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ABSTRACT

Model-serving systems expose machine learning (ML) models to

applications programmatically via a high-level API. Cloud plat-

forms use these systems to mask the complexities of optimally

managing resources and servicing inference requests across multi-

ple applications. Model serving at the edge is now also becoming

increasingly important to support inference workloads with tight

latency requirements. However, edge model serving differs substan-

tially from cloud model serving in its latency, energy, and accuracy

constraints: these systems must support multiple applications with

widely different latency and accuracy requirements on embedded

edge accelerators with limited computational and energy resources.

To address the problem, this paper presents Dělen,1 a flexible

and adaptive model-serving system for multi-tenant edge AI. Dělen

exposes a high-level API that enables individual edge applications

to specify a bound at runtime on the latency, accuracy, or energy

of their inference requests. We efficiently implement Dělen using

conditional execution in multi-exit deep neural networks (DNNs),

which enables granular control over inference requests, and evalu-

ate it on a resource-constrained Jetson Nano edge accelerator. We

evaluate Dělen flexibility by implementing state-of-the-art adapta-

tion policies using Dělen’s API, and evaluate its adaptability under

different workload dynamics and goals when running single and

multiple applications.
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1 INTRODUCTION

Model-serving systems expose machine learning (ML) models to

applications programmatically via a high-level API [55]. These sys-

tems typically leverage one or more previously-trained deep learn-

ing models on cloud servers, and mask the complexities of optimally

selecting models, managing resources, and servicing inference re-

quests across many applications [8, 16, 27, 55, 56]. Cloud-based

model serving systems are generally multi-tenant with each server

hosting many deep learning models that serve multiple inference

applications [39]. Multi-tenancy increases efficiency by multiplex-

ing limited resources e.g., in GPUs, across applications.

Model serving at the edge is now also becoming increasingly im-

portant to support inference workloads for Internet of Things (IoT)

applications with tight latency requirements, including in smart

homes, mobile health, and wearable devices [40, 48]. Such IoT appli-

cations are becoming pervasive due to continuing advances in hard-

ware miniaturization and improvements in the energy-efficiency

of sensing and communication. Traditionally, edge devices, such as

smart assistants (e.g., Siri, Alexa, etc.), smart cameras, and emerging

household robots, that sense data for IoT applications have sent the

data over the network to remote servers, often in the cloud, for ML

inference processing. However, in recent years, a new generation

of IoT devices has emerged that enable sophisticated low-latency

processing of data at the edge. As one example, smart speakers

with voice assistants that respond to spoken commands require

processing and responses in real-time with low-latency to provide

an adequate interactive experience for users.

Thus, edge computing – where processing is done at the edge

of the network close to users – has emerged as the preferred ar-

chitecture for enabling low-latency IoT applications. To support

edge computing, a new class of low-power embedded hardware

accelerators, called neural accelerators, has emerged that is tai-

lored to, and highly energy-efficient at, executing ML inference

tasks [6, 21, 31, 42, 45, 50, 52–54]. These accelerators range from

the ultra-low-power Arduino Nano and low-power Jetson Nano

GPUs to Apple’s Neural Engine for its iPhones, and have enabled

the rise of edge AI, where embedded edge devices, rather than the

cloud, are capable of providing low-latency ML inference tasks for

applications. Since IoT devices often have many data sources from

numerous sensors and support multiple edge applications, the cloud

model-serving paradigm above, which was originally designed for

cloud servers, is still applicable at the edge. As with cloud model
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Parameter Criteria, where$% ∈ {<,==,>}

Response time ( response_time$% threshold)

Confidence (confidence$% threshold)

Accuracy (accuracy$% threshold)

Energy (energy_used$% threshold)

Computation (flops_used$% threshold)

Exit (exit_number$% threshold)

Null false /*forces full execution*/

Table 1: Dělen exit-selection criteria.

is embedded into the conditional runtime execution and is enabled

by two key design decisions that we next outline in detail.

First, we allow applications to define criteria for different pa-

rameters that specify either resources, such as energy and compu-

tation, or high-level objectives, such as accuracy, response time,

and confidence. The different parameters and relevant criteria are

shown in Table 1. We expose two methods specify_criteria()

and combine_criteria() to register one or more exit selection

criteria and combine them using boolean operators, respectively. As

an example, an application can specify (response_time > 20<B)

| | (confidence > 0.7) as its criteria, which will trigger an exit-

selection if the partial response time exceeds the 20ms threshold or

if the result confidence exceeds 0.7. An energy cap on the execu-

tion can also be specified using the criteria, such as energy_used

> 100<� . Similarly, an application can determine the exit number

that will yield the desired accuracy using an external policy. For

example, exit_number == 2, causes the second exit to be taken.

The exit criteria is stored in a per-application table.

Second, we enable applications to update their exit criteria at

runtime to handle changing request and workload dynamics. For

example, an application-specific policy may decide to choose a later

exit for a complex inference request to ensure high accuracy at the

cost of energy. Similarly, another application may instead decide to

choose earlier exits under high workload intensity to ensure low

latency at the cost of accuracy. To enable adaptability, the runtime

system leverages a monitoring module to track the current state of

execution for each inference request that an adaptation policy can

leverage to update the exit criteria. We note that the exit-criteria

can be selected on a per-request basis, as well as for a given workload,

and is informed by the adaptation policies presented in §4.

The flexibility of our framework lies in enabling a wide range

of exit criteria for a given application and across applications to

handle their different needs and objectives. The adaptability of our

framework lies in allowing applications to change their exit criteria

on a per-request, as well as a per-workload basis, to handle the

dynamics at the inference and workload levels.

3.1.2 Resource Manager. Dělen enables multiple applications

to share accelerator resources, while configuring their application-

specific exit criteria. It enables support for multi-tenancy through

its resource manager component. The resource manager in-turn has

two key components: the share allocator and the resource limiter.

The share allocator’s job is to assign shares to each application

based on the initial application configuration that includes applica-

tion priority, application characteristics, and the choice of fairness

mechanism to use for multi-tenancy. Dělen’s resource manager is

work-conserving and distributes the shares of applications that are

not using them to all applications. The applications can reclaim

their assigned share if they start using them. We also allow appli-

cations to cooperate with other applications and allow each other

to use their share when not in use. To facilitate this, we provide a

mechanism to update the initially assigned shares at runtime based

on the current status of the cooperative applications.

The resource limiter’s job is to ensure that each application re-

spects its share and does not exceed it over a specified time window.

To do so, the resource manager uses a standard token bucket algo-

rithm for rate limiting [46]. In Dělen, the shares represent the limits

for each application, while the number of time-slices assigned to

each application represents the tokens. The token capacity for each

application is refilled after each limiting interval. While a hard limit

on resource usage can also be used, we use a token bucket algo-

rithm to allow short bursts of workloads for individual applications.

Dělen’s support for multi-tenancy is enabled by the resource man-

ager that allows application-specific resource limits. The resource

manager also enables an additional notion of adaptability where

the shares assigned to each application can be updated at runtime.

3.1.3 Profiling andMonitoring Engine. The profiling and mon-

itoring engine component of Dělen performs two key tasks: a one-

time profiling of an application’s characteristics and the continuous

monitoring of applications’ runtime behaviour.

The application profiling step allows Dělen to get information

about the resource usage of the DNN model. The profiling engine

executes inference requests using the model several times to gather

the following profile data at the granularity of an exit: (i) FLOPs,

which indicate the number of floating point operations performed

by the exit, (ii) energy consumed when executing the exit at full

GPU speed, and (iii) the latency to execute the exit. Each request

is repeated several times, and for each exit, to gather information

about each execution path. This information is used by the resource

manager to assign the initial shares to each application as well as

provided to the applications that leverage it to decide on the exit

criteria using an application-specific adaptation policy.

The continuous monitoring process monitors the status of each

application at runtime, which includes the current exit number,

FLOPs performed, energy consumed, total time taken, and other

metrics, such as confidence value. This information is used by

the runtime adaptation of the exit-selection criteria and runtime

adaptation of per-application shares for the multi-tenancy scenario.

3.2 Overview of Dělen Workflow

In this section, we discuss the typical steps taken by an application

using Dělen at startup and at runtime. At startup, Dělen receives

an application and its initial configurations (Step ❶). The profile

engine uses the application code and its initial configuration to

generate the profile data (Step ❷). The share allocator component

of the resource manager then allocates shares to the application

based on the profile data and the initial configurations (Step ❸). At

the same time, it configures the resource limiter component with

the share for the given application. The adaptation policy used by

the application then uses the conditional execution framework to

determine the initial exit criteria for the inference requests (Step

❹). At this point, the start time configuration process completes

and the application starts executing on the accelerator (Step ❺).
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Algorithm 1: Per-workload adaptation with target error.

Input: A list of profiled error rate Err; target error rate 4C0A64C .

1 n← total number of exits ;

2 for 8 = 1...= do

3 if Err[i] < 4C0A64C then

4 specify_criteria(exit_number == i) ;

5 return

6 specify_criteria(exit_number == n) ;

The workflow at runtime depends on the adaptation policy used

by the application. If the application uses a single exit number as

a criteria for all the inference requests in a given workload, the

runtime execution framework does not require active monitoring

of resources. However, if the application specifies a certain criteria

to be met for each inference request, such as a confidence threshold

for the output, the execution framework continuously monitors the

status of the application (Step ❻)). The criteria is evaluated after

each exit and the output is generated once the criteria is met (Step

❼). It is possible that the criteria is not met at any of the exits; in

this case, the output is generated after the last exit.

In addition to these per-application steps, Dělen’s workflow has

additional steps that ensure work-conserving and cooperativemulti-

tenancy among tenant applications. By default, Dělen monitors the

status of each application and redistributes the unused shares to all

the other applications to be work conserving (Step ❽). Additionally,

if an application specifies their willingness to cooperate, the share

allocator module will also recompute the weights assigned to each

application to allow one application’s share to be used by another

application (Step ❾).

4 ADAPTATION POLICIES

In this section, we highlight Dělen’s flexibility to implement a wide

range of policies. To do so, we use Dělen to implement several adap-

tation policies from prior work. We broadly classify these policies

into two categories based on their function: application-specific

and multi-tenant policies. Application-specific policies work on

individual applications and adapt the runtime execution based on a

per-request or per-workload basis. Multi-tenant policies ensure that

each of multiple concurrent applications receives their fair share of

resources and can individually optimize their application-specific

objectives.

4.1 Application-specific Policies
Our application-specific policies target either per-request or per-

workload runtime execution adaptation. Per-request policies adapt

the runtime execution for each request depending on its resource

needs. Per-workload policies adapt to different workload dynamics,

but apply the same criteria to all the requests in a given workload.

In addition, we present additional policies that are applicable to

both the individual requests and the workloads.

4.1.1 Per-request Adaptation Policies. Applications that spec-

ify high level objective, e.g., on latency, may need to adjust the

amount of computation to achieve this objective. Such applications

can use Dělen’s conditional execution framework to define arbi-

trary per-request policies. An application can define one, or more,

criteria for each request and the execution continues until these

Algorithm 2: Pareto adaptation with error constraint.

Input: A list of Pareto-optimal confidence criteria c ; target error

rate 4C0A64C ; error profile for running policy c with model

U and dataset l , WcU (l) , and energy profile [cU (l) .

1 c∗ ← argminc∈{c |Wc
U (l )<4C0A64C }

[cU (l) ;

2 specify_criteria(c8 > c∗
8
)

criteria are met. For example, prior work demonstrates that all infer-

ence requests do not have the same complexity; in this case, we can

use a confidence threshold to avoid wasting computing cycles and

energy [23, 36, 44]. As another example, if an application specifies

a target latency, the execution greedily continues as long as the

execution can go through the next exit within the latency limit.

The application can also use logical operators to combine mul-

tiple criteria. For example, an application can specify the confi-

dence threshold in addition to the response time, which can be

used to achieve higher-level secondary objectives, such as accu-

racy maximization, while satisfying the response time require-

ments [23, 36, 44]. In this case, the execution will stop once either

the response time or the confidence criteria are met.

4.1.2 Per-workloadAdaptation Policies. Dělen allows an appli-

cation to specify criteria that consider the workload characteristics,

e.g., request arrival rate, and application objectives, e.g., target error

rate, and adapt the criteria as the workload dynamics changes.

The per-workload adaptation policies from prior work specify

one or more targets that determine the exit layer for all the requests

over some duration [4, 17, 32]. For example, an application can

specify a target error rate that is used to determine the exit layer

for all the requests that meet that target error rate. As shown in

Algorithm 1, given a target error rate and error profile for the used

model from the profiling engine, this algorithm selects the first exit

that meets the target error rate. If none of the exits can satisfy the

target, it specifies the last exit (i.e., executing the entire model). It

then uses the exit_number criteria to configure the runtime execu-

tion for all the incoming inference requests. We call this adaptation

policy the per-workload static policy.

The static nature of this policy is well-suited to a scenario where

the workload dynamics, such as the request rate, do not significantly

change. However, for many edge applications, the workload can

experience sudden spikes of requests. In this case, the per-workload

policy can adapt the criteria to handle the change in the request

rate. For example, under high load, an application may decide to

take a hit on the error rate to serve all requests within a target

response time. On the other hand, under low load, the application

can opportunistically decrease its target error rate while serving all

requests within a target response time. An implementation of this

policy leverages the monitoring module of Dělen to continuously

monitor the incoming workload characteristics and configures the

per-workload static policy to handle the changing dynamics. To

do so, it inputs the target latency and latency profile to determine

the exit number. The configuration of target latency based on the

workload characteristics is application-specific. We call this variant

of per-workload adaptation policy the per-workload dynamic policy.

4.1.3 Pareto Adaptation Policies. In this section, we describe

policies from prior work that combine the desired properties of

both the per-request and the per-workload adaptation policies.
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engine as they require adapting the implementation for the model

serving framework and underlying hardware.

Multi-exit DNN Training Engine. While a large number of pre-

trained DNNs are available for common tasks, such as image classi-

fication, object detection, and speech recognition through various

model repositories [10], multi-exit versions of the standard DNN

models are generally not available. Since we leverage multi-exit

DNNs, we also design and implement a PyTorch-based training

engine to convert a standard DNN model into a multi-exit version.

The state-of-the-art DNN architectures [18, 41] use the concept

of a neural block, which is a pattern of layers that are used repeat-

edly to build the DNN. To build a multi-exit DNN from a standard

DNN, our training engine adds classification layers (e.g., linear lay-

ers) on top of some intermediate blocks and uses the intermediate

output of the block for classification as an early exit. In the training

process, the application specifies the desired number of exits for

the conversion. A lower number of exits has a small training over-

head but it provides less options for adaptive execution based on

high-level objectives and resource availability. On the other hand,

a large number of exits adds a significant training overhead but

offers a significantly higher flexibility for adaptive execution.

Furthermore, unlike standard DNNs, the training engine needs

to compute the loss and train all exits in the multi-exit case. Instead

of training the exits one by one, our training engine uses weighted

cumulative loss similar to MSDNet [20] and trains all exits at once,

!C>C0; =
1

|B|

∑

(x,~) ∈D

#∑

8=1

F8!(58 (x), ~).

where B is the mini-batch, x is the input data and ~ is the ground
truth label. ! is the loss function for each exit. In this work, we use

a cross-entropy loss function for all exits. 58 (x) is the output of exit

8 and F8 > 0 is the weight of that exit. Although prior work [20]

suggests using the same weight for all exits, we empirically found

that this can hurt the performance of later exits and makes them

less accurate than earlier exits. Since our goal is to incrementally im-

prove accuracy with each successive exit, our training engine gives

higher weights to later exits to ensure monotonic improvements.

Conditional Runtime Execution Framework. TensorRT’s run-

time does not support multi-exit DNN execution and we implement

runtime support for multi-exit DNNs and conditional execution.

After training a model, the runtime system converts each =-exit

DNN into =-sub-networks. The inputs and outputs of these sub-

networks share the same buffer. To load a DNN model on the GPU,

the runtime system loads all of its sub-networks independently in

TensorRT and then runs each of them on demand. The conditional

execution allows the exit criteria to be evaluated at the exit block

boundaries, which enables an early exit to be taken.

Profiling Engine. As discussed in §3, the profiling engine gathers

the resource usage information for the application DNN. In our im-

plementation, we first compile the multi-exit DNN model using the

TensorRT compiler in the native format to run it using TensorRT—

Nvidia’s low-level runtime framework for Jetson Nano GPUs. The

profiling engine runs a configurable number of inference requests,

termed " , at each exit 8 for # times. The value of " depends on

the dataset used, while we configure the value of # to be one as

our data set is large enough to get reliable profile data.

IMX Camera

IMX Camera

Microphone

NVIDIA Jetson Nano

Geekworm T208 18650 UPS

18650 Li-Ion Battery

Figure 6: Dělen prototype implemented on Jetson Nano in

ba�ery-powered configuration.

Models # Exits GFLOPS Energy (mJ) Accuracy

ResNet18 4 0.42 107 0.7450

ResNet34 4 3.68 158 0.7521

ResNet50 4 4.14 176 0.7657

EfficientNet-B0 3 0.42 92 0.7971

EfficientNet-B1 3 0.61 170 0.8097

EfficientNet-B2 3 0.71 249 0.7936

wav2vec2 3 2.51 273 0.8744

Table 2: Characteristics of our multi-exit DNNs.

6 EXPERIMENTAL EVALUATION

In this section, we describe our experimental setup and present the

results for our various adaptation policies using our prototype.

6.1 Experimental Setup

Dělen Prototype. Our experimental setup comprises the Jetson

Nano node in Figure 6 running Dělen’s implementation described

in §5. The Jetson Nano is equipped with a Quad-core ARMA57 CPU,

a 128-core Maxwell GPU, and a 4GB RAM shared between the CPU

and the GPU. The node runs Ubuntu 18.04, CUDA 10.2, CuDNN 8,

and TensorRT 7.1.3. As Figure 6 shows, it is battery powered using

6 rechargeable batteries with a capacity of 3400MAh each.

DNN Models. We use seven DNN models from three popular DNN

families to process image and speech data, as these comprise most

of the edge applications. Specifically, we use EfficientNet[41]

and ResNet[18] for image classification tasks and wav2vec2[2]

for speech recognition tasks. For ResNet and EfficientNet, we

choose ResNet18, 34, 50 and EfficientNet-B0, B1, B2 to represent

a small, medium and large model, respectively. For the wav2vec2

model, we reduce the convolutional dimension from 512 to 128 and

the number of encoder layers from 12 to 6 to improve execution

efficiency. We used our custom DNN training engine to train and

create multi-exit versions of these DNN models. We used the pro-

filing engine to gather detailed resource usage information about

each model, which is summarized in Table 2.

Training Details:We used our custom DNN training engine to cre-

ate multi-exit versions of all seven DNN models. We used the Food-

101 dataset [5] for training the EfficientNet and ResNet models,

and the Speech Commands dataset [49] for training the wav2vec2

model. We applied transfer learning and loaded pre-trained weights

for ImageNet before training. All models are trained using the Adam

optimizer [25] with a learning rate of 10−3. We trained the models

on an off-the-edge device using two NVIDIA GeForce GTX 1080 Ti

GPUs with a mini-batch size of 128 for 50 epochs.
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