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Abstract: The Ogallala Aquifer is one of the most productive agricultural regions and is referred
to as the “breadbasket of the world”. It covers approximately 225,000 square miles beneath the
Great Plains region spanning the states of Texas, New Mexico, Oklahoma, Kansas, Nebraska, South
Dakota, Wyoming, and Colorado. The aquifer is a major water source for the region, with its use
exceeding recharge. Previous studies have documented climate changes and their impacts in the
region. However, this is the first study to document temperature and precipitation changes over the
entire Ogallala region from 35 General Circulation Models participating in Phase 5 of the Climate
Model Intercomparison Project (CMIP5). The main study objectives were (1) to provide estimates
of present and future climate change scenarios for the High Plains Aquifer, (2) to translate the
temperature and precipitation changes to agro-ecosystem indicator changes for Kansas using scenario
funnels, and (3) to make recommendations for water resource and ecosystem managers to enable
effective planning for the future availability of ecosystem services. The temperature change ranged
from —4 °C to 8 °C, while the precipitation changes were between —50% to +50% over the region.
This study improves the understanding of climate change on water resources and agro-ecosystems.
This knowledge can be used to evaluate similar resources where the replenishment rate is slow.

Keywords: Ogallala aquifer; meta-analysis; climate change impacts; frost indicators; wet and dry
spell indicators; crop failure temperature indicators

1. Introduction

The High Plains Aquifer (often referred to as the Ogallala Aquifer) is a significant
water source in the United States. It is the largest aquifer in the United States and provides
70% of the groundwater and 30% of the irrigated water in the country [1]. The region
overlying the aquifer is considered one of the most productive agricultural regions and is
referred to as the “breadbasket of the world” or the “grain basket of the United States” [2,3].
The loss of groundwater in the High Plains Aquifer alters hydrological systems in the
region, undermines the basis of human settlement [4], and threatens a significant portion of
U.S. agricultural production and other ecosystem services. This renders this region crucial
to the nation and the world.

Threats posed by climate variability and extremes to land and water resources heighten
the challenge of increasing food production and maintaining ecosystem services in the
region [5,6]. First, climate change presents unprecedented challenges to adaptation and
mitigation by increasing the economic and environmental risks associated with a multitude
of ecosystem services related to the region [6,7]. Second, the projected degree and pace of
climate change is accelerating. Therefore, the need for a systemic, powerful adaptation of
ecosystem services to mitigate these conditions is increasingly apparent. This is exacerbated
by other biophysical limits such as declining per-capita land and water and rising demand
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for agricultural products.. Third, agriculture consumes most of the groundwater abstracted,
and accounts for 40% of the total global consumptive irrigation water use [8]. Irrigated
cropland cultivation will continue to play an essential role in food production to meet global
agricultural production. It will have to increase by 60% from its 2005-2007 levels to meet the
projected demand of a growing world population by 2050 [9]. Finally, stakeholders such as
decision-makers and producers express the need for climate information that can support
adaptation and mitigation-related decision-making, provide straightforward estimations of
variability, and be tailored to specific user groups [2,10]. These results highlight the need
for climate information that can be utilized for climate change impact assessments to make
informed decisions regarding the sustainable development of natural resources in crucially
important regions.

To the best of our knowledge, this is the first study to have documented temperature
and precipitation changes over the entire Ogallala region from 35 General Circulation
Models participating in phase 5 of the Climate Model Intercomparison Project (CMIP5)
and synthesized from the literature. Furthermore, this study uniquely translated tem-
perature and precipitation changes to changes in agro-ecosystem indicators for Kansas
using scenario funnels. Previous studies in the region have focused on the impacts of
climate change on various ecosystem services, such as groundwater recharge [11-14], food
production [15,16] irrigation water [17], carbon storage, and provision of resources and
habitats to maintain biodiversity [5]. There studies used a few global climate models [11]
and statistical forecasting models to estimate climate change [17]. There is a need to assess
precipitation variability over the Great Plains using the full suite of phase 5 of the Climate
Model Intercomparison Project (CMIP5) models [18]. Several studies have examined varia-
tions in the agro-ecosystem indicators for more significant regions encompassing the High
Plains Aquifer [1,19,20] or portions of the aquifer. However, few studies have specifically
addressed the changes in temperature and precipitation simulated by the CMIP5 coupled
climate models in the High Plains Aquifer region that stakeholders can utilize

The objective of this study was to address these specific knowledge gaps; (1) examine
the changes in temperature and precipitation between historical and future periods for
the High Plains Aquifer using meta-analysis and data analysis and utilize the inferences
from the climate projections in a suitable way for climate change adaptation and mitigation
efforts; (2) translate temperature and precipitation changes on crops using agro-ecosystem
indicators for Kansas using scenario funnels; and (3) make recommendations for water
resource and ecosystem managers to enable effective planning for future availability of
ecosystem services.

2. Study Region, Data and Methods
2.1. Study Region

The domain of the study varied according to the objective. The study region for
Objective 1 and 3 is the High Plains Aquifer (Ogallala Aquifer), while that for Objective 2 is
Kansas, this is one of the states where the water levels are decreasing in the aquifer at a high
rate. The High Plains Aquifer is the largest source of groundwater extraction in the United
States, with 16 km3 extracted in 2000 and 97 percent of this is used for agriculture [11,21].
The Ogallala Aquifer is an unconfined aquifer [22] used for agricultural irrigation. This
causes the aquifer to quickly deplete as the recharge rate being very low.

The climate over the aquifer region is semi-arid with a rainfall approximately 300 mm
in the west to approximately 840 mm in the east. This calls for more irrigation over the
region. Water drawn from the aquifer is used to sustain large-scale irrigated agriculture,
livestock production, and rural communities. Food production, groundwater recharge,
storm-water retention, carbon storage, and supply of resources and habitats for biodiversity
conservation are all essential ecosystem services provided by the region overlying the
aquifer [5,23].

The aquifer was formed over millions of years (referred to as fossil water), and it can
be depleted in the space of one human lifetime [4]. Thus far, 30% of the groundwater has
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been extracted, with another 39% expected to be depleted over the next 50 years if current
patterns continue [24]. However, groundwater extraction currently surpasses recharge by a
factor of ten in some locations. This results in storage depletion, primarily in the central
and southern High Plains [11]. Recharge rates range from 51-76 mm per year in the sand
dune areas of Nebraska, to below 12.7 mm per year in other areas. Most crops in the region
require approximately one foot of irrigation per year (305 mm): this exceeds the recharge
rate [4]. Recharge produces 15% of current pumping, and full replenishment of a depleted
aquifer will take 500-1300 years [24]. This irrigation water supports a $35 billion market
for agricultural products, accounting for over 10% of the national total [11].

Kansas is situated over the central-eastern region of the aquifer. The Ogallala aquifer
underlying the Kansas region has the highest decrease in groundwater level [14].

2.2. Data Used

Peer-reviewed journal papers and reports were used as data sources for a meta-analysis
of temperature and precipitation change over the Ogallala aquifer. The data source for
changes in agrometeorological indicators were trend values estimated in 23 long-term
meteorological stations obtained from [25,26]. The observed data for the entire aquifer are
from Climate Research Unit (CRU) precipitation data from the University of East Anglia for
the period 1971-2005. They are used to examine the seasonal changes in precipitation. The
data are available globally over land at a horizontal resolution of 0.5° x 0.5° [27,28]. The
observed surface temperature data are obtained from the National Centre for Environmental
Prediction (NCEP), National Center for Atmospheric Research (NCAR) Re-analyses [29].

The Coupled Model Intercomparison Project phase 5 model simulations for the histori-
cal (1971-2005) and future projections (2006-2099) were used to understand the current and
future projections [30] in temperature (°K) and precipitation (mm/day). The model outputs
from CMIP5 General Circulation Models (GCMs) are for three time periods, historical
(1971-2005), Representative Concentration Pathways [RCP4.5 (2006-2099)], and RCP8.5
(2066—2099). The historical simulations are forced by anthropogenic changes in CO; and
non-CO, greenhouse gases, aerosols, and land cover for a suite of multiple ensembles. The
two emission scenarios are Representative Concentration Pathways (RCPs) 4.5 and 8.5. The
RCP4.5 is a stabilization scenario to reduce greenhouse gases (GHGs) and aerosol emissions
in which the radiative forcing (4.5 Wm™?2) is stabilized [31], while the RCP8.5 scenario
represents an increase in GHGs and aerosol emissions that can result in high concentrations.
The models used in the analysis, its resolution, institute, and the references are provided in
Table 1. The datasets are on a monthly time scale in ASCII (American Standard Code for
Information Interchange) format.

Table 1. List of CMIP5 models utilized for the study.

Model Name Institute Modeling Center (or Group) Ressr(’)iltxi’;lon
acesio Csropo  Commonslt Sdentic nd i e oniaten 5
Accessl.3 IRO/BOM Industrial Research Organization/Bureau of Meteorology 1.25° x 1.88°
BCC-CSM1.1 BCC Beijing Climate Center, China Meteorological Administration 2.79° x 2.81°
BCC-CSM1-1-M BCC Beijing Climate Center, China Meteorological Administration 1.12° x 1.13°
BNU-ESM BNU-ESM College of Global Chﬁ}r;%; 21;% Eia‘:‘et:si};stem Science, Beijing 279° % 2 81°
CanESM2 CCCMA Canadian Centre for Climate Modelling and Analysis 2.79° x 2.81°
CCSM4 NCAR National Center for Atmospheric Research 0.94° x 1.25°
CESM1-BGC NCAR NSE-DOE-Community Earth System Model Contributors 0.94° x 1.25°
CESM1-CAM5 NCAR National Center for Atmospheric Research 0.9° x 1.25°




Water 2023, 15, 600 4 of 23

Table 1. Cont.

Model Name Institute Modeling Center (or Group) Spatl;{l
Resolution
CMCC-CM CMCC The Centro Euro-Mediterraneo sui Cambiamenti Climatici Climate 20° % 2.0°
Model
CMCC-CMS CMCC The Centro Euro-Mediterraneo sui Cambiamenti Climatici Climate 1.875° x 1.864°
Model
CSIRO- Commonwealth Scientific and Industrial Research Organization in
CSIRO-Mk3-6-0 QCCCE collaboration with Queensland Climate Change Centre of 1.87° x 1.88°
excellence
FGOALS-g2 LASG LASG (Institute of Atmosphen? Physics)-CESS (Tsinghua 47° % 281°
University)
FIO-ESM FIO Ministry of Natural Resources of China 1.25° x 0.93°
GFDL-CM3 GFDL NOAA Geophysical Fluid Dynamics Laboratory 2.00° x 2.50°
GFDL-ESM2M GFDL NOAA Geophysical Fluid Dynamics Laboratory, USA 2.02° x 2.5°
GISS-E2-H GISS NASA Goddard Institute for Space Studies 2.0° x 2.5°
GISS-E2-R GISS NASA Goddard Institute for Space Studies 2.0° x 2.5°
INM-CM4 INM Institute for Numerical Mathematics 1.50° x 2.00°
IPSL-CM5A-MR IPSL Institut Pierre-Simon Laplace 1.27° x 2.50°
IPSL-CM5A-LR IPSL Institut Pierre-Simon Laplace 1.89° x 3.75°
IPSL-CM5B-LR IPSL Institut Pierre-Simon Laplace

Atmosphere and Ocean Research Institute (The University of
MIROC5 MIROC Tokyo), National Institute for Environmental Studies, and Japan 1.40° x 1.41°
Agency for Marine-Earth Science and Technology

Atmosphere and Ocean Research Institute (The University of
MIROC Tokyo), National Institute for Environmental Studies, and Japan 2.79° x 2.81°
Agency for Marine-Earth Science and Technology

MIROC-ESM-
CHEM

Japan Agency for Marine-Earth Science and Technology,
MIROC-ESM MIROC Atmosphere and Ocean Research Institute (The University of 2.79° x 2.81°
Tokyo), and National Institute for Environmental Studies

Max-Planck-Institut fiir Meteorologie (Max Planck Institute for

MPI-ESM-LR MPI-M Meteorology) 1.86° x 1.88°
MPL-ESM-MR MPIL-M Max-Planck-Institut fiir l\l\/ileetteec;r;;ll(;%;;)(Max Planck Institute for 1.97° % 2.50°
MRI-CGCM3 MRI Meteorological Research Institute 1.12° x 1.13°

NorESM1-M NCC Norwegian Climate Centre 1.89° x 2.50°
NorESM1-ME NCC Norwegian Climate Centre 2° x 2°

CNRM-CM5 CNRM National Centre of Meteorological Research, France 1.4° x 1.4°
GFDL-ESM2G GFDL NOAA Geophysical Fluid Dynamics Laboratory, USA 2.02° x 2.50°
HadGEM2-AO UK Met Office Hadley Center, UK 1.25° x 1.875°
HadGEM2-ES UK Met Office Hadley Center, UK 1.25° x 1.875°
HadGEM2-CC UK Met Office Hadley Center, UK 1.25° x 1.875°

2.3. Methods

2.3.1. Meta-Analysis for the Entire Aquifer Region: Literature Review

Meta-analysis involves a systematic approach to identify, collect, synthesize, and build
previous research articles related to a topic into possible scientific results [25]. The present
meta-analysis involved four steps.
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Step 1: Utilize the Google Scholar database to collect articles related to changes in
temperature and precipitation over the Ogallala aquifer region together with their potential
impacts on agriculture and ecosystem services. This was performed by providing the key
words ‘climate change in the High Plains Aquifer region’, ‘temperature and precipitation
projection over the High Plains’.

Step 2: Narrow the search to ‘climate change projections or temperature and precip-
itation changes over the Ogallala Aquifer region’. This provides studies that cover the
states where the aquifer is located, including Texas, Kansas, and Colorado. Then, snowball
sampling [32] was performed to obtain additional studies.

Step 3: Identify the study period and quantify the precipitation and temperature
changes over the aquifer. The results were prepared into a table showing the year, author,
study period, region, temperature changes (°C), and precipitation changes (%).

Step 4: Visualize the climate variables in the table into bar plots and scenario lines.

2.3.2. Data Analysis for the Entire Aquifer Region: Observed Data

Step 1: Download the observed precipitation data for the entire aquifer from the
Climate Research Unit (CRU). The data is globally available over land at a horizontal
resolution of 0.5° x 0.5° [27,28]. Surface temperature data was obtained from the National
Center for Environmental Prediction and National Center for Atmospheric Research (NCEP-
NCAR) re-analyses [29].

Step 2: Estimate seasonal averages. Both datasets were on a monthly timescale
between 1971-2005. The seasonal averages were estimated for winter (December—January-
February, DJF), spring (March—-April-May, MAM), summer (June-July-August, JJA), and
fall (September—October—-November, SON).

Step 3: Interpolation mapping: The observational data in netCDF format are imported
to GIS software, ArcGIS Pro 3.0, and raster layers are created. Then a geostatistical interpo-
lation is done using the ordinary kriging method (utilizing the Ogallala Aquifer shapefile
as an environment setting) to generate the maps.

2.3.3. Data Analysis for the Entire Aquifer Region: CMIP5 Models

Step 1: Download CMIP5 model outputs (temperature and precipitation) from 35 GCMs.
The outputs have different horizontal and vertical resolutions over the region 22 N to 55 N
and 110 W to 90.5 W.

Step 2: Regrid. These model outputs are then converted into the same resolution
and the analysis is performed for two categories of simulations, namely historical and
two emission scenarios. The models used in the analysis, its resolution, institute, and the
references are provided in Table 1.

Step 3: Seasonal average: The data are converted into the Network Common Data
Format (netCDF) for ease of analysis using FORTRAN (Formula Translation) language,
and the corresponding seasonal averages (DJF, MAM, JJA, and SON) are calculated for the
historical and RCPs.

Step 4: Estimate the difference. The difference is calculated for each season to help
understand how the temperature and precipitation will fluctuate between the historical
and future scenarios.

Step 5: Interpolation and mapping. The model datasets in netCDF format are im-
ported to GIS software, ArcGIS Pro 3.0, and raster layers are created. Then a geostatistical
interpolation is done using the ordinary kriging method (utilizing the Ogallala Aquifer
shapefile as an environment setting) to generate the maps.

Finally, the observational and model datasets in netCDF format are imported to GIS
software, ArcGIS Pro 3.0, and raster layers are created. Then a geostatistical interpolation
is done using the ordinary kriging method (utilizing the Ogallala Aquifer shapefile as an
environment setting) to generate the maps.
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2.3.4. Agro-Ecosystem Indicators for Kansas: Scenario Funnel Development

Step 1: Synthesize linear trends in agroecological indicators. This involves using the

Water 2028 TOxECBSSRREVIBIdicators trend data taken from Anandhi [6,26,33,34]. The details of the 6 of 24
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Step 2: The study period is divided into three sections 1921-1950, 1951-1980, and
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The details of the scenario funnel can be found in Anandhi [35,36].
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3. Results and Discussion: Framework Application
3.1. Changes in Temperature and Precipitation Observed from Literature in the Region

The meta-analysis involved studies related to changes in temperature (Figure 2i) and
precipitation (Figure 2ii) over the Ogallala Aquifer region and their potential impacts on
Water 2023, 15, x FOR PEER REVIEWAgriculture and ecosystem services. The data are divided into historical, near future, angh
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The observed temperature distribution (Figure 3) in the Ogallala Aquifer Region rep-
resents warming over the south and cool temperatures in the north during different sea-
sons between 1971-2005. In general, a southeast-northwest seasonal temperature gradient
is observed over the region, except in winter. The winter temperatures are charactgrized
by <7 °C in the south and <=4 °C in the north, with a negative meridional temperatiire

gradient (Figure 3a). The spring temperatures in the south were higher than the north (<14

°C vs. <3 °C, respectlvely) &Lgure 3b). The summer temperatures Flgure 3 were be-
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sector of the aquifer marks a westward increase in precipitation from winter until summer,
followed by a decrease in fall. The southern region of the aquifer has characteristically high
precipitation values during fall compared to that of other seasons.

There is seasonal variability in addition to interannual variability in precipitation over
the aquifer. This can create a more significant challenge for managing uncertainty in the
agricultural sector and affect the adaptation time for responding to risks [41]. The need to
switch to less water-sensitive crops is due to changes in precipitation and water availability.

The observed climatological temperatures are provided in Figure 4. The observations
showed a similar seasonal trend over the region as model simulations in Figure 5. Historical
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over the aquifer. This can create a more significant challenge for managing uncertainty in
the agricultural sector and affect the adaptation time for responding to risks [41]. The need
to switch to less water-sensitive crops is due to changes in precipitation and water avail-
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The immediate effect of temperature increase is the likelihood of an increased reduction
in soil moisture leading to drought conditions over the aquifer region from increased
evapotranspiration. Many studies suggest that subtropical and temperate regions are
likely to become drier at the expense of wetter tropics [2,3]. Climate predictions and
observed data revealed that freshwater resources are vulnerable, and will be affected in the
future [42]. This has long-lasting consequences for agro-ecosystems and society. Moreover,
it influences the recharge capability of the aquifers [43]. Climate projections indicate an
increase in temperature in the future; however, a proportionate increase in precipitation is
not observed (see below).
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northern parts of the region (Figure 6b,c). The maxima are found in the central north re-
gion of the aquifer: northwest Colorado, northwest Kansas, and southwest Nebraska. The
difference in precipitation between the historical simulations and RCPs (4.5, 8.5) between
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The summer season is characterized by decreasing precipitation (negative values)
throughout the aquifer, specifically in the central aquifer regions encompassing Colorado,
Kansas, and Oklahoma states. A difference in intensity is observed despite the higher fu-
ture scenario (RCP8.5) projecting the same characteristics compared to RCP4.5. The ghift

in precipitation from the historical information to the future projection influences diffuse
recharge, the dominant type of recharge in the Northern High Plains Aquifer region [43].
Thé tedhaegeon fredipithtionipighcPtaomsshquitet acgeoncsy (o fathsdacon pexeipteafionth-
westj&tinsash fihededatecritaveals morfibu teddrtHak 45 to feo silmesrK ansas thbdgals i vegion
witindoelechtbastareitysihinexsod st thd Qgeaitaltueglprodl dticnvatdr saat ¢ibytoDaliswsecu-

riggsturb agricultural production and lead to food insecurity.
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rates of crop development and evapotranspiration [44,45].
Short-term trends are classified into three periods: 1920-1950, 1951-1980, and 1981-2010.
The scenario lines for the short-term trends between 1920-1950 portray a dominating
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positive trend for CFTs at 35 °C, 39 °C, and 40 °C (Figure 8). The stations exhibited positive
and negative trends at 30 °C. The 1951-1980 period marks a bias towards more negative
trends at 35 °C, 39 °C, and 40 °C. The trends for the CFT at 30 °C have positive and negative
values. The trends show a maximum spread towards negative values for all CFTs after 1981.
However, the maximum spread was towards positive and negative values for 30 °C and
35 °C CFTs. The values ranged from —12.5 to 5.0. The CFT at 40 °C is similar to that at 39 °C.
Thus, the trends at different CFTs indicate that each crop species has a different temperature
range for its growth stages. The response of temperature extremes above or below a certain
threshold affects plant productivity [46]. The increase in temperature to a specific point
creates excess energy in plants; however, elevation to very high temperatures retards
plant growth and photosynthesis [47]. The use of CFT as an indicator of the discernible
impacts of climate change can be useful for vulnerability studies to evaluate climate stress
affecting agricultural production [25,48]. The use of CFT provides information to address

crop productivity in relation to heat stress and high average temperatures. The mott °f 24

vulnerable plant process to elevated temperatures is flowering or anthesis during the
reproductive stage [49]. Temperature stress (heat stress) alters pollen germination in maize.
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Short-term trends are classified into three periods: 1920-1950, 1951-1980, and 1981—
2010. The scenario lines for the short-term trends between 1920-1950 portray a dominat-
ing positive trend for CFTs at 35 °C, 39 °C, and 40 °C (Figure 8). The stations exhibited
positive and negative trends at 30 °C. The 1951-1980 period marks a bias towards more
negative trends at 35 °C, 39 °C, and 40 °C. The trends for the CFT at 30 °C have positive
and negative values. The trends show a maximum spread towards negative values for all
CFTs after 1981. However, the maximum spread was towards positive and negative val-
ues for 30 °C and 35 °C CFTs. The values ranged from —12.5 to 5.0. The CFT at 40 °C is
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3.3.2. Frost Indices
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3.3. Wet and Dry Spell Indices
3.3.3. Wetand Dry Sprll annu:ﬁslong term wet spell length (WSL) trend features positive values for most
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shows a decreasrngfrghlac(’if gﬁ‘iiéofﬁ This indicated that dry spells have decreased over
he anntral WSL s ort term trends were between'—0.3 to 0.8 from 1920-1950. A bias
time in most locatlons

wards negative values (decreasing wet spells) was observed from 1951-1980. Mean-
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trends for most of the stations. The second period (1951-1980) depicts both positive and
negative trends. The spread of the scenario lines decreased during 1981-2010, and the
stations show positive and negative trends that point towards episodes of excess and scarce
rainfall over the region. The scarcity of rainfall resulted in more irrigated areas in the
region in recent decades. The WSL and DSL indicators help in agricultural planning and
conservation of water and soil resources [50].
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3.3.4. Warm and Cold Spell Indices

The annual cold spell days had more bias towards negative trends, even though some
stations showed positive values. Warm spell days showed very weak positive trends
compared with cold spells, but the negative bias was stronger. The annual cold spell days
during 1921-1950 showed a bias towards negative trends. A symmetrical spread was
observed between 1951-1980 and the later period represented positive and negative trends
for the stations (Figure 12c). The majority of stations showed a positive trend of warm
spell days (1921-1980) and negative trends for all stations between 1951-1980. The latter
period (1981-2009) had warm spell day trends that were similar to that of the cold spells
(Figure 12d).
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4. Discussion

The focus of this study was to understand future climate projections in the Ogallala
aquifer region using CMIP5 model projections. In addition, station-based agro-ecosystem
indicators for the Kansas state and Central High Plains aquifer region were studied in
detail to understand the effect of temperature and precipitation on agricultural crops.
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4. Discussion

The focus of this study was to understand future climate projections in the Ogallala
aquifer region using CMIP5 model projections. In addition, station-based agro-ecosystem
indicators for the Kansas state and Central High Plains aquifer region were studied in
detail to understand the effect of temperature and precipitation on agricultural crops.

4.1. Climate Model Predictions

Climate projections from meta-analyses (agro-meteorological indicators) and data
analyses (CMIP5 models) show that climate change is already happening at a faster pace
over the Ogallala aquifer region; this may impact the water resources over the region.
The High-plain aquifer region has a mid-latitude dry continental climate with abundant
sunshine, moderate precipitation, and a higher rate of evaporation. The location of a
region determines the agronomically effective part of the growing season [51]. Agricultural
production is directly vulnerable to temperature changes through crop growth and devel-
opment, even though only a part of the growing season is used for food, feed, and biomass
production. An increase in the frequency of extreme precipitation events, prolonged severe
drought episodes, and an increase in temperature pose challenges for the US southern
plains agricultural sector [41].

The CMIP5 model projections for temperature showed warming over the northeast
region of the aquifer for all seasons. This affects the quality and productivity of feed crops,
and poses an indirect health risk to animals. The precipitation estimates suggest a rise in
the north and northeast during spring, summer, and winter. The early growing crop season
is affected by changes in precipitation that are above normal. The impact of above-average
precipitation depends on soil type, soil compaction, and soil management [52].

Summers will be substantially warmer, with less precipitation under the medium-
and high-emission scenarios. This creates water stress that accelerates water demand.
The global Aqueduct database [53] projects a 1.4-2 times increase in water stress over the
Kansas region of the aquifer between 2030-2040. Large stretches of crops across the Great
Plains, such as cotton, sunflower, soybean, and winter wheat, are rain-dependent (NOAA,
2015). The local climate is a major factor in determining water availability resources in a
region. Soil quality is also at risk since changing temperature and rainfall patterns affect
erosion and soil organic matter decomposition rates [54].

4.2. Potential Impacts and Decision-Making in Various Ecosystem Services

The temperature change in the range of —4 °C to 8 °C and precipitation change in the
range of —50% to +50% over the Great Plains aquifer region can be used to create several
scenarios important for decision making. These changes have important implications for
ecosystem services by altering the equilibrium of the region and affecting the components
of the system. For example, increasing temperature scenarios delay the onset of FFF and
hasten the occurrence of LSF, increase the growing season length and the number of warm
days. A warmer, longer growing season changes the distribution of plants grown within
the region [55]. The decrease in precipitation increases the dry spells and may reduce the
stream flow over the aquifer region; this can directly affect the groundwater. An increase
in the number of extreme temperature events (high daytime highs or nighttime lows)
and dry spells increases plant stress. These events impact Playa lakes and can result in a
decline in groundwater levels over the region. Playas of the High Plains that are potential
point sources of recharge to the High Plains aquifer provide wildlife habitats and help
maintain regional biodiversity [56]. Declining groundwater levels lower the profitability of
irrigation, leading to fewer irrigated acres and shifting to dryland farming. This shift has
had negative consequences for agricultural producers and rural communities [57]. These
socio-economic changes need to be incorporated into planning adaptation strategies to
sustain ecosystem services, meet desired production, and accomplish conservation goals.
Education and extension services are required to transfer adaptive knowledge in a timely
manner to stakeholders in the field.
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Climate-driven changes can significantly affect ecological flow regimes [58], and
influence the cycling of nutrients which alters water quality [59]. Best management practices
are required for effective water management and crop productivity, owing to the low
recharge rate of the aquifer [60]. Increased high precipitation events can cause excess
nutrient loading to the water bodies, leading to water quality degradation, including
groundwater contamination, algal blooms, hypoxic/anoxic conditions, and the loss of fish
biomass and native fish species, resulting in environmental costs. Scenarios of increasing
precipitation in the region will be useful in the United States Department of Agriculture
Conservation Reserve Program (CRP). This is a voluntary program that pays farmers to take
environmentally susceptible croplands and change the land cover grassland, woodland, or
wetlands for 10 to 15 years to achieve environmental benefits such as erosion reduction,
surface water quality, and wildlife habitat benefits [61]. These shifts affect the migration
pattern of fauna, species extinction, and so on [62].

4.3. Potential Impacts in Agricultural Production

Extreme temperatures and precipitation may reduce crop yields because of the re-
duction in water availability for agricultural production. A reduction in the water table
increases the cost of pumping water. Farmers realize that dryland farming is the most
cost-effective alternative that also saves the remaining irrigation water [63]. Therefore, there
is a transition from irrigation-deficient regions to drylands for crop production, as outlined
in recent studies [64—-66]. However, land use planning at community and local scales must
account for the likelihood that irrigated farmland would be converted to non-irrigated
pasture agriculture rather than dryland crop cultivation; this has significant impacts for the
environmental and the economy [65].

Scenarios of higher temperatures and dry spells impact the crop growth stages, and
can be combined with water availability to (1) estimate changes in crop water require-
ment and potential evapotranspiration, (2) improve water use, especially during critical
development stages, and (3) select hybrids that produce optimum yields in the antici-
pated scenarios [6,33,34,67]. Scenarios of increasing dry spell length can lead to prolonged
droughts and increased irrigation requirements, resulting in decisions such as increased
groundwater use, more drought-resistant crop varieties, or switching the cropping sys-
tem to dry land. These decisions can alter the recharge rates of groundwater during the
transition between irrigated and dry-land agriculture.

Frost is considered a major meteorological factor that impacts agriculture [68,69] in
temperate and subtropical regions [68] and determines crop habitat. Therefore, scenarios of
low temperature can be used to (1) study chill injury: this threatens crops by inducing ice
crystals in tissues that affect growth and decrease yield; (2) estimating the impacts on crop
physiology, specifically growth stages; (3) understanding the impact of freeze stress on the
crop lipid phase transition temperature, lipid phosphate (lipid-P), free fatty acid levels,
and formation of oxygen free radicals; (4) understanding hydrologic-, ecosystem-, and
biogeochemical processes with changes in net primary productivity and evapotranspiration;
and (5) studying frost impacts, the biochemical and physiological aspects of plants, and the
complex process being named as frost hardening [26,34,70]. Frosts with winter precipitation
affect water runoff, contribute to soil erosion, and nutrient leaching. Autumn-sown crops
are sensitive to harsh winter conditions.

5. Conclusions

Several studies have documented climate change impacts on the region overlying the
Ogallala Aquifer This is the first study to document temperature and precipitation changes
over the entire Ogallala region from 35 General Circulation Models participating in phase
5 of the Climate Model Intercomparison Project (CMIP5), together with the development
of agro-hyro meteorological indicator-based scenarios that stakeholders can utilize in
decision-making.
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The meta-analysis depicts a temperature range from —4 °C to 8 °C over the Great
Plains aquifer region from 1900 to 2100. Historical simulations from 1900 to 2000 show
a symmetrical gradual change from —2 °C to +2 °C, and decadal changes (1980-2000)
represent a rapid increase in temperature up to 5 °C. The future precipitation projections
have a symmetrical spread. This indicates less variability compared to the temperature
changes. The spatial variability of temperature from the CMIP5 model simulations shows
cooling in the northern part of the aquifer and warming in the south for historical runs.
Scenario RCP4.5 projects a north-south gradient in temperature with strong warming in the
north to northeast region. The RCP8.5 scenario sets a much warmer pattern for all seasons.
Meanwhile, historical precipitation simulations have a southeast to northwest gradient for
RCP4.5, with winter, spring and fall precipitation maxima on the north side of the aquifer.
Summer precipitation is projected to be very weak. The higher emissions scenario projects
that the central region of the aquifer will be drier.

The agro-ecosystem indicators for the stations in Kansas represent the greatest changes
in the number of CFT days (30 °C and 35 °C) during 1981-2009. The eastern stations show
a considerable decrease in the number of days of CFTs at 39 °C and 40 °C. The long-
term trends on the day of the last spring freeze showed a decrease, and the short-term
trends increased after 2000. Short-term annual wet spell lengths decreased. This indicated a
shortage of water over the Kansas region of the aquifer. The use of agroecosystem indicators
helps in the development of new crop varieties that can adapt to climate change. This
is beneficial to sustainable agricultural management in the context of aquifer depletion.
The scenario line portrayal of agro-meteorological indicators helps decision-makers make
use of climate science in two ways: 1. Identify the transition zone between adaptation
and transition 2. Determine when to make transitions based on previous experiences of
conditions and the degree of climate change.

We propose to utilize the CMIP6 multi-model climate simulations in decision making
for the Ogallala Aquifer as a future study. This is because CMIP6 projections consider socio-
economic scenarios and future land-use scenarios. Most current scientific studies are focused on
the transition of irrigated to dryland cropping systems [63] (one of the objectives of the Ogallala
Aquifer Program [60]). The use of CMIP6 is an added advantage for better adaptation and miti-
gation strategies to cope with climate shocks. However, local/regional crop modelling studies
using decision support tools and observational field experiments are required to supplement
climate model projections. In addition, innovations in technology and management must
be introduced in other states encompassing the Ogallala Aquifer for sustainable irrigation,
such as the Local Enhanced Management Area (LEMA) in Kansas, USA, [71]).
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