These types of contiguous allocations are

common for GPU data structures with programmers optimizing the data layout for better reference

coalescing. Figure 6(b) shows an example where both these read and write data sets share the same

band with N = 4 and SEB = 4. With SEB = 4, both the read_addr and write_addr are in band10 and

this read_addr in epoch10 will be issued as a non-cacheable read (adhering to epoch rules) because

of this sub-optimal band formation. We call this epoch10 a conflicted epoch and its occurrence

an epoch conflict. However, if the SEB is increased to 8, the read and write data addresses fall

into different bands, that is to band0 and band1, respectively, as shown in Figure 6(c). With epoch

skipping, an EpochDemand request to band0 will not be issued and consequently, band0 will never

become the current epoch enabling read datasets to be cached throughout the execution.

Our implementation of adaptive bands dynamically increases or decreases the SEB to reduce

epoch conflicts. The epoch conflict detection requires both the conflicting read and write addresses

for calculating the adaptive SEB. Toward this, we modified the EpochDemand request to send the

entire write address and added an EpochConflict message to send the conflicting read address to

EMU. EpochConflict message is generated when a CU has a blocked write to a band and then a

subsequent read to the same band happens. To store the write address, each entry of the ERV is

enhanced with a 32-bit address field. When an EpochConflict message arrives, the read address

from that message is compared against the stored write address to identify the optimal SEB. The

decision to shift up/down is based on whether the bits lower to the band position bits are different

or not. If the lower bits are different, then band position bits must bemoved to lower bits so that the

reads and writes will be in different bands, and vice versa. In our implementation, each adaptive

band formation increases or decreases the SEB by only one bit. So, to move from a band formation

shown in Figures 6(b) to 6(c), our implementation will require four adaptive band transitions. But

an aggressive implementation may shift multiple bits at a time and can reach the optimal band

positioning much faster. Additionally, to reduce the number of EpochConflict messages from a

CU, only the first conflicting read access generates an EpochConflict message. The EMU informs

the CUs about the updated SEB by sending it along with the ChangeEpoch request. With the adap-

tive band formation, there may be overlap between the new bands and old bands. So, if there are

pending memory operations during adaptive band transition, the memory operations may return

in a different band than when they were issued. However, the four-way handshaking mechanism

ensures that the CUs have no pending stores during epoch transition, thus avoiding such a situa-

tion for a store. The load may return in a different band, but the load data is not installed in the

cache if it belongs to the current epoch (the current epoch check is done based on the new band

definitions). Thus, overlap of bands during adaptive band transition does not violate STC rules.

Our adaptive band implementation only changes the start bit used for the address to band map-

ping. Thus, this new mapping ensures that all the addresses have a corresponding band and an

epoch. The EMU, like before, round-robins through all the epochs thus ensuring writes to any

address will eventually complete.

MultiBands: Once adaptive band optimization filters out the read-only bands, epochs are

granted only to write or read-write bands. Multi-band optimization grants epochs corresponding

to multiple bands at the same time so that stores belonging to these bands can be issued with-

out moving to the BSQ. Thus, with this optimization, stores are completed faster. To implement

this multi-band optimization, CER is enhanced to store multiple concurrent epochs. Also, the com-

parators that determine if a load/store is in the current epoch are enhanced to check for multiple

epochs. The lazy invalidation mechanism discussed earlier is also augmented to check for multiple

concurrent epochs. Other than the enhancements to these comparators and the CER, the multi-

band implementation works similar to the adaptive band implementation. The additional epochs

to be granted are determined similarly to the adaptive band optimization. However, instead of just

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

Turn-based Spatiotemporal Coherence for GPUs 33:11

Table 1. State Transition Table

Store Load Load_U Data Data_E WA

I I / PW++ I_V I_I PW−−
V I / PW++ Hit I_I PW−−
I_V V / LD I / LD PW−−
I_I I / LD I / LD PW−−

selecting one epoch with pending epoch demand in a round-robin fashion, its adjacent epochs

with pending epoch demands are also selected, and these epochs are granted together with the

multi-band optimization.

Increasing the band range by combining bands together is an alternate approach that may

achieve the same benefits as multi-band optimization. However, increasing the band range may

also result in combining multiple dissimilar bands together, adversely impacting STC’s per-

formance. For example, suppose there are three adjacent independent bands A (0000_1010),

B (0000_1011), and C (0000_1100). Suppose B is a read-only band whereas A and C are either

write-only or read-write bands. Now, based on our simple N contiguous bits-based band mapping,

combining A and C will require us to move the start bit for address to band mapping to bit position

3 and this newly formed band (0000_1XXX) will also include band B. That means increasing the

band range (or combining bands) may group multiple read-only and read-write bands together,

and the newly formed read-write band cannot provide caching benefits to the read-only addresses

in that band. In the above scenario, a multiband optimization can simultaneously grant epochs to

bands A and C, and still preserve the read-only band B retaining the caching benefits.

4.5 STC and Cache States

The STC cache controller state transition table is given in Table 1. The epoch messages do not

interfere with the cache states and hence are omitted from the table. In that table, pending writes,

load done, andwrite completion ack are abbreviated as PW, LD, andWA, respectively. I is the invalid

state, V is the valid state, and I_V is the transient state when the cache is waiting on a load return

to move to V from I. This transition table is similar to a GPU VI protocol except for the two events

Load_U and Data_E, and one transient state I_I. A Load_U is a non-cacheable load issued when

the current epoch matches the load’s band and hence does not allow installation of the data in

the cache. I_I is the transient state that tracks this pending Load_U and moves to I when the load

returns, making it non-cacheable. The Data_E is the Data response to a load whose band matches

the current epoch and hence the data from that epoch is also not installed in the cache even if that

load was issued as a cacheable load (Load) in one of the previous epochs (I_I to I).

Atomic operations are resolved in the shared L2 in GPUs [10]. In STC, atomics are treated as

regular writes. Atomics that return a value generate a Data_E response along with a write com-

pletion ack (WA) wheres atomics with no return value only generate a WA. Hence, atomics do not

have additional states in the cache transition table.

Protocol Complexity: STC adds one transient state I_I to the RC managed baseline. However,

an invalidation-based hardware GPU VI protocol will add 4 to 9 transient states to the baseline [51]

depending on the optimizations involved. Transient states increase the protocol verification com-

plexity [21, 55]. Additionally, race transitions [55] that further add to the verification complexity

are also absent in STC. Because of these reasons, STC is easier to verify than any invalidation-based

coherence protocol. STC is a rule-based system and adhering to the rules provides correctness.

Hence, the correctness invariant is to check against the STC rules, which is straightforward.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

33:12 S. Puthoor and M. H. Lipasti

4.6 Hardware Additions

The EMU has an epoch counter and a wakeup counter. The epoch skipping and adaptive band

optimization add ERV and ETV to the EMU. The ETV is a 1-bit vector with one entry per epoch.

ERV has 33-bits (32 bits for address, 1-bit to store epoch demand to that address) per entry and has

one entry per epoch. The CU is augmented with a 32-bits per entry BSQ. All these structures can

be implemented with logic cells and does not require SRAMs.

4.7 Working Example

We explain our implementation enforcing RC with the code snippet in Figures 7(a1) and 7(a2).

Figure 7(a1) is the CPU implementation of the code and Figure 7(a2) is the GPU implementation of

the same code with the GPU wavefront performing all three memory operations with one wave-

front instruction. We will explain the implementation using CPU terminology but the working is

exactly similar for the GPU as well. Addresses U, V, W and X belong to bands with the epochs

U, W, W, and X, respectively. Figure 7(b) shows the BSQ of thread 0 (BSQ 0) and cache of thread

1 (Cache 1) after these threads executed the first three stores in some epoch Z. The transition from

this epoch Z to epochs W->V->U->Z->X->Z are shown in Figures 7(c)–7(h). Since thread 0 is only

doing stores, nothing is cached in thread 0’s cache and hence not shown in these figure. Similarly,

thread 1 is only doing loads and hence its empty BSQ is not shown either. Since U, V andW do not

have write permissions in epoch Z (Figure 7(b)), these stores are moved to thread0’s BSQ. Also, the

loads to U, V, andW by thread 1 install these lines in the cache with the initial value 0, whereas the

load acquire (LdAcq, line:4) installs X = 0 in to the cache. Since X != 1, the load acquire condition is

not satisfied and the load acquire will retry. The acquire/release ordering is implemented with the

s_waitcnt instruction inserted by the finalizer [10] (Section 4.1). This s_waitcnt stalls the pipeline

till all the older memory operations are completed. Hence the StRel of thread 0 (line:4) is blocked

from execution till all the previous stores are completed. Later, when Epoch W arrives, the store

to W completes and that entry is removed from BSQ (Figure 7(c)). Additionally, the line W is in-

validated from thread 1’s private cache adhering to STC rules. Similarly, stores to addresses V and

U are completed in epochs V and U, respectively, and the cachelines V and U are invalidated from

the private caches in these epochs (Figures 7(c) and 7(d)). Thus, by the end of epoch U, all stores

are completed and the cachelines U, V, and W are invalidated. Throughout these epoch changes,

thread 1’s LdAcq is reading X = 0 and thread 1 continues to spin at that instruction. The store

completion acknowledgements are sent to the core after the stores are completed in their own

respective epochs and the store release can now be executed by thread 1 as shown in Figure 7(f).

However, the released store (X = 1) sits in the BSQ till epoch X arrives and is drained from the BSQ

later in epoch X (Figure 7(g)) marking its completion. At the beginning of epoch X, the cacheline

X is invalidated in thread 1’s private cache and a subsequent read to address X will now see the

updated value (Figure 7(h)). Only after the load acquire condition is satisfied, the loads to U, V and

W (lines 5, 6, and 7 of Figure 7(a1)) are executed by thread 1. These loads will also see the most up

to date value from the shared L2 cache and the outcome will be (U,V,W) = (1,1,1) thus enforcing

RC. It should be noted here that a load acquire did not invalidate private caches (as discussed in

Section 4.1) and still achieved the write propagation by following the STC’s epoch rules.

Ordering of writes: In the previous example, the stores are executed in the order U->V->W

(Figure 7(a1)) but are completed in the order W->V->U (Figures 7(c)–7(e)). Since the implementa-

tion was adhering to RC model, maintaining store->store ordering was not a requirement. The

only requirement was to order stores U, V and W before the RC synchronization marker, that is

the store release to X, and that requirement was enforced by the core by blocking the execution

of the store release till the completion of older stores. A strong model implementation on top of

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

Turn-based Spatiotemporal Coherence for GPUs 33:13

Fig. 7. Working example.

the STC can enforce a stricter store->store ordering by blocking the issue of a younger store till

the older store completes. However, our RC implementation did not have that requirement and

hence allowed out of order store completion within RC model permitted synchronization marker

boundaries.

Correctness with multiband optimization: In the above example, bands W, V and U took

three epochs to complete the stores. With multi-band optimization, epochs of these three bands

can be granted simultaneously. That means epochs U, V, andW can be granted simultaneously and

all three writes from the BSQ can be drained in this multiband epoch. The BSQmay be drained and

stores may be completed in a different order compared to the above example. But granting epochs

W, V, and U simultaneously still functions correctly and produces the same outcome (U,V,W) =

(1,1,1).

5 DISCUSSION

5.1 Timestamp Coherence Protocols and STC

STC differs substantially from related prior work in timestamp-based coherence protocols [42, 46,

51, 53, 58]. The timestamp-based coherence protocols avoid invalidationmessages by getting a time

lease on an address and self-invalidating them after the time lease has expired. These protocols

still follow the idea of an exclusive modifier or single writer for an address. The logical timestamp

versions of these protocols also enforce the single-writer property, although in logical time. Thus,

these timestamp-based protocols also grant processor-centric write permissions. STC does not

grant write permission to a processor but to an epoch.

Moreover, storing time lease information as metadata in every cache block consumes space in

both the private and shared caches [42, 51, 53, 58]. STC does not require cache blocks to store

their lease information or any other metadata in their caches or controllers. Thus, STC is stateless

whereas timestamp-based protocols are not.

Additionally, since these protocols need to store the timestamp metadata of all cache blocks

in a shared cache, the shared cache is forced to be designed as an inclusive cache [51]. Since the

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

33:14 S. Puthoor and M. H. Lipasti

Table 2. Comparison of STC with Other Protocols

Software

assisted

Need exclusive

write permission
Metadata overhead Scalability Write atomicity

GPUIn [25, 51]

Coherence by invalidation messages
No Yes No

No

(invalidation messages)
Yes

TC [51]

Temoporal coherence
No Yes

Yes

(timestamp)

No/Limited

(inclusive cache)

Yes

(in the strong version)

RCC [42]

Relativistic coherence
No

Yes

(in logical time)

Yes

(timestamp)

Limited

(untracked blocks)
Yes

GTSC [53]

Global timestamp coherence
No

Yes

(in logical time)

Yes

(timestamp)

Limited

(untracked blocks)

Yes

(in the strong version)

SRC [5, 23, 25, 39]

Release consistency managed caches
Yes No No Yes No

STC

Spatiotemporal coherence
No No No Yes Yes

size of an inclusive cache increases with the number of private caches, an inclusive cache is not

scalable. Also, inclusive caches face the challenge of cache evictions. Since the timestamp-based

protocols do not employ recall messages to solve the shared inclusive cache eviction challenge,

they resort to the use of MSHRs to store the lease information of the evicted blocks [51]. This again

leads to scalability challenges, because the MSHR demand will increase, perhaps dramatically. An

alternate solution is to use a non-inclusive cache and then keep a single lease information for

all the untracked cache blocks [42, 53]. However, this solution is not scalable either, because as

the number of private caches increases, the fraction of tracked cache blocks decreases in the non-

inclusive cache. Since all the untracked cache blocks now share the longest lease among them, a

modifying processor will be forced to advance its current logical time beyond this long lease time

resulting in lease expiry induced invalidations of cache blocks in its private cache.

Table 2 compares STC with some of the GPU protocols proposed in the past [25, 42, 51, 53].

The GPUIn is an invalidation-based GPU protocol that propagates a new write by invalidation

messages [25, 51]. This is not a protocol optimized for GPUs [25, 51] but added to this comparison

to highlight the characteristics of an invalidation-based protocol. RCC is the relativistic coherence

proposed by Ren and Lis [42], GTSC is the coherence protocol for GPUs proposed by Tabbakh et al.

[53] and temporal coherence (TC) is the coherence protocol proposed by Singh et al. [51]. All

these protocols build on top of the timestamp-based coherence with the former two using logical

timestamps proposed by Yu and Devadas [58]. The SRC is our baseline protocol with RC-managed

caches and used in many previous studies [5, 23, 25, 39].

The GPUIn approach is not scalable because of the need for invalidation messages for every

write and hence cannot be employed in a GPU. The timestamp-based coherence protocols provide

write atomicity and avoid invalidationmessages. Hence, scalability of these protocols is better than

the GPUIn protocol. However, the need for a large inclusive cache to store lease information or

the increasing number of untracked blocks with a non-inclusive cache limits their scalability. They

also have the additional storage overhead of tracking the lease information of every cache line in

the metadata of a cache. SRC is scalable but requires software assistance and cannot provide write

atomicity. STC is scalable and provides write atomicity without software assistance and without

incurring metadata overhead.

5.2 Global Ordering with STC

Global ordering is dictated by a directory in traditional protocols. The directory serves as the order-

ing point for coherence requests. However, since coherence messages are completely eliminated

in STC, an explicit ordering point like a directory or snooping bus is not necessary. An ordering

point is needed when the processors do not have any agreement on the modifying addresses and

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

Turn-based Spatiotemporal Coherence for GPUs 33:15

the time of modification. With epochs and bands, the processors have mutually agreed upon the

time and addresses they are modifying. As such, the only requirement is to synchronize epochs

across all processors. This synchronization is the only purpose of EMU. Hence, EMU is not an

ordering point.

5.3 Programmability of RC

Weak models are difficult to program and verify [2, 3, 11, 16–18, 26, 47, 48, 60, 61]. They rely on

programmers to explicitly insert synchronization primitives to initiate communication. However,

there are testimony from programmers about their struggles with relaxedmodel’s synchronization

primitives, including spending days trying to get code with just 2 addresses and 4 accesses to

work [48].

The heterogeneous-race-free (HRF) model [27] of today’s GPUs not only asks the program-

mer to initiate the communication but also to specify the communication scope. Scopes are essen-

tial for faster synchronization operations in a GPU. Today, these scopes are defined in terms of GPU

execution hierarchy. However, recent works on GPU initiated networking [32] and fine-grained

task scheduling [36] employ the command processor (CP) [7] (traditionally used for launching

work on GPU) as a compute element in a GPU, making it difficult to define precise scopes, because

CP threads are not part of the GPU execution hierarchy. A detailed discussion on this can be found

elsewhere [40].

A strong model avoids all the above mentioned issues in a GPU. However, strong models require

implicit coherence support and traditional hardware coherence mechanisms are not suitable for

GPUs [51]. STC provides such implicit coherence support with low implementation and verifica-

tion overhead.

5.4 Applicability of STC

STC allows writes only in their corresponding epochs and hence will delay write completion.

While this is acceptable for latency tolerant GPUs, this may not be acceptable for latency sen-

sitive CPUs. Hence, STC is better suited for GPUs. Among GPU applications, STC is generally

suited for applications with sparse writes (write overhead from STC will not be pronounced) and

high read locality (taking advantage of STC’s invalidation-free acquire operation). Based on these

observations, we list few GPU applications that are better suited for STC and few others that are

less suited for STC.

Applications Better Suited for STC: Applications with back-to-back kernel launches and

with read-data reuse across these kernels can benefit from STC. The baseline GPU invalidates the

private caches at the beginning of every kernel launch (acquire operation), but the STC caches pro-

vide invalidation-free acquire operations thus allowing caching of data across kernel launches and

consequently increasing the private cache hit rate. This scenario is observed in snapc application

and is discussed in the result section. Also, task-parallel applications are a class of emerging GPU

applications from the high-performance computing (HPC) domain that launches GPU kernels

as dependent tasks and these applications, because of their high data reuse across kernels, can get

benefited from STC [13, 14, 38, 41, 56].

Applications Less Suited for STC: One of the limitation of STC as compared to the baseline

RC coherence is its inability to avoid coherence overhead for private data. In a GPU, the compiler

produces spills to private segment when the data set cannot fit into the available registers. Spills

may also be generated by a compiler for increasing theGPU occupancy by reducing per-workgroup

register pressure. Irrespective of the reason for spills, STC may not be well-suited for applications

with large amount of spills (private data). However, STC can leverage some of the classification

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

33:16 S. Puthoor and M. H. Lipasti

from prior work [12, 24, 49, 50] and allow the private data writes to complete without waiting for

their epoch. This optimization is left for future work.

STC is generally not expected to performwell on applicationswith fine-grained synchronization

and heavy data sharing. The write updates to the synchronization variables and shared data sets

will be slow with STC. However, even the RC baseline performs poorly with data sharing because

of the frequent synchronizations with acquire-release operations. Additionally, the STC’s multi-

band optimization can grant epochs for the synchronization variable and shared data structure

simultaneously enabling faster write completion. Thus, STC can perform better than the baseline

for fine-grained data sharing workloads as observed with the fg-share benchmark (discussed in

the result section). Additionally, STC may not perform well for write-intensive workloads. For ex-

ample, vector copy workload that copies one buffer to another observed a performance drop with

STC (vec-cpy workload is discussed in the result section).

5.5 Suppressing the Acquire Operation

STC benefits from invalidation-free acquire operation for benchmarks with read-data reuse across

kernel invocations. STC achieves this by avoiding caching of stale data in private caches thus

making cache invalidation unnecessary during an acquire operation. The RC managed private

caches cache both modified (by a peer core) and unmodified data. An acquire operation is needed

only to invalidate the modified data and the baseline can get away by suppressing the acquire

operation if there is a way to ensure the private cache is only caching unmodified data. But dis-

tinguishing between the modified and unmodified data is difficult. Hence the baseline resorts

to the entire cache invalidation. There are mechanisms like Denovo protocol [21] that identify

read-only regions similar to STC but with the help of software assistance and/or programmer in-

serted hints. Such models either put the onus on the programmer to annotate the access type of a

data region and/or add constraints to the model such as data-race-freedom for their correct oper-

ation. STC’s invalidation-free acquire operation ensures correct operation without software assis-

tance, without relying on programmer inserted hints and without imposing any constraints on the

model.

5.6 Address Bands

In our implementation, all addresses with the same contiguous N-bits starting from the SEB are

grouped to the same band. However, it should be noted that the address to band mapping can

be implemented in multiple ways with several other hashing schemes to map an address to a

band including software/programmer defined address to band mapping. We are employing a sim-

ple hardware-only contiguous N-bit address to band mapping scheme. This will result in non-

contiguous addresses grouped together to the same band. Although adaptive band optimization

tries to minimize addresses with dissimilar read-write characteristics from being grouped in to

the same band, there may be situations where adaptive band optimization could not separate ad-

dresses with dissimilar characteristics because of this address to band mapping scheme. Such situ-

ations may impact the performance but functional correctness is still ensured by the STC’s epoch

rules.

Also, since the epochs are granted in a round robin fashion, the bands are givenwrite permission

in ascending order (i.e., band-0, band-1, . . . ,band-N). This may also result in performance degrada-

tion if the cores write to these bands in a different order. However, epoch skipping optimization

mitigates this issue by granting epochs to bands with pending write requests. This issue can be

mitigated further by exposing the bands to the programmer. A programmer can then optimize a

code’s access pattern for band locality—that is consecutive accesses are issued to the same band—

for additional performance benefits. This optimization is left for future work.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

Turn-based Spatiotemporal Coherence for GPUs 33:17

Table 3. Simulation Parameters

GPU CUs and Clock 8 CUs @ 1 GHz

GPU L1 D-Cache 64 KB (64-way associative)

GPU L1 I-Cache 16 KB (16-way associative)

GPU Shared L2 Cache 512 KB (16-way associative)

GPU L2 Latency 160 GPU cycles roundtrip

GPU Memory Latency 260 GPU cycles roundtrip

Number of Epochs 16 (N = 4 bits)

EMU Clock 2 GHz

EMU Wakeup Cycles 100 GPU cycles

Default SEB 12

BSQ (and coalescing buffer) 256 entries

6 METHODOLOGY

Simulator:We used the gem5 GPU simulator [23] that simulates the GCN3 ISA [7]. The simulated

GPU has 8 CUs and each CU hosts a 64 KB private L1 data cache. The 16 KB instruction cache is

shared by 4 CUs and the 512KB L2 cache is shared by all CUs. This cache hierarchy is modeled in

Ruby [34]. Table 3 lists the remaining simulation parameters.

The baseline GPU is discussed in Section 4.1 and is extensively used in many previous studies [5,

23, 25, 37]. We implemented STC on this baseline GPU and evaluated STC against it. We evaluated

four versions of STC:

(1) STC-NV: Naive STC implementation without any optimizations.

(2) STC-ES: STC with epoch skipping optimization.

(3) STC-AB: STC-ES with adaptive band optimization.

(4) STC-MB: STC-AB with multiband optimization. In our implementation, we allowed up to 4

simultaneous bands.

Additionally, we also compare STC against the temporal coherence proposed in the prior work [51].

We also evaluated a cacheless baseline (disabling L1 but keeping L2), but it performed so poorly for

some benchmarks (up to 62.13% slower), we decided to instead baseline against a realistic current-

generation design [5, 23, 25, 37].

The EMU in our STC implementation wakes up every 100 cycles and changes the epoch. We

simulate STC with 16 epochs (4 bits to identify a band/epoch, that is N = 4). The default SEB is 12.

The SEB ismodified dynamically by the adaptive band optimization. However, since 12 bits indicate

the page boundary and 32 bits (4 GB) is the maximum addressable physical memory available in

some GPUs, we decided to limit the SEB in the range of 12 to 32.

Workloads:We evaluated STC with benchmarks from AMD Compute App [9], HCC Example

App [8], Rodinia [20] and Pannotia benchmark suites [19]. We also developed a fine-grain data

sharing benchmark (fg-share) in which all workgroups (thread blocks in CUDA) attempt to enter

a critical section, and then read and update a shared data structure in place, emulating a central-

ized ledger update. With the workgroups contending to enter into the mutually exclusive critical

section implemented with atomic compare-and-swap, and with in-place updates, this benchmark

significantly pressurizes the coherence mechanism. We also evaluated a cache-reuse benchmark

that launches 10 kernels with each kernel reading the same read-only array and updating a second

array. Additionally, a write-intensive vector copy (vec-cpy) benchmark that copies a buffer to

another is also evaluated.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

33:18 S. Puthoor and M. H. Lipasti

Fig. 8. GPU execution time normalized to the baseline.

7 RESULTS

7.1 Execution Time

Figure 8 shows the GPU execution time of benchmarks normalized to the baseline. It can be seen

that the unoptimized STC (STC-NV) performed significantly worse than the baseline with the

mean runtime increasing by as much as 39.04% across all evaluated benchmarks. However, the

epoch skipping optimization alone regained most of the lost performance and STC-ES was only

12.29% slower than the baseline. STC-AB further brought down the performance penalty to 2.93%.

However, the full optimization enabled STC-MB improved the performance by 1.63% compared to

the baseline.

STC-NV blocks the writes and invalidates the caches during every epoch. Additionally, the av-

erage time to change an epoch was observed to be 36 cycles (including time for the four-way

handshake), and writes are blocked during this epoch transition as well. All of these contributed

to the execution slow down. STC-ES filters out the epochs without any write requests and miti-

gates both these problems, thus improving performance. The reduction in the number of epoch

transitions as compared to STC-NV is shown in Figure 10. Both STC-ES and STC-AB observed

extreme reductions in the number of epoch transitions. With epoch skipping optimization, both

STC-ES and STC-AB only transition to epochs that havewrites pending to them and this eliminates

unnecessary epoch transitions. Figure 10 also shows that the STC-AB optimization reduces epoch

transitions by three orders of magnitude, which is also reflected in the execution time reduction

shown in Figure 8.

Figure 9 shows the L1 hit rate of the baseline compared to the STC-AB. That figure also shows

the hit rate after disabling the acquire operation. The benchmarks that show increased hit rate

without acquire operation have read data reuse across kernel launches and can potentially benefit

from STC’s acquire-less operation. From that figure, lulesh, hpgmg, snapc, bc, and cache-reuse

exhibit this behavior. For these benchmarks, it can be seen that STC-AB improved the hit rate

compared to the baseline.

Figure 9 also shows that STC-AB restored the hit rate to baseline levels for most benchmarks.

However, the performance (Figure 8) was still behind the baseline. This suggests that the cache hit

rate has little impact on the performance degradation and the impact wasmainly caused by blocked

writes as opposed to cache invalidations in an epoch. We mitigated this issue with the STC-MB

optimization by allowing concurrent writes from multiple bands, reducing the number of blocked

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

Turn-based Spatiotemporal Coherence for GPUs 33:19

Fig. 9. GPU L1 cache hit rate.

writes waiting on their epoch. This directly translated to performance as seen in Figure 8.With this

final optimization applied, STC-MB achieved 1.63% speedup over the baseline across all evaluated

workloads. More significantly, the benchmarks with increased cache hit rate (lulesh, hpgmg, snapc,

bc, cache-reuse) because of data reuse across kernels observed a geomean speedup of 7.13%. Next,

we delve deeper into the performance of a few benchmarks.

snapc, lulesh: The computation progresses in time steps in snapc, with multiple kernels

(2,992 kernels) launched to complete a time step. Similarly, lulesh launches 3,380 kernels. However,

many of these kernels have read data reuse. Since the baseline GPU employs software-managed

cache coherence, the caches are invalidated at every kernel boundary (acquire operation at the

beginning of a kernel) and the baseline cannot take advantage of this reuse. Thus, STC achieves a

higher cache hit rate and better performance for these benchmarks.

fg-share, hpgmg: fg-share uses atomic operations to synchronize the workgroups that are

contending to enter into the critical section. Inside the critical section, each workgroup reads the

updates from the previous workgroup and then modifies them. Since the shared data structure is

updated in place, the read and write datasets are not separate. Consequently, the STC-AB could not

identify a read-only dataset and performed similar to the STC-ES (Figure 8). The performance loss

can be attributed to the write propagation delay of the atomic synchronization. This synchroniza-

tion has to wait for its turn behind the shared data structure’s epoch. But with STC-MB granting

epochs for synchronization variable and shared data structure simultaneously, STC achieved 4.75%

speedup against the baseline.

The read-modify-write access pattern of the shared data structure does not provide any caching

benefit (Figure 9). However, the baseline allocates these loads in the caches, creating alloca-

tion/deallocation overhead (tag array lookup and associated port/bank conflicts, data allocation

overhead including data array port/bank conflicts, eviction overhead) and thus delaying the load

completion [29, 54]. STC-MB issues these loads as uncached, thus completely bypassing the cache

(after all cache sets are accessed once for lazy invalidation mechanism, Section 4.2). Thus, loads

are completed faster with STC-MB, resulting in speedup against the baseline.

hpgmg benefited from both read-data reuse across kernel launches as seen from its improved

hit rate (Figure 9) and also from issuing 33.75% loads as uncached similar to fg-share.

vec-cpy: Each work-item in a vector copy benchmark copies one data element from a source

to a destination buffer. This presents a pathological case for STC, because the compute to memory

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

33:20 S. Puthoor and M. H. Lipasti

Fig. 10. Decrease in the number of epoch transitions compared to STC-NV.

ratio is low, and the GPU has less opportunity to overlap long-latency memory accesses with

work. Since simultaneous writes from multiple work-items across the GPU result in writes to

multiple epochs at all times, epoch skipping could not find many epochs to skip as observed from

a large number of epoch changes by STC-ES in Figure 10. Consequently, STC-ES performed poorly

(Figure 8). However, the adaptive band optimization could take advantage of the read-only source

and write-only destination buffers, thus regaining most of the lost performance (within 11.1% of

baseline). STC-MB further improved the performance to within 1.3% of the baseline even for this

pathological benchmark.

To summarize, the take away is that STC provides performance gains to read-data reuse kernels

without negatively impacting the performance of other kernels. It should be noted that the main

objective of STC is to simplify the hardware-only coherence mechanism in a GPU while provid-

ing comparable performance to that of a software-managed coherence mechanism, and STC has

achieved this objective.

7.2 Sensitivity Analysis

Sensitivity to Epoch Configurations and Cache Size: We experimented with 50-, 100-, 150-,

300-, and 450-cycle epochs, and the performance varied by 3%. The best performing 100-cycle

epoch was used for our evaluations as mentioned in Table 3. The epoch duration primarily impacts

the latency of the stores blocked by STC. Store completion delay can stall a wavefront if either

(a) dependent reads are delayed because of pending older writes or (b) wavefront is waiting on

a release operation. Even stalling one wavefront will not impact performance, because the GPU

pipeline has the ability to switch execution to the next ready wavefront. Because of these GPU

characteristics, store latency, and consequently epoch cycle duration had little impact on the GPU

performance. Also, we ran experiments with 8, 16, and 32 epochs, and the performance variation

was less than 2%. With 16 kB private cache, STC outperformed the baseline by 1.97%.

Sensitivity to BSQ Size: The max occupancy of the 256-entry BSQ was found to be between

5 and 250 entries and the mean occupancy was between 0.5 and 102 entries for the evaluated

benchmarks. The 16-banked BSQ is capable of draining up to 32 entries in 1 cycle (2 entries drained

per bank per cycle, 8 cycles for draining all 256 entries) and most of the benchmarks (14 of 16) have

a mean occupancy of less than 32. Thus, these benchmarks were able to cycle through the BSQ in 1

cycle on average. Even for the benchmark with a mean occupancy of 102 entries (fft), the draining

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

Turn-based Spatiotemporal Coherence for GPUs 33:21

Fig. 11. STC bandwidth consumption compared to the baseline.

overhead was 4 cycles, indicating that draining BSQ is not a bottleneck during epoch transitions.

Additionally, only entries to the current epoch are issued to the cache. Thus, the issue rate to cache

is much less.

We compared the performance of benchmarks for BSQ sizes ranging from 64 entries to the base-

line 256 entries. The performance was relatively insensitive to BSQ size with the geomean across

all benchmarks comparable to the 256-entry baseline. As mentioned earlier, 14 of 16 benchmarks

only had a mean BSQ occupancy of less than 32 entries and hence the benchmarks remained

insensitive to the evaluated BSQ sizes. A BSQ size of less than 32 entries could have made a perfor-

mance impact. However, the evaluated GPU has a 64 thread wavefront and hence the BSQ must

have atleast 64 entries to accommodate up to 64 uncoalesced stores originating from the same

wavefront instruction.

7.3 Bandwidth and Hardware Cost

Figure 11 shows the increase in bandwidth consumption due to epoch requests. STC-NV consumes

significant bandwidth, because it changes the epochs even when the GPU is idle (e.g., between

two kernel launches). The figure also shows the bandwidth consumption of STC-ES and STC-AB.

With STC-ES, epochs are changed only when the GPU demands an epoch and hence the epoch

change is naturally stopped when the GPU is inactive, resulting in the reduction of bandwidth.

STC-AB further reduces the epoch transitions by changing the bands to epoch mapping. As such,

the GPU bandwidth increased by only 0.43%, despite these optimizations sending additional mes-

sages. Hence, the impact of the optimized STC implementations on bandwidth can be considered

a nonissue.

The bandwidth cost of a purely hardware-based implementation for a similar set of benchmarks

(8 of the 16 benchmarks are common) is discussed in prior work [40]. Compared to the 17% increase

in GPU bandwidth reported there, STC is far better with only 0.43% increase in bandwidth con-

sumption over the baseline.

STC’s low bandwidth consumption even for fine-grained data sharing benchmarks can be ex-

plained by a comparison of its operation to a traditional coherence protocol. Suppose few cores

are performing a producer-consumer data sharing via a data structure. In a traditional protocol,

the modifying cores send write requests to the directory, the directory then sends invalidations

to the sharers and the owners forwards the latest data along with exclusive permissions to the

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

33:22 S. Puthoor and M. H. Lipasti

Table 4. Hardware Cost

EMU

4-bit epoch and 8-bit wakeup counters

16-entry ERV (33 bits per entry)

16-entry ETV (1 bit per entry)

BSQ 1 per CU, 256-entry, 32 bits per entry

requestors. This sequence is performed for every single address being modified in that data struc-

ture and most importantly repeats for every single producer-consumer exchange. With STC, an

epoch or few epochs (if the entire data structure cannot be grouped into the same band) are granted

to this data structure in response to epoch request(s), and the producer-consumer exchange can

continue without any further coherence messages. With multiband optimization, the epoch(s) to

this data structure can be always granted and these cores can perform repeated producer-consumer

exchanges without issuing any further coherence messages for all addresses in that data structure.

This is the reason STC’s bandwidth overhead was only 0.43% even with fine-grain data sharing

benchmarks (fg-share, bc), and coarse-grain data sharing benchmarks (snapc, fw, mis).

Table 4 lists the hardware cost for implementing the optimized STC-AB protocol with 16 epochs

and the EMU waking up every 100 cycles. It can be seen from the table that the hardware cost of

implementing the EMU is negligible.

7.4 Scalability

Figure 12 shows the performance of benchmarks for 8, 16, and 32 CUs normalized to their re-

spective baselines. The geomean1 reports the mean performance across all evaluated benchmarks

whereas geomean2 reports the mean performance of STC friendly benchmarks with data reuse

across kernels (lulesh, hpgmg, snapc, bc). Themean performancewas observed to be relatively sim-

ilar across configurations with different numbers of CUs. However, benchmarks like nn, dgemm

and vector-copy observed a performance slowdown due to the increase in the epoch synchroniza-

tion overhead (increased from 36 GPU cycles with 8 CUs to 79 GPU cycles with 32 CUs at steady

state after the read-only bands are separated by the adaptive band optimization). The STC friendly

benchmarks still observed performance benefits across the range, because they were able to ex-

ploit STC’s caching benefits and nullify the negative impact of the higher epoch synchronization

overhead. Thus, it can be concluded that STC scales well for workloads with read-data reuse across

kernels. The two benchmarks fg-share and cache-reuse did not have enough workgroups to scale

to 32 CUs with the same occupancy (number of wavefronts simultaneously active on a CU) as the

baseline. Running GPU with a lower occupancy will hamper its ability to hide memory latency

and hence these benchmarks are omitted from the results. In summary, since the epoch synchro-

nization overhead increases with CUs in general, STC is better suited for small GPUs with limited

numbers of CUs such as the ones used in embedded platforms and mobile SoCs.

7.5 Comparison with Prior Work

We compared STC with the strong variant of the timestamp-based temporal coherence protocol

(temporal coherence strong - TCS) [51], because it also provides write-atomicity similar to STC.

Across all evaluated benchmarks, the TCS was slower than the STC by 3.46%. Although both STC

and TCS avoid invalidation messages, TCS’s exclusive modifier requirement delays a write till the

global lease on a block expires. This makes the TCS slower than STC, especially for fine-grain data

sharing operations.

While performance advantage is not significant, STC has storage overhead and hardware com-

plexity advantages. TCS requires every cache block to store additional 32-bit lease information.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

Turn-based Spatiotemporal Coherence for GPUs 33:23

Fig. 12. Scalability.

Additionally, to store the lease information of evicted blocks from the shared L2, the TCS employs

MSHRs (we used 128-entry MSHRs per L2 bank). Thus, for the simulated system with 8,192 (8 CUs

and 1,024 cache blocks per CU) cache blocks in both GPU L1 and L2, and with 512 MSHR entries

across four L2 banks, the TCS requires 66 kB of storage to store lease information whereas STC

requires only 8 kB additional storage for its BSQs (8 BSQs and 256 32-bit entries per BSQ). The

MSHRs not only add storage overhead but these associatively looked-up structures are difficult

and costly to implement beyond a few entries [37, 39]. STC does not require metadata storage

and associative structures for its implementation. Additionally, TCS sends 32-bit timestamp infor-

mation with every read request resulting in a bandwidth increase of 3.57% whereas STC’s epoch

requests increased it by only 0.43% across all evaluated benchmarks.

8 RELATEDWORK

The reduction of coherence traffic in GPUs has been the subject of many studies in the past [5, 12,

25, 37, 42, 51, 53]. Prior work has also explored coherence across multiple GPUs [43, 57]. Power

et al. and Basu et al. proposed tracking addresses at larger granularities called regions to reduce

the number of invalidation messages [12, 37]. Both these techniques track coherence permissions

over a larger region granularity. STC bands are different from regions in three ways: (a) regions

track coherence permissions whereas bands do not, (b) regions are modified by processors with

exclusive/private permissions but STC bands are modified exclusively in its epoch (processor ver-

sus epoch centric write permissions), and (c) regions are contiguous addresses whereas grouping

addresses into a band is entirely implementation-specific. Denovo protocol [21] also identifies read-

only regions similar to STC but STC does it without any software assistance. Sinclair et al. provided

a taxonomy of commonly used CPU/GPU coherence protocols based on (a) invalidation initiator,

and (b) tracking up-to-date copy of the data [47]. Since invalidation initiator is an epoch in STC

and the up-to-date copy is maintained by write-through operation, STC differentiates itself from

those protocols. Finally, Alisafaee proposed Spatiotemporal Coherence Tracking directory [4] that

tracks private data at region granularity. However, this proposal is an efficient directory design to

reduce the directory capacity, not a coherence protocol.

The timestamp-based coherence protocols [42, 51, 53, 59] eliminate invalidation messages by

self-invalidation based on expiring time lease. Although this method eliminates invalidation traffic,

it suffers from scalability and storage overheads as previously discussed in Section 5. STC does

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

33:24 S. Puthoor and M. H. Lipasti

not have these drawbacks. Finally, the Racer protocol by Ros and Kaxiras provides store atomicity

without invalidations and per-processor write permission [44]. Racer achieves this by dynamically

detecting read-after-write data races and self invalidating the racing reader’s cache on a data race.

STC avoids the need for dynamic race detection and self invalidation by restricting writes to an

epoch and making the potentially modifiable data non-cacheable in private caches.

STC simplifies the coherence mechanism by establishing a mutual agreement among all the

processors about the modification of addresses. Ros and Kaxiras also leveraged a similar concept

for non-speculative store coalescing without deadlocks [45]. The globally agreed lexicographical

order for acquiring cache permissions prevents cyclic cache permission dependencies making the

implementation deadlock-free. Ibrahim et al. [28] proposed a shared L1 architecture for GPUs that

obviates the need for coherence among the L1-sharer CUs. However, when such a system scales

with shared L1 clusters, the STC can provide coherence across these clusters with negligible hard-

ware cost.

9 CONCLUSION

We introduce turn-based STC in this article. STC grants modification rights to an address to epochs

as opposed to processor cores. This novel way of assigning write permissions enables STC to

behave like traditional hardware cache coherence but with negligible coherence traffic. Evaluation

of our implementation of optimized STC shows that our implementation improves performance

compared to the baseline GPU RC coherence while providing write atomicity, without needing

any software assistance.

ACKNOWLEDGMENTS

AMD, the AMDArrow logo, and combinations thereof are trademarks of Advanced Micro Devices,

Inc. Other product names used in this publication are for identification purposes only and may be

trademarks of their respective companies.

REFERENCES

[1] Sarita V. Adve and Kourosh Gharachorloo. 1996. Shared memory consistency models: A tutorial. Computer 29, 12 (Dec.

1996), 66–76. https://doi.org/10.1109/2.546611

[2] Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig. 2012. Software verification for weak memory

via program transformation. Retrieved from http://arxiv.org/abs/1207.7264.

[3] Jade Alglave and Luc Maranget. 2011. Stability in weak memory models. In Proceedings of the 23rd International Con-

ference on Computer Aided Verification (CAV’11).

[4] M. Alisafaee. 2012. Spatiotemporal coherence tracking. In Proceedings of the 45th Annual IEEE/ACM International

Symposium on Microarchitecture. 341–350.

[5] Johnathan Alsop, Marc S. Orr, Bradford M. Beckmann, and David A. Wood. 2016. Lazy release consistency for GPUs.

In Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’16). IEEE Press,

Piscataway, NJ, Article 26, 13 pages. Retrieved from http://dl.acm.org/citation.cfm?id=3195638.3195669.

[6] AMD. 2012. AMD Graphics Cores Next (GCN) Architecture. Retrieved from https://goo.gl/GPvy8R.

[7] AMD. 2016. AMDGCN3 ISA Architecture Manual. Retrieved from https://gpuopen.com/compute-product/amd-gcn3-

isa-architecture-manual.

[8] AMD. 2016. HCC Example Apps. Retrieved from https://github.com/ROCm-Developer-Tools/HCC-Example-

Application.

[9] AMD. 2019. Compute Apps. Retrieved from https://github.com/AMDComputeLibraries/ComputeApps.

[10] AMD. 2019. User Guide for AMDGPU Backend. Retrieved from https://llvm.org/docs/AMDGPUUsage.html.

[11] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal Musuvathi. 2010. On the verification

problem for weak memory models. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL’10). ACM, New York, NY, 7–18. https://doi.org/10.1145/1706299.1706303

[12] Arkaprava Basu, Sooraj Puthoor, Shuai Che, and Bradford M. Beckmann. 2016. Software assisted hardware cache

coherence for heterogeneous processors. In Proceedings of the Second International Symposium on Memory Systems

(MEMSYS’16). ACM, New York, NY, 279–288. https://doi.org/10.1145/2989081.2989092

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

https://doi.org/10.1109/2.546611
http://arxiv.org/abs/1207.7264
http://dl.acm.org/citation.cfm?id=3195638.3195669
https://goo.gl/GPvy8R
https://gpuopen.com/compute-product/amd-gcn3-isa-architecture-manual
https://github.com/ROCm-Developer-Tools/HCC-Example-Application
https://github.com/AMDComputeLibraries/ComputeApps
https://llvm.org/docs/AMDGPUUsage.html
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1145/2989081.2989092

Turn-based Spatiotemporal Coherence for GPUs 33:25

[13] Mehmet E. Belviranli, Seyong Lee, Jeffrey S. Vetter, and Laxmi N. Bhuyan. 2018. Juggler: A dependence-aware task-

based execution framework for GPUs. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming (PPoPP’18). ACM, New York, NY, 54–67. https://doi.org/10.1145/3178487.3178492

[14] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and J. Dongarra. 2011. DAGuE: A generic distributed

DAG engine for high-performance computing. In Proceedings of the IEEE International Symposium on Parallel and

Distributed Processing Workshops and PhD Forum. 1151–1158. https://doi.org/10.1109/IPDPS.2011.281

[15] D. Bouvier and B. Sander. 2014. Applying AMD’s kaveri APU for heterogeneous computing. In Proceedings of the IEEE

Hot Chips 26 Symposium (HCS’14).

[16] Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. 2007. CheckFence: Checking consistency of concurrent

data types on relaxed memory models. In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI’07). ACM, New York, NY, 12–21. https://doi.org/10.1145/1250734.1250737

[17] Sebastian Burckhardt and Madanlal Musuvathi. 2008. Effective program verification for relaxed memory models. In

Proceedings of the 20th International Conference on Computer Aided Verification (CAV’08). Springer-Verlag, Berlin, 107–

120. https://doi.org/10.1007/978-3-540-70545-1_12

[18] Jacob Burnim, Koushik Sen, and Christos Stergiou. 2011. Testing concurrent programs on relaxed memory models. In

Proceedings of the International Symposium on Software Testing and Analysis (ISSTA’11). ACM, New York, NY, 122–132.

https://doi.org/10.1145/2001420.2001436

[19] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron. 2013. Pannotia: Understanding irregular GPGPU graph

applications. In Proceedings of the IEEE International Symposium on Workload Characterization (IISWC’13).

[20] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009.

Rodinia: A benchmark suite for heterogeneous computing. In Proceedings of the IEEE International Symposium on

Workload Characterization (IISWC’09).

[21] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V. Adve, V. S. Adve, N. P. Carter, and C. Chou. 2011.

DeNovo: Rethinking the memory hierarchy for disciplined parallelism. In Proceedings of the International Conference

on Parallel Architectures and Compilation Techniques. 155–166.

[22] HSA Foundation. 2016. HSA platform system architecture specification 1.1. Retrieved from http://www.hsafoundation.

com/?ddownload=5114.

[23] A. Gutierrez, B. M. Beckmann, A. Dutu, J. Gross, M. LeBeane, J. Kalamatianos, O. Kayiran, M. Poremba, B. Potter, S.

Puthoor, M. D. Sinclair, M. Wyse, J. Yin, X. Zhang, A. Jain, and T. Rogers. 2018. Lost in abstraction: Pitfalls of analyzing

GPUs at the intermediate language level. In Proceedings of the IEEE International Symposium on High Performance

Computer Architecture (HPCA’18). 608–619. https://doi.org/10.1109/HPCA.2018.00058

[24] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ailamaki. 2009. Reactive NUCA: Near-optimal

block placement and replication in distributed caches. In Proceedings of the 36th Annual International Symposium on

Computer Architecture (ISCA’09). ACM, New York, NY, 184–195. https://doi.org/10.1145/1555754.1555779

[25] B. A. Hechtman, S. Che, D. R. Hower, Y. Tian, B. M. Beckmann, M. D. Hill, S. K. Reinhardt, and D. A. Wood. 2014.

QuickRelease: A throughput-oriented approach to release consistency on GPUs. In Proceedings of the IEEE 20th Inter-

national Symposium on High Performance Computer Architecture (HPCA’14). 189–200. https://doi.org/10.1109/HPCA.

2014.6835930

[26] Mark D. Hill. 1998. Multiprocessors should support simple memory-consistency models. Computer 31, 8 (Aug. 1998),

28–34. https://doi.org/10.1109/2.707614

[27] Derek R. Hower, Blake A. Hechtman, Bradford M. Beckmann, Benedict R. Gaster, Mark D. Hill, Steven K. Reinhardt,

andDavid A.Wood. 2014. Heterogeneous-race-freememorymodels. In Proceedings of the 19th International Conference

on Architectural Support for Programming Languages and Operating Systems (ASPLOS’14). ACM, New York, NY, 427–

440. https://doi.org/10.1145/2541940.2541981

[28] Mohamed Assem Ibrahim, Onur Kayiran, Yasuko Eckert, Gabriel H. Loh, and Adwait Jog. 2020. Analyzing and lever-

aging shared L1 caches in GPUs. In Proceedings of the ACM International Conference on Parallel Architectures and

Compilation Techniques (PACT’20). Association for Computing Machinery, New York, NY, 161–173. https://doi.org/10.

1145/3410463.3414623

[29] Wenhao Jia, Kelly A. Shaw, and Margaret Martonosi. 2014. MRPB: Memory request prioritization for massively par-

allel processors. In Proceedings of the IEEE 20th International Symposium on High Performance Computer Architecture

(HPCA’14). 272–283. https://doi.org/10.1109/HPCA.2014.6835938

[30] Mahmoud Khairy, Mohamed Zahran, and Amr G. Wassal. 2015. Efficient utilization of GPGPU cache hierarchy. In

Proceedings of the 8th Workshop on General Purpose Processing Using GPUs (GPGPU’15). ACM, New York, NY, 36–47.

https://doi.org/10.1145/2716282.2716291

[31] G. Krishnan, D. Bouvier, and S. Naffziger. 2016. Energy-efficient graphics andmultimedia in 28-nmCarrizo accelerated

processing unit. IEEE Micro 36, 2 (2016), 22–33.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

https://doi.org/10.1145/3178487.3178492
https://doi.org/10.1109/IPDPS.2011.281
https://doi.org/10.1145/1250734.1250737
https://doi.org/10.1007/978-3-540-70545-1_12
https://doi.org/10.1145/2001420.2001436
http://www.hsafoundation.com/?ddownload=5114
https://doi.org/10.1109/HPCA.2018.00058
https://doi.org/10.1145/1555754.1555779
https://doi.org/10.1109/HPCA.2014.6835930
https://doi.org/10.1109/2.707614
https://doi.org/10.1145/2541940.2541981
https://doi.org/10.1145/3410463.3414623
https://doi.org/10.1109/HPCA.2014.6835938
https://doi.org/10.1145/2716282.2716291

33:26 S. Puthoor and M. H. Lipasti

[32] Michael LeBeane, Khaled Hamidouche, Brad Benton, Mauricio Breternitz, Steven K. Reinhardt, and Lizy K. John. 2018.

ComP-net: Command processor networking for efficient intra-kernel communications on GPUs. In Proceedings of the

27th International Conference on Parallel Architectures and Compilation Techniques (PACT’18). ACM, New York, NY,

Article 29, 13 pages. https://doi.org/10.1145/3243176.3243179

[33] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung Kim, TorM. Aamodt, and Vijay Janapa

Reddi. 2013. GPUWattch: Enabling energy optimizations in GPGPUs. In Proceedings of the 40th Annual International

Symposium on Computer Architecture.

[34] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty, Min Xu, Alaa R. Alameldeen, Kevin E.

Moore, Mark D. Hill, and David A. Wood. 2005. Multifacet’s general execution-driven multiprocessor simulator

(GEMS) toolset. SIGARCH Comput. Archit. News 33, 4 (Nov. 2005), 92–99. https://doi.org/10.1145/1105734.1105747

[35] NVIDIA. 2009. Nvidia Tesla V100 GPU Architecture. Retrieved from https://images.nvidia.com/content/volta-

architecture/pdf/volta-architecture-whitepaper.pdf.

[36] Marc S. Orr, Bradford M. Beckmann, Steven K. Reinhardt, and David A. Wood. 2014. Fine-grain task aggregation and

coordination on GPUs. SIGARCH Comput. Archit. News 42, 3 (June 2014), 181–192. https://doi.org/10.1145/2678373.

2665701

[37] Jason Power, Arkaprava Basu, Junli Gu, Sooraj Puthoor, BradfordM. Beckmann,Mark D. Hill, Steven K. Reinhardt, and

David A. Wood. 2013. Heterogeneous system coherence for integrated CPU-GPU systems. In Proceedings of the 46th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’13). ACM, New York, NY, 457–467. https:

//doi.org/10.1145/2540708.2540747

[38] Sooraj Puthoor, Ashwin M. Aji, Shuai Che, Mayank Daga, Wei Wu, Bradford M. Beckmann, and Gregory Rodgers.

2016. Implementing directed acyclic graphs with the heterogeneous system architecture. In Proceedings of the 9th

Annual Workshop on General Purpose Processing Using Graphics Processing Unit (GPGPU’16). ACM, New York, NY,

53–62. https://doi.org/10.1145/2884045.2884052

[39] Sooraj Puthoor and Mikko H. Lipasti. 2018. Compiler assisted coalescing. In Proceedings of the 27th International

Conference on Parallel Architectures and Compilation Techniques (PACT’18). ACM, New York, NY, Article 11, 11 pages.

https://doi.org/10.1145/3243176.3243203

[40] Sooraj Puthoor and Mikko H. Lipasti. 2021. Systems-on-chip with strong ordering. ACM Trans. Archit. Code Optim.

18, 1, Article 15 (Jan. 2021), 27 pages. https://doi.org/10.1145/3428153

[41] Sooraj Puthoor, Xulong Tang, Joseph Gross, and Bradford M. Beckmann. 2018. Oversubscribed command queues

in GPUs. In Proceedings of the 11th Workshop on General Purpose GPUs (GPGPU’18). ACM, New York, NY, 50–60.

https://doi.org/10.1145/3180270.3180271

[42] X. Ren and M. Lis. 2017. Efficient sequential consistency in GPUs via relativistic cache coherence. In Proceedings of

the IEEE International Symposium on High Performance Computer Architecture (HPCA’17). 625–636. https://doi.org/10.

1109/HPCA.2017.40

[43] X. Ren, D. Lustig, E. Bolotin, A. Jaleel, O. Villa, and D. Nellans. 2020. HMG: Extending cache coherence protocols across

modern hierarchical multi-GPU systems. In Proceedings of the IEEE International Symposium on High Performance

Computer Architecture (HPCA’20). 582–595.

[44] A. Ros and S. Kaxiras. 2016. Racer: TSO consistency via race detection. In Proceedings of the 49th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO’16). 1–13. https://doi.org/10.1109/MICRO.2016.7783736

[45] A. Ros and S. Kaxiras. 2018. Non-speculative store coalescing in total store order. In Proceedings of the ACM/IEEE

45th Annual International Symposium on Computer Architecture (ISCA’18). 221–234. https://doi.org/10.1109/ISCA.2018.

00028

[46] Keun Sup Shim, Myong Hyon Cho, Mieszko Lis, Omer Khan, and Srinivas Devadas. 2011. Library cache coherence.

http://hdl.handle.net/1721.1/62580.

[47] MatthewD. Sinclair, Johnathan Alsop, and Sarita V. Adve. 2015. Efficient GPU synchronization without scopes: Saying

no to complex consistencymodels. In Proceedings of the 48th International Symposium onMicroarchitecture (MICRO’15).

ACM, New York, NY, 647–659. https://doi.org/10.1145/2830772.2830821

[48] Matthew D. Sinclair, Johnathan Alsop, and Sarita V. Adve. 2017. Chasing away RAts: Semantics and evaluation for

relaxed atomics on heterogeneous systems. In Proceedings of the 44th Annual International Symposium on Computer Ar-

chitecture (ISCA’17). Association for Computing Machinery, New York, NY, 161–174. https://doi.org/10.1145/3079856.

3080206

[49] A. Singh, S. Aga, and S. Narayanasamy. 2015. Efficiently enforcing strong memory ordering in GPUs. In Proceedings

of the 48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’15). 699–712. https://doi.org/10.

1145/2830772.2830778

[50] Abhayendra Singh, Satish Narayanasamy, Daniel Marino, Todd Millstein, and Madanlal Musuvathi. 2012. End-

to-end sequential consistency. In Proceedings of the 39th Annual International Symposium on Computer Architec-

ture (ISCA’12). IEEE Computer Society, Washington, DC, 524–535. Retrieved from http://dl.acm.org/citation.cfm?id=

2337159.2337220.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

https://doi.org/10.1145/3243176.3243179
https://doi.org/10.1145/1105734.1105747
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf.
https://doi.org/10.1145/2678373.2665701
https://doi.org/10.1145/2540708.2540747
https://doi.org/10.1145/2884045.2884052
https://doi.org/10.1145/3243176.3243203
https://doi.org/10.1145/3428153
https://doi.org/10.1145/3180270.3180271
https://doi.org/10.1109/HPCA.2017.40
https://doi.org/10.1109/MICRO.2016.7783736
https://doi.org/10.1109/ISCA.2018.00028
http://hdl.handle.net/1721.1/62580
https://doi.org/10.1145/2830772.2830821
https://doi.org/10.1145/3079856.3080206
https://doi.org/10.1145/2830772.2830778
http://dl.acm.org/citation.cfm?id=2337159.2337220

Turn-based Spatiotemporal Coherence for GPUs 33:27

[51] I. Singh, A. Shriraman, W. W. L. Fung, M. O’Connor, and T. M. Aamodt. 2013. Cache coherence for GPU architectures.

In Proceedings of the IEEE 19th International Symposium on High Performance Computer Architecture (HPCA’13). 578–

590. https://doi.org/10.1109/HPCA.2013.6522351

[52] Daniel J. Sorin, Mark D. Hill, and David A. Wood. 2011. A Primer on Memory Consistency and Cache Coherence (1st

ed.). Morgan & Claypool Publishers.

[53] Abdulaziz Tabbakh, Xuehai Qian, and Murali Annavaram. 2018. G-TSC: Timestamp based coherence for GPUs. In

Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA’18). IEEE, 403–

415.

[54] Yingying Tian, Sooraj Puthoor, Joseph L. Greathouse, Bradford M. Beckmann, and Daniel A. Jiménez. 2015. Adaptive

GPU cache bypassing. In Proceedings of the 8th Workshop on General Purpose Processing Using GPUs.

[55] D. Vantrease, M. H. Lipasti, and N. Binkert. 2011. Atomic coherence: Leveraging nanophotonics to build race-free

cache coherence protocols. In Proceedings of the IEEE 17th International Symposium on High Performance Computer

Architecture. 132–143.

[56] W.Wu, A. Bouteiller, G. Bosilca,M. Faverge, and J. Dongarra. 2015. Hierarchical DAG scheduling for hybrid distributed

systems. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium. 156–165. https://doi.

org/10.1109/IPDPS.2015.56

[57] Vinson Young, Aamer Jaleel, Evgeny Bolotin, Eiman Ebrahimi, David Nellans, and Oreste Villa. 2018. Combining

HW/SW mechanisms to improve NUMA performance of multi-GPU systems. In Proceedings of the 51st Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO’18). IEEE Press, 339–351. https://doi.org/10.1109/

MICRO.2018.00035

[58] Xiangyao Yu and Srinivas Devadas. 2015. Tardis: Time traveling coherence algorithm for distributed shared memory.

In Proceedings of the International Conference on Parallel Architecture and Compilation (PACT’15). IEEE Computer

Society, Washington, DC, 227–240. https://doi.org/10.1109/PACT.2015.12

[59] Xiangyao Yu, Hongzhe Liu, Ethan Zou, and Srinivas Devadas. 2016. Tardis 2.0: Optimized time traveling coherence

for relaxed consistency models. In Proceedings of the International Conference on Parallel Architecture and Compilation

Techniques (PACT’16). IEEE, 261–274.

[60] Sizhuo Zhang, Arvind, and Muralidaran Vijayaraghavan. 2016. Taming weak memory models. Retrieved from http:

//arxiv.org/abs/1606.05416.

[61] Sizhuo Zhang, Muralidaran Vijayaraghavan, AndrewWright, Mehdi Alipour, and Arvind. 2018. Constructing a weak

memory model. In Proceedings of the 45th Annual International Symposium on Computer Architecture (ISCA’18). IEEE

Press, Piscataway, NJ, 124–137. https://doi.org/10.1109/ISCA.2018.00021

Received 4 August 2022; revised 26 January 2023; accepted 12 March 2023

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 3, Article 33. Publication date: July 2023.

https://doi.org/10.1109/HPCA.2013.6522351
https://doi.org/10.1109/IPDPS.2015.56
https://doi.org/10.1109/MICRO.2018.00035
https://doi.org/10.1109/PACT.2015.12
http://arxiv.org/abs/1606.05416
https://doi.org/10.1109/ISCA.2018.00021

