Diverse clonal fates emerge upon drug treatment of homogeneous cancer
cells
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Abstract

Even amongst genetically identical cancer cells, therapy resistance often only emerges from a small
subset of those cells'". Molecular differences in rare individual cells in the initial population allow
certain cells to become therapy resistant’~°; however, comparatively little is known about variability in
the resistant outcomes themselves. Here, we develop and apply FateMap, a framework that combines
DNA barcoding with single-cell RNA sequencing, to reveal the fates of hundreds of thousands of
clones exposed to anti-cancer therapies. We show that resistant clones emerging from single-cell-
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derived cancer cells adopt molecularly, morphologically, and functionally distinct resistant types.
These different resistant types are largely predetermined by molecular differences between cells
before drug addition and not by extrinsic factors. Changes in dose and kind of drug can switch the
resistant type of an initial cell, resulting in the generation and elimination of certain resistant types.
Patient samples show evidence for the existence of these resistant types in a clinical context. Diversity
in resistant types was observed across several single-cell-derived cancer cell lines and types treated
with a variety of drugs. Cell resistant type diversity as a result of variability in intrinsic cell states may
be a generic feature of response to external cues.

Introduction

Individual cells respond to signals and stresses differently, often due to intrinsic, non-genetic
differences®81%-15. Advances in single-cell barcoding enable tracking molecular state changes after
signals and stresses over time® 127, yet less attention has been paid to characterizing variability in the
outcomes themselves. Typically, the implicit assumption is that outcomes are binary: induced or not
induced, proliferative or nonproliferative, alive or dead. It is possible, however, that there is a far richer
set of outcomes.

Therapy resistance in cancer illustrates variable responses to stress. Anti-cancer drugs often kill most
cells, but a small, resistant subpopulation often remains, preventing cures. Recent studies have
identified these subpopulations (marked by slow fluctuations in gene expression'#+7:92829) within even
single-cell-derived (clonal) cancer populations. Upon drug exposure, clones from these populations
survive and proliferate to form resistant colonies. Resistant cells are assumed to be relatively uniform
in molecular profile and behavior, but it is unclear if the population's clonal structure results in
variability. While a variety of resistance mechanisms have been documented?°230-32 and differences in
proliferative capacity suggest heterogeneity between resistant clones®2%22 it is unclear if diverse
resistant cell types can arise from a homogeneous initial population.

We developed FateMap, a framework combining single-cell RNA sequencing, DNA barcoding, and
computational analysis, to follow the fates of thousands of individual cancer cell clones as they acquire
resistance. Even homogeneous cells grown in identical conditions gave rise to molecularly and
functionally diverse resistant types. These types were predetermined by the intrinsic differences
between them preceding drug exposure. Transcriptional and functional diversification of resistant
types were consistent across different cancers and therapies.

Results

Diverse fates emerge upon drug treatment

We wondered whether the resistant cells that emerged from the treatment of single-cell-derived
cancer cells adopted distinct fates. We focused on BRAFY6E-mutated melanoma, where treatment of
single-cell-derived cells with the targeted therapy vemurafenib lead to survival of rare (1:1,000 or less)
cells, which proliferate to form resistant colonies (Figure 1A; Supplementary video 1). We performed
single-cell RNA sequencing on a mixture of all the resistant colonies from a single tissue culture dish,
finding that resistant types exhibited extensive diversity in their gene expression profiles (Figure 1B;
Supplementary Figure 1). Some resistant cells expressed canonical resistance markers (e.g. AXL,
SERPINE1)"38, but several other subpopulations expressed their own distinct sets of marker genes.
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They expressed multiple markers reminiscent of particular cell types, including smooth muscle (e.g.
ACTA2, ACTG2, MYOCD), neural crest (e.g. NGFR, S100B, GAS7), adhesive (e.g. VCAM1, PKDCC,
ITGA8), melanocytic (e.g. MLANA, SOX10, MITF), or type-1 interferon signaling-enriched (e.g. IFIT2,
DDX58, OASL) (Figure 1B,C; Supplementary Figure 1). Thus, diverse resistant cell states can emerge
from single-cell-derived cancer cells upon treatment with targeted therapy. Resistant cells were more
transcriptionally diverse than drug-naive, non-resistant cells®® (Extended Data Figure 1A-G;
Supplementary Discussion).

Resistant cells grow out as separate clones from individual cells amidst the initial drug-naive
population (Supplementary video 1). Do all cells of a clone share a single resistant type, or comprise
many types (Figure 1D-F)? Within-clone diversity implies that resistant cells can switch between
subtypes. Between-clone diversity implies that resistant clones are transcriptionally stable. To
determine both the transcriptional profile and clonal origin of each cell simultaneously, we developed
FateMap, a method that uses transcribed DNA barcodes (encoded in the 3’ untranslated region of
gene encoding GFP) to identify clones from thousands of resistant cells at once (Figure 1D). First,
lentiviral barcodes integrate into the DNA of therapy-naive cells. With a large barcode library
complexity (~59 million unique barcodes, see Methods) and small multiplicity of infection, many
thousands of cells could be uniquely barcoded and enriched by sorting. We exposed barcoded cells to
vemurafenib, collected resistant populations, performed single-cell RNA sequencing, and extracted
the FateMap clone barcode for each cell by selectively amplifying and sequencing the cDNA library in
a way that linked the clone barcode and cell identifier (see Methods) (Figure 1E; Supplementary
Figure 2; Supplementary Discussion).

Cells from individual resistant clones fell predominantly within constrained regions of transcriptional
space, showing that variability was primarily between clones (Figure 1F,G). One large resistant clone
was enriched for genes expressed in smooth muscle (e.g. ACTA2, MYOCD) while another, smaller
clone, was enriched for genes expressed in neural crest cells (e.g. NGFR, S100B) (Figure 1G,
Supplementary Figure 3). Other clones were enriched for canonical resistance markers (e.g. AXL,
SERPINET) (Supplementary Figure 1). Another subpopulation expressed the melanocyte genes
SOX10 and MLANA, predominantly consisting of single barcoded cells (“singletons”) that were largely
non-proliferative (Figure 1G, Supplementary Figure 3) (98.6% of all clones within clusters 0 and 3
were singletons). Barcode silencing was minimal and consistent between different resistant types
(Supplementary Figure 1 and 2). Occasionally, cells in a clone belonged to two non-neighboring
clusters, e.g., cluster 15 and 6 for three clones marked by VCAM1 and APOE, respectively
(Supplementary Figure 1).

Drug-naive cells also showed transcriptional constraint after 9 days in culture (~4 divisions) butwill
over time span the entire transcriptomic space’, whereas therapy-resistant clones remained
constrained after months in drug (Extended Data Figure 1 A-C).

To quantify transcriptional homogeneity within a clone, we performed a dominant cluster analysis,
showing that clones largely consisted of transcriptionally similar cells regardless of clustering
resolution (Figure 1H, Supplementary Figure 3). Other statistical metrics?"3*34 supported this
conclusion (Supplementary Figure 3 and 4; Supplementary Discussion).
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We corroborated these results by performing multiplex single molecule RNA fluorescence in situ
hybridization (RNA FISH) for a subset of genes (ACTA2, NGFR, BGN) that belonged to distinct
clusters (Figure 1C; Supplementary Figure 2) on a large plate containing several resistant clones. We
verified that the selected markers expressed only in distinct resistant clones (Figure 1I; Supplementary
Figure 5).

To show that there was not a genetic basis for the observed diversity of resistant types, we performed
whole genome sequencing on both naive and resistant clones, finding no evidence of recurrent driver
mutations (Extended Data Figure 2). We also grew out resistant colonies from the original WM989 A6-
G3 cell line as well as two subclones, WM989 A6-G3 A10 and WM989 A6-G3 A11, and performed
large-scale single molecule RNA FISH to demonstrate that resistant types emerged with the same
frequency despite having different background mutations (Supplementary Figure 6).

Resistant types are functionally diverse

We wondered whether transcriptionally distinct resistant clones had different phenotypic properties. To
measure differences in proliferation, we counted the number of cells per clone for different resistant
types (Figure 2A,B; Supplementary Figure 6). Distinct resistant types had different proliferative
capacities. Some types, e.g. those marked by ACTA2, AXL, and VCAM1, formed large colonies
(Figure 2B), while those marked by NGFR (cluster 7) formed small colonies and singletons (Figure
2B).

Next, we asked whether different resistant clones exhibited distinct morphologies. We performed
brightfield imaging of resistant colonies on the plate and identified several distinct morphologies
(Figure 2C), including colonies with cells that appeared epithelial (type 1), cells that grew slower and
were more transparent (type 2), cells that grew on top of each other (fate type 3), and elongated cells
(type 4). For a subset of the types, we were able to isolate the colony and perform multiple cycles of
growth and replating in the presence of vemurafenib; these colonies retained their morphology (Figure
2D) (some colonies did not survive the replating process). Furthermore, a systematic longitudinal
analysis of several dozen isolated and expanded resistant colonies in vemurafenib revealed that
colonies retain their phenotypes, such as morphology and transcriptional makeup, over 1-2 months
(Extended Data Figure 3A-G) (18 for initial time points, 27 for late time points (4-6 weeks), and 13
paired initial-late time point colonies).

We then tested whether resistant colonies differed in invasive potential using a spheroid assay (see
Methods). We manually isolated 64 therapy resistant colonies from multiple parallel experiments and
expanded them for months. We formed 3D aggregates (spheroids) from a subset of resistant colonies
with sufficient cell numbers, embedded them in a collagen matrix, and measured their invasiveness by
measuring the area under the invading boundary (red) relative to that of the embedded spheroid core
(blue) (Figure 2E,F). We found that different resistant clones had dramatically different invasion areas
in the collagen matrix (some colonies were unable to aggregate into spheroids) (Figure 2E,F).

We then connected this variation in morphology and invasiveness to specific transcriptional profiles
(Figure 2D). We performed bulk RNA sequencing of manually isolated colonies with known
morphology and invasive potential. We identified genes differentially expressed between morphology
types from bulk RNA sequencing and used these gene sets to map morphologies to single-cell



clusters from Fatemap (see Methods) (Figure 2G). For example, we found the fate type 2 and fate
type 3 morphology from Figure 2C corresponded to gene expression signatures most similar to the
NGFR-high cluster (cluster 7) and VCAM17-high cluster (cluster 15) (Figure 2G; Supplementary Table
4). Similarly, several differentially expressed genes between slow and fast invading resistant colonies
were connected to specific transcriptional clusters from FateMap (Extended Data Figure 3H). The
fastest invading resistant colonies were enriched for expression of genes that marked cluster 8,
including ACTA2, TAGLN and EDN1. Therefore, gene expression differences between clones
corresponded to functional differences in proliferation, morphology, and invasiveness.

Diverse resistant types occur across cancers

We looked for diversity of resistant types in other cancer cell lines (Supplementary Discussion).
Another single-cell-derived patient-derived melanoma cell line (BRAFY6°E WM983B E9-C6) also
showed morphological and proliferative differences between resistant clones upon vemurafenib
treatment (Extended Data Figure 4A). FateMap revealed many of the same transcriptional signatures
and proliferative differences seen in WM989 A6-G3 cells (Extended Data Figure 4B-F). We performed
FateMap analysis on two NRAS mutant melanoma lines (NRAS®'K WM3451 P2G7 and NRAS®6'K
WM3623 P4E7) and again found a diversity of types in resistant clones to be a property of melanoma
cell lines regardless of driver mutation (Extended Data Figure 4H-L and 5A-E). Furthermore, FateMap
revealed extensive transcriptional diversity in clones of expanded primary human melanocytes
(Extended Data Figure 6) (also observed in'), suggesting transcriptional diversity may be a general
feature of the melanocyte lineage. FateMap applied to the triple negative breast cancer line MDA-MB-
231-D4 treated with chemotherapy drug paclitaxel” also showed resistant clones occupying
constrained regions of transcriptional space, albeit with less overall heterogeneity than in melanoma
(Extended Data Figure 7).

Resistant types emerge in patients

We wondered whether these resistant types also arose in patients, in which the microenvironment
(including immune system) and spatial context are factors. We obtained tissue samples of tumors from
four patients who had relapsed subsequent to treatment with targeted therapy. (For two of them, we
also had matching tumor samples from the patients before they underwent therapy). Multiple punch
biopsies were taken from the tumor (Figure 3A). We used GeoMx spatial transcriptomic profiling, in
which multiple regions of interest consisting of anywhere between 73 and 1,390 cells were selected
from within each punch biopsy and profiled by RNA sequencing (93 regions across all samples,
Supplementary Figure 7) (Figure 3). We found extensive variability in the expression of key resistant
type markers across resistant tumor patches, suggesting that different areas of the same tumors
within the same patient may harbor different proportions of the resistant types identified by FateMap
(Figure 3B). There were multiple examples of adjacent regions from the same resistant tumor showing
differential expression of markers from different resistant types. For example, within a single punch
biopsy from patient 163, two regions showed high MLANA/SOX10 expression while a third region
showed high ACTAZ2 expression (Figure 3B). Reassuringly, we found many patterns of coexpression
(e.g. ACTA2 and ACTG2, both from the smooth muscle resistant type identified by FateMap), further
corroborating the existence of coherent resistant types in resistant tumors (Supplementary Figure 11).
We found similar pre-existing variability in adjacent regions in patient-matched tumor samples prior to
treatment with targeted therapy, suggesting some degree of pre-existing heterogeneity (Figure 3B,
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right side, and Supplementary Figure 8). To look for evidence for clonal structure of expression
heterogeneity in the patient data, we used spatial proximity as an approximation of relatedness
(Methods, Supplementary Figure 9), estimating that the degree of imbalance required to match that
observed was on the order of 20%. Our findings suggested that the regions we captured were
somewhat imbalanced but not completely clonal, which was expected given the relatively large sizes
of the regions (Supplementary Figure 9). An analysis across other datasets showed further
concordance with our FateMap results (Supplementary Figure 10). Furthermore, we found
heterogeneity in immune infiltration after targeted therapy. For example, in a single punch biopsy, one
region had high expression of macrophage marker CD68 and while nearby regions had low
expression of CD68 but high levels of CD8A (Supplementary Figure 8). Together, these results
provided strong evidence for the existence of diverse resistant types in patient samples.

We also looked for resistant types in xenograft models by injecting WM989 A6-G3 5a3%°
subcutaneously into mice, applying targeted therapy treatment, harvesting the resistant tumors, and
measuring marker expression (Supplementary Figure 11). Large-scale scans of tumor tissue sections
showed that markers for the various resistant types were present in distinct regions of the tumor
sections (Supplementary Figures 11-13).

Resistant fates predetermined by initial conditions

We wondered whether the transcriptional and phenotypic variability in therapy resistant clones was the
result of intrinsic differences in the molecular expression states of cells preceding drug exposure.
Alternatively, the resistant types may be determined extrinsically, e.g. by the location and immediate
neighbors of cells3®. An “identical twin” analysis combined with Fatemap enabled us to distinguish
between these possibilities.

Briefly, upon uniquely barcoding cells, we allowed them to divide for a few divisions and then
separated the population into two equal split populations A and B such that most barcoded clones
(>90%) were present in each group as “twins” (Figure 4A). We then applied vemurafenib and
performed FateMap on both split populations. If the resistant type of a cell were intrinsically
determined, then its twin would share the same type (assuming that the intrinsic potential has enough
memory to be maintained over at least a few cell divisions"378. Pure barcode sequencing of genomic
DNA (gDNA) confirmed a strong overlap (significantly larger than random) in barcodes between the
populations, demonstrating that resistance potential in general was intrinsically determined (we added
specific amounts of known barcoded cells as standards (see Methods) to enable conversion of
sequencing reads to the cell numbers) (Figure 4B,C). Mouse xenograft studies showed a lower but still
statistically significant overlap as well (Supplementary Figure 14).

We next asked whether the specific type that a resistant clone adopted was similarly predetermined by
the initial state of the pre-resistant cell as opposed to external factors. That is, did twins separated into
the two split populations (thus randomizing the position in the plate and neighboring cells) adopt
similar or distinct transcriptional profiles after drug treatment? An initial inspection of the clones
painted on the UMAP projections suggested that twins surviving therapy largely end up in the same
regions of the UMAP (Figure 4D and Supplementary Figure 6G-J) and were more similar than non-
twin clones belonging to similar type clusters (Figure 4E).
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To compare single-cell transcriptional profiles of clones across split populations, we formulated a
metric we called the “mixing coefficient” (see Methods), which provides a pairwise comparison of
transcriptional similarity between any two clones in principal component space (notably, it is
independent of any particular cluster designation). For each pair of clones (twin or non-twin), we
measured, for each cell, the number of nearby neighbor cells (from the pair of clones) that were either
from the same clone (self-neighbor) or the pair clone. The mixing coefficient was the averaged fraction
of self-neighbors across all cells from the clone pair divided by the averaged fraction of non-self
neighbors. A mixing coefficient of 1 signifies a high degree of shared transcriptional similarity between
the pair, while a mixing coefficient of 0 implies that the two clones are transcriptionally separated in the
principal component space (see Methods). Non-twin clone pairs had low mixing coefficients both
within or across the two split populations, but twin clone pairs exhibited high mixing coefficients
(Figure 4F-H and Supplementary Figure 14). These results show that the adoption of distinct
transcriptional and phenotypic types was determined by the intrinsic molecular state of the cells
preceding drug exposure, and environmental factors had little to no effect on the type outcomes.
Similar results in primary melanocytes and untreated WM989 A6-G3 melanoma cells showed that the
intrinsic states of these cells persisted despite a change in a cell’s environment (Extended Data Figure
1H and Extended Data Figure 6). Intrinsic predetermination of resistant type also occurred in three
other melanoma cell lines (WM983B A6-G3, WM3451 P2G7 and WM3623 P4E7), one primary
melanocyte sample, and the breast cancer cell line tested earlier (MDA-MB-231-D4) (Extended Data
Figure 4,5,7). The effects were less pronounced in the MDA-MB-231-D4 line (Extended Data Figure
7).

Changing drug dose causes fate switching

Drug resistance depends heavily on the concentration of drug used. We wondered how the ensemble
of resistant types would change if we used a different drug concentration, so we performed FateMap
across two split populations, each treated with a different concentration of drug.

We compared 100 nM vemurafenib to our standard dose of 1 uM (Supplementary Figure 15), which
led to ~2.5-fold more resistant colonies than at the high dose (Figure 5A; Supplementary video 1,2).
(Resistant tumors grew comparatively faster in the low dose in mice; Supplementary Figure 13A and
Supplementary Figure 15). This increase could have resulted from 1) new resistant clones in addition
to those that survive high dose, 2) a completely distinct set of clones becoming resistant, or 3) the
same set of clones from high dose becoming resistant, but additional divisions of those clones (Figure
5B). FateMap could distinguish between these possibilities by splitting the population after barcoding
and putting one set of twins in low dose and the other in high dose. gDNA barcode sequencing and
imaging analysis showed many barcodes arising only in low dose, indicating that additional new
clones became resistant in the low dose (fold change 2.15 and 2.55, respectively) (Figure 5A and
Supplementary Figure 15). Barcode overlap between two low dose arms also showed intrinsic
predetermination (Supplementary Figure 15).

We next asked how the diversity of resistant clones changed between low and high doses of drug.
Despite the extensive change in the frequency of resistance between low and high dose, many of the
transcriptional types were the same between the two doses (Figure 5C-F and Supplementary Figure
15). However, there were many differences as well. Particularly, the NGFR-high cells (cluster 9) were



largely missing from the low dose resistant population of cells. Additionally, while MLANA-high cells
(clusters 5,6) were present at both doses, they were in non-overlapping clusters (Figure 5C-F).

What was the fate of the NGFR-high resistant cells at low dose? We collected the barcoded clones
corresponding to the NGFR-high cells in the high dose (cluster 9) and looked for their corresponding
twins in the low dose (Figure 5G), finding 46 such barcodes (25.3% of all barcodes in cluster 9)
(Figure 5G). Most of these clones (38/46) adopted types within the MLANA-high cluster 6 (fate switch
1) (Figure 5H). The remaining twins appeared to adopt a different, albeit less transcriptionally
constrained, type (fate type switch 2) (Figure 5H). Several genes were differentially expressed in
pairwise comparisons across the type switches (149 and 216 genes for switch 1 and 2, respectively)
(Supplementary Figure 15 and Supplementary Table 8).

Comparing the 38/46 clones with the remaining 8/46 clones within the high dose, 70 genes were
differentially expressed at high dose (Supplementary Figure 15), suggesting that subtle differences
between naive cells that appeared to adopt the same NGFR-high type at high dose could lead to more
obvious fate differences at low dose.

For the MLANA-high resistant type clusters, the percentage of non-singletons within the type
increased strongly at low dose (4.66% in high dose to 21.6% in low dose) (Figure 5F and
Supplementary Figure 15), indicating phenotypic differences in the type of resistant cells between high
and low dose.

Metronomic therapy, in which therapy is given in discontinuous intervals, has been proposed as a
means by which to decrease therapy resistant tumor burden with mixed results®*". We measured the
number and type of resistant clones in continuous vs. discontinuous dosing regimens with FateMap
(Extended Data Figure 8). Discontinuous dosing resulted in overall greater numbers of resistant cells,
both from new clones and increased growth of existing clones. Clones that formed the singleton
MLANA-high resistant cells in continuous dosing grew to larger colony sizes in discontinuous dosing,
confirmed by time-lapse imaging (Supplementary Figure 16).

Drug conditions affect ensemble of fates

We wondered if different MAPK inhibitors would have differential effects on resistant types
(Supplementary Discussion). We performed FateMap on a population split between exposure to
BRAF-V600E inhibitor vemurafenib (1 yM) and MEK inhibitor trametinib (5 nM). While many resistant
cells from each drug had similar transcriptional profiles (Extended Data Figure 9A,B), we saw a
depletion of MLANA-high cells (cluster 3) in trametinib compared to vemurafenib (Extended Data
Figure 9A,F). The number of singletons were significantly higher in vemurafenib compared to
trametinib (Extended Data Figure 9C), confirmed by imaging (Extended Data Figure 9D-E;
Supplementary video 1,3). Most of the vemurafenib cluster 3 clones did not have corresponding twins
in trametinib (Extended Data Figure 9G), suggesting that those cells were actually killed by trametinib
as opposed to being converted to a different resistant type (Extended Data Figure 9H-1,0).

The NGFR-high cluster 4 was more populated in cells treated with trametinib compared to
vemurafenib (Extended Data Figure 9B,J-K,P-Q). Twins of trametinib-treated NGFR-high cells
adopted either the same type (NGFR-high) or in some cases the MLANA-high type in vemurafenib
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(Extended Data Figure 9L-N). Additionally, resistant cells from dual treatment were transcriptionally
indistinguishable from trametinib alone (Extended Data Figure 9R-S), suggesting that for the doses
tested, trametinib dominated type outcomes.

We also tested the inhibition of the histone methyltransferase DOT1L for its effects on resistant types.
We previously showed that pretreatment with pinometostat, a DOT 1L inhibitor, increased resistance’;
FateMap applied to pinometostat-pretreated cells showed that this increase arose from new clones
becoming resistant but adopting largely the same types as they did normally (Extended Data Figure
10; Supplementary Discussion).

Discussion

FateMap revealed extensive variability in the outcome of cells after an external cue, in this case
between resistant cancer cells after treatment with targeted therapies. These outcomes are largely
predetermined by molecular differences in the initial state of cells, some of which have been
elucidated®. The rich mapping between the initial molecular states of cells and their outcome is
strongly dependent on the external cue — different doses and drugs dictate which cells adopt what
types, and hence must be specified as part of the mapping.

A central challenge for the field is to define biologically meaningful “clusters” based on which
molecular differences are important vs. inconsequential for relevant biological behaviors. Methods like
ClonoCluster® that combine clonal information with transcriptomics may help resolve such issues.

The two factors underlying cell type determination in response to a cue are the memory of the initial
state and the influence of extrinsic factors. Here, memory of the state means that twins largely
adopted the same types, indicating type was largely intrinsically determined. By contrast, a similar
analysis on cardiac differentiation®® revealed that cell type was largely determined by extrinsic factors.
It is also possible to have short memory but intrinsic type determination. Such cases would be hard to
discriminate because twin experiments would show little correspondence in the types of twins, even
though the state of the twins before the cue still largely determines the outcome.

It is unclear how a cell’s resistant type is determined. One view is that cells have fixed regulatory
programs that lead to particular outcomes. Another view is that cells adapt to stress, leading to a wider
range of outcomes, each of which may be determined by both the specific stress and the particular
internal state of the cell at the time. Future work may reveal the molecular basis of this regulatory
rewiring.

Here, we focused on characterizing resistant types of single-cell-derived cancer cells in the face of
anti-cancer therapies. Our work joins a burgeoning literature on genetic and non-genetic sources of
cellular heterogeneity in cancer. Cell line profiling has shown surprising levels of variability even in
clonal lines, perhaps reflecting clonal memory”'33%#1_ Notably, this variability can drive a number of
cancer phenotypes, including therapy resistance’'°, growth?°, tumorigenicity*?, and metastasis*3.
FateMap could reveal a gamut of emergent types in several biological processes, including stem cell
reprogramming and directed differentiation334445 and identify their potential origins.
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Data Availability

All raw and processed imaging data generated in this study can be found on BioStudies (Accession S-
BIADG696). All raw and processed FateMap single-cell barcoding data generated in this study can be
found at Figshare (DOI 1: 10.6084/m9.figshare.22798952 ; DOI 2: 10.6084/m9.figshare.22802888). All
raw and processed gDNA barcoding data generated in this study can be found at Figshare (DOI:
10.6084/m9.figshare.22806494). All raw and processed whole genome sequencing data of individual
clones used in this manuscript can be found at BioProject Accession PRINA972638 and figshare
(10.6084/m9.figshare.23255273), respectively. All raw and processed bulk RNA Sequencing data
used in this manuscript can be found at GEO Accession GSE233622. All raw and processed single-
cell RNA Sequencing data used in this manuscript can be found at GEO Accession: GSE233766. All
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Main text captions

Fig. 1: FateMap reveals that between-clone fate type diversity arises from a single cell upon
therapy treatment.

a.

- @

Schematic of single-cell-derived WM989 A6-G3 melanoma cells exposed to the targeted
therapy drug vemurafenib, which formed resistant colonies in 3-4 weeks. Colonies were mixed
together and single-cell sequenced.

Uniform Manifold Approximation and Projection (UMAP) algorithm applied to the first 50
principal components to visualize gene expression differences. 8,212 cells are colored by
clusters determined using the FindClusters command: “Seurat clusters, resolution = 0.6”. n =1
of two biological replicates.

Cells on UMAP recolored by expression of a subset of differentially expressed genes. Genes
with similar UMAP expression profiles are below each panel. ACTAZ is found largely in Seurat
cluster 8; IFIT2 in 12; VCAM1 in 15; NGFR in 7; MLANA in 0 and 3.

Schematic of FateMap for labeling cells with unique DNA barcodes before vemurafenib
exposure. WM989 A6-G3 cells were transduced with FateMap barcode library at an MOI of
~0.15.

Barcoded cells were exposed to vemurafenib for 3-4 weeks and resultant colonies were single-
cell RNA and barcode sequenced.

Are resistant cells sharing a barcode (a resistant clone) more transcriptionally similar to each
other than other clones?

Clones, irrespective of their size, are constrained largely in specific clusters.

Quantification of preference for specific clusters across all clones (clone size>4; representative
clones in yellow). Wilcoxon test (unpaired, two-sided), p-value < 2.2e-16.

RNA FISH of genes marking resistant types. Consistent with FateMap, we found resistant
colonies selectively positive for each of the three markers tested, and negative for all.

Fig. 2: Gene expression differences between clones correspond to differences in morphology,
proliferation, and invasiveness.

a.

Classification of colonies as singletons, small colonies, or large colonies. Clusters exhibited
different proliferative capacities.

Colony size distributions for each fate type. Mann Whitney/U test (unpaired, two-sided) was
used, and the intervals are based on p-value thresholds = 0, 0.0001 (****), 0.001 (***), 0.01
(**), 0.05 (*). n =1 of two biological replicates.

(left) Schematics based on visual inspection of morphology, orientation, and density. (right)
Brightfield images of resistant colonies exhibiting different morphologies.

Schematic of isolation and expansion of vemurafenib- or trametinib-resistant colonies, a subset
of which were then bulk RNA sequenced, categorized for morphology, and measured for
invasiveness.

Resistant cells were seeded at 3000 cells/well and allowed to form spheroids over 96-120
hours and were embedded in a collagen matrix. Red and cyan mark the invading and core
boundary, respectively.

Invasiveness of resistant colonies emerging from treatment with trametinib quantified by
computing the ratio of the area enclosing the red and cyan boundaries. Each dot represents
one spheroid.



g.

Fig. 3:

Mapping of morphology onto the FateMap data by comparing genes differentially expressed
from morphology to resistant colonies. Similarity score on UMAP represents the degree of
overlap of differentially expressed genes between bulk-sequencing data and each cluster.
Resistant colony fate type 2 maps predominantly to cluster 7, while fate type 3 maps to cluster
15. Singletons, as identified by imaging for the SOX70 gene, map to clusters 0 and 3.

Resistant fate types emerge following targeted therapy in patients as evidenced by

spatial transcriptomic profiling.

a.

Fig. 4:

Fig. 5:

Overview of all 29 punch biopsies from four patients that were sequenced using the GeoMx
Digital Spatial Profiler system for spatial transcriptomics. A total of 93 regions of interest were
selected for sequencing based on visual inspection of DNA (SYTO 13, blue), CD45 (red), and
S100B (green) staining. Two patient samples were coupled with matched pre-treatment
biopsies (marked untreated).

Dot Plots of counts per million-(cpm)-transformed data for selected markers of resistant fate
types as identified from in vitro FateMap. Each dot is a single region of interest colored by that
region’s qualitative S100B staining level, faceted by the punch biopsy of each region. Specific
punch biopsies highlighting nearby regions with different expression profiles are highlighted for
two patients, both pre- and post- treatment.

Cells are predestined for distinct resistant fates upon exposure to therapy.

Schematic of FateMap “twin” experimental designs. We transduced WM989 A6-G3 cells (MOI
~0.15) with FateMap barcode library. After 3-4 cell divisions, we sorted the barcoded
population, split the cells (A and B), treated each with vemurafenib, and performed single-cell
RNA and barcode sequencing on the colonies (Supplementary Table 11).

Unique barcode abundance is identified by genomic DNA sequencing in splits A and B. Those
present in both splits are dark blue (87), and those present in only (14 each) one are cyan. n
=1 of two biological replicates.

(top) Venn diagram of overlap between barcode clones present in both splits (dark blue)
compared to those present only in either A or B (cyan). (bottom) Comparison of the observed
overlap between the shared barcodes (twins) surviving across splits with random survival
chance (simulated 1,000 times).

UMAPs of representative twin clones (sharing the same barcode) across the two splits A
(8,212 cells) and B (7,262 cells). The resistant twins largely end up with the same
transcriptional fate type, invariant of the clone size.

Painting large clones onto the UMAP, where each color represents a unique resistant clone.
Mixing coefficient is used to calculate the pairwise transcriptional relatedness of clones (see
Methods). Higher mixing coefficient corresponds to higher transcriptional relatedness of clones
(1 = perfect mixing; 0 = no mixing). Representative UMAP examples are provided.

Mixing coefficient for twin clones across splits A and B is presented with representative
examples on the UMAP.

Box-plots of comparison of cumulative mixing coefficients between clones within splits A (133)
and B (102) (gray), non-twin clones across A and B (66) (gray), and twin clones (12) (blue).
Wilcoxon test (unpaired, two-sided), p-value for non-twin compared to twin clones = 4.513e-08.

Changing the therapy dose results in stereotypic resistant fate type switching and

altered transcriptional profiles.



(left) Nuclei scans of resistant colonies emerging from treatment of 25,000 WM989 A6-G3 cells

with two vemurafenib doses (1uM and 100nM). (right) Total colonies from each dose across n

= 3 biological replicates.

. Schematic of FateMap “twin” experimental designs for different vemurafenib doses. We
transduced WM989 AG-G3 cells with the barcode library. After 3-4 cell divisions, we sorted the

barcoded population, divided it into splits A and B, treated each with vemurafenib, and

performed FateMap. We list three possible scenarios for outcomes (Cell counts available in

Supplementary Table 11).

Combined low (13,400 cells) and high (9,457 cells) dose resistant cells obtained from UMAP

applied to the first 50 principal components. Cells are colored by clusters determined using

Seurat’s FindClusters command.

UMAP with resistant cells colored by dose; dark and light blue represent high and low dose,

respectively. Arrows represent regions present only in one dose.

UMAP is split by each dose, with colors representing clusters determined in c. Arrows

represent clusters present only in the low or high dose.

UMAPs recolored for expression of genes NGFR and MLANA, markers for clusters enriched in

one of the two doses.

(left) UMAP cluster colored for only cluster 9 (high for NGFR). (right) A pie chart to

demonstrate that 25.3% of all the NGFR-high clones present in high dose were also detected

in the low dose.

(left, middle) Representative examples of where twins from the NGFR-high cluster in the high

dose go in the low dose. Fate type switch 1 (38/46) twins had similar fate types, as did fate

type switch 2 (8/46) twins. (right) A cumulative density contour plot of fate type switches from

high to low dose.



Methods

Cell lines and culture

WM989 A6-G3 and WM983b E9-C6 melanoma cell lines, first described in & and kindly provided by
the lab of Dr. Meenhard Herlyn, were derived by twice single-cell bottlenecking the WM989 and
WM983b melanoma cell lines respectively. The identities of WM989 A6-G3 and WM983B E9-C6 were
verified® by DNA STR microsatellite fingerprinting at the Wistar Institute. WM989 A6-G3 5a3, first
described in %, was derived by single-cell bottlenecking of WM989 A6-G3. MDA-MB-231-D4, first
described in 7 was derived by single-cell bottlenecking of MDA-MB-231 (ATCC HTB-26). The identity
of MDA-MB-231-D4 was verified” by ATCC human STR profiling cell line authentication services.
WM3451 P2G7 and WM3623 P4E7 were derived by single-cell bottlenecking WM3451 and WM3623
respectively, both of which were kindly provided by the lab of Dr. Meenhard Herlyn and verified by
ATCC human STR profiling cell line authentication services.

FOM230-1 primary melanocytes were also kindly provided by the lab of Dr. Meenhard Herlyn. Briefly,
they obtained foreskin tissue from the Cooperative Human Tissue Network. The foreskin was cut into
pieces (approximately 5mm x 5mm), transferred into a tube containing dispase Il, and incubated at
4°C for 15-18 hours. The next day the epidermis was separated from the dermis and the epidermal
sheets were minced as small as possible. 0.05% trypsin was added, and the minced sheets were
incubated at 37°C for 3-5 minutes depending on cell disaggregation. This mixture was then pipetted
up and down vigorously to release single cells from the epidermal sheets. The trypsin was neutralized
with soybean trypsin inhibitor and centrifuged for 5 minutes at 1,200 rpm at room temperature. The
supernatant was aspirated to remove any remaining stratum corneum. The cell pellet was then
resuspended with melanocyte growth medium.

WM989 A6-G3, WM9I89 AB-G3 5a3, WM983b E9-C6, WM3451 P2G7, and WM3623 P4E7 melanoma
cell lines were cultured in TU2% media (80% MCDB 153, 10% Leibovitz’s L-15, 2% FBS, 2.4mM
CaCl2, 50 U/mL penicillin, and 50 pug/mL streptomycin). MDA-MB-231 cell lines were cultured in
DMEM10% (DMEM with glutamax, 10% FBS and 50 U/mL penicillin, and 50 yg/mL streptomycin). All
six cell lines were passaged using 0.05% trypsin-EDTA. FOM 230-1 melanocyte cells were cultured in
Melanocyte Growth Medium (PromoCell, C-24010). Melanocytes were passaged using 0.05% trypsin-
EDTA and neutralized using soybean trypsin inhibitor (Gibco, 17075-029).

Flow sorting of barcoded cells

We used 0.05% trypsin-EDTA (Gibco, 25300120) to detach the barcoded cells from the plate and
subsequently neutralized the trypsin with the corresponding media depending on the cell type (Tu2%
for WM989, WM983B, WM3451, and WM3623; DMEM + 10% FBS for MDA-MB-231; Melanocyte
Growth Medium for FOM 230-1). We then pelleted the cells, performed a wash with 1X DPBS
(Invitrogen, cat. 14190-136), and resuspended them again in 1X DPBS. Cells were sorted on a BD
FACSJazz machine (BD Biosciences) or MoFlo Astrios (Beckman Coulter), gated for positive GFP
signal and singlets. Sorted cells were then centrifuged to remove the supernatant media containing
PBS, and replated with the appropriate cell culture media. Gating strategies are described in
Supplementary Figure 17.
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Drug treatment experiments
We prepared stock solutions in DMSO of 4 mM vemurafenib (PLX4032, Selleck Chemicals, S1267),

10mM pinometostat (Selleck Chemicals, S7062), 100 uM trametinib (Selleck Chemicals, S2673), and
4mM paclitaxel (Life Technologies, P3456). We prepared small aliquots (10-15ul) for each drug and
stored them at —20°C to minimize freeze—-thaw cycles. For drug treatment experiments, we diluted the
stock solutions in culture medium to a final concentration of 1uM and 100nM for vemurafenib; 4 uM for
pinometostat; 5nM, 10nM, and 25 nM for trametinib; and 1 nM for paclitaxel unless otherwise

specified.

The dose of vemurafenib (1uM) was chosen as per Shaffer et al. (Nature 2017), which was optimized
for growth arrest without overt cytotoxicity. The doses of trametinib used were 5 nM for WM989 A6-
G3, 10 nM for WM3623 P4E7, and 25nM for WM3451 P2G7. These doses were also chosen based
on a dose curve to obtain virtually complete growth arrest.

WM989 A6-G3 and WM983b E9-C6 cells were treated with either vemurafenib or 5 nM trametinib for
3-4 weeks, and the media was replaced every 3-4d. Similarly, MDA-MB-231-D4 cells were treated
with paclitaxel for 3-4 weeks, and the media was replaced every 3-4d. WM3623 P4E7 cells were
treated with 10 nM trametinib for 3-4 weeks, and the media was replaced every 3-4d. WM3451 P2G7
cells were treated with 25 nM trametinib for 3-4 weeks, and the media was replaced every 3-4d. At the
end of the treatment, surviving cells were trypsinized, neutralized, washed with 1X DPBS, and then
either 1) pelleted and stored at -20°C for gDNA extraction, or 2) resuspended in PBS for single-cell
RNA sequencing experiments. In some cases, cells were also fixed for imaging at the end of the
treatment. For pinometostat (DOT1L inhibitor) pre-treatment (before addition of vemurafenib), WM989
A6-G3 cells were treated for five days, replacing media once at day 3.

For continuous-discontinuous dosing experiments, WM989 A6-G3 cells were barcoded and plated as
described above. Both arms of the experiment were treated with 1uM vemurafenib. The continuous
dose arm was maintained in 1 yM vemurafenib for the entirety of the experiment, while the
discontinuous arm was maintained in 1 uM vemurafenib for nine days before being switched to culture
media without 1 yM vemurafenib. The discontinuous arm was then maintained in this drug-free culture
media for 25 days before being switched back to culture media with 1 uM vemurafenib for the final five
days of the experiment.

Quantifying homogeneity within a clone

To estimate the homogeneity in gene expression within a clone, we calculated the Spearman’s
correlation coefficient, based on the top 500 most variable genes, for each pair of samples presentin a
clone. A group of random cells having the same size as the clone were selected as a control. The
average correlation coefficient was compared between each clone and its paired control, using a
Wilcoxon signed rank test (two-sided, paired) .

Cell cycle and apoptosis analysis
To test the effect of cell cycle phase on clone size distribution in each cluster, we regressed out cell
cycle genes. First, the cell cycle phase scores were estimated for each cell using the CellCycleScoring



function in the Seurat package for the genes involved in G2/M phase and S phase®'. The cell cycle
scores were then regressed out from the gene expression using the RegressOut function in the Seurat
package. This function models the expression levels of each gene based on the cell cycle score. The
regressed out gene expression matrix is calculated as the residuals for this model (for each gene), and
these values are used for downstream analysis such as dimensional reduction. We also calculated
scores for apoptosis using AUCell*. HALLMARK_APOPTOSIS, and KEGG_APOPTOSIS genesets
were obtained from the Molecular Signature DataBase (MSigDB, Broad Institute*’).

Bulk RNA-seq (phenotypic drift)

To quantify the phenotypic drift between early and later stages of treatment, we calculated the pairwise
Euclidean distance for each pair of early and late samples for a colony. The Euclidean distance was
calculated for the top 500 most variable genes in the dataset. As a paired control for each resistant
colony, an equal number of random early and late samples were selected, and the Euclidean distance
between them was measured. The average Euclidean distance was compared for true pairs and random
pairs to estimate the extent of phenotypic drift in the colony. The comparison was statistically tested
using a Wilcoxon signed rank test.

Clonal genes and clone identification

Differentially expressed genes for each clone (with clone size > 1) were identified using FindAlIMarkers
function. Cut-off of log2(foldchange) >1 and Bonferroni-corrected p-value < 0.05 were used to identify
clonal genes. For identification of clones, a support vector machine model was trained and tested on
clones having more than 100 cells. Clones were sectioned into training and testing groups by randomly
sampling 80% samples for the training group and classifying the rest as the testing group. The model
was trained on expression levels of clonal genes. As a control, clone labels were shuffled for the training
samples, and a support vector machine was trained on the randomized data.

Patient data analysis

Single cell RNA-sequenced patient samples from GSE720563%! and patient-derived xenograft model of
WM4007 cells derived from AJCC stage IV melanoma male 62-year-old patient (never treated with any
drug or immune therapy prior to surgery/biopsy) treated with dabrafenib and trametinib (this study) were
analyzed to test for differential expression of genes identified in cell lines using FateMap. Samples were
clustered using FindClusters function at a resolution of 0.6 and differentially expressed genes were
identified for the clusters using FindAlIMarkers function. Cut-offs of log2(foldchange) > 1 and Bonferroni-
corrected p-value < 0.05 were used to identify cluster genes. The extent of overlap in genes between
each patient dataset and cell line dataset (FMO1) was measured and statistically evaluated using a
hypergeometric test (Fisher's Exact Test). The extent of overlap was also compared to the extent of
overlap when an equal number of genes were randomly subsampled from a list of all sequenced genes.
Subsampling was repeated 100 times.

Size distribution of clusters
A Chi-square test of Independence was used to test the null hypothesis that the marker-based clusters

are independent of colony size. The test was run on a contingency matrix consisting of a number of

singleton (colony size = 1), small (1< colony size < 4) and large (colony size = 4) colonies for each
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marker-based cluster. Pearson residuals were estimated to quantify the deviation of colony size

distribution from the null hypothesis.

Principal component analysis of drug resistant and naive WM989 A6-G3 melanoma cells

We used SCTransform to normalize and variance-stabilize the dataset and then performed principal
component analysis using Seurat’s RunPCA command. To get total variance for each dataset (i.e.
both the naive cell dataset and the drug resistant cell dataset), we took the sum of the variance
estimates per row of the SCT@scale.data matrix (where each row represented a gene). We calculated
the eigenvalues by squaring the standard deviations per principal component stored by Seurat
following PCA generation. To calculate the fraction of variance explained per principal component, we
divided each of our eigenvalues by the total variance, using ggplot2 to plot the fraction of variance
explained for each of the first 50 principal components. To estimate how much variance could be
explained by pure chance, we also ran PCA on randomized data.

Cluster and Euclidean distance analysis of drug resistant and naive WM989 A6-G3 melanoma cells
To quantify whether the resistant population exhibited greater transcriptional heterogeneity as
compared to the untreated populations, we measured the Euclidean distance*®-° between clusters
within each condition. We used single-cell RNA sequencing datasets from two untreated samples and
two resistant samples. To control for cell numbers across datasets, we extracted the number of cells in
each sample and calculated the minimum cell count of all four datasets. Since the number of cells
doesn’t vary much between the samples [min = 7262, max = 8420], we decided to randomly sample to
the minimum of the number of cells, 7262, and perform 10 sampling rounds. After subsampling, we
applied the Seurat function “SCTransform” to normalize and stabilize the variance of molecular count
data, and calculated the principal components. Next, we calculated the neighborhood overlap (Jaccard
index) between every cell based on the first 50 principal components using the Seurat function
FindNeighbors. We then applied the seurat function FindClusters to identify cell clusters based on
their shared nearest neighbor (snn). To demonstrate that our results do not depend on the chosen
resolution, we clustered the cells from a resolution of 0.2 to 1 in 0.1 steps. For each resolution, we
calculated the Euclidean distance between the identified clusters using the R library “scperturbR"#2.
The Euclidean distance compares the mean pairwise distance of cells across two different identified
clusters to the mean pairwise distance of cells within each cluster. We used the first 50 principal
components to calculate the Euclidean distance between cells. After getting the sample resolution
combination number of clusters and Euclidean distance, we compared the number of clusters for a
given resolution and the Euclidean distances for a given number of clusters.

Whole genome sequencing and processing of naive and drug resistant clones

Eight naive clones, one original clone, and sixteen resistant clones were sequenced at 30X depth with
paired end lllumina sequencing. FASTQs were pre-processed and aligned to hg38 based on GATK4
best practices using an open-source WGS pipeline, Sarek v.3.0%". Variant calling was performed using
the GATK HaplotypeCaller®2.

Variant annotation of naive and drug resistant clones

Variant files were merged and annotated using the OpenCravat tool®3. With this tool, the functional
consequences of variants were predicted using CADD v.1.6.1% where coding variants with scaled c-
scores >15 were considered deleterious. This c-score cutoff is typical for analysis and is
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recommended by the authors for filtering (https://cadd.gs.washington.edu/info). Variants analyzed
were all in protein-coding regions of the genome. Insertion and deletion variants for which CADD
scores were unavailable were included in the analysis, except for those annotated as in-frame.
Additionally, variants present in less than 20% of reads in a sample were removed from analysis in an
effort to filter out variants that arose in clonal expansion.

To assess the potential for acquired genetic resistance to therapy, Fisher’s exact test was performed
on variants that were present in resistance clones, but not untreated clones (p < 0.05). Variants in
genes implicated in resistance to Vemurafinib from COSMIC (https://cosmic-blog.sanger.ac.uk/drug-
resistance-data-cosmic/) were independently analyzed for acquired genetic resistance. Variants in
known epigenetic modifier genes®® were also separately analyzed to evaluate heterogeneity. Finally,
each clone’s list of CADD > 15 variants were compared to all other clones for non-random overlap with
the hypergeometric test (p < 0.05). All gene sets and associated details are provided in
Supplementary Table 9.

Clinical cohort
Patient samples from this study were from the enrolled clinical trial (NCT02231775) were previously

described®®. In brief, patients aged 218 years with histologically proven clinical stage IlI or

oligometastatic stage IV BRAF V600E/K melanoma deemed to be resectable by multidisciplinary

consensus and measurable disease by RECIST 1.1 criteria were enrolled. Those randomized to the
experimental arm which received 8 weeks of neoadjuvant dabrafenib (150 mg orally twice daily) plus
trametinib (2 mg orally daily) before surgical resection, who failed to achieve a major pathologic
response (n =4). Pathologic responses were determined by histopathologic examination of the
complete surgical specimen by a melanoma pathologist, including SOX10 immunostaining when
necessary to confirm the presence or absence of viable melanoma cells. These patients were treated
at The University of Texas MD Anderson Cancer Center and had tumor samples collected and
analyzed under Institutional Review Board (IRB)-approved protocols. Notably, these studies were
conducted in accordance with the Declaration of Helsinki and approved by The UT MD Anderson
Cancer Center IRB.

Tumor microarray preparation and digital spatial profiling

Formalin fixed paraffin embedded (FFPE) tumor tissue blocks from four melanoma BRAF/MEK
inhibitor treated melanoma patients from the above cohort treated were used to build a tissue
microarray (TMA) block using the ATA-100 Advanced Tissue Arrayer (Chemicon International) at The
University of Texas MD Anderson Cancer Center. Tissue samples included in the TMA were from
pretreatment, on-treatment or surgical resection time points. The TMA block included a total of 36
cores each measuring 1 mm in diameter. Multi-sampling of the tissue block was performed to account
for intra tumoral heterogeneity. TMA slides were then assayed using the Nanostring GeoMx digital
spatial profiler (DSP) and probed with the human melanoma morphology kit (Syto13, S100B and
CD45) and the human whole transcriptome atlas (WTA) on a fee for service basis by Nanostring
Technologies (Seattle, WA) performed at the University of Texas Southwestern Medical Center. Three
regions of interest (ROI) were selected per tumor core to capture inter- and intra-tumor heterogeneity.

NGS Library Preparation and Sequencing for GeoMx Spatial Transcriptomics
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GeoMx NGS libraries were prepared per manufacturer’s guidelines. In brief, after collection
completed, aspirates in the collection plate were dried down at 65°C for 1 hour in thermal cycler with
open lid and resuspended in 10 uL of nuclease-free water. 4 L of rehydrated aspirates were mixed
with 2 pL of 5xPCR Master Mix and 4L of SeqCode primers, and PCR amplification was then
performed with 18 cycles. The indexed libraries were pooled equally and purified twice with
1.2xAMPure XP beads (Beckman Coulter). The final libraries were evaluated and quantified using
Agilent's High Sensitivity DNA Kit and Invitrogen's Qubit dsDNA HS assay, respectively. Total
sequencing reads per DSP collection plate were calculated based on the NanoString DSP Worksheet.
The libraries were subjected to 38 bp paired-end sequencing (PE38) on an lllumina NovaSeq 6000
system with a 100-cycle S1 kit (v1.5)

RNA Fluorescence In Situ Hybridization (FISH) on cells in plates

We performed single-molecule RNA FISH as previously described® . For the genes used in this study,
we designed complementary oligonucleotide probe sets using custom probe design software
(MATLAB) and ordered them with a primary amine group on the 3' end from Biosearch Technologies
(Supplementary Table 3 for probe sequences). We then pooled each gene's complementary oligos
and coupled the set to Cy3 (GE Healthcare), Alexa Fluor 594 (Life Technologies) or Atto647N (ATTO-
TEC) N-hydroxysuccinimide ester dyes.

The cells were fixed as follows: we aspirated media from the plates containing cells, washed the cells
once with 1X DPBS, and then incubated the cells in the fixation buffer (3.7% formaldehyde in 1X
DPBS) for 10 min at room temperature. We then aspirated the fixation buffer, washed samples twice
with 1X DPBS, and added 70% ethanol before storing samples at 4°C. For hybridization of RNA FISH
probes, we rinsed samples with wash buffer (10% formamide in 2X SSC) before adding hybridization
buffer (10% formamide and 10% dextran sulfate in 2X SSC) with standard concentrations of RNA
FISH probes and incubating samples overnight with coverslips, in humidified containers at 37°C. The
next morning, we performed two 30-min washes at 37°C with the wash buffer, after which we added
2X SSC with 50 ng/mL of DAPI. We mounted the sample(s) for imaging in 2X SSC.

Immunofluorescence and imaging

For NGFR staining of fixed cells, after fixation and permeabilization, we washed the cells for 10 min
with 0.1% BSA/PBS, and then stained the cells for 30 min with 1:500 anti-NGFR APC-labeled clone
MEZ20.4 (BioLegend, 345107). We washed the cells five times with 0.1% BSA/PBS and followed with
one final wash with PBS for 2 min at room temperature. Fresh PBS was added prior to imaging. Wells
were imaged either immediately or after storage in 4°C overnight. All conditions (wells) were fixed,
permeabilized, and stained at the same time with identical settings. Wells from the same plate were all
imaged consecutively in the same imaging session.

For dpERK staining of fixed cells, after fixation and permeabilization, we used primary antibodies
targeting dpERK (p44/p42 ERK D12.14 4E Cell Signaling, 4370). First, we rinsed cells twice for 5 min
each time with 5% BSA in PBS (5% BSA-PBS) and then incubated in the dark at room temperature for
2 hours in 5% BSA-PBS 1:200 dpERK antibodies. Next, we washed the cells 5 X 5 min with 5% BSA-
PBS and then incubated the cells at room temperature for 1 hour in 5% BSA-PBS containing 1:500
goat anti-rabbit secondary antibody conjugated to Alexa Fluor 594 (Cell Signaling, 8889). After the
secondary incubation, we washed the cells 5 X5 min with 5% BSA-PBS containing 50 ng/mL of DAPI
and then replaced the wash buffer with fresh PBS and proceeded with imaging consecutively. All
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conditions (wells) were fixed, permeabilized, stained, and imaged at the same time with identical
settings.

For colony counting via nuclei imaging, the cells were fixed by aspirating media from the plates
containing cells, washing the cells once with 1X DPBS, and then incubating the cells in the fixation
buffer (3.7% formaldehyde in 1X DPBS) for 10 min at room temperature. We aspirated the fixation
buffer, washed samples twice with 1X DPBS, and added 70% ethanol before storing samples at 4°C.
Fixed cells were stained for nuclei by incubation in 2X SSC containing 50 ng/ml of DAPI and then
imaged each well via a tiling scan at 10X magnification.

Barcode lentivirus library generation and diversity estimation

Barcode libraries were constructed as previously described®, and the protocol is available at
https://www.protocols.io/view/barcode-plasmid-library-cloning-4hggt3w. Briefly, we modified the
LRG2.1T plasmid (gift from Dr. Junwei Shi) by removing the U6 promoter and single guide RNA
scaffold. We then inserted a spacer sequence flanked by EcoRYV restriction sites after the stop codon
of GFP, subsequently digesting this vector backbone with EcoRV (NEB) and gel purifying the
linearized vector. We ordered PAGE-purified ultramer oligonucleotides (IDT) containing 100
nucleotides with a repeating “WSN” pattern (W =Aor T, S = G or C, N = any) surrounded by 30
nucleotides homologous to the vector insertion site (Supplementary Table 1). We subsequently used
Gibson assembly followed by column purification to combine the linearized vector and barcode oligo
insert. We performed nine electroporations of the column-purified plasmid into Endura
electrocompetent Escherichia coli cells (Lucigen) using a Gene Pulser Xcell (Bio-Rad). We then
allowed for their recovery before plating serial dilutions and seeding cultures for maxi-preparation. We
incubated these cultures on a shaker at 225 rpm and 32°C for 12-14 hours, pelleted the resulting
cultures by centrifugation, and used the EndoFree Plasmid Maxi Kit (Qiagen) to isolate plasmid
according to the manufacturer’s protocol. Barcode insertion was verified by polymerase chain reaction
(PCR) on colonies from plated serial dilutions. We pooled the plasmids from the 9 separate cultures in
equal amounts by weight before packaging into lentivirus.

To estimate the barcode library complexity, we performed three independent transductions (see below
for details) on WM989 A6-G3 melanoma cell lines, extracted gDNA, sequenced the barcodes, and
noted the total and overlapping barcodes between pairs of three independent transductions. We
estimated the barcode library complexity with the equation used in mark and capture analysis: k/K =
n/N, where k is number of recaptured barcodes that were marked, K is number of barcodes captured
in the second pool, n is the number of barcodes marked in the first pool, N is the estimated barcode
library complexity. Using this formula, we found the barcode diversity from three transductions to be
48.9, 54.4, and 63.3 million barcodes (Supplementary Figure 1; raw data and calculation scripts are
within the link provided in Data and Code Availability).

Lentivirus packaging and transduction

We adapted previously described protocols to package lentivirus®°. We first grew HEK293FT to near
confluency (80-95%) in 10cm plates in DMEM containing 10% FBS and 50 U/mL penicillin, and 50
pg/mL streptomycin, and one day before plasmid transfection, we changed the media in HEK293FT
cells to DMEM containing 10% FBS without antibiotics. For each 10cm plate, we added 80 L of
polyethylenimine (Polysciences, cat. 23966) to 500 uL of Opti-MEM (Thermo Fisher Scientific, cat.
31985062), separately combining 5 ug of VSVG and 7.5 ug of pPAX2 and 7.35 ug of the barcode
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plasmid library in 500 pL of Opti-MEM. We then incubated both solutions separately at room
temperature for 5 min. We then mixed both solutions together by vortexing and incubated the
combined plasmid-polyethylenimine solution at room temperature for 15 min. We added 1.09 mL of
the combined plasmid-polyethylenimine solution dropwise to each 10cm dish. After 6-7 hours, we
aspirated the media from the cells, washed the cells with 1X DPBS, and added fresh TU2% media.
The next morning, we aspirated the media, and added fresh Tu2% media. Approximately 9-11 hours
later, we transferred the virus-laden media to an empty, sterile 50ml tube and stored it at 4°C, and
added fresh Tu2% media to each plate. We continued to collect the virus-laden media every 9-11
hours for the next ~30 hours in the same 50ml tube, and stored the collected media at 4°C. Upon final
collection, we filtered the virus-laden media through a 0.45um PES filter (MilliporeSigma
SE1MO003MO00) and stored 1.5ml aliquots in cryovials at -80°C.

To transduce WM989 A6-G3, WM983b E9-C6, WM3451 P2G7, WM3623 P4E7, FOM 230-1, and
MDA-MB-231-D4 cells, we freshly thawed virus-laden media on ice, added it to dissociated cells, and
plated ~100,000 cells/well in a six-well plate with ~3ml of the media. We then centrifuged the 6-well
plate at 1,750 r.p.m. (517g) for 25 min. We then incubated the 6-well plate at 37°C and replaced the
media at ~8h, washed with 1X DPBS, and added fresh media (TU2% for WM989, WM983B, WM?3451,
and WM3623; Melanocyte Growth Media for FOM 230-1; and DMEM with 10% FBS for MDA-MB-231)
to each well. After ~24 hours, we passaged the cells to 10-cm dishes, at which point we typically
combined two wells by plating them together in a 10cm dish. For the FateMap experiments with
WM9O89 A6-G3 melanoma cells exposed to vemurafenib, we planned to start each split with 600,000
barcoded/GFP-positive cells. The barcoded cells (GFP-positive) were then sorted and plated for a
total of 4-5 population doubling until treatment with appropriate drugs. The time to 4-5 population
doubling was 11-12 days for FOM 230-1, 10-11 days for WM989, WM3451, and WM3623 6-7 days for
WM983B, 5-6 days for MDA-MB-231. The volume of the virus-laden media was decided by the titers
performed on each cell line and target multiplicity of infection (MOI). For single-cell RNA sequencing
experiments in particular, we targeted for the MOI to be ~10-25% to minimize the fraction of cells with
multiple unique barcodes. We found it to be relatively computationally challenging to differentiate
multiple-barcoded cells from doublets introduced by gel beads-in-emulsions.

Single-cell RNA sequencing

We used the 10X Genomics single-cell RNA-seq kit v3 to sequence barcoded cells. We resuspended
the cells (targeting ~10,000 cells for recovery/ sample) in PBS and followed the protocol for the
Chromium Next GEM Single Cell 3' Reagent Kits v3.1 as per manufacturer directions (10X Genomics,
Pleasanton, CA). Briefly, we generated gel beads-in-emulsion (GEMs) using the 10X Chromium
system, and subsequently extracted and amplified (11 cycles) barcoded cDNA as per post-GEM RT-
cleanup instructions. We then used a fraction of this amplified cDNA (25%) and proceeded with
fragmentation, end-repair, poly A-tailing, adapter ligation, and 10X sample indexing per the
manufacturer’s protocol. We quantified libraries using the High Sensitivity dsDNA kit (Thermo Fisher
Q32854) on Qubit 2.0 Fluorometer (Thermo Fisher Q32866) and Bioanalyzer 2100 (Agilent G2939BA)
analysis prior to sequencing on a NextSeq 500 machine (lllumina) using 28 cycles for read 1, 55
cycles for read 2, and 8 cycles for i7 index. A subset of FateMap sequencing runs (NRAS melanoma
samples and Metronomic therapy experiments), we used NextSeq 2000 (lllumina) using 26 cycles for
read 1, 124 cycles for read 2, and 8 cycles for i7 index.



Computational analyses of single-cell RNA sequencing expression data

We adapted the cellranger v3.0.2 by 10X Genomics into our custom pipeline (see Code Availability) to
map and align the reads from NextSeq sequencing run(s). Briefly, we downloaded the bcl counts and
used cellranger mkfastq to demultiplex raw base call files into library-specific FASTQ files. We aligned
the FASTQ files to the hg19 human reference genome and extracted gene expression count matrices
using cellranger count, while also filtering and correcting cell identifiers and unique molecular
identifiers (UMI) with default settings.

We then performed the downstream single-cell expression analysis in Seurat v3. Within each
experimental sample, we removed genes that were present in less than three cells, as well as cells
with less than or equal to 200 genes. We also filtered for mitochondrial gene fraction which was
dependent on the cell type. For non-identically treated samples, we integrated them using scanorama
%8 which may work better to integrate non-similar datasets and avoid over-clustering. For samples that
were exposed to identical treatment, we normalized using SCTransform 5° and the samples according
to the Satija lab’s integration workflow
(https://satijalab.org/seurat/articles/integration_introduction.html). Using scanorama on identically-
treated samples produced qualitatively similar results (Supplementary Figure 6).

For each experiment, we used these integrated datasets to generate data dimensionality reductions
by principal component analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP),
using 50 principal components for UMAP generation. For a majority of analyses, we worked with the
principal component space and normalized expression counts. For rare cases where we used Seurat
UMAP clusters, we tested a range of resolutions with Seurat’s FindClusters command. Our
conclusions did not change qualitatively when we tested resolutions between 0.4 and 1.2
(Supplementary Figure 3). Details for all FateMap experiments, including total cell numbers and total
barcoded cells per sample, are provided in Supplementary Table 11.

Bulk sequencing and analysis

We conducted standard bulk paired-end (37:8:8:38) RNA sequencing using RNeasy Micro (Qiagen
74004) for RNA extraction, NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB E7490L),
NEBNext Ultra Il RNA Library Prep Kit for lllumina (NEB E7770L), NEBNext Multiplex Oligos for
lllumina (Dual Index Primers Set 1) oligos (NEB E7600S), and an lllumina NextSeq 550 75 cycle high-
output kit (lllumina 20024906), as previously described . Prior to extraction and library preparation,
the samples were randomized to avoid any experimental and human biases. As previously described,
we aligned RNA-seq reads to the human genome (hg19) with STAR v2.5.2a and counted uniquely
mapping reads with HTSeq v0.6.1"¢%8" and outputs the count matrix. The counts matrix was used to
obtain transcripts per million and other normalized values for each gene using custom scripts (see
Code Availability).

To compare bulk sequencing data with single-cell RNA sequencing datasets, we first extracted
differentially expressed genes for each single-cell RNA sequencing cluster (snn = 0.6) using the
Seurat command FindAllMarkers, and filtering for adjusted p-value <0.05 and avg_logFC > 1.
Similarly, we extracted differentially expressed genes for each condition of interest (morphology or
invasiveness) and filtering for -1.5 < avg_logFC > 1.5. We then calculated the similarity score, which
represents the normalized fraction of overlap of differentially expressed genes for the condition of
interest between bulk-sequencing data and each single-cell RNA sequencing cluster.
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Expanded resistant colonies morphology categorization

The resistant colonies were manually binned in one of the three categories based on the morphology
images taken from the Nikon TS2-FL microscope: “small”, “on top”, and “not on top”. Those that were
difficult to be binned in any category were labeled as “uncategorized”. Of the three categories, the
“small” category was the most easy to identify manually and label due to characteristic optical and
proliferation (slow growing) properties. The other two categories (“on top” and “not on top”) had further
sets of morphological and proliferative differences, but were difficult to be parsed into specific
categories. Of the 64 resistant colonies isolated and expanded across therapy treatments of
vemurafenib and trametinib, five were uncategorized. The differentially upregulated genes for “small”
and “on top” are provided in Supplementary Table 4. For category “not on top”, only four genes were
differentially upregulated, thus precluding us from doing further analysis. Some resistant colonies did
not survive the expansion process.

Nearest neighbor analysis

We developed a quantifiable approach to measure the gene expression relatedness of different
barcoded clones. For each pair of barcoded clones, we calculated the nearest neighbors for each cell
in the 50-dimensional principal component space. We then classified the neighbors as “self’ if the
neighbors are from the same barcode clone or “non-self” if they belong to the other barcode clone. We
defined a quantifiable metric, the mixing coefficient, as follows:

number of non—self neighbors

mixing coef ficient =
9 ff number of self neighbors

A mixing coefficient of 1 would indicate perfect mixing such that each cell has the same number of self
and non-self neighbors. A mixing coefficient of 0 would indicate that there is no mixing and that each
cell within a barcoded clone lies far away from the other barcoded clone in the principal component
space. The higher the mixing coefficient, the higher the transcriptional relatedness of the barcoded
clones analyzed. As the number of nearest neighbors depends on the size (number of cells) of a
clone, we performed this analysis between cells of similar clone size (Supplementary Figure 14).
Within a specified size range, we normalized the number of neighbors per barcode clone to account
for small size differences. The number of neighbors to extract was chosen to be a minimum of 10 or
the size of the smaller of the two barcode clones.

Barcode recovery from single-cell RNA sequencing data

As the barcodes are transcribed, we extracted the barcode information from the amplified cDNA from
10X Genomics V3 chemistry protocol (step 2). We ran a PCR side reaction with one primer that
targets the 3’ UTR of GFP and the other that targets a region introduced by the amplification step
within the V3 chemistry of 10X genomics (“Read 1”). The two primers amplify both the 10X cell-
identifying sequence as well as the 100 bp barcode that we introduced lentivirally. The number of
cycles, typically between 12-15, are decided by the Ct value from a qPCR reaction (New England
Biolabs M0543) for the specified cDNA concentration. The thermal cycler (Veriti 4375305) was set to
the following settings: 98 °C for 30 s, followed by N cycles of 98 °C for 10 s and then 65 °C for 2 min
and, finally, 65 °C for 5 min. Upon completion of the PCR reaction, we immediately performed a 0.7X
bead purification (Beckman Coulter B23318) followed by final elution in nuclease-free water. Purified
libraries were quantified with High Sensitivity dsDNA kit (Thermo Fisher) on Qubit Fluorometer
(Thermo Fisher), pooled, and sequenced on a NextSeq 500. We sequence 26 cycles on Read 1 which



gives 10X cell-identifying sequence and UMI, 124 cycles for read 2 which gives the barcode
sequence, and 8 cycles for index i7 to demultiplex pooled samples. The primers used are provided in
Supplementary Table 2.

Experiments in mice

For each experiment, WM989 cells were uniquely barcoded with protocols as described above and
allowed to divide 4-5 times before splitting the barcoded pool into five groups, each containing an
equal number of cells. We aimed for ~1-1.5 million WM989 cells to be injected per mice. All animal
experiments were performed in accordance with institutional and national guidelines and regulations.
The protocols have been approved by the Wistar IACUC. WM989 cells in serum-free RPMI 1640
media (Corning 10-40-CM) were mixed in a 1:1 ratio with Growth Factor Reduced Matrigel® (Corning
354230), then were subcutaneously implanted into the flanks of NSG mice. Once tumors reached
about 100mm? per caliper measurement, animals were randomized into treatment groups. Treatment
consisted of Low Dose 41.7 mg PLX4720/kg diet (Research Diets D21051202i), or High Dose 417 mg
PLX4720/kg diet (Research Diets D21051201i), to which they had constant access. PLX4720 is
closely related both structurally and biologically to PLX4032, which was used for in vitro experiments,
and also targets the same molecule and BRAF-VG00E structural configuration. As PLX4720 continues
to be the drug used in mouse xenograft models and has a similar half-life to PLX4032 (Kaur et al.,
Nature, 2016; and Torre et al., Nature Genetics 2021), we used PLX4730 instead of PLX4032 for in
vivo experiments. Tumor size was measured by calipers every 2-4 days, and tumor volumes were
calculated according to the equation 0.5*L*W*W, where L is the longest side and W is a line
perpendicular to L. Mice were sacrificed once tumors reached 1500 mm?3, and once one mouse
reached the endpoint, all mice from the same barcode pool were sacrificed regardless of tumor size.
The tumor tissue was snap frozen in liquid N2 for genomic DNA extraction. We had 5 biological
replicate experiments. We could not extract sufficient gDNA from experiments 3 and 4, and these
were excluded from barcode split population analysis.

Computational analyses of barcoded single-cell datasets

The barcodes from the side reaction of single-cell cDNA libraries were recovered by developing
custom shell, R, and python scripts (see Code Availability). Briefly, we scan through each read
searching for sequences complementary to the side reaction library preparation primers, filtering out
reads that lack the GFP barcode sequence, have too many repeated nucleotides, or do not meet a
phred score cutoff. Since small differences in otherwise identical barcodes can be introduced due to
sequencing and/or PCR errors, we merged highly similar barcode sequences using STARCODE

software®?, available at https://github.com/gui11aume/starcode. For varying lengths of barcodes (30,

40 or 50, see the pipeline guide provided) depending on the initial distribution of Levenshtein distance
of non-merged barcodes, we merged sequences with Levenshtein distance < 8, summed the counts,
and kept only the most abundant barcode sequence. The decision to use a Levenshtein distance < 8
was reached by systematically analyzing the difference between experimentally observed mean
Levenshtein distance with the theoretically provided mean Levenshtein distance for a pair of barcodes.
We then compared various Levenshtein distances and found that a Levenshtein distance < 8 resulted
in the least difference between observed and expected mean distances between barcodes. Results

from this analysis are provided in Supplementary Figure 2.
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For next processing steps and downstream analysis, we first filtered out all barcodes that were
associated below the minimum cutoff (dependent on sequencing depth) of unique molecular identifiers
(UMI). We next removed all barcodes where one 10X cell-identifying sequence was associated with
more than one unique barcode. This could either result from multiplets introduced within gel beads-in-
emulsions or because of the same cell receiving multiple barcodes during lentiviral transduction. After
these two filtering steps, we were able to recover barcodes associated with 50-60% of single cells,
which were then used to do the downstream clone-resolved analysis.

Barcode library preparation and sequencing from genomic DNA

We prepared barcode libraries from genomic DNA (gDNA) as previously described?®. Briefly, we
isolated gDNA from barcoded cells using the QIAmp DNA Mini Kit (Qiagen, cat. 51304) per the
manufacturer’s protocol. Extracted gDNA was stored as a pellet in -20°C for days to weeks before the
next step. We then performed targeted amplification of the barcode using custom primers containing
lllumina adaptor sequences, unique sample indices, variable-length staggered bases, and an ‘UMI’
consisting of 6 random nucleotides (NHNNNN). As reported in &, the ‘UMI’ does not uniquely tag
barcode DNA molecules, but nevertheless appeared to increase reproducibility and normalize raw
read counts. We determined the number of amplification cycles (N) by initially performing a separate
quantitative PCR (gPCR) and selecting the number of cycles needed to achieve one-third of the
maximum fluorescence intensity for serial dilutions of genomic DNA. The thermal cycler (Veriti
4375786) was set to the following settings: 98°C for 30 s, followed by N cycles of 98°C for 10 s and
then 65°C for 40 s and, finally, 65 °C for 5 min. Upon completion of the PCR reaction, we immediately
performed a 0.7X bead purification (Beckman Coulter B23318), followed by final elution in nuclease-
free water. Purified libraries were quantified with a High Sensitivity dsDNA kit (Thermo Fisher) on a
Qubit Fluorometer (Thermo Fisher), pooled, and sequenced on a NextSeq 500 using 150 cycles for
read 1 and eight cycles for each index (i5 and i7). The primers used are provided in Supplementary
Table 6.

Analyses of sequenced barcodes from genomic DNA

The barcode libraries from genomic DNA sequencing data were analyzed as previously described?,
with the custom barcode analysis pipeline (see Code Availability). Briefly, this pipeline searches for
barcode sequences that satisfy a minimum phred score and a minimum length. Note that we count the
total number of ‘UMIs’ as described in the gDNA library chemistry above. These ‘UMIs’ do not
necessarily tag unique barcode DNA molecules, but empirically they slightly improve correlation in
barcode abundance among replicate libraries®. We also use STARCODE?®?, available at

https://github.com/gui11aume/starcode, to merge sequences with Levenshtein distance < 8 and add

the counts across collapsed (merged) barcode sequences.

In this current work, we also created two subclones (D8 and F8) of WM989 A6-G3, with each clone
carrying a unique barcode sequence (Supplementary Table 7). We used these two clones as
standards to convert sequencing counts into actual cell numbers which significantly reduces the PCR
and cell number bias across samples. We spiked in a known number of cells from each of the two
barcoded clones to each cell pellet before gDNA extraction and sequencing. We then used linear
regression (on (0,0), (count_F8, cells_F8), (count_D8, cells_D8)) to get the conversion factor from
read counts of all barcodes to their actual cell numbers. We used a minimum cell count and log2-fold
change between pairs of conditions to annotate clones as condition-dependent or condition-
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independent. We found that changing the cutoff for minimum cell count did not affect our conclusions
(Supplementary Figure 15).

Simulation for barcode overlap

We adapted a described previously computational model that simulates all steps of our experiments
designed to compare barcode overlap in resistant colonie . The model simulates cell seeding and
infection. Each cell is represented as an independent object. The number of barcoded cells was
calculated as

number of barcoded cells = number of seeded cells x (1 —e~Mo)

where the MOI was estimated for our barcode lentivirus. Barcodes were represented by integer
numbers from among 50 million variants of unique barcodes estimated from our lentiviral library
diversity (see Methods and Supplementary Figure 1). The subset of barcoded cells was assigned
barcodes randomly with replacement from this library. The model simulates expanding cells prior to
addition of the drug. Each cell, regardless of barcode status, undergoes a cell division procedure with
4-5 rounds depending on the experimental condition. In each round, a given cell will give rise to a
number of progeny sharing the same barcode based on an estimated distribution of cell division. The
model plates cells onto separate dishes/splits (total dishes/splits dependent on the experiment) by
randomly assigning each cell an integer. The model simulates the formation of resistant colonies
assuming a purely stochastic model of resistance. A defined fraction of cells on each plate form
resistant colonies based on an resistance efficiency that was calculated as

number of barcoded resistant colonies after drug course

resistance ef ficiency = number of seeded barcoded cells

based on experimental observations. Additionally, each cell forming a resistant colony is subject to a
probabilistic material loss at different stages of the in silico experiment, including cell culture (5% both
in vivo and in vitro), genomic DNA extraction (0% in vitro and 10% in vivo mouse), DNA sequencing
library preparation (5% both in vivo and in vitro), and (as needed) mouse injection (15%) and tumor
extraction (15%). The output of the model was the number of barcodes shared between different
plates or barcode overlap. This was not corrected for cells having more than one lentiviral barcode
due to multiple integrations for a given MOI. We performed 1000 and 200 independent simulations for
in vitro and in vivo experiments respectively to obtain a distribution of barcode overlap values to
determine the probability of obtaining our observed barcode overlap from our experiments by random
chance. This model was written and executed in R.

Tissue sectioning and RNA FISH
We adapted the protocol described previously®¢. Tumor tissue extracted from mice subcutaneously

injected with WM989 A6-G3 5a3%° was mounted in Tissue-Plus O.C.T. compound (Fisher Healthcare),
flash-frozen in liquid nitrogen, wrapped in aluminum foil, and then stored tissues at —80°C. Tissues
were cryosectioned at 6 or 8 ym using a Leica CM1950 cryostat within the Center for Musculoskeletal
Disorders (PCMD) Histology Core. We adhered tissue samples to positively charged Superfrost Plus

slides (Fisher Scientific). We then washed slides in PBS, fixed them in 4% formaldehyde for 10 min at
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room temperature, then washed them two times in PBS. Fixed slides were stored in 70% ethanol in

LockMailer microscope slide jars at 4°C.

For RNA FISH on tissue sections, we placed the slide in the wash buffer (2X SSC, 10% formamide)
and allowed it to equilibrate for 2-3 min. We then removed slides from the wash buffer and dried off
the slides with kimwipes. Immediately after drying, we added 500-1000 pL of 8% SDS to the tissue
section on the slide for 1 min. After 1 min, we turned the slide on the side to remove the SDS,
transferred the slide to the wash buffer, and kept it in the wash buffer for ~2 min. We then tapped
down the wash buffer on a kimwipe or paper towel, added 50 pL of probe-containing hybridization
buffer (10% dextran sulfate, 2X SSC, 10% formamide) as a drop in center of tissue sample, and
placed a cover slip on top of the tissue section. We then placed the slide into a humidifying chamber to
prevent the slide from drying, and placed the chamber containing slides in a 37°C incubator overnight.
We took out the chamber to RT the next day and placed the slide with coverslip into a wash buffer
container and let the cover slip come off. We then transferred the slides to a container or LockMailer
jar containing wash buffer and incubated for 30 min at 37°C. We removed it from the 37°C incubator
and performed a second incubation with wash buffer and DAPI, and put it back into 37°C for another
30 min. We performed one final wash in wash buffer, rinsed two times in 2X SSC, and added 50-100
pL of 2X SSC to the tissue section. We then placed a coverslip on the tissue, sealed it with nail
varnish, and let it dry before imaging. We used clampFISH data on tissue sections (Supplementary

Figures 12 and 13) from another study, and detailed methods on clampFISH protocols are provided in
29

Spheroid assay

We adapted the protocol described previously®®. Tissue culture—treated 96-well plates were coated
with 50 pyL 1.5% Difco Agar Noble (Becton Dickinson). Melanoma cells were seeded at 3000 cells/well
and allowed to form spheroids over 96 to 120 hours. Spheroids were harvested and embedded using
collagen type | (GIBCO, #A1048301). The collagen plug was prepared as 300 uL mix per layer, and
two layers were added into each well [1X Eagle Minimum Essential Medium (EMEM; 12-684, Lonza);
10% FCS; 1X I-glutamine; 1.0 mg/mL collagen |; NaHCO3 (17-613E, Lonza), diluted in PBS as
required]. The first layer was added to each well and allowed to solidify. After 5 to 10 min, spheroids
were mixed with the remaining 300 uL mix and added to the well to solidify. Once the plug was
solidified, media were added to the well and incubated at 37°C at 5% CO2 and imaged after 24 hours
and 48 hours. Spheroid images were acquired on a Nikon Ti2E inverted microscope. Quantitation of
invasive surface area was performed using NIS Elements Advanced Research software. Of the 64
resistant colonies we expanded, only 24 colonies had enough cells to form multiple spheroids per
colony. Of these 24, 6 did not form spheroids and 2 only had one spheroid each. Of the remaining 16
colonies, 8 colonies belonged to resistant colonies emerging from trametinib, 3 belonged to 1uM
vemurafenib and 5 belonged to 250nM vemurafenib. The differentially upregulated genes for “fast
invading” and “slow invading” are provided in Supplementary Table 5.

Imaging

To image RNA FISH and nuclei signal, we used a Nikon TI-E inverted fluorescence microscope
equipped with a SOLA SE U-nIR light engine (Lumencor), a Hamamatsu ORCA-Flash 4.0 V3 sCMOS
camera, and 4X Plan-Fluor DL 4XF (Nikon MRH20041/MRH20045), 10X Plan-Fluor 10X/0.30 (Nikon
MRH10101) and 60X Plan-Apo A (MRD01605) objectives. We used the following filter sets to acquire
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different fluorescence channels: 31000v2 (Chroma) for DAPI, 41028 (Chroma) for Atto 488, SP102v1
(Chroma) for Cy3, 17 SP104v2 (Chroma) for Atto 647N, and a custom filter set for Alexa 594. We
tuned the exposure times depending on the dyes used (Cy3, Atto 647N, Alexa 594, and DAPI). For
large tiled scans, we used a Nikon Perfect Focus system to maintain focus across the imaging area.
For imaging RNA FISH signals in tissue sections, we acquired z-stacks (three positions) at 60X
maghnification, and used maximum intensity projection to visualize the signal. For brightfield imaging of
resistant colonies, we used a Nikon Eclipse Ts2-FL with an Imagingsource DFK 33UX252 camera and
4X Plan-Fluor 4X/0.13 (Nikon MRH20041) objective. For time-lapse imaging of the emergence of
drug-resistant colonies, we used an IncuCyte S3 Live Cell Imaging Analysis System (Sartorius) with a
4X objective on WM989 A6-G3 tagged with an mCherry nuclear reporter (H2B-mCherry).

Image processing

For colony counting, all image processing was done blind to the condition (either drug type/dose or
with/without DOT1L inhibition). The wells (within the 6-well plates) were pseudo-named in a format
independent from drug or dose. Nikon-generated nd2 files were first parsed using custom MATLAB
scripts (rajlabformattools) to convert them from nd2 format to tiff format (see Code Availability).
Images for each well were then stitched using custom MATLAB code and the number of cells in each
well was counted using custom MATLAB code with a Gaussian filter consistent across samples being
compared (colonycounting_v2). Colonies within each well were manually segmented and MATLAB
was used to calculate the total number of colonies, cells per colony, and cells outside of colonies (see
Code Availability). The summary average counts for each colony is provided in Supplementary Table
10. RNA FISH and clampFISH on tissue sections were quantified using a custom built computational
pipeline, also used in other previous studies "?°. The code is provided with the Zenodo DOI.

For immunofluorescence, all image processing was done blind to drug conditions; the wells were
pseudo-named in a format independent from drug or dose. Nikon images were first stitched using
Nikon Elements software. The channels were split in Fiji and scaled to a smaller size compared to
their original pixel size prior to placing them in illustrator. For the conditions being compared (e.g. each
well with a different drug dose/type), the individual channels were equally adjusted for brightness and
contrast across each pair of wells for the signal of interest. Raw nd2 files are provided for each
imaging experiment which contains additional metadata for image settings. For the images taken on
the brightfield microscope Nikon TS2FL, the scale bar lengths were calculated by using the pixel size
given by the manufacturer of the camera. For well images taken on the Nikon TI-E inverted
fluorescence microscope, the scale bar lengths were calculated using Nikon Elements software to add
a line of a specific length to the images.

Estimation of survival fraction in MDA-MB-231-D4

We estimated the frequency of drug resistance in MDA-MB-231-D4 by computing the fraction of
surviving barcoded colonies upon treatment with paclitaxel as compared to the total number of
uniquely barcoded cells in the initial population. From two separate split population experiments, we
obtained the frequency to be 1:956 and 1:1303 (see Data and Code Availability for the script).

Vemurafenib resistant colony isolation and expansion

WM989 A6-G3 cells were treated with 1uM vemurafenib (PLX4032, Selleck Chemicals, S1267) for
four weeks to allow resistant colonies to form and expand. Plates with resistant colonies were scanned
under a tissue culture microscope to identify colonies that were physically distant from other colonies
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or singletons. The distant colonies were imaged with a 4X objective, physically isolated, and
dissociated via treatment with 0.05% trypsin for 5-10 minutes as some colonies took longer to detach
than others. Colony suspensions were plated in 12-well plates containing 1mL of TU2% media
containing 1uM vemurafenib, and the media was changed the following day to remove residual
trypsin. Isolated resistant colonies were closely monitored for growth daily, and the 1uM vemurafenib
containing media was changed every 3-5 days. Isolated resistant colonies were expanded into 10cm
and then 15cm plates when cells reached 70-80% confluence. When expanding from 12-well plates to
10cm plates, 75,000 cells were harvested for RNAseq. When cells reached 70-80% confluence in
15cm plates, 75,000 cells were harvested for a later time point of RNAseq.

Silencing Plate Cell Culture, Imaging, & Analysis

Drug-naive WM989 A6-G3s were transduced with unique barcodes as described above. Cells were
plated in 6 well plates at a density of 100,000 cells/well. One plate was formaldehyde fixed after 24
hours using a protocol described above and the second plate was treated with media containing 1uM
PLX after 24 hours. This drug treatment was continued for three weeks which was enough time for
resistant colonies to form. This second plate containing resistant populations was formaldehyde fixed.
Wells were imaged on a Nikon TI-E inverted fluorescence microscope equipped with a SOLA SE U-
nIR light engine (Lumencor), a Hamamatsu ORCA-Flash 4.0 V3 sCMOS camera, and 10X Plan-Fluor
10X/0.30 (Nikon MRH10101). Images were analyzed using the custom Raj Lab image processing
software NimbusIimage via the CellPose tool®. Average intensity for each of the cells was calculated
also using Nimbusimage.

Whole Genome Sequencing Cell Culture, Isolation, and Expansion

WM989 A6-G3 cells that were frozen as a backup from the original experiments were thawed and
passaged three times before bottlenecking. Cells were trypsinized, centrifuged and resuspended to a
concentration of either .5 cells/200 pL, 1 cell/200 uL, or 2 cells/200 uL. One full 96 well plate was used
for each dilution. Plates were imaged on an Incucyte S3 24 hours after the cells were plated. The
plates were scanned again 2 days after the first scan and 7 days after the second scan. Any wells that
did not definitively have a single cell in the first scan were excluded from the experiment. Once clones
had reached ~90% confluency in the 96 well plate, they were scaled up to a 24 well plate. This
process was repeated to 12 well, 6 well, and 10cm plates. Ultimately, 8 unique clones were generated
for whole genome sequencing.

NRAS Cell Line Drug Treatment & Imaging

WM3451 P2G7 and WM3623 P4E7 cell lines were imaged during drug treatment to track
morphological changes and colony formation. Cells were plated in 10 cm dishes at a density of
300,000 cells/dish. Media was changed 15 hours after plating for media containing 10 nM trametinib
(WM3623 P4E7) or 25 nM trametinib (WM3451 P2G7). Media was changed and brightfield images
were taken of the cells every 3-4 days, and this was continued for 5 weeks.

Patient Sample GeoMx Analysis

Segments for spatial sequencing were drawn based on manual inspection of S100B and CD45
staining using the NanoString GeoMx Digital Spatial Profiler software and sequenced as per the
GeoMx protocol. Sequencing data was processed and subjected to quality control using the
manufacturer’s proprietary software. Quality control analysis was performed using the manufacturer’s
suggested default values except where otherwise noted. Briefly, segments with fewer than 1000
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reads, less than 80% aligned reads and less than 50% sequencing saturation were excluded from
further analysis. Biological probes were excluded from the target count calculation if the ratio of the
geometric mean of the probe in all segments to the geometric mean of the probe in the target was less
than or equal to 0.1 or if the probe failed the Grubbs outlier test in 20% or more of samples. Finally, we
kept targets that exceeded a threshold (higher of limit of quantification or count of two) in at least 5%
of samples. The filtered target counts were exported to R and counts were normalized using the
Trimmed Means of M values method. Count per million values for selected genes based on in vitro
resistant fate types were then plotted for each segment.

GeoMx variable gene overlap with FateMap resistant fate type markers

The unsupervised cell clusters in the FM01 dataset were annotated with the resistant cell fate types
shown in Figure 1. The data was subset to include only cells that had a resistant fate type label, and
the Seurat command FindAllIMarkers with the options ‘only.pos =TRUE’ was run on the resulting
subset dataset. The filter p_val_adj < 0.05 was applied to the resulting marker list, and the top 100
marker genes for each of the five resistant fate types were chosen as the top 500 markers. The
coefficient of variation (CV) for each gene across patient and sample type (pre-treatment or resistant)
was calculated for each gene in the GeoMx data. The GeoMx data was then subset to include only
genes expressed in the WM989 cells used in the FM01 experiment. Boxplots were generated in R
comparing the CVs of the top 500 FateMap markers to all other genes. P values were computed using
the two-sided, unpaired Wilcoxon test.

Resistant fate type GeoMx uneven patrtitioning analysis

The unsupervised cell clusters in the FM01 dataset were annotated with the resistant cell fate types
shown in Figure 1 and the object was subset to include only those cells. The Seurat command
AverageExpression with options “return.seurat = F, assays = 'SCT', slot = 'counts” was used to
generate a gene signature matrix for each resistant fate type for downstream deconvolution. The SCT -
normalized counts were transformed into log-transformed counts per million values via the Trimmed
Means of M method to match the GeoMx data. The following process was then repeated once per
patient. Two ROls on the same plug were chosen. We calculated a weighted mean of their
transcriptomes using the number of nuclei from the GeoMx metadata. The gene signature matrix and
the original and average ROI transcriptomes were then subset to only include genes common to all
datasets and in common with FM01 differentially expressed genes. This was done to improve
deconvolution by removing noisy, uninformative genes. The original and average ROI transcriptomes
were deconvoluted using non-negative least squares deconvolution to yield resistant fate type cell
proportions. These proportions were multiplied by the number of nuclei to give an estimated number of
cells in each ROI and the ‘combined’ ROI with the mean transcriptome. An observed Euclidean
distance between the two original ROls is then calculated by reversing the deconvolution on each of
the two original ROls.

From the estimated cell numbers, two analyses are performed. The first analysis generates a null
distribution of euclidean distances in which cells from the combined ROI are binomially distributed to
two ROlIs and the deconvolution is reversed to re-generate transcriptomes and calculate the euclidean
distance between them. This sampling is done 10,000 times, and the null distribution is compared to
the observed distance and the probability of a sampling a distance greater than the observed is
calculated. Second, the estimated cell numbers in the combined ROI are partitioned in groups of 10
into either ROI 1 or ROI 2 in all possible combinations that add up to the true number of cells in each
ROI +/- 2%. For each partition, the deconvolution is reversed and the euclidean distance is calculated



between the transcriptomes. For each partition, we also calculate the mean absolute deviation away
from 50-50 (equal partitioning) for all cell fate types. We compare whether the calculated euclidean
distance is at least as large as the observed distance between the original ROls, and find the mean
absolute deviation away from 50-50 for the 25th percentile of distances at least as large as the
observed distance.

RNA FISH of Resistant Colonies Derived from WM989 A6-G3 and Two Clonal Lines

WM989 A6-G3 and two subclones thereof, WM989 A6-G3 A10 and WM989 A6-G3 A11, were used to
generate vemurafenib-resistant colonies. Cells were plated in glass-bottom 6 well plates and media
was changed 18 hours after plating for media with 1uM vemurafenib (PLX4032, Selleck Chemicals,
S1267). Media was changed every 3-4 days. WM989 A6-G3 A10 and WM989 A6-G3 A11 plates were
fixed after 4 weeks of drug treatment and the WM989 A6-G3 plate was fixed after 5 weeks of drug
treatment. Cells were fixed, hybridized with FISH probes, and imaged as described above.

Estimation of number of cell divisions

Cell culture was initiated at 25% confluency and cells were allowed to divide until they reached 75 to
80% confluency. The WM989 AB-G3 cells were passaged a total of 10 times, and each passage
followed similar confluency at initial (right after nth passage) and final (right before n+1th passage)
time points. To estimate the number of divisions, we assume all cells at a given time point can divide
to form two daughter cells.

0.25N * 2" = 0.75N

N+ 2" = 3N
n = log,3
n = 1.58

Where, N is the number of cells at 100% confluency and n is the number of division cells undergo
when cultured from 25% confluency upto 75% confluency. Therefore, cells divide approximately 1 to 2
times during a passage. For 10 passages, we can estimate the dynamics to be equivalent to the
population expanding 3-fold ten times:

N = 2™ = 310N

2nl — 310
n' = log,3'°
n' = 15.85

where n’ is the number of division cells undergo when cultured from 25% confluency up to 75%
confluency through 10 passages. Therefore, the cells underwent approximately 16 divisions over the
10 passages for WM989 A6-G3 between initial clonal isolation and our analysis. A similar calculation
for the A10 and A11 subclones, which underwent 12 passages, yielded an estimate of 19 divisions.

Phenotypic Volume and Shannon’s Equitability Index

To estimate the transcriptional variability of cells within a clone or within a cluster, phenotypic volume
(PV) was estimated as described in_Fennell et al., 2021. The log of PV was quantified as the sum of all
non-zero eigenvalues for the singular value decomposition of the covariance matrix for gene expression.
The covariance matrix was calculated for the scaled gene expression matrix for differentially expressed
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genes identified by FateMap. As a randomized control, barcodes or cluster numbers for cells were
shuffled and the phenotypic volume was re-calculated. Normalized phenotypic volume was estimated
as the difference between the phenotypic volume for a clone or a cluster and its paired random control
divided by the phenotypic volume for the paired random control.

To quantify the distribution of each clone across the UMAP clusters, Shannon’s Equitability Index was
quantified for each clone and a paired random control (created by shuffling barcodes). Shannon’s
Equitability Index was calculated as:

H = -Spi * In(pi)/ In(S)

where, H is Shannon’s Equitability Index, pi is the probability of finding cells in the i cluster and S is
the number of clusters. Shannon’s Equitability Index ranges from 0 to 1. A value of 1 indicates that the
cells in a clone are evenly spread across all clusters. A value of 0 indicates that all cells in a clone are
present in a single cluster.
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Extended Data Figure captions

Extended Data Figure 1: FateMap reveals that between-clone fate type diversity, albeit to a
lesser degree, in treatment-naive cells.

a. (left) UMAP of all barcoded treatment-naive cells. Total 16,432 cells (8,420 split A and 8,012
cells in split B) are colored by clusters determined using Seurat’s FindClusters command at a
resolution of 0.6 (i.e. “Seurat clusters, resolution = 0.6”). (right) On the UMAP, we recolored
each cell by its expression for a select subset of genes that were identified as differentially
expressed in drug resistant cells via the Seurat pipeline (Cell counts available in
Supplementary Table 11).

b. Five representative examples demonstrate that a clone (cells sharing the same barcode) is
constrained largely in a specific transcriptional cluster such that cells within a clone are more
transcriptionally similar to each other than cells in other clones.

c. Average pairwise correlation between cells within a clone was estimated based on the
expression levels of the top 500 most variable genes. Each point represents the average value
for Spearman’s correlation coefficient for all possible pairs of cells within a clone. For each
clone, a paired control was created by randomly sampling an equivalent number of cells from
the entire population. Higher average correlation coefficient in clones indicates higher
transcriptional similarity among cells within a clone, as compared to cells that are not clones.
Wilcoxon signed rank exact test (paired, two-sided) was used to compare the difference in
average correlation coefficient.

d. Fraction of variance explained by the experimental data and randomized data for the top 50
principal components (PCs). The number of PCs needed to explain the actual variance in data
(indicated by the dotted line) is a measure of the degrees of freedom of variability of a given
dataset. There was an increase (see Extended Data Figure 1E for statistical testing) in the
number of PCs needed to explain the variance in data from resistant cells (43 PCs) as
compared to naive (30 PCs) and primed cells (23 PCs), suggesting that there is an increase in
overall variability in samples when cells transition to becoming drug resistant. Primed cells
were identified as cells where at least 40% of pre-resistant markers identified in (Emert et al.
2021) are higher than their average expression level.

e. Average number of PCs needed to explain the variance in resistant, naive and pre-resistant
cells. Error bars represent standard deviation over 100 simulations of randomized data. Mann-
Whitney U-Test was used to estimate a p-value for pairwise difference in means.

f. Comparison of Euclidean distances between clusters across resistant and naive populations of
melanoma cells for varying numbers of clusters. We used the first 50 principal components to
calculate the Euclidean distance between cells across clusters. We used Wilcoxon signed rank
exact test (paired, two-sided) for statistical comparisons.

g. Comparison between resistant and naive populations for total number of clusters, given fixed
number of cells and shared nearest neighbor (snn) resolution. We used Wilcoxon signed rank
exact test (paired, two-sided) for statistical comparisons of average number of clusters across
resolutions.

h. UMAPs of representative twin clones (sharing the same barcode) across the two splits A and
B. The twins largely end up with the same transcriptional fate. This observation suggests that
cells have similar transcriptional states prior to drug treatment.
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Extended Data Figure 2: Whole genome sequencing of treatment-naive and drug resistant fate
type clones.

a.

We performed a pairwise hypergeometric test for variants in all clones to determine statistical
significance of variant overlap between clones. This was calculated with the following
parameters (M = all CADD > 15 variants, n = # Variants in Sample 1, N = # Variants in Sample
2, X = # Variants in intersection of Samples 1 & 2). P-values are plotted on the heatmap where
the p-value represents the probability of observing at least as large an overlap as observed if
the two clones in fact had independently randomly selected variants from the full list of CADD >
15 variants. P-values below 0.05 represent two clones that are not genetically independent.
Heatmap of genes with deleterious variants (CADD > 15) that were present with allele
frequencies between 25% and 75% in both naive and resistant clones, colored by their CADD
deleteriousness score. For genes that include multiple, unique variants, the variants were
collapsed into one row, where the variant with the highest CADD score was plotted for that
sample. The curated gene set represents the lack of variation in (Shaffer et al. 2017; Garman
et al. 2017). Differentially expressed genes from the FateMap dataset show eight genes with
variation.

The expression patterns of the eight genes from the DEG list from FateMap with
heterogeneously present genetic variants, visualized on UMAP (Cell counts available in
Supplementary Table 11).

To evaluate for acquired genetic resistance to therapy in the resistant clones, we next plotted
variants on a heatmap (colored by their CADD deleteriousness score) if there was a significant
difference in the allele frequencies of variants between naive and resistant clones by Fisher’'s
exact test (P < 0.05). Variants were only included if they were not present in any naive clones.
The curated gene set represents the lack of acquired variants in genes from [2017 paper
genes], [FateMap DEG], [Clone Genes], [Top 500 most Variable Genes], [Known Epigenetic
Modifiers]. The [“all variants with CAAD>15"] includes all variants with CADD c-scores over 15.
We analyzed 143 genes classified as epigenetic modifiers for deleterious variants (CADD>15)
within naive clones. The chart shows the number of genes with variants in a subset of naive
clones (2 genes) and in all naive clones (10 genes).

Heatmap of deleterious variants in epigenetic modifier genes, colored by their CADD
deleteriousness score.

Extended Data Figure 3: Isolation, longitudinal profiling and functional mapping of drug
resistant clones.

a.

Schematic for longitudinal tracking and profiling of drug resistant colonies. Colonies were
isolated, expanded and maintained over 4 to 6 weeks. Paired initial and late samples were
sequenced at a bulk-level.

Paired initial and late samples display minimal phenotypic drift in principal component (PC)
space for top 500 most variable genes. Insets show brightfield images of representative
samples.

Euclidean distance (in PC1 and PC2) measured between paired initial and late samples and
equivalent number of random initial-late pairs of samples. Lower Euclidean distance in true
pairs as compared to random pairs implies that paired initial and late samples are
transcriptionally more similar (closer in PC space) than any pair of initial and late samples.
Scree plot depicting cumulative variance explained by PCs. Dotted line represents that most of
the variance can be explained by the first 25 PCs alone.
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Euclidean distance (in first 25 PCs) measured between paired initial and late samples and
equivalent number of random initial-late pairs of samples. Lower Euclidean distance in true
pairs as compared to random pairs implies that paired initial and late samples are
transcriptionally more similar (closer in PC space) than any pair of initial and late samples.
Euclidean distance measured between paired early and late samples and equivalent number
of random initial-late pairs of samples. Euclidean distance was measured in PC1 and PC2
space for top 200, 500 and 1000 variable genes.

Euclidean distance measured between paired initial and late samples and equivalent number
of random initial-late pairs of samples. Euclidean distance was measured in the PC space
created by the first 25 PCs for top 200, 500 and 1000 variable genes.

Mapping of invasiveness onto the single-cell RNA sequencing dataset from FateMap by
comparing genes differentially expressed between the two slowest and the two fastest invading
resistant colonies (UMAP colored for similarity score). The slowest invading colonies have a
high similarity score for cluster 15 (and to some extent 4 and 6), while the fastest invading
colonies have a high similarity score for cluster 8 (and to some extent 1).

Extended Data Figure 4: FateMap on BRAF and NRAS mutant melanoma cell lines reveals
between-clone fate type diversity.

a.

(left) For another single-cell derived melanoma cell line WM983B E9-C6, we traced
representative resistant cells in Adobe lllustrator and created cartoon schematics based on
visual inspection of orientation and density. (right) Brightfield images of resistant colonies
exhibiting different types of morphologies.

We applied the Uniform Manifold Approximation and Projection (UMAP) algorithm within
Seurat to the first 50 principal components to visualize differences in gene expression. Cells
are colored by clusters determined using Seurat’s FindClusters command at a resolution of 0.5
(i.e. “Seurat clusters, resolution = 0.5”) (13,869 and 11,249 total cells respectively for split A
and B).

On the UMAP, we recolored each cell by its expression for a select subset of genes that were
identified as differentially expressed via the Seurat pipeline and marked different clusters.
MLANA, which marks melanocytes, is found largely in clusters 1,3, and 5; IFIT2, which marks
type-1 interferon signaling, is found largely in cluster 4; NGFR, which marks neural crest cells,
is found largely in cluster 2 and 4; AXL, which is a canonical resistance marker, is found largely
in cluster 5and 7.

Six examples to demonstrate that a clone (cells sharing the same barcode) is constrained
largely in a specific transcriptional cluster such that cells within a clone are more
transcriptionally similar to each other than cells in other clones. Some clones are larger in size
than others, and some exist as singletons, meaning they survive vemurafenib treatment but do
not necessarily divide while exposed to the drug.

We quantified the preference for a specific cluster across all barcode clones (clone size>4).
Specifically, we calculated the fraction of dominant clusters for each clone and found it to be
significantly higher (Wilcoxon test, two-sided, unpaired, p-value = 1.49e-15) than that for
randomly selected cells. The analysis plotted here is for a cluster resolution of 0.5.

Painting of singletons and colonies onto the UMAP demonstrated that singletons and colonies
belonged to distinct regions and clusters.

UMAPs of representative twin clones (sharing the same barcode) across the two splits A and
B. The twins largely end up with the same transcriptional fate type, invariant of the clone size.



This observation suggests that cells are predestined for distinct resistant fate types upon
exposure to vemurafenib.

h. NRAS mutant cell line WM3623 treated with three different doses of trametinib (10 nM, 20 nM,
and 40 nM). Representative brightfield images after 2.5 and 5 weeks of drug treatment are
shown for each dose.

i. (left) UMAP of all barcoded 3623 cell line cells treated with Trametinib. 6,397 cells are colored
by clusters determined using Seurat’s FindClusters command at a resolution of 0.6 (i.e.
“Seurat clusters, resolution = 0.6”). (right) On the UMAP, we recolored each cell by its
expression for a select subset of genes that were identified as differentially expressed in drug
resistant cells via the Seurat pipeline.

j-  On the UMAP, we recolored each cell by its expression for a select subset of genes that were
identified as differentially expressed in drug resistant cells via the Seurat pipeline.

k. Five representative examples demonstrate that a clone (cells sharing the same barcode) is
constrained largely in a specific transcriptional cluster such that cells within a clone are more
transcriptionally similar to each other than cells in other clones.

I.  UMAPs of representative twin clones (sharing the same barcode) across the two splits A
(6,397 cells) and B (7,538 cells). The twins largely end up with the same transcriptional fate
type. This observation suggests that drug resistant cells are derived from the same clones
having similar transcriptional states and are constrained in the gene expression space. One of
the clones appears to be a dominant clone and gives rise to a large fraction of sequenced
cells.

Extended Data Figure 5: FateMap on an NRAS mutant melanoma cell line reveals between-
clone fate type diversity.

a. NRAS mutant cell line WM3451 treated with three different doses of trametinib (20 nM, 40 nM,
and 50 nM). Representative brightfield images after 2.5 and 5 weeks of drug treatment are
shown for each dose.

b. (left) UMAP of all barcoded 3451 cells treated with Trametinib. 5,789 cells are colored by
clusters determined using Seurat’s FindClusters command at a resolution of 0.6 (i.e. “Seurat
clusters, resolution = 0.6”). (right) On the UMAP, we recolored each cell by its expression for a
select subset of genes that were identified as differentially expressed in drug resistant cells via
the Seurat pipeline.

c. Five representative examples demonstrate that a clone (cells sharing the same barcode) is
constrained largely in a specific transcriptional cluster such that cells within a clone are more
transcriptionally similar to each other than cells in other clones.

d. Average pairwise correlation between cells within a clone was estimated based on the
expression levels of the top 500 most variable genes. Each point represents the average value
for Spearman’s correlation coefficient for all possible pairs of cells within a clone. For each
clone, a paired control was created by randomly sampling an equivalent number of cells from
the whole population. Higher average correlation coefficient in clones indicates higher
transcriptional similarity among cells within a clone, as compared to cells that are not clones.
Wilcoxon signed rank test (paired, two-sided) was used to compare the difference in average
correlation coefficient.

e. UMAP of all barcoded WM3451 P2G7 cells treated with Trametinib. Cells are colored by
whether they are a singleton (i.e. clone size = 1).



f. UMAPs of representative twin clones (sharing the same barcode) across the two splits A
(5,789 cells) and B (7,473 cells). The twins largely end up with the same transcriptional fate
type. This observation suggests that drug resistant cells are derived from the same clones
having similar transcriptional states and are constrained in the gene expression space.

Extended Data Figure 6: FateMap on treatment-naive primary human melanocytes reveals
between-clone diversity.

a. (left) UMAP of all barcoded naive primary melanocyte cells. Cells are colored by clusters
determined using Seurat’s FindClusters command (“Seurat clusters, resolution = 0.6”). (right)
On the UMAP, we recolored each cell by its expression for a select subset of genes that were
identified as differentially expressed in drug resistant cells via the Seurat pipeline.

b. Six representative examples demonstrate that a clone is constrained largely in a specific
transcriptional cluster such that cells within a clone are more transcriptionally similar to each
other than cells in other clones.

c. Average pairwise correlation between cells within a clone was estimated based on the
expression levels of the top 500 most variable genes. Each point represents the average value
for Spearman’s correlation coefficient for all possible pairs of cells within a clone. For each
clone, a paired control was created by randomly sampling an equivalent number of cells from
the whole population. Higher average correlation coefficient in clones indicates higher
transcriptional similarity among cells within a clone, as compared to cells that are not clones.
Wilcoxon signed rank test (paired, two-sided) was used to compare the difference in average
correlation coefficient.

d. UMAP of all barcoded naive primary melanocyte cells. 2,868 cells are colored by whether they
are a singleton (i.e. clone size = 1). Cluster 10 is enriched for singletons and displays high
expression of S100B, a marker identified to be associated with single cell colonies by
FateMap.

e. UMAPs of representative twin clones (sharing the same barcode) across the two splits A
(2,868 cells) and B (3,333 cells). The twins largely end up with the same transcriptional fate
type. This observation suggests that primary melanocyte cells derived from the same clone
have similar transcriptional states and are constrained in the gene expression space.

Extended Data Figure 7: FateMap on a triple negative breast cancer cell line reveals between-
clone fate type diversity.

a. Nuclei scans (DAPI-stained) of resistant colonies emerging from treatment of the single-cell
derived triple negative breast cancer cell line MDA-MB-231-D4 with 1nM paclitaxel.

b. For the MDA-MB-231-D4 cell line, we traced representative resistant cells in Adobe lllustrator
and created cartoon schematics based on visual inspection of orientation and density.

c. Brightfield images of resistant colonies exhibiting different types of morphologies.

d. We applied the Uniform Manifold Approximation and Projection (UMAP) algorithm within
Seurat to the first 50 principal components to visualize differences in gene expression. 6,535
cells are colored by clusters determined using Seurat’s FindClusters command (“Seurat
clusters, resolution = 0.5”).

e. We observed silencing of the transcribed barcodes in a subset of colonies, as revealed by
epifluorescence imaging of the GFP signal. The colony on the left is strongly expressing a GFP
signal while the colony on the right has a very dim GFP signal.



Cells with assigned barcodes were evenly distributed throughout the UMAP with no clear bias
for any specific resistant fate types.

Four examples from split A (6,535 cells) demonstrate that a clone is constrained largely in
specific UMAP regions such that cells within a clone are more transcriptionally similar to each
other than cells in other clones.

Four examples from split B (8,745 cells) demonstrate that a clone is constrained largely in
specific UMAP regions such that cells within a clone are more transcriptionally similar to each
other than cells in other clones.

We quantified the preference for a specific cluster across all barcode clones (clone size>4).
Specifically, we calculated the fraction of dominant clusters for each clone and found it to be
significantly higher (Wilcoxon, unpaired, two-sided) than that for randomly selected cells. The
analysis plotted here is for a cluster resolution of 0.5.

We found that our UMAP had superclusters defined by cell cycle (S, G1, G2M). Of the 3,720
clonal DEGs, 63 are cell cycle genes. We therefore regressed out cell cycle genes and the
cell-cycle-genes-regressed data with UMAP.

We quantified the preference for a specific cluster across all barcode clones after cell cycle
regression (clone size>4). Specifically, we calculated the fraction of dominant clusters for each
clone and found it to be significantly higher (Wilcoxon, unpaired, two-sided) than that for
randomly selected cells. The analysis plotted here is for a cluster resolution of 0.5.

UMAPSs of representative twin clones across the two splits A and B. The twins largely end up
with the same transcriptional fate type, invariant of the clone size. This observation suggests
that cells are predestined for distinct resistant fate types upon exposure to chemotherapy drug
paclitaxel.

Extended Data Figure 8: FateMap reveals differences in clonal fate type outcomes between
continuous and discontinuous therapy.

a.

Schematic of the experimental design where we exposed single-cell-derived WM989 A6-G3
melanoma cells to continuous and discontinuous doses of targeted therapy drug vemurafenib.
UMAP of all barcoded cells. 17,634 cells are colored by clusters determined using Seurat’s
FindClusters command (“Seurat clusters, resolution = 0.6”).

Pellet morphology for continuous (7,238 cells) and discontinuous (10,396 cells) treatment cells.
Cells derived from discontinuous dosage have a larger and darker (more pigmented) pellet.
This suggests that during discontinuous dosage, melanocytic cells (which are pigmented in
nature) proliferate.

On the UMAP, we recolored each cell by its expression for a select subset of genes that were
identified as differentially expressed in drug resistant cells via the Seurat pipeline.

UMAP of all barcoded cells. Cells are colored by type of dosage.

UMAPs of representative twin clones (sharing the same barcode) that arise during
discontinuous drug treatment. The twins largely end up with the same transcriptional fate type
and have varying proliferative capacities.

In discontinuous dosage, 68% of clones having high MLANA expression (log2 Expression > 2,
in at least 50% of cells in a given clone) are proliferative (i.e. have clone size > 1). In
continuous dosage, only 20% of clones having high MLANA expression are proliferative.

(left) Total number of cells analyzed consisted of 60.5% discontinuous dosage samples and
39.5% continuous dosage samples. (right) The number of unique barcodes (i.e. resistant



clones) displays a 3.6 fold increase in discontinuous dosage sample as compared to the
continuous dosage sample.

i. UMAPs of representative twin clones across the two splits of continuous and discontinuous
dosing. Some twins end up in the similar transcriptional fate type while others tend to switch
fate type.

Extended Data Figure 9: Changing the therapy type to trametinib eliminates an additional
resistant fate type present in the vemurafenib treatment.

a. UMAP where the resistant cells are colored by the associated therapy drug type, with dark blue
representing vemurafenib (9,457 cells) and light blue representing trametinib (8,569 cells).
Arrows represent UMAP regions that are present only in vemurafenib or trametinib.

b. UMAP is split by each drug type, with colors representing clusters determined using Seurat’s
FindClusters command(“Seurat clusters, resolution = 0.5”). Arrows represent UMAP regions
that are present only in vemurafenib or trametinib.

c. Painting of singletons and colonies onto the UMAP, colored by the condition, demonstrated
that singletons largely belong to vemurafenib and are present predominantly in the MLANA-
high cluster. Colonies are dispersed more across the UMAP with no particular region enriched
for either condition except for the NGFR-high cluster.

d. Imaging of nuclei (DAPI-stained) of resistant colonies emerging from treatment of WM989 A6-
G3 cells to either vemurafenib or trametinib. The number of singletons in trametinib treated
cells appear to be much less than those treated with vemurafenib, consistent with the
sequencing data from FateMap.

e. Quantification of the total number of colonies and singletons from each drug type of imaging
data across biological replicates. This analysis demonstrated that while the total number of
colonies are similar across the two drug types, there is a relative increase (~2.45-fold; n =3
biological replicates) in the number of singletons in the case of vemurafenib.

f. UMAPSs are recolored for each cell by its expression for gene MLANA, which is a marker for
cluster 3 relatively enriched in vemurafenib (as shown with arrows in A and B).

g. A pie chart to demonstrate that of all the clones (barcodes) present in vemurafenib-treated split
in cluster 3, only 4.8% were also present in the trametinib-treated spilit.

h. A cumulative density contour plot capturing the types of fate switches that the MLANA-high
cluster 3 clones from the vemurafenib-treated split adopt in the trametinib-treated split.

i. Three representative examples of UMAP regions where twins from the MLANA-high cluster 3
in the vemurafenib-treated split adopt in the trametinib-treated split.

j-  UMAPs are recolored for each cell by its expression for gene NGFR, which is a marker for
cluster 4 relatively enriched in trametinib (as shown with arrows in A and B).

k. Composition of clones of different sizes within NGFR-high cluster 4 for both trametinib- and
vemurafenib-treated splits.

I. A pie chart to demonstrate that of all the clones (barcodes) present in the trametinib-treated
split in cluster 4, 20.7% were also present in the vemurafenib-treated split.

m. A cumulative density contour plot capturing the types of fate switches that the NGFR-high
cluster 4 clones from the vemurafenib-treated split adopt in the trametinib-treated split.

n. Two representative examples of UMAP regions where twins from the NGFR-high cluster 4 in
trametinib-treated split adopt in the vemurafenib-treated split.

0. UMAP for combined vemurafenib and trametinib treatment conditions recolored for each cell
by its expression of the gene VCAM1, which is enriched in cluster 6.



Painting of singletons and colonies onto the UMAP for the NGFR-high cluster 4, colored by the
condition, showing a relative enrichment of cells from trametinib as compared to vemurafenib.
This panel also demonstrates that both singletons and colonies occupy cluster 4 from each of
the two conditions.

We performed antibody stainings for NGFR on colonies emerging from treatment of the same
number of starting melanoma cells with either vemurafenib or trametinib. Consistent with
FateMap, we found an increased number of NGFR-positive resistant cells in trametinib treated
cells as compared to the vemurafenib treatment.

UMAP split by each drug condition (trametinib (8,569 cells) or vemurafenib and trametinib
(7,023 cells)), with colors representing clusters determined using Seurat’s FindClusters
command at a resolution of 0.5 (i.e. “Seurat clusters, resolution = 0.5”).

UMAP recolored for combined resistant cells from trametinib (light blue) and vemurafenib and
trametinib (dark blue). The cells from two conditions are interspersed into each other on the
UMAP.

Extended Data Figure 10: Inhibition of histone methyltransferase DOT1L results in the
emergence of additional resistant proliferative clones and a reduction in singletons.

a.

For each barcode identified by sequencing, we plotted its abundance in corresponding splits A
(DMSO control) and B (DOT1L inhibition). Those present in both control and DOT1L splits are
colored in dark blue, and those present only in either A (control) and B (DOT1L) are colored in
cyan. Those present in both (dark blue; 171) exhibited a strong correlation, suggesting that
their ability to survive and become resistant is invariant of drug dose. For those present only in
either (cyan), we found them to be much more abundant in DOT1L (B, 43 barcodes) than
DMSO control (A, 7 barcodes), suggesting that new barcodes, otherwise unable to survive in
the control condition, become drug-resistant in the DOT1L inhibited condition. A total of one
biological replicate.

(left) Combined resistant cells in the control (9,343 cells) and DOT1L (7,044 cells) conditions
obtained from UMAP applied to the first 50 principal components. Cells are colored by clusters
determined using Seurat’s FindClusters command(“Seurat clusters, resolution = 0.8"). (right)
UMAP is split by each condition.

UMAP where the resistant cells are colored by the associated condition (control vs DOT1L).
The arrow represents the UMAP region present predominantly in the control region and
missing from the DOT1L-associated UMAP region.

Quantification of singletons and colonies showed that while the number of resistant colonies is
higher in DOT1L, it is accompanied by a reduced number of singletons cells compared to
control.

Painting of singletons and colonies onto the UMAP, colored by the condition, demonstrated
that singletons largely belong to the control condition and are present predominantly in cluster
2 (MLANA-high). Colonies are dispersed more across the UMAP with no particular region
enriched for either condition.

Imaging of the nuclei (DAPI-stained) of resistant colonies emerging from vemurafenib
treatment of WM989 A6-G3 cells, either for control or cells lacking DOT1L.

Quantification of the total number of colonies and singletons from each fate type across n=3
biological replicates demonstrated a relative increase (3.65-fold; n=3 biological replicates) in
total colonies and reduction in total singletons in the DOT1L and control conditions,
respectively.



UMAP is recolored for each cell by its expression for the gene MLANA, a marker for cluster 2,
which is relatively enriched in control (as shown with an arrow).

A pie chart to demonstrate that of all the clones (barcodes) present in the control condition
split, only 3.1% were also present in the DOT1L inhibitor pretreatment spilit.

Two representative examples of UMAP regions where twins from the MLANA-high cluster in
the control condition go in the DOT1L condition. A cumulative density contour plot capturing
the types of fate switches that MLANA-high cluster clones from control adopt in the DOT1L
inhibitor-pretreated condition.

A cumulative density contour plot capturing the types of fate switches that the MLANA-high
cluster 2 clones from the control condition split adopt in the DOT1L inhibitor pretreatment split.
Distribution of cells across clusters for control (top) and DOT1L inhibitor-pretreated (bottom)
conditions for clone size>2.
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