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Droughts and heatwaves are rising concerns with regard to the frequent
formation of the compound or concurrent extremes (CEs), which can cause
greater havoc than an individual event of a higher magnitude. Recently, they
have been frequently detected to form CEs together or with other events
(e.g., floods, aridity, and humidity events) concurrently or with spatiotemporal
lags. Therefore, this systematic review assesses these CEs by reviewing the
following aspects: CE hotspots, events, and variable combinations that form
CEs; frequently analyzed CE parameters (e.g., frequency and severity); large-
scale modes of climate variability (CV) as drivers alongside the approaches to
relate them to CEs; and CE impacts (e.g., yield loss and fire risk) alongside the
impact integration approaches from 166 screened publications. Additionally,
three varied analysis frameworks of CEs are summarized to highlight the
different analysis components of drought- and heatwave-associated CEs,
which is the novelty of this study. The analysis frameworks vary with regard
to the three major assessment objectives: only CE parameters (event—event),
driver association (event—driver), and impacts (event—impact). According to this
review, the most frequently reported hotspots of these CEs in global studies are
southern Africa, Australia, South America, and Southeast Asia. In regional
studies, several vital hotspots (e.g., Iberian Peninsula, Balkans, and
Mediterranean Basin) have been reported, some of which have not been
mentioned in global studies because they usually report hotspots as broader
regions. In addition, different event combinations (e.g., drought and heatwave;
and heatwave and stagnation) are analyzed by varying the combination of
variables, namely, temperature, precipitation, and their derived indices. Thus,
this study presents three major analysis frameworks and components of
drought- and heatwave-associated CE analysis for prospective researchers.
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1 Introduction

Concurrent or compound extremes (CEs), which can be
defined as the simultaneous or sequential occurrence of more
than two extremes at a single or multiple locations, may cause
greater havoc than a single extreme of a higher magnitude (Kopp
et al,, 2017; Hao et al,, 2018c¢). Although the primary idea of the
joint probability of multiple extremes emerged decades ago, the
explicit research on CEs has surged in the last few years
(2018-2021). Especially on the verge of potential climate
change, along with the plausible changes in meteorological
variables such as temperature, precipitation,
evapotranspiration, and wind speed, this research area has
2019).

Examples of CEs may include drought and heatwave, drought

drawn more attention (Naveendrakumar et al,
and flood, temperature and precipitation extremes, and floods
from storm surges and river discharges. Among these various
combinations of CEs, one of the most explored is compound
drought and heatwave. In addition, other combinations of CEs
include either drought (dry event) or heatwave (hot event), for
example, subsequent wet and dry events, concurrent day and
nighttime heatwaves, and compound heatwave and stagnation.

Drought- and heatwave-associated CEs are among the most
studied events and have significantly increasing temporal and
spatial trends across various parts of the world. For instance, the
global land and cropland areas affected by dry and hot CEs have
reportedly increased 1.7-1.8 times in the last 50 years of the 20th
and 21st centuries across different seasons, mostly in summer
(Wu et al,, 2021d). Such claims of increasing trends have also
frequently been reported in many regional- and national-scale
studies (Russo et al., 2019; Xu and Luo, 2019; Kong et al., 2020;
Geirinhas et al., 2021). In China, hot and dry CEs have increased
2.3 times between 1957 and 2018, with 90% of the dry events
being associated with hot events in 2010 (Ye et al., 2019b; Kong
et al., 2020; Feng et al., 2021c¢). Similarly, Mishra et al. (2021)
predicted a fivefold increase in the frequency of hot and dry CEs
in India by the end of the 21st century compared with the
1951-2016 baseline. In the past 150 years, an increasing
frequency of dry and hot months has been reported in
Southeast Australia (Kirono et al, 2017). Additionally, the
association of droughts with other events, such as pluvial
floods, was reported in 5.9%-7.6% of global land areas
between 1950 and 2016, with pluvial floods following
approximately 11% of droughts during boreal spring-summer
or fall-winter (He and Sheffield, 2020). For event combinations
of heatwave and ozone (O3), Ban et al. (2022) predicted an
increase of 34.6 in annual mean CE days under high-emission
scenarios (shared socioeconomic pathways (SSP): 3-7.0) in
2071-2090 compared with the historical baseline of
1995-2004 in a global analysis (Ban et al.,, 2022). Mukherjee
and Mishra (2018) reported an increase of 2-12 times in the
concurrent day and nighttime heatwaves using various
representative concentration pathways (RCPs), namely, RCP
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2.6-8.5 (Mukherjee and Mishra, 2018). Based on an analysis
of the 2020 heatwave
temperatures) in central South America, the high magnitude

(concurrent day and nighttime

and duration of this recent heatwave have been reported in many
parts of South American countries, such as southeastern Brazil,
northern Argentina, southeastern Paraguay, eastern Bolivia, and
Pantanal wetland (Marengo et al., 2022). In addition, in a global
analysis of the 1955-2014 period, the increasing frequency of
compound day and nighttime warm-dry and warm-humid
events caused by greenhouse gases have been reported to be
elevated by 1.5-5 and 2-9 times, respectively (Chiang et al.,
2022a).

Drought- and heatwave-associated CEs have not only been
expanding in spatiotemporal extents across various parts of the
world but have also severely affected impact variables and aspects
such as crop yields, fire risk, vegetation productivity, air quality,
and human health. A noticeable impact on global maize yield has
been reported in compound drought and heatwave scenarios
(31% decrease), whereas heatwaves (4% decrease) or drought (7%
decrease) alone has a significantly lower impact (Feng et al,
2019). Feng and Hao (2020) associated the yield loss across the
United States and France in 61% of cases with compound dry and
hot conditions in a global study across top maize-growing
countries (Feng and Hao, 2020). In another global study, He
et al. (2022) reported that in each wheat-growing season, more
than 92% of the global wheat-growing regions have faced at least
one dry and hot CE during 1981-2020, along with increases of
28.2% and 33.2% in the CE frequency and duration, respectively.
Furthermore, among the wheat-producing regions, Europe,
eastern China, western United States, and northern Argentina
have been identified as hotspots (He et al., 2022). The increasing
frequency of hot and dry CEs in the top maize-producing regions
has also been reported in a multi-index global analysis for the
periods 1949-1980 and 1981-2012 (Feng et al, 2021la).
Additionally, fire weather and burned areas have been
both
(Richardson et al, 2022) and several regional studies (e.g.,
Greece and Brazil) (Gouveia et al., 2016; Libonati et al., 2022),
where fire risk may increase with increasing drought- and
the
productivity, an absence of extremes increased tree coverage

associated with drought, heatwave, or in global

heatwave-associated CEs. In case of vegetation
by 10% compared with the control scenario in a global analysis
(Tschumi et al, 2022b). A 26-fold increase in population
exposure to the compound heatwave and ozone scenarios in
the 1980s (under high emission scenario) compared with the
1995-2014 baseline has also been reported in another global
study (Ban et al., 2022). Urbanization and population (e.g.,
exposure and mortality) have been reported to be significantly
associated with CEs in China, indicating the need for potentially
similar associations and research in other parts of the world
(Wang et al.,, 2021; Zong et al., 2022).

The analysis frameworks of drought- and heatwave-

associated CEs usually vary with the different objectives of
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determining some of the direct spatial/temporal parameters (e.g.,
frequency, spatial extent, and probability) considering only
event-event combinations, association with large-scale modes
of climate variabilities (CVs) as drivers considering event—driver
combinations, or the impact of such CEs on various aspects
considering event-impact combinations. For example, while
some studies reported the probability of joint occurrence of
several event variables or indices, others reported the
likelihood of large-scale CV or atmospheric circulation (AC),
such as the El Nifio-Southern Oscillation (ENSO), or agricultural
impact indicators, such as the Standardized Crop Yield Index
(SCI), given the occurrences of CEs. In these cases, the
frameworks mainly varied due to variable types (event, driver,
or impact variables), target parameters to be calculated, and
associated methods (Hao et al., 2018b; Feng and Hao, 2020; Wu
et al., 2021d).

A previous review on CE has addressed four categories of
CEs: 1) preconditioned, in which the impact of hazard is
worsened by a weather- or climate-driven precondition; 2)
multivariate, in which the impact is aggravated by multiple
hazards; 3) temporally compounding, in which the impact is
aggravated by successive hazards; and 4) spatially compounding,
in which the impact is worsened by hazards in multiple
(Zscheischler et 2020). These
categories mostly have common analysis frameworks and

connected locations al,,
methods with slight variations in which temporally or
spatially compounding data are used as inputs, other than in
the case of concurrent multivariate events (Hao et al., 2018b; De
Luca et al,, 2020b; Sutanto et al., 2020). Furthermore, Zhang W.
et al. 2021a discussed the drivers, mechanisms, and methods
associated with these categories.

The quantitative methods to assess CEs parameters vary from
a simple percentile-based peaks-over-threshold (POT) or an
empirical approach to complex copula-based joint probability
(JP) analysis, conditional probability (CP) analysis, pair copula
construction (PCC), or developing a standardized compound
event indicator (SCEI) (Hao et al, 2018a; 2020b;
Cheraghalizadeh et al., 2018; Ribeiro et al., 2020b; Slater et al.,
2020; Mishra et al., 2021). Some basic parameters used to convey
the outcome of CE analysis are frequency, spatial extent,
probability, duration, correlation, and severity. Occasionally,
these same parameters are analyzed by separating the data
using land cover (e.g., croplands and forests) and seasons
(e.g., growing season) or by including an impact variable such
as crop vyield to assess the impacts in terms of several
spatiotemporal extents or variables of interest, respectively (Lu
et al,, 2018; Manning et al., 2018; Wang et al., 2018; Feng et al,,
2021¢).

To date, various review articles have covered different
aspects of CEs, such as definition, involved statistical
procedures, upcoming CEs, dependence structure, and
suggested framework (Leonard et al, 2014; Kopp et al,
2017; Hao et al, 2018c; Hao and Singh, 2020). For
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instance, Hao et al. (2018c)

associated with the statistical characterization and modeling

discussed the processes

of extremes in the hydroclimatic domain by discussing
approaches such as multivariate distribution, empirical
approach, Markov Chain Model, and quantile regression
approach. Approaches for detecting and predicting
hydroclimatic extremes (non-stationary cases) and the
associated drivers and matrices were also discussed by
Slater et al. (2020). In addition, some review articles
focused on the potential CEs in the warming world, the
associated drivers influencing the extremes, the potential
risk associated with the extremes, and their frequency
(Goodess, 2013; Kopp et al., 2017; AghaKouchak et al,
2020). While AghaKouchak et al. (2020) focused on most
potential extremes (e.g., heatwaves, wildfires, extreme
precipitation, and flooding), their interactions as compound
events, associated drivers, and risk, Kopp et al. (2017) directly
discussed various potential CEs such as simultaneous heat and
drought, wildfires associated with hot and dry conditions, and
flooding associated with high precipitation, as well as their
associated risks and impacts of several shared large-scale
modes of CVs along with atmospheric forcing factors such
as ENSO and tipping elements such as Atlantic Meridional
Overturning Circulation. In another review, CEs were mainly
classified into four categories: preconditioned, multivariate,
temporally compounding, and
(Zscheischler et al.,, 2020).

focused on associated analytical approaches, classification,

spatially compounding

Most review articles have

driver assessment, and risk assessment, among others. In
contrast, Raymond et al. (2020) primarily focused on a
multidisciplinary  (climatic, societal, and economic)
argument for the concept of related extreme events, their
impacts, and potential anthropogenic impacts on CEs
(Raymond et al., 2020).

Despite covering many aspects of CEs, previous review
articles have not discussed the analysis frameworks that vary
with regard to analysis objectives. In addition, the already
discovered hotspots, which are the most impacted or CE-
frequent regions in the corresponding study area as claimed
in many previous publications, have not been summarized in
previous reviews (Ridder et al., 2020; Chiang et al., 2022b; He
etal., 2022). Thus, this study aims to provide an overview of three
major analysis frameworks, along with several aspects of CEs
related to drought- and/or heatwave-associated events. This
review focuses on the following aspects: 1) the already
reported hotspots in previous publications; 2) the event
combinations and associated variables to form CEs; and 3)
three analysis frameworks that vary according to the
objectives of assessing basic CE parameters (event-event),
of CVs as

(event—driver), and impact on several aspects (event-impact)

association with large-scale modes drivers

to showcase an overall breakdown of CE analysis focused on
drought- and heatwave-associated CEs.
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FIGURE 1
PRISMA diagram for article inclusion/exclusion in this systematic review.
2 Methodo I.Ogy “compound events” (200 records), “compound event”
(81 records), “concurrent events” (124 records), and

2.1 Article selection process

This systematic review includes 166 articles out of initially
identified 701 records from the following sources: 1) “Web of
Science” (WoS) on 2 September 2022 (642 records) and 2)
“experts” and “Google Scholar” (59 records) for various
timelines since September 2020. Herein, the term “experts”
refers to colleagues, faculties, and reviewers in the field with
whom the topic was discussed or consulted during the initial
topic selection stage. Systematic literature identification,
screening, eligibility, and exclusion/inclusion process are
detailed in the PRISMA diagram (Figure 1).

The identification phase involves searching the WoS using
search keywords. This phase results in 642 records for the
following eight search keywords: “compound extremes”
(73 records), “compound extreme” (75 records), “concurrent

extremes” (22 records), “concurrent extreme” (31 records),
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“concurrent event” (36 records). Herein, the advanced search
option “topic” (including the title, abstract, and keywords in the
published literature) has been used for the last 10 years
(I January 2013 2022). Additionally,
59 records are identified from “Google Scholar” by searching
the database and from discussions with “experts” at various

to 2 September

timelines.

In the eligibility and screening phase of the systematic review,
the WoS search records are directly exported to Excel files for
processing with a Python script in the subsequent evaluation
phase. The script is used to automate the subsequent evaluations,
reducing eligible records to 540 articles. The filtering records’
criteria for the excel files are “Language = English,” “Publication
Type =J,” and “Document Type = Article.” In this process, non-
English language records (2), conference proceedings (47), books
(3), review articles (26), early access (13), and other records (9)—
all non-journal records and review articles—are screened. After
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excluding duplicates within WoS, the number of records
decreases to 438. Subsequently, the titles, abstracts, and
keywords of these 438 articles from WoS are screened with a
Python code to check for the presence of two sets of keywords of
interest: set 1 comprises CE-defining words (“compound,”
“combined,”

concurrent, copula,

multi-variate,”

concurrently,

» o« » o«

“dependence,” “dependences,” “multivariate,

“multi,” and “joint”) and set 2 comprises drought- and

heatwave-identifying words (“hot,” “heat,” “heatwave,”
“heatwaves,” “heat waves,” “heat wave,” “warm,” “dry,”
“dryness,” “drought,” “droughts,” and “aridity”). These

keywords are obtained from the 59 articles collected from
“experts” and “Google Scholar” searches at different times
from September 2020. Evidently, the aforementioned words
are more likely to be present in the title, abstract, or keywords
of an article if relevant to our topic of interest. During this
process, the number of articles decreases to 224.

Subsequently, the full texts of 224 articles are reviewed to check
relevancy and further eligibility criteria, with 10 articles unavailable
to download with the available resources and 66 articles either
irrelevant to the topic of interest or not containing adequate
information on the targeted fields of this review. Eligible and
relevant articles must have information about drought- and
heatwave-associated CEs, mainly relevant to the domain of
agriculture, hydrology, and topics of the review (hotspots,
variables, parameters, drivers, impacts, and analysis framework).

Furthermore, the details of the percentage of excluded
articles from WoS, where 148 articles are included after
applying eligibility and inclusion criteria on 214 available full
texts, are as follows:

The article is written in a foreign language other than

English (0.31%).

- The document type is not an article but a book, a report, or
other (9.2%).

- The document is a review paper, not an original
article (4.05%).

- The article is an early access version (2.02%).

- The article is simply a duplicated version of another article
from the search (15.88%).

- The title, abstract, and keywords showcase no significant
relevance to the topic of interest as per screening with CE-
defining words and drought-heatwave relevant words
(33.33%).

- The full-text article is unobtainable using the available
access and resources, and only the title and abstract are
accessible (1.56%).

- The overall article is not related to a topic of interest or does

not contain significant data on the topics of review

(10.30%).

Among the 59 records from “Google Scholar” and “experts,”
6 records are excluded based on the evaluation criteria
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incorporated after the screening and eligibility phase and
35 records are deemed as duplicates based on WoS. This
results in 18 new articles.

The inclusion phase contains articles after the identification,
screening and eligibility, and evaluation phases. A total of 166
(148 + 18) full-text articles are included in the final stage of the
review by following the standard literature inclusion process for
systematic reviews (Anandhi et al., 2018; Peng et al., 2020).

2.2 Data collection and processing

Based on the 166 collected articles, a data collection table
is prepared, comprising 14 fields related to CEs, namely,

» o«

“studied region,” “study year,” “study timeline,” “hotspots,”

» <«

variable combinations,”

» <«

“studied event combinations of CE,
“scale of the data,” “CE detection methods,
parameters or CE characteristics,” “thresholds,” “assessed

analyzed CE

impacts” (if any analyzed), “impact integration approach”
“CVs
to connect CVs

(if applicable), drivers” (if analyzed), and
“methods and CEs” (if applicable).

Subsequently, the collected data fields are organized into

as

several sections, tables, and figures to represent the results
associated with the objectives of this systematic review. The
hotspot map (Section 3.1) is drawn in a GIS environment
using the symbology option, namely, the “graduated symbol.”
Separate point shapefiles for each CE combination with
hotspots reported in global studies are digitized using GIS.
The number of studies that report a region as a hotspot is
manually counted in the attribute table. After digitizing all
reported hotspots and their counts in the attribute tables, the
final dot density map is plotted by assigning different colors to
different event combinations and by assigning different sizes
of dots based on the number of studies that report a certain
region as a hotspot. Data are obtained only from global studies
(44) that report hotspots. The hotspots reported in the
regional studies are plotted as stacked bar plots. Regional
hotspots are not plotted on the map as different regions
involve varying numbers of studies, and unlike global
studies, the extents of the study areas are not similar.
Consequently, regions with a higher number of studies
reporting hotspots have higher dot densities, irrespective of
whether a hotspot is more impacted by CEs compared to other
regions of the world. The regional hotspots, distribution of
publications by year, types of extreme studied for various
study regions, and other figures and tables are prepared in the
word processor.

Thus, the overall reviewed contents on drought- and
heatwave-associated CEs are organized in the following
workflow: 1) the hotspots of CEs found in reviewed
publications; 2) the event combinations to form drought-
and heatwave-associated CEs; 3) variables, associated data
types, and thresholds to define different CEs; 4) CE analysis
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Workflow to represent the outcome of the review from the collected data.

framework

with  frequently

analyzed parameters,

the

association of large-scale modes of CVs as drivers, and the

assessment of impacts with regard to several aspects; 5)

interrelation of CEs with ecosystems; 6) assumption and

limitations; and 7) research gaps and potential future work.

The major objectives, associated data fields used to produce

the results, associated sections, and related graphics (tables

and figures) are represented as a workflow diagram of the

review strategies in Figure 2.
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3 Results and discussions

3.1 CE hotspots in reviewed publications

Most studies on CEs are conducted on global or national

scales, with China, the United States, and India being the most

studied countries. In global studies, South Africa, South America,
Australia, southeastern Asia, South Asia, and the United States

are evidently regarded as significantly impacted zones with
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FIGURE 3

Graduated symbol plot to represent the hotspots detected in the 44 global publications. The number below each CE event combination
indicates the number of studies that mentioned the location as a hotspot. The graduated point symbols are intended to represent the approximate
locations of the broad regions found as hotspots in the global map, not the exact locations. The size of the graduated dot symbol is proportional to

the count of global publications claiming a region as a hotspot.

regard to various CE combinations, especially compound
drought and heatwave (Feng et al., 2019; Zhan et al., 2020;
Wu et al, 2021d). In addition, hotspots for eight other
drought- and heatwave-associated CEs (i.e., drought and fire
risk, precipitation and temperature, wet and dry, warm and wet,
warm and humid, heatwave and ozone, heatwave following
cyclones, and drought and aridity) are included as reported in
the global studies. Among these event combinations, drought and
fire risk hotspots are situated in the western United States,
various parts of South America, Australia, and Southeast Asia
(Ridder et al., 2020; Richardson et al., 2022). A single hotspot for
heat followed by a tropical cyclone has been reported in Australia
(Matthews et al., 2019). For warm and humid events, hotspots are
prevalent in various parts of the United States, South America,
Southeast Asia, and Australia (Li et al., 2020; Raymond et al.,
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2021; et al, 2022a). These for the

aforementioned CE combinations are represented in Figure 3,

Chiang hotspots
where the dot densities indicate the number of publications that
have reported the places as CE hotspots in 44 global studies. The
associated data are listed in Supplementary Table SI in the
supplementary document.

In regional studies, various event combinations are assessed in
different regions. Furthermore, the regions with higher numbers of
studies (e.g., China and the United States) report the hotspots
within such regions more frequently, even if the hotspots are not
that frequently mentioned across the global studies. However,
some important hotspots (e.g, Iberian Peninsula, Balkans,
Mediterranean Basin, Pantanal, and Amazon) have significantly
increasing trends concerning CEs in regional studies, whereas
most global studies do not explicitly mention some of them and
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(A) Distribution of papers listing event combinations of drought and heatwave-associated extremes by study regions. (B) Distribution of papers
listing publication years by the study regions (EP: Europe; AF: South Africa/Southern Africa/Africa; SA: South America; AS: Australia; MB:
Mediterranean Basin; others: Germany, France, Canada, Mongolia, Nigeria, Russia, Upper Nile Basin, etc.).

rather report the hotspots as broader regions (Bezak and Mikos, hotspots across different event combinations. In these plots, the
2020; Vogel et al,, 2021; Bento et al., 2022; Marengo et al., 2022). number of studies that report a regional hotspot is biased by the
Figure 4 showcases the stacked bar plots that represent the regional frequency of studies in the region.
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3.2 Event combinations of drought- and
heatwave-associated CEs with region and
publication year distributions

In the reviewed studies, various combinations of several types
of drought- and heatwave-associated CEs are found. The
corresponding region-based distribution is presented in
Figure 5A, representing the study gaps and the combinations
of CEs explored in each region. In addition, for the event
5A, a

combinations of CEs are observed that have been rarely

combinations mentioned in Figure few other
studied (one case). These include hot, dry, and windy events;
drought and wind; and concurrent fire drivers (Ridder et al.,
20205 Tavakol et al, 2020). Among the several temperature-,
precipitation-, or drought-related extremes, compound drought
and heatwave is the most studied joint extreme. Other types or
combinations of CEs have been studied in different reviewed
publications using several variables, indices, and thresholds to
define them. In addition to hot and dry conditions, any of the
other three combinations of temperature and precipitation
extremes (cool and dry; hot and wet; and cool and wet) have
been studied together in some studies (22 studies) (Wu et al,
2019¢; Zhan et al., 2020; Camara et al., 2022).

Evidently, most studies on CEs, including drought- and
heatwave-associated CEs, have been conducted since 2018
(Figure 5B). Many studies have been conducted on a global
scale to focus on the frequency of CEs in different parts of the
world and on various global issues (Feng et al., 2019; Mukherjee
et al., 2020). In addition, more studies have been conducted in
China and the United States.

3.3 Variables with associated datatypes
and thresholds to define different CEs

Various publications have qualitatively and quantitatively
explained compound drought- and heatwave-related extremes
and their impacts with several variables and indices (Hao et al.,
2018a; 2020¢; Cheraghalizadeh et al.,, 2018; Brunner et al., 2021).
However, the most common variables for assessing these CEs are
temperature (maximum, minimum, and average) and
precipitation, whereas the most widely used indices are the
Standardized Precipitation Index (SPI) and Standardized
Temperature Index (STI) derived from the corresponding
variables (Zscheischler and Seneviratne, 2017; Mukherjee and
Mishra, 2018; Hao et al., 2019a; Brunner et al., 2021). Stream flow
and soil moisture are the most commonly used variables for
predicting hydrological and agricultural droughts, respectively
(Cheraghalizadeh et al., 2018; Zhou et al., 2019a; Mishra et al.,
2021). Based on the study objective, various previous drought-
and heatwave-associated CE articles have discussed the following
variables: other climate variables, such as relative humidity (RH),

vapor pressure, wind speed, and evapotranspiration; large-scale
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modes of ACs or CVs, such as ENSO and Pacific Decadal
Oscillation (PDO); impacted variables and aspects, such as
crop yields, land use, vegetation vulnerability, and fire risk
(Manning et al., 2018; Zhou et al., 2019b; Coffel et al., 2019;
Hao et al., 2020c; Feng et al., 2021¢; Vogel et al., 2021). In several
cases, the following different indices have been used: single-
variable dependent indices, such as SPI, STI, and SCI; multi-
variable dependent indices, such as Standardized Precipitation
Evapotranspiration Index (SPEI) and Palmer Drought Severity
Index (PDSI); and copula-based compound event indicators,
such as SCEI (Hao et al,, 2018a; Cheraghalizadeh et al., 2018;
De Luca et al., 2020b). The standardized indices and their defined
ranges can illuminate the severity level of extreme events (e.g.,
drought) irrespective of the weather conditions in a region,
enabling the severity in different regions to be compared.
However, direct variables

percentiles applied over

generally suitable for temporal comparison in a region, as the

are

variables are compared with different percentiles of variables in
the same region (Mishra et al., 2021). The variables or indices
used to define drought, heatwave, and other associated CEs
studied in the reviewed publications are summarized in Tables
1, 2, respectively. Herein, the impacted variables (i.e., SCI) or CVs
(i.e., ENSO) are not included because the objective is to represent
the participating variables/indices (meteorological, hydrological,
and agricultural) as components of each combination of CEs.
The variables/indices/aspects associated with the impacts and
driving forces are explained in Section 3.4.

In a few instances, drought and heatwaves are explained with
other inter-related variables such as RH and vapor pressure density
(VPD) as well as temperature and precipitation. Chiang et al.
(2018) proposed that drought, temperature, RH, and VPD are
interdependent (Chiang et al, 2018). In the case of CEs with
opposing phenomena, such as drought and pluvial flood in the
same location, the lagged occurrences can be considered as the CE,
and they may be indicated with the same dry/wet condition indices
(PDSI and SPI) or variables (SM) (He and Sheffield, 2020).

In most cases, the articles use monthly data followed by daily
data. Many articles use mixed cases, such as daily, monthly, or
annual data, for different variables (Supplementary Table S2). A
typical mixed case is the use of daily temperature data and either
monthly precipitation total or SPI (Mazdiyasni
AghaKouchak, 2015; Wu et al., 2019¢). Usually, in these cases,
the days crossing a temperature threshold and falling within the

and

same month, which crosses the precipitation threshold, are
considered CE days. The most commonly used impacted
variable (yield) data are always collected on an annual scale.
In these cases, the growing season means or totals of other event
variables (such as temperature and precipitation) are used as
annual data points along with the annual yield data (Coffel et al.,
2019; Feng and Hao, 2020). The variables are either handled as
direct data or converted into indices.

In most articles, thresholds are defined beyond which

variables/indices are considered extreme. A threshold is
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TABLE 1 Variable (or index) combinations to be used to define drought (dry) and heatwave (hot) events.

Variable or index Variable 1/ Variable 2/ Subset of references
combinations index 1 index 2
Event combinations Drought Heatwave
Drought and P-T/T max P T/ T max AghaKouchak et al. (2014), Hao et al. (2018b), Lu et al. (2018), Coffel
heatwave etal. (2019), Ma et al. (2020a), Ribeiro et al. (2020a), Wu et al. (2021d)
SPI-T SPI T Mazdiyasni and AghaKouchak (2015), Sharma and Mujumdar
(2017), Wu et al. (2019b), Hao et al. (2020b), Feng et al. (2021c)
SPEI-T SPEI T Ribeiro et al. (2020b)
SM-PET-P P, SM PET Manning et al. (2018)
SPI-STI SPI STI Feng et al. (2019), Hao et al. (2019a, 2019b), Feng and Hao (2020),
Wu et al. (2020), Zhan et al. (2020), Brunner et al. (2021), Wu and
Jiang (2022)
(SPI, SM)-T SPI, SM T Mishra et al. (2021)
(P, SM)-T P, SM T Cheng et al. (2019)
(SPL, SPEI)-T SPI, SPEI T Vogel et al. (2021)
PDSI-T PDSI T Ye et al. (2019a), Cheng et al. (2019), Mukherjee et al. (2020),
Mukherjee and Mishra (2021)
SPEI-EDD SPEI EDD Wang et al. (2018)
MCI-T MCI T Yu and Zhai (2020b)
EDI-T EDI T Bezak and Miko$ (2020)

P: precipitation, T: temperature, T,,,x: maximum temperature, SM: soil moisture, SSI: Standardized Soil Moisture Index, SPI: Standardized Precipitation Index, STI: Standardized
Temperature Index, EDI: Effective Drought Index, EDD: Extreme Degree Days, SPEI: Standardized Precipitation Evapotranspiration Index, PDSI: Palmar Drought Severity Index, MCI:
Meteorological Drought Composite Index.

associated with the conditions linked to the framework for each 34 CEa nalysis frameworks
variable. The threshold justification is attributed to

“measurable” and “extreme,” where a higher threshold may The frameworks of analysis mainly vary based on the
result in very few events being detected, and a lower threshold objectives of analyzing only CE events (e.g., drought and
may result in too many events (Wu et al., 2019b). Therefore, heatwave), the association of CE events with large-scale
different articles incorporate various levels of thresholds based modes of CV drivers (e.g., the association of drought and
on their objectives (Hao et al., 2018b; Wu et al., 2019b; heatwave with ENSO), or assessing the CE-induced impacts
Mukherjee et al, 2020). In an article, direct data of the on various aspects (e.g., impacts of drought and heatwave on
variable, their derived standardized indices, or both can be yield, varying CE parameters across different land covers).
used, which have been tagged as D type, I type, or D-I type, The components associated with each CE framework vary
respectively, in this review article (Table 3). For direct data- based on different variables (associated with events, drivers,
based thresholds, percentile-based statistics are most or impacts); parameters (e.g., frequencies, spatial extents,
commonly used, for example, the 90th percentile of June, probabilities, and correlations) to be analyzed as outcomes;
July, and August daily temperatures for all baseline years and methods (e.g., POT, JP, and CP) used to calculate the
(Wu et al,, 2019a) or the 10th percentile of growing season parameters. Based on the analysis conducted in the reviewed
precipitation of wet days during baseline years (Lu et al., 2018). articles, the major analysis frameworks have been
For index-based fixed thresholds, standardized values of summarized into three segments in this systematic review
different severity levels are most commonly used; for based on various analysis objectives: 1) event-event that
example, Brunner et al. (2021) used SPI values of -1, -1.5, involves quantification of CE parameters using the
and -2 to define moderate, severe, and extreme conditions, contributing event variables/indices; 2) event-driver that
respectively (Brunner et al., 2021). The collected information involves quantifying the association of CEs with large-scale
on data types and example thresholds for different event modes of CVs as drivers using variables/indices that are
combinations is presented in Table 3, respectively. representative of events and drivers; and 3) event-impact
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TABLE 2 Variable (or index) combinations to be used to define other drought and heatwave associated CE combinations.

Variable or Index Variable 1/ Variable 2/ Variable 3/ Subset of References
Combinations Index 1 Index 2 Index 3
Event Combinations drought drought drought
(meteorological) (hydrological) (agricultural)
meteorological & hydrological | MDI-MHDI SPI, SPEI, RDI SDI Cheraghalizadeh et al. (2018)
drought
meteorological, hydrological & | SPI-SMI-SSI SPI SSI SMI Vorobevskii et al. (2022)
agricultural drought
Event Combinations drought heatwave fire
heatwave, drought & fire SM-T-FWI SM T FWI Sutanto et al. (2020)
drought & fire weather Q-FFID Q FEDI Ridder et al. (2020a)
heatwave & fire T-FFID T FFDI Ridder et al. (2020a)
Event Combinations heatwave (day) heatwave (night)
day & nighttime heatwaves Trmax-Tmin Trnax Trmin Mukherjee and Mishra (2018),
Wu et al. (2021b)
Event Combinations heatwave stagnation 05
Heatwave & O3 T- O; conc. T O; conc. Ban et al. (2022), Zong et al.
(2022)
Heatwave & stagnation T-(WS, P) T P, WS Gao et al. (2020)
Event Combinations drought aridity
drought & atmospheric aridity = SM-VPD SM VPD Zhou et al. (2019b), Ambika and
Mishra (2021)
Event Combinations warm humid
warm & humid THI (T, RH) THI THI Garry et al. (2021)
WBGT WBGT WBGT Li et al. (2020)
Event Combinations dry/wet hot/cool
precipitation & temperature P-T P T Wu et al. (2019¢), Zhan et al.
(2020), Camara et al. (2022)
hot & wet/flood P-T P T Ben-Ari et al. (2018)
WAP-T WAP T Chen et al. (2021), Liao et al.
(2021b)
dry & wet CWD-CWE CWD/CWE Esteban et al. (2021)
PDSI-PDSI PDSI De Luca et al.
(2020b)
SPI-SM SPI, SM He and Sheffield
(2020)
cold & dry Tmin-SPEI SPEI Tmin Zhang et al. (2021b)
Event Combinations heat cyclone
Heat following major tropical | HI-central pressure HI central pressure Matthews et al. (2019)
cyclone

VPD: Vapor Pressure Density, RH: Relative Humidity, MDI: Meteorological Drought Indicator, MDHI: Meteorological-Hydrological Drought Indicator, SMI: Standardized Soil Moisture
Index, FWI: Fire Weather Index, WS: Wind Speed, RDI: Reconnaissance Drought Index, SDI: Standardized Drought Index, SSI: Standardized Streamflow Index, Q: Discharge, FFDI: Forest
Fire Danger Index, CWD: Cumulative Water Deficit, CWE: Cumulative Water Excess, WBGT: Wet Bulb Globe Temperature, WAP: Weighted Average of Precipitation Index, THI:
Temperature Humidity Index, HI: Heat Index.
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that involves quantification of the impacts on various aspects
using variables/indices that are representative of events and
impacts. The summarized components of the three major
analysis frameworks associated with CE analysis are
presented in Figure 6.

In the reviewed publications, several parameters are quantified
to convey the outcomes of the analyzed CEs. Herein, the most
frequently assessed parameters associated with each type of analysis
framework are presented. In the event-event framework, the
analysis of basic CE parameters mainly includes basic outcome-
indicating parameters such as frequency, spatial extent, probability,
return periods (RPs), compound indicator-based magnitude/
severity, and correlations. In the event-driver framework, the
quantification of the association with large-scale modes of CVs
is mainly assessed using parameters such as correlations and
probabilities. Finally, in the event-impact framework, the
impacts on other impacted variables or aspects are quantified

using the following three major approaches: 1) spatial subsetting

10.3389/feart.2022.914437

of data followed by quantification of basic CE parameters with
event—event framework components, 2) temporal subsetting of data
followed by quantification of basic CE parameters with event-event
framework components, and 3) integrating the impact variables/
indices (i.e., crop yield, burned area, and mortality) directly into the
equations/models with other event-indicating variables/indices
(Wang et al, 2018; Feng et al, 2019; Gao et al, 2020; Feng
et al., 2021¢; Das et al,, 2022; Ribeiro et al.,, 2022). Therefore, the
parameters to be calculated for the aforementioned three
approaches that assess the impacts are named region/land cover
specific parameters, time/season specific parameters, and variable
specific parameters, respectively, in this article.

The reviewed publications include one or more of these CE
frameworks to represent the various outcomes of CE analysis
(Hao et al., 2019b; Feng and Hao, 2020; Feng et al., 2021c). The
associated methods and quantitative approaches regarding each
type of analysis are described in the following three sections
(3.4.1-3.4.3).

Frequency POT Counts/elt"‘l:mespan,
. CE Pixels/Total
Spatial Extent POT Pixels, etc.
Event-Event €151€5 - Probability JP, CP, PCC
Severity JP SCEI
Correlation Correlation
Correlation Correlation
/ Event-Driver (e )+, Probability CP
e
CE Analysis
Regression, Time
Others Series Comparison
Region/Land Components of
Cover Specific Spatial Subsetting Event-Event
Parameter Framework
. . Components of
Event-Impact (CH 2 )+ (@, Tl,mE/ Season Tempo'ral Event-Event
i5,.)/(*) Specific Parameter| Subsetting [t
Variable Specific CP, PCC,
Parameter Correlations, etc.
Frameworks Variable Combinations Parameters Initial Methods Subsequent Methods

FIGURE 6

Summarized CE analysis components associated with three major analysis frameworks (event—event, event-driver, and event—impact) (here,
en, dn, and i, refer to events, drivers (CVs), and impacts indicating variables/indices, respectively; (*) indicates seasonal or land use data in other forms
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TABLE 3 Some example threshold types: (D: data-based, D-I: data- and index-based, I: index-based).

References

Lu et al. (2018)

CE event combinations

Drought and heatwave

Variables

Indices

Threshold type (I/D)

T>90" pretl (meanT of 21 days centered
over the calendar day across all baseline
years)
P <10 pretl (all growing season wet days

during baseline years)

Vorobevskii et al. (2022)

Meteorological, hydrological, and agricultural drought

SPIL, SSI, SMI

SPI,SSI,SMI < - 1,-1.5,-2

Sutanto et al. (2020)

Mukherjee and Mishra (2018)

Drought, heatwave, and fire weather

Day and nighttime heatwaves

Tonins Trnaxe SM

Tnins Trmax

FWI

SM <80 pretl (monthly SM) of 30 days
centered moving mean SM
Tmax, T in = 90" pretl (Tppax, T min0 f 9 moving
days centered around the day) for
>3 consecutive days of JJA
FWI290" pretl (FWI of 9 moving days

centered around the day) for
>3 consecutive daysof JJA fora grid

Tax 295" pretl (daily T yax for 3 - day moving
meanof AM] for baseline)
T in 295" pretl (daily T yin for 3 - day moving

meanof AMJ for baseline)

Ban et al. (2022)

Heatwave and ozone (Os)

Tnax

(S5}

02100 mg/m?

Toax, 298" pretl (daily T yax for baseline) for

=2 consecutive days

Zhou et al. (2019b)

Drought and atmospheric aridity

SM, VPD

SM < 10" (daily SM o f warm season)

VPD 290" (daily VPD of warm season)
(1-10th and 90-99th are also used)

Garry et al. (2021)

Warm and humid

THI

THI =70,68,72,75,and 77

Wu et al. (2019¢)

Precipitation and temperature

P<(orz)

25 (or 75) pretl (P over all years)
T=(or<)

755" (or 25™) pretl (T over all years)

Chen et al. (2021)

Hot and wet/flood

T-WAP

T 290" pretl (daily Toax, or T pin
of baseline day) for =3 consecutive days
WAP 295" prctl (WAP for summer of baseline)

De Luca et al. (2020b)

Dry and wet

PDSI

PDSI< -3,PDSI 23

Matthews et al. (2019)

Heat following major tropical cyclone

Central pressure

HI

D-1

Central pressure > 945 hPa,

HI=40.6°C

pretl, Percentile; JJA, June-July-August; AMJ, April-May-June.

‘le 12 zoapy
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3.4.1 Frequently analyzed parameters of
drought- and heatwave-associated CEs

The most analyzed parameter in previous studies is the
frequency of CEs (Table 4). CEs are detected in these cases using
the binary mapping technique expressed in Eq. 1, which is
commonly called the “empirical approach” or “peaks-over-
thresholds” (POT) (Lu et al,, 2018; Wu et al, 2019¢; Feng et al,
2021c). Subsequently, a comparison of frequencies between different
time segments is conducted in some studies to detect the frequency
changes between time periods. Occasionally, empirical RPs are also
analyzed, which are the inverse of the frequency or empirical
probability (Ridder et al., 2020; 2022a; 2022b). A typical example
of frequency quantification is represented by the simplified Eq. 2 (Lu
etal, 2018). In Eqs 1, 2, Z and CEHD represent a binary response of
0 or 1 (based on whether a variable crosses its threshold) and
compound extreme hot and dry days (determined from the
summation of Z), respectively. Additionally, x (precipitation
threshold) and y (temperature threshold) refer to the 10th
percentile of all growing season wet days during baseline years
and the 90th percentile of mean temperature centered over
21 calendar days across all baseline years, respectively.

_ 1(True), (P<x,T>y)

" 0(False) M)

CEHDdays
total growing seasondays

Frequency = (2)

In addition to the detection of CE frequencies, the spatial
extent (Mazdiyasni and AghaKouchak, 2015) and trend (Feng
etal., 2021c) of CEs have been detected in some articles using the
aforementioned binary detection approach (Eq. 1) followed by
Eqs 3, 4 he following equations:

. pixels with CEs
spatial counts = ———————— 3
total pixels
%CEHD
spatial trend = — ° 4)

decade — station

Another frequently analyzed parameter is the joint or
conditional probability for two or more variables, such as
temperature, precipitation, yield, and soil moisture (Feng et al,
2019; Ribeiro et al, 2020b). In addition, RPs are frequently
analyzed along with or instead of probability (Miao et al., 2016;
Zhou and Liu, 2018). Probability is commonly assessed using the
copula-based method or meta-Gaussian model (Gaussian copula).
The typical expressions of the joint and conditional probabilities
can be expressed using Eqs 5, 6, respectively. In Eqs 5, 6, SPI, ST,
and SCI thresholds were represented by x (e.g., —1.6, —1, and -0.8),
y (e.g, 1.6, 1, and 0.8), and z (e.g., 0), respectively:

JP = P(SPI<x,STI>y)
CP = P(SCI <z|SPI < x,STI > y)

®)
(6)

Occasionally, a copula-based compound index, such as SCEI,
can be used to indicate the severity or magnitude of CEs (Wu
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et al., 2020). Eq. 7 is a generalized expression of SCEI, where ¢
and F stand for standard normal distribution and marginal
Additionally, the
different severity levels mentioned by Wu et al. (2020) are

cumulative  distribution, respectively.

summarized in Table 5:

SCEI = ¢! [F(JP)] (7)

Another important parameter proposed in CE publications is
duration, which is basically the event span (Sedlmeier et al., 2018;
Manning et al., 2019; Qiao et al., 2022). In some cases, the relation
of CEs with another event (also lagged) can be indicated by
analyzing the correlation. For instance, Hao et al. (2019a)
determined the correlation between CE and standardized
ENSO (Hao et al,, 2019a). The details are presented in Section
3.4.2. The general equation of Spearman’s correlation coefficient
(rg) is listed in Table 4, where #n is the number of data points in
the variables to be correlated and d; is the difference in the rank of
the ith element.

3.4.2 Large-scale modes of CVs as drivers of CEs

Different large-scale modes of CVs are evidently present
during CEs or induced CEs as precursors or drivers in
significant parts of the global land area (Hao et al., 2019a;
2019b; De Luca et al., 2020b). For instance, ENSO and PDO
reportedly impact 18.1% and 12% of the global land area,
respectively, whereas Atlantic Multi-decadal Oscillation
(AMO) inversely affects 18.9% of the global land area. The
effects of ENSO and PDO are reportedly significant in
the central United States, the
western United States, the Middle East, eastern Russia, and
AMO
Mexico, Brazil, central Africa, the Arabian Peninsula, China,

northern South America,

eastern Australia. However, substantially impacts
and eastern Russia in different seasons (Table 6) (De Luca et al.,
2020a). In most cases, the dependence between lagged or
concurrent CVs is indicated using correlations. However,
have also been associated with

representing the relationships between CEs and CVs, as per

several other methods

previous studies (Table 7).

The dependence between different large-scale modes of
CVs (i.e., ENSO and PDO) and CEs is most commonly
assessed using correlation coefficients (e.g., Spearman’s
correlation test) (Wu et al., 2019¢c; Mukherjee et al., 20205
Shi et al., 2020). In some instances, the impact of a major CV
must be discarded to assess the relationship between another
CV and CE. For such instances, a partial correlation can be
used (De Luca et al., 2020b). The relationship between two
random variables can be represented by this method after
discarding the effects of other variables; for example, De Luca
et al. (2020) estimated the relationship between PDO and
PDSI, given the ENSO-indicating index called Nifio 3.4 (De
Luca et al., 2020b). The partial correlation between CV to be
correlated (x;) and CE variable to be correlated (x;) after
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discarding the effect of another CV (xy) can be assessed by Eq.
8, where ryj, 7jx, 7y refer to correlations between x; and x;, x;
and x, and x; and x;, respectively (De Luca et al., 2020):

Tij = Tik? jk
kT T o
=11 =1

Evidently, ENSO has the most widespread impact on global

®)

land areas in terms of percent land area impacted; furthermore,
ENSO interacts with other CV modes, such as PDO and Arctic
Oscillation (AQ) (Wu et al., 2019¢; De Luca et al., 2020b). These
complex interactions may induce uncertainties in correlation
results. Therefore, the correlations are highly variable over
seasons, regions, and event combinations of CEs (Wu et al,
2019¢).

Large-scale modes of CVs can be used as predictors for
determining the severity of upcoming CEs (Hao et al., 2019a;
2019b). According to Hao et al. (2019a), the upcoming severity of
a CE after 1 month of period t (W,,; = SCEI,;) can be
determined using Eq. 9, given that the predictors W, and X;
are the standardized CE indicator (SCEI,) and standardized CV
(SNINO;), respectively:

P(W W, Xy) &)

Eq. 9 must have a normal distribution with mean y and
variance o”. The validity of the prediction can be assessed using
Pearson’s correlation coefficient between the observed and
simulated CE indicators.

A logistic regression model (LRM) can also be used to
predict CE occurrence (Hao et al, 2018b; 2019b). The
regression model and 1-month leading probability can be
expressed using Eqs 10, 11, respectively. In these two
o, and f8 Nifio 3.4
probability of CE given ENSO, regression constant, and

equations, X, T, stand for index,
regression coefficient, respectively. P (Z,,; = I|x) represents

1-month leading probability of CE events:

ln[lfn] =a+pfx (10)

1

P(Zt+1 = 1|X) = 1 +e[—(0(+ﬁxt)]

630)

The validity of the prediction can be determined using
the Brier Skill Score in the case of LRM. The results
showcase that lower SCEI values (more severe compound
dry and hot events) are associated with higher SNINO (El
Nifio) values from December to February. In contrast, lower
values of SNINO (La Nifa) are associated with higher SCEI
values in southern America (Hao et al, 2019b). Another
expression of the relationship between compound events
and ENSO is the odd ratio (= exp(f)); a higher value (>1)
of the odd ratio implies higher odds of CE occurrences with a
higher Nifio 3.4.
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3.4.3 Assessment of CE impacts on several
aspects

The impacts of various CEs have been assessed in several
aspects, such as crop yield (Feng and Hao, 2020), crop growth
season (Lu et al,, 2018), phenological growth phases (Wang et al,,
2018), land cover/land use (Feng et al., 2021c), urbanization (Wu
et al,, 2021b), fire risk (Richardson et al., 2022), and air quality
(Gao et al., 2020). In order to assess the impacts on several aspects,
the impacted parameters (region-, time-, or variable-specific) are
integrated into the CE assessment framework using various
approaches, such as temporal subsetting of time series for the
growing season or growth stages, spatial subsetting of spatial data
to include land cover/land use/region/station of interest, and
the
assessment. The examples of these approaches are summarized

directly integrating into equations/model/method  of
in this section based on the major approaches to integrate impact
variables or aspects. In the direct data integration approach, crop
yield data or yield variables are directly included in the conditional
probability or paired copula method in a few studies (Feng et al,,
2019; Ribeiro et al., 2020a; Feng and Hao, 2020). In addition, the
vegetation index is used as a direct variable in the vine copula
model, and the burned area directly correlates with extremes.
However, land cover and land use are integrated by spatial
subsetting of the data by Feng et al. (2021c¢), with the stations
or weather grids relating to different land covers, such as
croplands, forests, and pastures (Feng et al, 2021c). Several
other studies have followed a similar spatial subsetting
approach with land use or land cover data to compare CEs for
different land uses or land covers (Toreti et al., 2019; Wu et al,,
2021d). In another case of spatial subsetting combined with direct
variable integration, the population exposure to compound
heatwave and ozone is spatially grouped across the spatial
distribution of age and income (Ban et al, 2022). Examples of
temporal subsettings can be found in Lu et al. (2018) and Wang
et al. (2018), where CEs are compared by isolating them into the
growing season and phenological stages, respectively (Lu et al.,
2018; Wang et al, 2018). Additionally, assessed impacts are
temporally sub-divided across CE magnitudes in the case of
population mortality in Europe (Hertig et al, 2020) and
vegetation vulnerability in southwest China (Liu et al., 2022),
along with direct variable integration for both cases. In fact,
both subsettings and variable integration approaches have been
used in most cases to process spatiotemporal data used in the
studies (Gao et al., 2021; Gazol and Camarero, 2022; Kroll et al.,
2022). Examples of the major aspects/impact integration
approaches are summarized in Table 8.

3.5 Interrelation between ecosystems
and CEs

Ecosystems and vegetation productivity are closely inter-
related with hydroclimatic extremes because they can affect
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TABLE 4 Some key analyzed parameters of drought and heatwaves
associated CEs assessed in reviewed publications (n = number of instances
the parameter is evaluated in the reviewed articles, var,, = nth variable, t,, =
threshold of nth variable).

Analyzed parameter Example equation

Frequency/% change (n = 102) F= no. of CE days

= Yo, of days in a yearlseason

Spatial extent/trend (n = 44) Spatial extent = Pif;l;u;:)lzdcfs
Probability or RPs (n = 48) JP = P(varl <ty,var2 >t,)

CP = P(varl <t|var2<t,, var3>t;)

— 1
RPs = 5ty

Magnitude/severity indicators (n = 45) SCEI = ¢"{F (JP)}

Correlation (n = 25) re=1 6y d;
R =27 41

each other. While CEs such as drought and heatwave can affect
vegetation productivity in dry and hot regions, reduced
vegetation productivity can affect evaporative cooling and soil
moisture dynamics to alter surface fluxes and near-surface
weather to induce CEs (Li et al, 2021; Kroll et al,, 2022).
Kroll et al. (2022) reported an association between vegetation
productivity and hydroclimatic extremes in 50% of the global
study area, with impacts varying across regions. Similarly, Li
J. et al. (2022) reported varying impacts of CEs in different
regions. For instance, CEs of temperature and precipitation
(especially warm and dry or cold and dry events) can
significantly reduce vegetation productivity in mid-latitude
regions between 23.5°N and 50°N, whereas they may increase
productivity in regions with latitude greater than 50°N (Li . et al.,
2022). Additionally, the abundance of dried vegetation caused by
sequential wet and dry seasons can create fire weather, followed
by fire hazards (Richardson et al., 2022). Moreover, reduced
vegetation caused by CE can potentially affect terrestrial carbon
dynamics and carbon sequestration, which may reduce crop yield
and plant biomass and increase global warming potential (Afroz
et al.,, 2021; Tschumi et al., 2022a; Kroll et al., 2022). Reduced
vegetation in one season may also amplify drought in the next
season, which can cause lower vegetation productivity with
continued effects on the following seasons and productivity

10.3389/feart.2022.914437

(Li J. et al, 2022b). As vegetation potentially induces CEs,
which may impact many other aspects (e.g., yield, air quality,
livestock mortality, fire risk, and human health), the direct and
indirect relationships among ecosystems, vegetation, and CEs are
quite evident.

3.6 Assumptions and limitations of the
current study

As this study is conducted by searching WoS with eight search
keywords related to CEs, some studies might have been missed in
which these keywords are not explicitly mentioned in the titles,
abstracts, and keywords of the publications. However, the previously
collected publications from “experts” and “Google Scholar” at
different timelines did contain these keywords, with most being
present in the title, abstract, or keywords of a relevant article of
interest. Therefore, the used keywords are assumed to have resulted
in a significant number of studies to conduct a systematic review and
miss only a negligible number of relevant articles.

This study limits the scope to only the most frequently used
approaches and divides the analysis types and frameworks
accordingly. Other possible infrequent approaches have not been
discussed in this study. Additionally, the hotspot map drawn in this
study represents a study area as a more frequently claimed hotspot
with dot densities based on the number of global studies claiming
that region to be a hotspot. Local studies are excluded from the
hotspot map because the study areas do not have similar extents as
global studies. In addition, some regions have more relevant articles
than others (e.g., United States and China), which would yield higher
dot densities in the map, even if the region is not a global hotspot for
a particular event combination of CE. Therefore, the regional
hotspots are represented as stacked bar plots in this study, and
the number of studies is biased by the varying numbers of studies in
different regions. However, the hotspot map aims to represent the
already reported hotspots from reviewed global publications and
how frequently they were found more impacted. The bar plots
drawn on regional hotspots aim to represent regional hotspots,
which are not the focus of global studies as they report on broader
regions. Thus, the study number frequency associated with regional
hotspots should not be interpreted as an indicator of the severity of
regional hotspots compared with other areas but rather as an

TABLE 5 Categories of compound severities (characterized by SCEI) of compound dry and hot conditions based on a previous publication.

Category Compound dry and hot condition Percentile chance SCEI
1 Abnormal 20 to < 30 -0.5 to -0.7
2 Moderate 10 to < 20 —0.8 to —-1.2
3 Severe 5to <10 -1.3to -1.5
4 Extreme 2to<5 -1.6 to 1.9
5 Exceptional <2 —2.0 or less
Frontiers in Earth Science 17 frontiersin.org
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TABLE 6 Regions detected with major CE-CV association in different seasons.

Drivers Season/ References

Regions found with CE-CV association

Months

ENSO N/A Northern South America, central United States, western United States, middle east, eastern | De Luca et al. (2020b)

Russia, eastern Australia

MAM Central America, western Africa Mukherjee et al. (2020)

JJA Central Europe, Asia Mukherjee et al. (2020)

JJA, JAS, ASO South America, southern Africa, southeastern Asia, Australia Hao et al. (2018b)

SON Southern Australia Mukherjee et al. (2020),

DJF Amazon, southern Africa, and northern Australia, northern South America, northern North | Hao et al. (2019a; 2019b), Mukherjee
America, southeast Asia, Australia et al. (2020)

Summer India Mishra et al. (2020)

Warm Season
and southeastern Asia, and Australia

Southern North America, northern South America, northern and southern Africa, southern | Feng and Hao (2021)

western north America

OND Western and central Africa, the Maritime Continent and northeastern South America,

Richardson et al. (2022)

PDO N/A Northern South America, central United States, western United States, middle east, eastern | De Luca et al. (2020b)

Russia, eastern Australia
JJA Western North America, central North America, Sahara, Mukherjee et al. (2020)

Mediterranean, eastern Asia, and Tibet, Northern Hemisphere

AMO N/A Mexico, Brazil, central Africa, the Arabian Peninsula, China, and eastern Russia. Wu et al. (2019¢), De Luca et al.

(2020b)
NAO JJA Northern Europe, eastern North America Mukherjee et al. (2020)
EMI N/A Eastern China Ma et al. (2020b)

MAM: March-April-May, JJA: June-July-August, JAS: July-August-September, ASO: August-September-October, SON: September-October-November, DJF: December-January-February,
OND: October-November-December, PDO: Pacific Decadal Oscillation, AMO: Atlantic Multi-decadal Oscillation, NAO: North Atlantic Oscillation, EMI: El Nifio Modoki Index (EMI).

indicator of the frequency with which they are studied. In addition,
the term “hotspot” is used to indicate the most impacted or frequent
CE zone in this study based on the reviewed articles, which might
have other uses in other climate studies (De Luca et al., 2020a; Ridder
et al,, 2020; Chiang et al., 2022b; He et al., 2022).

Additionally, in this review, only the large-scale CVs are called
“drivers.” In contrast, other studies might have claimed that other
events or impact variables/aspects are drivers of each other, as CEs,
associated events, and impacts can influence each other (Slater et al,,
2020; Zhang W. et al, 2021a). However, this study focuses on
different analysis frameworks. As the large-scale modes of CVs are
mainly assessed as driving forces with different framework
components compared with other event-event or event-impact
frameworks, they are mentioned as “drivers” in this study.

3.7 Research gaps and potential future
works

Recent global and regional studies on CEs have analyzed

several characteristics, driver associations, and impacts on several
aspects (Hao et al., 2018b; Chiang et al.,, 2018; Wu et al., 2019b;
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2019a). The assessment of frequency, spatial extent, correlations
with variables and large-scale climate drivers, severity,
probabilities of occurrence, RPs, and durations are among the
most analyzed parameters either on a global scale or from a
regional perspective in highly studied countries such as the
United States, China, India, and Europe. However, global and
regional research gaps exist on which future work should be
planned.

Although Chinese studies have differentiated the impact
on land-cover conditions and growth periods or growing
seasons of major crops, the effect has not yet been directly
assessed on yield data (Lu et al., 2018; Wang et al., 2018; Chen
et al., 2021; Feng and Hao, 2021). The USA-based studies of
CEs, as well as compound drought-related extremes, have
already covered various aspects, including areas such as the
likelihood of compound hot and drought extremes based on
copula-based bivariate analysis (Hao et al, 2020b), RP
analysis for California drought (AghaKouchak et al., 2014),
analysis of statistically significant changes in the distribution
of data (Mazdiyasni and AghaKouchak, 2015), the impact of
compound drought and hot events on maize yield (Feng and
Hao, 2020), analyzing shifts in temperature under various
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TABLE 7 Methods to assess relations of large-scale modes of CVs as drivers.

References Drivers Relative variables Study area Study Methods to
timeline connect CVs
and CEs
De Luca et al. ENSO, Concurrent wet and | Monthly PDSI and CVs Global 1950-2014 Spearman’s rank
(2020b) PDO, AMO dry extremes correlation test, partial
correlation
Wu et al. (2019¢) | ENSO, AO, Wet/warm, Spatial extent of CE and CVs | China 1961-2014 Pearson correlation
NAO, AMO, dry/warm, wet/cold, | seasonal average coefficients
PDO, EA/WR dry/cold
Ma et al. (2020b) | EMI Concurrent dry and EMI and observed drought- China (east) 1960-2019 Regression
hot events related variables (V850, PW,
VV500, P)
Mukherjee et al. ENSO, Compound drought Average seasonal CVs and Global 1982-2016 Spearman’s rank
(2020) PDO, NAO and heatwave (seasonal average T or P) correlation test,
Poisson GLM
Mishra et al. ENSO Hot and dry summer | Nifio 3.4 anomaly and (T India 1951-2018 Comparison of time series,
(2020) anomaly, SPEI) correlation
Hao et al. (2019b) | ENSO, Compound dry and | SCEI and lagged 1, 3-months | Global 1980-2018 Correlation, conditional
PDO, NAO hot events Nifio 3.4, post SCEI | prior distribution model, LRM
SCEI, SNINO
Hao et al. (2018b) | ENSO Compound dry and Nifio 3.4 and (P, or T), CE| Global 1951-2016 Correlation, LRM, odd
hot events Nifio 3.4: 0-2 months ratio, CP empirical
Hao et al. (2019a) | ENSO Compound dry and | SCEI and Nifio 3.4, post-SCEI | Southern Africa 1951-2016 Kendall’s rank
hot events | prior-SCEI, SNINO: 1 and correlation, CP
3 months
Feng and Hao ENSO Compound dry and | ONI and spatial extent of CEs, | Global 1950-2018 Correlation, empirical
(2021) hot events P-T correlation separation by probability, temporal
ENSO, and neutral years subsetting across ENSO
years
Richardson et al. ENSO, DMI, Fire weather and Nifio 3.4, DMI, SAM, PNA, Global (western 1970-2020 Plotted comparison
(2022) SAM, meteorological GAR, and BA United States, eastern
PNA, GAR drought Australia)
Shi et al. (2020) ENSO, AO Dry and wet events (ENSO, AO) and CE China (YRB) 1952-2000 Correlation
dynamics
Wu et al. (2021¢c) | NAO, PDO, Compound dry and CVs and (P, T, SCEI) China 1921-2016 Correlation, LR,
ENSO hot events composite analysis

AO: Arctic Oscillation, EA/WR: East Atlantic/Western Russia pattern, GLM: Poisson Generalized Linear Model, V850: meridional wind at 850 hPa, PW: precipitable water, VV500: vertical
velocity at 500 hPa, ONI: Oceanic Nifo Index, YRB: Yellow River Basin, DMI: Dipole Mode Index, PNA: Pacific North American Index; SAM, Southern Annular Mode Index; GAR, Gulf of

Alaska Ridge Index.

dryness conditions (Chiang et al., 2018), the occurrence of
windy events with dry and hot conditions in the Great Plains
of the United States (Tavakol et al., 2020), and the impact of
ozone due to heatwave and stagnation (Zhang et al., 2018,
2020). However, the impacts on other major field crops (e.g.,
cotton, peanut, and soybean) and vegetation vulnerability are
yet to be addressed.

For Europe, impacts such as forest mortality resulting from

drought and heatwave (Gazol and Camarero, 2022),
compound ozone and heatwave (Hertig et al., 2020; Jahn
and Hertig, 2022), and various temperature and

precipitation combinations have been assessed (Sedlmeier
et al., 2016, 2018). However, other event combinations and
impacts on crops, urbanization, and other aspects also need to
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be addressed in this region. For Australia, very few event
combinations, such as drought and heatwave, strong winds,
and heavy precipitation, are covered (Ridder et al., 2022a;
Reddy etal., 2022); however, many other aspects (e.g., drought
and fire risk, heatwave and ozone, warm and humid events,
and drought and aridity), for which several parts of Australia
have been deemed as global hotspots, have not yet been
addressed from a regional perspective. The same is true for
other hotspot regions, such as South Africa and South
America (Tencer et al, 2016; Weber et al, 2020). In
comparison to the United States and China, studies on
other parts of the world have covered fewer aspects;
however, they have included some local aspects that have
not yet been covered in other regions, for example, the impact
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TABLE 8 Examples of CE impacts assessed on several variables/aspects in reviewed publications and major impact integration approaches (there may be
additional approaches and variables/aspects in the references listed under each integration approach; only some examples of each approach are listed here).

Major impact

integration approaches

Study region

Variable/aspect integrated

Major methods

References

Direct Variable Integration

Global (maize
producing countries)

phenological phases)

Crop (maize) yield

meta-gaussian model

Spatial Subsetting Global Crop (maize) producing regions POT Feng et al. (2021a)
China LULC, land-surface conditions POT Feng et al. (2021¢)
China Urban lands (from LULC) POT, GFDL land model Liao et al. (2021a)
China Urban lands (from LULC) POT Wu et al. (2021b)
South China Urban lands (from LULC, population POT Wu et al. (2021a)

density)

Temporal Subsetting China Crop (maize and wheat) growing season | POT Lu et al. (2018)

China Crop (maize) growing season (across POT Wang et al. (2018)

Feng et al. (2019a), Feng and
Hao (2020), Feng et al. (2021b)

Spain Crop (wheat and barley) yield Copula-based PCC Ribeiro et al. (2020a)
India Crop yield Correlation Mishra et al. (2020)
USA Crop yield Regression Hagqiqi et al. (2021)

China (Xinjiang)

Vegetation biomass/indices

Copula-based CP, correlation

Li et al. (2021)
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P Fire risk variable (burned area) POT, correlation Bento et al. (2022)
Spatial and Temporal Global Crop (maize and wheat) producing POT, statistical Lesk and Anderson (2021)
Subsettings seasons, and regions decomposition
Global Crop (wheat) producing seasons, and IRMS Toreti et al. (2019)
regions
Global LULC (land, cropland) POT, LMF Wu et al. (2021d)
Subsettings and Variable Global Crop yield (wheat), growing season, and = POT, OLS regression He et al. (2022)
Integration region
Global Vegetation biomass/indices POT, correlation Kroll et al. (2022)
Global Vegetation biomass/indices Copula, partial correlation Li et al. (2022b)
Global Vegetation biomass/ indices Meta-gaussian model Wu and Jiang (2022)
Global Vegetation biomass/indices DGVM, POT Tschumi et al. (2022b)
Global Vegetation biomass/indices (carbon Copula-based JP Zhou et al. (2019b)
uptake)
Global Population (exposure across age, income) = POT Ban et al. (2022)
Global Fire risk variable (FFDI, burned area) POT, plotting Richardson et al. (2022)
USA Air quality variable (ozone) POT, WRF/Chem model, Zhang et al. (2018)
Regression, Correlation
USA Air quality variable (ozone, PM 2.5), POT, WRF-chem, BenMAP- | Zhang et al. (2020)
population (exposure, mortality, CE 1.3, pooled method
morbidity)
Europe SM Copula-based PCC Manning et al. (2018)
Europe vegetation biomass/ indices (tree Copula Gazol and Camarero (2022)
mortality across CE magnitudes)
Europe Population (mortality, population) POT Hertig et al. (2020)

(Continued on following page)
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TABLE 8 (Continued) Examples of CE impacts assessed on several variables/aspects in reviewed publications and major impact integration approaches (there
may be additional approaches and variables/aspects in the references listed under each integration approach; only some examples of each approach are

listed here).

Major impact
integration approaches

Study region

Variable/aspect integrated

Major methods References

Europe and MB

Vegetation biomass/indices (land

POT Mulder et al. (2019)

degradation)
India Population (exposure across CE POT, exposure Statistics Das et al. (2022)
combinations and SSPs)
China Urban lands (from LULC) POT, correlation, and Yang et al. (2022)
regression
Eastern China Urban lands (from population), POT Yu and Zhai (2020a)

population (exposure)

Southwest China

UK

Vegetation biomass/indices

Livestock mortality+ potato blight

Copula-based RP Liu et al. (2022)

POT, risk density Garry et al. (2021)

West Africa LULC (reforestation)

RegCM4-model (vegetation Camara et al. (2022)

on-off)

Southern Africa

Mongolia Livestock mortality

Vegetation biomass/indices

Correlation, plotting Hao et al. (2020a)

POT, spatial clustering Haraguchi et al. (2022)

Northeast China Crop (maize) yield

Brazil (Pantanal,
Xingu)

Fire risk variable (burned area)

POT, APSIM model Li et al. (2022a)

Poisson regression, contours Ribeiro et al. (2022)

LULC: Land Use and Land Cover, PCC: Pair Copula Construction, LMF: Likelihood Multiplication Factor, MVR: Multivariate Regression, RegCM4: Regional, WRF/Chem model: Weather
Research and Forecasting model coupled with Chemistry, FFID: Forest Fire Danger Index, IRMS: Intensity-Reweighted Moment Stationarity, DGVM: Dynamic Global Vegetation Model,

IP: Iberian Peninsula, UNB: Upper Nile Basin, OLS: Ordinary Linear Regression.

of reforestation on warm and dry, and warm and wet CEs in
western Africa (Camara et al., 2022).

Other than drought and heatwave, the number of global
studies has been limited for other event combinations
(Figure 3). As the results are subjective to the studies
identified in this literature review, a higher number of global
studies can provide more hotspots produced from different
data sources, timelines, and event/variable combinations,
which are likely to provide more varied results. Even though
global studies have covered various impacts and aspects such as
population exposure to ozone and heatwave (Ban et al., 2022),
maize yield vulnerability (Feng et al., 2019; 2021a), wheat
growing season (He et al., 2022; Wu and Jiang, 2022),
vegetation vulnerability (Kroll et al., 2022), population
exposure to heat and humidity (Li et al, 2020), fire risk
caused by drought and heatwaves (Ridder et al., 2020;
Richardson et al, 2022), and various large-scale CVs
related to CEs (Mukherjee et al, 2020; Mukherjee and
Mishra, 2021), other potential aspects such as the effect of
urbanization on CEs, concurrent day and nighttime heat
extremes, and the impact of CEs on mortality/health are
yet to be addressed on a global scale. These unexplored
CEs and aspects on a global scale have been assessed in
regional studies, showing significantly increasing trends and
effects/impacts, respectively. Therefore, future research may
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include studies on other event combinations besides drought
and heatwave as well as on potential aspects that include
further knowledge in the CE analysis field. More studies on
these unexplored topics can help find more global hotspots,
trends, events, and impacts across various regions, timelines,
and different data sources.

Although an analysis framework has been suggested and
proposed in a previous review along with definitions of CEs,
three major analysis frameworks applied across related
articles that focus on drought- and heatwave-associated
CEs have been categorized and summarized in this
systematic review (Leonard et al., 2014). The same applies
to the included hotspots reported in recent studies. Previous
reviews have covered several other topics, such as statistical
approaches, upcoming CEs, categorization of CEs, and mutual
dependence patterns (Supplementary Table S3). However, the
components of analytical frameworks and hotspots for
drought- and heatwave-associated CEs are unexplored areas
that have been comprehensively covered in this review.
this
frequently used methods

However, considering review

the
parameters. Thus, future work can potentially focus on

scope, limitedly

summarizes most and
infrequent methods, parameters and upcoming machine-
learning-based approaches (Feng et al., 2021d; Sweet and

Zscheischler, 2022).
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4 Conclusion

This novel review presents an overall breakdown of the
quantitative assessment of drought- and heatwave-associated
CEs by mainly focusing on their hotspots, variables, analysis
frameworks, assessed parameters, association with large-scale
CVs as drivers, and impacts of CEs on several aspects. While
hotspot mapping reveals the most frequently reported regions with
CEs as per the reviewed global studies, event and variable
combinations represent the variables/indices most commonly
used to define combinations of events to form CEs. The most
reported hotspots worldwide are found in Southern Africa, several
parts of South America, Southeast Asia, South Asia, and Australia
for various CE combinations studied in several global studies. As
per the review, the most analyzed parameters of the considered
CEs are frequency, spatial extent, compound indicator-based
severity/magnitude of CEs, probability, RPs, duration, and
correlation. While the frequency and spatial extent are usually
assessed with the binary counting approach in the POT method,
probabilities are determined using copula-based joint probability,
conditional probability, and empirical probability approaches (Ye
et al,, 2019a; Wu et al., 2019b; Hao et al., 2019¢). The most assessed
large-scale mode of CV is found to be ENSO, whereas the impacts
are found to be yield loss of several globally important crops,
vegetation vulnerability, fire risk, air quality, urbanization effect,
and CE frequencies under different land-use conditions (Hao et al.,
2018b; Feng and Hao, 2020; Gao et al., 2020; Feng et al., 2021¢; Kroll
et al,, 2022; Richardson et al., 2022). Therefore, this study breaks
down the components of CE analysis frameworks into variables/
indices, frequently calculated parameters, drivers, impacts, and
associated methods. This study can aid future researchers in
understanding the framework components of drought- and
heatwave-associated CEs with reduced time and effort.
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