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Abstract

Traditional power reduction techniques such as DVFS or RAPL are

challenging to use with web services because they significantly

affect the services’ latency and throughput. Previous work sug-

gested the use of controllers based on control theory or machine

learning to reduce performance degradation under constrained

power. However, generating these controllers is challenging as ev-

ery web service applications running in a data center requires a

power-performance model and a fine-tuned controller. In this paper,

we present DDPC, a system for autonomic data-driven controller

generation for power-latency management. DDPC automates the

process of designing and deploying controllers for dynamic power

allocation to manage the power-performance trade-offs for latency-

sensitive web applications such as a social network. For each ap-

plication, DDPC uses system identification techniques to learn an

adaptive power-performance model that captures the application’s

power-latency trade-offs which is then used to generate and deploy

a Proportional-Integral (PI) power controller with gain-scheduling

to dynamically manage the power allocation to the server run-

ning application using RAPL. We evaluate DDPC with two realistic

latency-sensitive web applications under varying load scenarios.

Our results show that DDPC is capable of autonomically generating

and deploying controllers within a few minutes reducing the ac-

tive power allocation of a web-server by more than 50% compared

to state-of-the-art techniques while maintaining the latency well

below the target of the application.
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1 Introduction

Today, our world relies on web services running on massive cloud

data centers. In the US alone, it is estimated that cloud data centers

consume around 70 Billion kWh per year [50], the equivalent of 7

million households. It is expected that this number will grow sig-

nificantly in the coming decade to support the computing demands.

Even small inefficiencies in the power consumption of these data

centers can translate to large costly resource, environmental, and

financial waste. Hence, there has been significant work directed

towards enhancing the energy efficiency of cloud data centers, with

techniques ranging from resource management [29, 45], to better

chip architectures [37] and power capping.

Power capping is a technique used by many data centers to limit

their total power consumption from going above a pre-defined

power threshold. Capping is typically achieved using CPU power

management features such as Dynamic Voltage and Frequency Scal-

ing (DVFS) [20] and Running Average Power Limit (RAPL) [54].

There are two traditionally used power reduction techniques: DVFS

or RAPL. DVFS is a technique to control power consumption of

processors by scaling up and down the voltage (and frequency) of

the processor. RAPL is a technology on Intel processors that allows

monitoring and controlling the average power that a processor con-

sumes [39]. Capping is enforced when there is either an overload on

the (expensive) data center power equipment, or to reduce the elec-

tricity consumption to avoid violations of the power agreements

the data center operator has with the power provider [16, 57]. Much

prior work has focused on power-capping for throughput-oriented

or batch workloads [33, 41, 54], with far fewer efforts focusing on

latency-sensitive workloads. One major issue with latency sensitive

workloads is the non-linear performance degradation in latency

with reduced power allocation [27] which can lead to severe perfor-

mance degradation. Hence, many researchers have suggested the

use of power-performance controllers for latency-sensitive work-

loads using, e.g., control theory [20, 28, 36] ormachine-learning [59].

However, one of the main shortcomings of these approaches is that

they require a different fine-tuned control model and large amounts

of training data for each web application, each workload mix [51],

and each possible server configuration [21]. In addition, the power-

performance model may need to be updated or re-trained every

time the application is updated, e.g., when any components of the

application are upgraded or modified. A further complication is that

training and optimizing a controller requires substantial manual

effort in collecting training data and tuning the controller. Ideally,

the process of controller generation should be automated, allowing



WWW ’23, April 30–May 04, 2023, Austin, TX, USA Savasci et al.

for full autonomy for the management of the power-performance
controller generation and management.

In this paper, we look for an answer to the question of can we

automate the process of power-performance controller generation

for web-services such that the generated controllers reduce power-

allocation while meeting SLOs and provide equal/better performance

compared to state-of-the-art techniques? As an answer, we present
DDPC, a Data-Driven Power-performancemanagement system that
autonomically manages all steps of power-performance manage-
ment of data centers, from controller generation to power allocation
for latency-sensitive workloads. Our system enables data center
operators to decrease the total data center power allocation while
maintaining the required Service-Level-Objectives (SLOs) for these
workloads. To do so, DDPC autonomically benchmarks each ap-
plication and models its power-performance tradeoffs using an
ARX model–a popular model from control theory used in system
identification [31]. The model is then used to automatically build
Proportional-Integral (PI) controllers with gain scheduling [31] to
control power allocation under a wide set of load conditions for the
application using RAPL. Our controllers maintain the average re-
sponse time well below the required SLO under power caps. When
the system operates under no power-cap, the controllers minimize
the tail response time, while reducing the overall power allocation
in comparison to state-of-the-art solutions. DDPC deploys the con-
trollers automatically in the cluster, and in case of deviations from
the SLO, the controllers are automatically retrained and redeployed
online. Our main contributions can be summarized as follows.

• We design and implement DDPC, an autonomic power man-
agement system that manages the power-performance trade-
offs of web applications.

• DDPC generates ARX models for the power-latency trade-
offs. The models are used to generate PI controllers with
gain scheduling for power allocation. The controllers reduce
the overall active power allocation with up to 50% while
maintaining the SLO.

• We implement a prototype of DDPC in a Linux cluster, testing
the framework with different workloads and applications.
For reproducibility, we open source our framework.

2 Background

2.1 Cloud Data Centers

Today, many internet services run in large-scale data centers. Op-
erating these data center is expensive with a large part of the op-
erational cost coming from their massive power-consumption. In
Europe, a recent study estimates that data centers power consump-
tion will double in five European countries, with an estimate that
it will consume up to 25% of the total power consumption in Ire-
land by 2030 [8]. In the US, it is estimated that using better power
and energy management techniques could yield saving of over 25
billion kWh [50]. This massive power consumption (and wastage)
increases the carbon footprint of these systems.

Since most web-clusters run at low utilization [26], there is an
ever increasing interest to reduce their power consumption to re-
duce the energy waste of data centers. Techniques based on control
theory, statistical learning, and deep-learning [34, 40, 42, 57, 59]
for managing the power-allocation have been suggested. Since

CPU power is the largest contributor to power consumption in a
server [1], most work on power management focus on reducing
the consumption of CPU power using techniques such as Dynamic
voltage and frequency scaling (DVFS), and Running Average Power
Limit (RAPL). DVFS enables system administrators to set the volt-
age used by a CPU, reducing the power consumption of the CPU,
and hence the server. RAPL on the other hand enables a system
administrator to set the average power consumption of a CPU to a
certain wattage. While these two techniques reduce the power us-
age of servers considerably, they affect the performance of latency-
sensitive web workloads—potentially reducing performance by up
to 60% when the application is running independently, and by up
to 80% when co-located [17, 30].

2.2 Web service workloads

Web services such as social networking, web search, email ser-
vice, and online shopping are latency-sensitive with any latency
increases leading to user dissatisfaction. Hence, many research ef-
forts focus on reducing the response times (both average and tail)
of web applications [11, 25, 48, 53]. However, many of these latency
optimization solutions involve replication [11, 46], which increases
the overall power consumption of running the same workload.
Web QoS measures. There are multiple measures of QoS for web
services. Latencies of Web pages have three main components;
the server response time, the network latencies, and the client
load/rendering times. Server response times are calculated from
when a request is received at the front-end of the web service to the
time it leaves the front-end. Any delays in server response times
affect the user-perceived QoS. There are many user-centric client
QoS measures such as Time to First Byte (TTFB) and First Input
Delay (FID) [56].
These user-centric QoS measures usually exhibit high variability
across different web services, with some services taking a few mil-
liseconds, while others taking up to 4 seconds [43]. Some of this
variability is due to the large dynamics that web-service servers
experience, e.g., the number of requests, or the request mix. How-
ever, a much more contributing factor is the difference in how these
services are designed and built, yielding very different (achievable)
server response times for different web services. This variability
between the different applications results in increasing complexity
for management systems, with respect to knowing the achievable
latency for each application, and how to guarantee this latency for
each web service given the variability.
Tail versus Average Latency SLOs. In order to fulfill the QoS
requirements of users, service providers and data center operators
need to maintain a pre-defined SLO. The SLO can be in terms of, e.g.,
system availability, the average response time, or the tail response
time. Using tail-latency to define server-level SLOs has gained wide
interest from the academic community [12, 27, 32, 36] but this
usually comes at the cost of using extra resources to improve tail
performance. In the context of powermanagement, it usually entails
being conservative and allocating more power than what would be
needed if only the average latency is to be guaranteed [36]. Hence,
when power is limited, it can be more beneficial to focus on average
latency when the main optimization required is to reduce the power
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consumption of the system. In other cases, power over-provisioning
the power can help reduce tail latency.

2.3 Feedback Controller Design

Generally, to build a robust feedback controller, there are three
steps. The first step in building a controller is to build a mathemat-
ical model of the controlled system behaviour. One technique to
build and adapt these models is to use System identification [35].
System identification utilizes statistical methods to model the input-
output relation of the system. These models can then be used to
design a feedback controller using one of many techniques such as:
Proportional-Integral-Differential (PID) control and its variations—
P, PI and PD control; stochastic control; and optimal control. The
controllers use the mathematical models to enforce the system to
operate around some preset control target. Since many systems
exhibit non-linear and dynamic behaviors, deviations from the de-
veloped models in most practical applications are inevitable. To deal
with deviations, control engineers typically use adaptive control
theory technique to adapt the controller to the system dynamics.
One popular technique for adapting PID controllers is gain sched-

uling [2]. Gain scheduling is used when a single controller does
not provide the desired performance for all system dynamics. In
essence, the engineer designs several controllers capable of man-
aging the performance under all possible operating ranges points
of the system, and switch between these controllers as the system
dynamics change.

2.4 The case for DDPC

There are three main challenges when designing feedback con-
trollers for web server power management. First, web-services get
updated frequently changing their power-performance trade-off
curves. Second, within a data center, they can run on different
machines with different power consumption footprints. Finally,
web-services have non-linear relationship between the power con-
sumption and their performance that changes with the workload
dynamics and the workload-mix. To use feedback controllers for
managing the power-performance trade-offs of web-servers, a con-
troller needs to be generated for every single possible VM/container
configuration since the power-performance trade offs change with
the size of the VM/container. The modelling needs to be repeated
for every possible application. In addition, any change in the web
service, e.g, by updating some of its components, would require
the entire process to be repeated. DDPC aims to solve this prob-
lem by automating the entire process, from profiling all the way
to controller generation, and deployment, by utilizing three tech-
niques from control theory, namely, system identification using
ARX models, PI control, and gain-scheduling.

Besides using traditional feedback control, there are two other
main approaches that have been suggested in the literature to con-
trol power-performance of web services. The first approach is to
use an open-loop controller based on heuristics that does not re-
quire mathematical models and hence use more simple control
techniques such as bang-bang controller similar to the one used by
Pegasus [36]. The second approach uses machine learning based
models of the performance, such as the one used in Rubik [28].

Heuristic based open-loop control approaches can provide stable
and easy-to-understand controllers for power-performance, alas

at the cost of reduced performance.For example, Pegasus uses a
multi-step bang-bang controller, a controller that switches between
a number of pre-defined heuristics, e.g., if response time is greater
than G ms, set the power to the maximum. Since there is no accurate
model as the ones used by gain-scheduling, heuristics can waste
power as they are empirically chosen. In addition, these heuristics
can not be easily inferred from the monitoring data and can not
adapt to different applications easily.

While machine learning can be used to build a controller that
is model free, a major shortcoming of using machine learning for
managing power-performance is the lack of explainability which
makes debugging the output from these algorithms hard [6, 7]. Con-
trol theory on the other hand relies on explainable mathematical
models that can be debugged and understood by all stakeholders
managing a cloud infrastructure. Prior work, e.g., Rubik [28], sug-
gested the use of statistical learning approaches as a possible way to
remedy the explainability issue. Rubik is a fine-grain DVFS scheme
for latency-critical workloads that uses light-weight online profil-
ing to update a statistical model of the completion cycle of each
request, building target tail tables based on performance counters
to estimate per-request compute and memory-bound cycles. The
authors note that this approach works well at lower utilization
levels of around 30%. However, at higher utilizations above 50%,
the efficacy of Rubik decreases considerably.

3 DDPC Architecture

In this paper, We introduce DDPC, a framework for the automatic
generation, and deployment of power-performance controllers for
web services. We argue that for a power management approach
to be useful, it needs to be data-driven with the ability to adapt
and scale to the workload dynamics seen in a data center. DDPC
tackles this problem by using a data-driven approach to automati-
cally generate power controllers. Our approach can be compared
to recent advances in continual learning but for—the by-design
explainable—feedback controller generation.

DDPC generates controllers formanaging the power-performance
tradeoffs of applications running either on a single server or on a
cluster of servers. We assume that a cluster runs multiple instances
of a web service. The web service is behind a load-balancer. The
system operates with the target of reducing the power allocation
while maintaining an SLO defined in terms of the average response
time. Our system supports runs in one of three modes; a guided
optimization goal mode, i.e., operating the system below a certain
power budget; an unguided operation where the goal is to reduce
the power allocation generally but with no target power budget;
and finally a tail-latency reductionmode were the target is to reduce
the power-consumption while maintaining a smaller tail. In all of
these modes, DDPC adapts to the any controller updates required
due to, e.g., a software update, a change of the workload mix, or a
new application being deployed.

DDPC has four main components as shown in Figure 1 ; the
Controller Generator; the Cluster Power Manager; the Application
Performance Monitor; and the Local Power Managers. The core of
DDPC is the Controller Generator component which is responsible
for the data-driven generation of gain-scheduled PI-controllers for
the different applications. This is the first step in our framework and
the most important one. To design the controllers, the generator
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Figure 1: The DDPC architecture

runs a benchmarking phase where the web service behaviour is
modeled using a set of ARX models that are then used to design
a PI-based controller with gain scheduling. Once a controller is
produced, it is deployed into the cluster power manager. We discuss
the controller generator in the next Section in details.

The cluster power manager is responsible for the run-time man-
agement of the cluster. Once a controller is generated, the controller
generator updates the manager, deploying the new controller at
runtime. The Cluster Power Manager then controls the per server
power allocation based on the measured response time of the appli-
cation. The cluster power manager uses the monitored data from
the Application Performance Monitor, mainly the number of re-
quests per second, and the average response time to decide on the
power allocation using the gain-scheduled PI controller for an ap-
plication. If the cluster power manager observes that the controller
is incapable of maintaining the SLO, the manager sends a signal to
the DDPC controller generator to regenerate a new controller.

If a power-budget is set, the cluster manager divides the power
on the servers such that the total cluster allocation does not exceed
the budget. In this paper, we use fair-share division between the
servers, with all servers allocated the same power similar to Pega-
sus [36]. The per server allocated power is forwarded to the DDPC
local manager that runs on each server in the cluster. The local
manager sets the power limit using the RAPL interface to control
the power allocation for the hosted web-service. DDPC supports
using c-groups for controlling the per-application power allocation
for colocated applications.

Relaxed-DDPC for tail reduction. Control theory provides
guarantees on the average system behavior. Hence, DDPC sets
the target of the controller based on the average response-time.
When operating in tail-reduction mode, relaxed-DDPC calculates
the power required to set the average response time to the target,
and then allocates 20% more power than suggested by the con-
troller for maintaining the average response time target. We have
empirically found that with 20% extra power, we curtail the tail.

4 Data-Driven Controller Design

Figure 2 shows the DDPC pipeline. An application owner only pro-
vides the images of the web-service components and the request
types that the application supports. DDPC then uses the image and
information to develop and deploy accurate power controllers for
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Figure 2: DDPC Pipeline

the application and deploys the application. DDPC starts by run-
ning a short benchmarking phase using a custom made workload
generator that benchmarks the web-service’s image with different
request rates and request types under different power allocations.
The logged data is then used to build a power-performance model
of the application. The model is used to build a PI-controller with
gain-scheduling for the power allocation. Both the application and
the controller are then deployed in production. While in produc-
tion, DDPC logs monitoring data for the application performance.
If a large deviation in performance is detected, the web-service is
re-profiled to update the controllers for the web service. We now
discuss each of these steps in more details

4.1 Building data-driven ARX models

In the benchmarking phase, DDPC collects the necessary data
required to build the web-service’s system model of the power-
performance tradeoffs. Our system uses ARX models to model the
power-performance tradeoffs in the system [23]. ARX models are
black-box system identification techniques that are commonly used
to build PI controllers. ARX models find a linear representation of
a dynamic system in discrete time using a linear representation
of the system. These models form the basis for many methods in
control methods. Focusing on our application, we would like to
build a power-performance latency model which predicts latency
for a given set power using RAPL at a given request rate which is a
non-linear relation.

Let us denote the power level set to a web application cluster at
time C to be D (C), and the output of the model, the average response
time to be ~ (C). At a given workload level, (C) = F , an ARX
model of this system is:

~ (C + 1) = U~ (C) + VD (C) (1)

where U and V are the model parameters that characterize the
relationship between the input and output of the model at a given
workload level. The model assumes that the response time of a
service for a given load-range is dependant on both the power
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