Catto et al. BMC Genomics (2023) 24:343 B MC G enomics
https://doi.org/10.1186/s12864-023-09375-5

: ®
Pest status, molecular evolution, ey

and epigenetic factors derived
from the genome assembly of Frankliniella fusca,
a thysanopteran phytovirus vector

Michael A. Catto', Paul E. Labadie?, Alana L. Jacobson®, George G. Kennedy?, Rajagopalbabu Srinivasan*” and
Brendan G. Hunt*'

Abstract

Background The tobacco thrips (Frankliniella fusca Hinds; family Thripidae; order Thysanoptera) is an important pest
that can transmit viruses such as the tomato spotted wilt orthotospovirus to numerous economically important
agricultural row crops and vegetables. The structural and functional genomics within the order Thysanoptera has only
begun to be explored. Within the > 7000 known thysanopteran species, the melon thrips (Thrips palmi Karny) and the
western flower thrips (Frankliniella occidentalis Pergrande) are the only two thysanopteran species with assembled
genomes.

Results A genome of . fusca was assembled by long-read sequencing of DNA from an inbred line. The final assem-
bly size was 370 Mb with a single copy ortholog completeness of ~99% with respect to Insecta. The annotated
genome of f. fusca was compared with the genome of its congener, F. occidentalis. Results revealed many instances of
lineage-specific differences in gene content. Analyses of sequence divergence between the two Frankliniella spe-
cies'genomes revealed substitution patterns consistent with positive selection in~ 5% of the protein-coding genes
with 1:1 orthologs. Further, gene content related to its pest status, such as xenobiotic detoxification and response

to an ambisense-tripartite RNA virus (orthotospovirus) infection was compared with F. occidentalis. Several F. fusca
genes related to virus infection possessed signatures of positive selection. Estimation of CpG depletion, a mutational
consequence of DNA methylation, revealed that F. fusca genes that were downregulated and alternatively spliced in
response to virus infection were preferentially targeted by DNA methylation. As in many other insects, DNA methyla-
tion was enriched in exons in Frankliniella, but gene copies with homology to DNA methyltransferase 3 were numer-
ous and fragmented. This phenomenon seems to be relatively unique to thrips among other insect groups.

Conclusions The £. fusca genome assembly provides an important resource for comparative genomic analyses
of thysanopterans. This genomic foundation allows for insights into molecular evolution, gene regulation, and loci
important to agricultural pest status.
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Background

The family Thripidae, which includes the genus Frank-
liniella, contains>7,000 thrips species [1]. However,
the tobacco thrips (Frankliniella fusca Hinds) (Fig. 1)
genome presented in this paper represents only the
third thysanopteran genome assembly published to
date, after the melon thrips (Thrips palmi Karny) [2]
and the western flower thrips (Frankliniella occidentalis
Pergrande) [3].

Ecologically, E fusca is native to North America and
is a major agricultural pest [4]. However, it can also be
found inhabiting three other continents [5-7], and its
dispersal tends to vary by season [8, 9]. E fusca is highly
polyphagous and has been, for example, observed to feed
on economically important plants in at least fifteen plant
families including Amaryllidaceae, Fabaceae, Malvaceae,
and Solanaceae [7]. The primary damage from the thrips
feeding is limited to the plant epidermal cells, caus-
ing dark brown spots on the leaves, and inhibiting plant
growth [5, 10]. E fusca management on various crops has
been a growing concern, as their populations have been
developing resistance to insecticides [11].

While feeding damage can itself be detrimental to
plants, the transmission of debilitating viruses to suscep-
tible crops is of much greater concern [12—14]. Thrips,
such as E fusca, can transmit viruses belonging to the
genus Orthotospovirus and family Tospoviridae. Approxi-
mately twenty species of orthotospoviruses are known
and are exclusively transmitted by about a dozen thrips
species in a persistent and propagative manner (the virus
persists for life after acquisition in thrips and replicates
within their tissues) [14]. Upon acquisition, the orthoto-
spovirus traverses the midgut membrane barrier via
receptor-mediated endocytosis and further translocates
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Fig. 1 Tobacco thrips (Frankliniella fusca Hinds). Photo credit: Jena
Johnson, Entomology Department, University of Georgia
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to other tissues including the salivary glands, where it
replicates [15]. From the salivary glands, the virus is typi-
cally inoculated to plant hosts in the saliva during feeding
[16-21]. The virus is also transmitted in a stage-depend-
ent manner: for adult thrips to inoculate the virus suc-
cessfully, they must acquire the virus as first or second
instar larvae [20, 22]. This phenomenon is attributed to
anatomical differences in tissue types between the stages
[23-25]. Interestingly, tomato spotted wilt orthotospovi-
rus (TSWYV) acquisition by E fusca has been shown to
exhibit context-specific effects on fitness [14, 26—28]. The
interactions between thrips and orthotospoviruses are
intricate and indicate co-evolution [19, 29].

E fusca along with E occidentalis are the two most
important orthotospovirus vector species in temper-
ate and sub-tropical regions worldwide, whereas T
palmi is generally regarded as a tropical pest [7, 30, 31].
E fusca and F occidentalis, despite their congeneric sta-
tus, exhibit ecological differences reflected by different
abundances among host plant taxa [12]. In this study,
the E fusca genome was assembled and compared with
the existing F occidentalis genome to gain insights into
the molecular evolution, expression [32], and epigenet-
ics of factors associated with thrips-plant-virus trophic
interactions.

Results

Genome assembly and annotations

The E fusca genome assembly contained 46 ungapped
scaffolds measuring~370 Mb (Table 1). The assembly
length and N50 of the long-read based E fusca genome
indicated a more complete (1.4x) assembly compared
with the earlier short-read based assembly of its conge-
ner E occidentalis [3, 33] (Table 1; Fig. 2). Benchmarking
Universal Single-Copy Orthologs (BUSCO) analysis was
conducted to assess assembly completeness relating to
inclusion of core Insecta genes [34]. The E fusca genome
assembly showed 99.0% completeness with 1,325 univer-
sal single copy and 29 duplicated orthologs. Universal
single copy orthologs are defined as those genes pre-
sent in over 90% of species within the class Insecta [34].
The E fusca assembly was annotated with gene models
using the MAKER pipeline (Additional file 1: Fig. S1 and
Table S1) [35]. E fusca gene annotations included 96.6%
of the complete BUSCO Insecta sequences (Additional
file 1: Fig. S2).

Phylogenetic context

Functional annotation of E fusca gene models based on
sequence homology was performed with the eggNOG
database, which is comprised of the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathways, Pfam
domains, and gene ontology (GO) [36—41]. A total of
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Table 1 Genome assembly statistics
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Frankliniella fusca Frankliniella

occidentalis

[3]
Sequencing technology PacBio+ Illumina lllumina
Genome coverage 113x 158.7x
Number of contigs 1,444 6,263
Total length of genome assembly (bp) 372,449,807 415,771,118
Total ungapped length of genome assembly (bp) 372,449,807 263,737,329
GC (%) 4951 50.87
Scaffold N50 (bp) 1,182,854 948,890

17,389 E fusca proteins were assigned functional infor-
mation (Additional file 2: Table S2). To infer E fusca spe-
cies relatedness, a consensus tree was generated from
twenty arthropod species with high-quality genome
assemblies including the congener E occidentalis, three
additional thysanopteran species (two based on de novo
transcriptome assemblies), six non-thysanopterans in
class Insecta, and two non-insect arthropods (Fig. 3A).
An ortholog comparison between the F fusca and F
occidentalis species assigned 87.3% of 26,761 E fusca
MAKER genes and 85% of 23,356 F occidentalis Ref-
Seq genes to 12,596 and 12,197 orthogroups respec-
tively (Additional file 1: Table S3). There were 7,912 (1:1)
orthologs identified between the two Frankliniella spe-
cies using Orthofinder (Additional file 3: Tables S4 & S5).

Gene family membership was assigned to a set of four
species (three thrips and the pea aphid) using OrthoV-
enn2 [60], which runs OrthoMCL [61]. A total of 6,255
gene families (orthologous clusters) were found to be
shared between E fusca, F occidentalis (3], T. palmi [2],
and the pea aphid (Acyrthosiphon pisum Harris) [42]
(Fig. 3B). Another 887 gene families were shared between
the two Frankliniella species, of which 1,297 gene fami-
lies were specific to E fusca (Fig. 3B).

Gene content relevant to pest status

The feeding behavior of thrips exposes them to a variety
of xenobiotics including plant defensive chemicals (sec-
ondary metabolites) and insecticides [62, 63]. Thrips have
developed mechanisms to efficiently metabolize xenobi-
otics [64]. Some of the relevant detoxification molecules
include: Acyl-CoA desaturases [65], ATP-binding cas-
sette (ABC) transporters [66], cathepsins [67], carboxy-
lesterases (CE) [68], cytochrome P450 monooxygenases
(CYP) [69], Dicer dimerization domains [70], glutathione
S-transferases (GST) [71], heat shock proteins 70 & 90
(Hsp70 & Hsp90) [72], the mitogen-activated protein
(MAP) kinases, and Jun N-terminal kinases (JNK) [73]
(Additional file 4: Tables S6 & S7).

CYPs, CEs, and GSTs are known to detoxify plant
xenobiotics such as phytochemicals and insecticides [69,
74, 75]. Forty-seven 1:1 orthologs of CYPs (IPR001128)
were found between F fusca and E occidentalis. Fewer
were detected among more distantly related species; 15,
15, and nine 1:1 orthologs of CYPs (IPR001128) were
found between E fusca and A. pisum, E. fusca and Z. ter-
mopsis, and E fusca and D. melanogaster, respectively.
CYPs can be taxonomically broken down into two classes
(B-class and E-class), with E-class being found primarily
within eukaryotes and itself subdivided into five groups
[76]. Cytochrome P450, E-class, group I (IPR002401), is
the largest of the five and contains CYPs specialized in
the metabolism of exogenous substrates and physiologi-
cally active compounds. There were seventy-eight and
ninety-one genes containing CYP E-class group I fami-
lies in E fusca and E occidentalis assemblies, respectively.
Out of the detoxification molecules, both thrips species
were found to contain two CE (IPR003140) containing
genes, which also were 1:1 orthologs. Additionally, eleven
GST (IPR004045) 1:1 orthologs were identified.

Previously reported genes involved with thrips-plant-
virus interactions include those involved with cell surface
reception, virus replication, and innate immunity. Such
genes include aminopeptidase N, endopeptidases, perox-
iredoxins, peptidoglycan recognition proteins (PGRPs),
lysozymes, trypsin, 40S ribosomal protein, and serine
proteases [21, 32]. Notably, PGRPs detect and fight infec-
tion and initiate a humoral response of the Toll or Imd
pathways [77]. Importin (IPR002652), a nuclear transport
complex, may be involved in the binding of the virus to
the cell membrane and control entry of the virus into
the vector’s salivary glands [78], whereas cathepsins and
peptidases may play a role in uptake of the virus into the
vector [67, 79]. Glucose metabolism associated genes
such as alpha glucosidase may inhibit binding and reduce
replication of the virus within the vector [80]. Addition-
ally, Hsp70 and Hsp90 were involved in inhibiting virus
infection in vectors [72]. Heparan sulfate (IPR037359)
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Fig. 2 Visual comparison of two Frankliniella genomes. The £. fusca genome assembly (numeric only accessions) in comparison with the £.
occidentalis genome assembly (NW accessions) [3]. Contigs of the F. fusca genome assembly > 2.5 Mb in length were selected for visualization. Gene

locations are shown below the respective assembly fragment. Regions that were > 1 kb in length and > 90 percent identity were linked

genes are known to facilitate binding of the virus to the  variation between species (Fig. 4). On an average, higher
copy number variation (CNV) of genes in relation to the

salivary cells in vectors [78].
The copy numbers of genes with evidence for molecu-  pest status were documented in E occidentalis (X =~ 40)
than in F. fusca (X =~ 28); however, the mean counts were

lar interaction between the two thrips vectors (F. fusca
and F. occidentalis) and the virus revealed widespread not statistically different (t-test, p =0.2452).
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f iniella fusca

Frankliniella tritici*
Frankliniella occidentalis
Thrips palmi

Thrips tabaci*

Blattella

Zootermopsis nevadensis
Gryllus bimaculatus
Laodelphax striatellus
Sogatella furcifera
Nilaparvata lugens
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Acyrthosiphon pisum
Bemisia tabaci
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Drosophila melanogaster
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Fig. 3 £ fusca phylogenetic relationships and orthology. A Species tree produced from ortholog comparisons across six insect orders and two
additional non-insect arthropod orders (orders denoted at right; *de novo transcriptome data used for F. tritici and T. tabaci; scale bar denotes amino
acid substitutions per site) [2, 3, 33, 42-59]. Clade bootstrap support values are labelled on the respective node. B Gene family orthologous clusters
shared between four insect species. Venn diagram constructed from F. fusca, F. occidentalis (3], T. palmi [2], and A. pisum [42]
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Fig. 4 Detoxification and virus interaction related gene counts. Unique genes and non-1:1 orthologs are combined from F. fusca and F. occidentalis
and compared with the 1:1 orthologs (F. fusca+ F. occidentalis). Gene counts refers to the number of genes which contain a given protein domain
identity. Genes may contain more than one of the given protein domains

Molecular evolution of pest status genes

The availability of genome assemblies from E occidenta-
lis and E fusca made it possible to assess rates of protein
evolution following their divergence from a common

ancestor and the ratio between the rate of non-synony-

mous to synonymous substitutions (dN/dS; Additional
file 3: Tables S4 & S5). Variation in dN/dS can reflect dif-
ferences in the strengths of positive selection or purifying
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selection. Genes with dN/dS>1 when averaged across
all codons were identified. A dN/dS>1 ratio is generally
considered a signal of positive selection operating on a
locus [81]. Of the 7,817 assessed ortholog pairs detected
from E occidentalis and E fusca, 388 (4.96%) exhib-
ited values of dN/dS greater than one (Additional file 5:
Tables S8-S11).

Assessment of molecular evolution in thrips further
helped to address whether the selective constraints expe-
rienced by genes that respond to virus infection and
detoxification differ from those that do not. Of the 223
genes with 1:1 orthologs belonging to fifteen InterProS-
can categories relating to pest status, five were found to
have a dN/dS>1: atrial natriuretic peptide-converting
enzyme isoform X1 (FUS_00002678-RA), hypothetical
predicted protein (FUS_00019172-RA), trypsin 3A1-like
isoform X2 (FUS_00004482-RA), cytochrome P450
4d2-like (FUS_00010490-RA), and probable cytochrome
P450 12a5, mitochondrial (FUS_00026641-RA).

Previously generated RNA-seq gene expression data
from three life stages of E fusca, with and without
orthospovirus-infection [32], were mapped to the E
fusca reference assembly. As previously reported [32],
most of the differential gene expression between orthoto-
spovirus-viruliferous and non-viruliferous individuals
occurred in larval and adult stages, with fewer differen-
tially expressed genes (DEGs) detected at the pupal stage
(Additional file 6: Tables S12-S14). Upon assessing the
distributions of dN/dS values for DEGs and non-DEGs
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across the three developmental stages, it was found that
there were significant differences in dN/dS for DEGs
and non-DEGs as classified from the larval and adult
stages, but there was not a consistent directional signal
of elevated or reduced rates of protein evolution for those
DEGs (Additional file 1: Fig. S4A & S4B). The proportion
of genes with dN/dS>1 among DEGs (based on differ-
ential expression in any stage) was 4.6% and among non-
DEGs was 5.3%, which did not represent a significant
difference (Fisher’s Exact Test, p=0.1882).

The presence of the E fusca reference genome facili-
tated the analysis of alternative splicing of transcripts for
the first time between orthotospovirus-viruliferous and
non-viruliferous individuals from the previously gen-
erated RNA-seq data [32] using a metric of differential
exon usage normalized by sequencing depth (Additional
file 7: Tables S15-S17). Significant alternative splicing in
response to orthotospovirus-infection, plant feeding,
and detoxification was most prevalent in adults, and, as
in the case of differential expression, alternative splicing
was sparse in the pupal stage (Fig. 5). Upon assessing the
distribution of dN/dS values for alternatively spliced (AS)
and non-AS genes across the three developmental stages,
it was found that there were significant differences in dN/
dS for AS and non-AS genes as classified from the pupal
and adult stages, but there was not a consistent direc-
tional signal of elevated or reduced rates of protein evolu-
tion for these comparisons (Additional file 1: Fig. S5A &
S5B). The proportion of genes with dN/dS>1 among AS

Alternatively spliced (AS)
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AR TR

2000 4000 6000
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Fig.5 Overlap across F. fusca developmental stages for virus-responsive genes. Venn diagrams indicate overlap between developmental stages of
differentially expressed (DE) genes (n=6,928) and alternatively spliced (AS) genes (n=6,554). Upset plot (below) indicating overlap of DE and AS

genes
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genes (based on alternative splicing events in any stage)
was 3.2% and among non-AS genes was 6.9%, indicating
a significant depletion of genes with dN/dS>1 among AS
genes (Fisher’s Exact Test, p <0.00001).

Within the virus responsive genes, 170 DEGs and 134
AS genes within at least one developmental stage had
dN/dS>1, consistent with positive selection operat-
ing on these loci in the Frankliniella genus (Additional
file 1: Fig. S3, Additional file 5: Tables S8 & S9). One
of these genes was differentially expressed in all three
developmental stages —putative metal responsive tran-
script (FUS_00001516-RA) and one was alternatively
spliced in all three stages —cytochrome c oxidase subu-
nit III (FUS_00005990-RA). The intersection between
DEGs and AS genes revealed that 2,233 genes exhib-
ited changes to both their expression levels and splicing
patterns in response to orthotospovirus-infection in E
fusca when considering significant differences in any of
the three developmental stages. Eighty-two genes with
a dN/dS>1 were both differentially expressed and alter-
natively spliced in response to orthotospovirus-infection
(Additional file 5: Table S10). DEGs (Fig. 6A, Additional
File 1: Fig. S6A), AS genes (Fig. 6B, Additional File 1: Fig.
S6B), and the intersection between DEGs and AS genes
(Additional File 1: Fig. S7 & Fig. S8) with dN/dS>1 were
checked for GO term enrichment within the biological
process (BP) category of GO terms. This revealed enrich-
ment of various metabolism related GO terms (Fig. 6).

Genome wide DNA methylation

Gene regulatory responses to orthotospovirus-infection
may be influenced by epigenetic modifications lead-
ing to changes in accessibility for transcription factors.
In insects, the levels of DNA methylation are generally
low and concentrated within gene bodies [82, 83], where
intragenic DNA methylation is hypothesized to influence
alternative splicing and perhaps gene expression levels
[84]. The mutational signatures of DNA methylation pro-
files from E fusca and F. occidentalis were assessed by cal-
culating normalized CpG content (CpGo/e), which can
serve as a proxy measure for DNA methylation because
CpG dinucleotides are the primary targets of DNA meth-
ylation in animals and methylated cytosines undergo
deamination to thymine with high frequency [85-87].
The CpGo/e of the 26,416 and 23,148 coding sequences
(CDS) in E fusca and E occidentalis, respectively,
were found to have bimodal distributions with a mean
CpGo/e of 0.68 for both (Additional file 1: Fig. S9A &
S9B; Additional file 8: Table S18). The presence of many
CpG-depleted coding sequences suggested that DNA
methylation is targeted to those regions. Further investi-
gation into the DNA methylation patterns of the genome
was performed by examining CpGo/e distributions for
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various genomic features including exons, introns, pro-
moter regions 1.5 kb upstream of the transcription start
site (TSS), and transposable elements (TEs; Fig. 7A,
Additional file 1: Fig. S10).

DNA methylation is controlled by the addition of a
methyl group to cytosine by the maintenance DNA meth-
yltransferase 1 (DNMT1) and the de novo DNA methyl-
transferase 3 (DNMT3) in insects and other eukaryotes
[88]. The DNMT3s found in the E fusca assembly were
numerous but incomplete. The E fusca DNMT3-like
sequences collectively contained the expected domains,
such as C5 methyltransferase (IPR001525) [89]. However,
among the 50 DNMT3-like sequences identified, no single
sequence contained all expected DNMT3 domains. The
incomplete DNMT3s were mostly scattered across the
genome assembly, with 27 having been found on separate
contigs. Additionally, ten contigs were found to contain
two DNMT3s and one contig contained three DNMT3s,
which may represent tandem duplication. The expres-
sion levels of the F fusca DNMT1 and DNMT3-like genes
were compared against global gene expression levels for
each E fusca developmental stage (Fig. 7B) [90]. There was
notable transcriptional activity of DNMT1 and many of
the DNMT?3-like sequences within E fusca (Fig. 7B).

A phylogenetic tree of Blast-derived DNMTs was
generated to investigate the relationship of a few confi-
dently annotated E fusca DNMT1 and DNMT3s to those
from other insects and a vertebrate outgroup (Fig. 7C).
DNMT1 hits were present in E fusca, T. palmi, pea aphid
(Acyrthosiphon pisum Harris), western honeybee (Apis
mellifera Linnaeus), parasitoid wasp (Nasonia vitripennis
Walker), and human (Homo sapiens Linnaeus), forming
a clade in the phylogenetic tree consistent with expecta-
tions. However, the DNMT3 sequences did not resolve
into a monophyletic group and were instead paraphyletic
with respect to DNMTT1 (Fig. 7C).

Investigating the CpGo/e patterns for DEGs and AS
genes in response to orthotospovirus-infection revealed
that some classes of genes, as grouped according to their
transcriptional attributes, were more likely to be targeted
by DNA methylation than others (Fig. 8). Genes downreg-
ulated in response to orthotospovirus-infection exhibited
significantly lower CpGo/e values than non-DEGs, sug-
gesting these downregulated genes are preferentially tar-
gets of DNA methylation (Fig. 8A). In contrast, genes that
were upregulated in response to orthotospovirus-infec-
tion exhibited significantly higher CpGo/e values than
non-DEGs, suggesting these upregulated genes are less
likely to be targets of DNA methylation than non-DEGs
(Fig. 8A). Genes that were alternatively spliced in orthoto-
spovirus-viruliferous versus non-viruliferous adults also
were more likely to be targets of DNA methylation than
genes that were not alternatively spliced (Fig. 8B).
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Discussion

This high-quality genome for the tobacco thrips is the
third genome assembled in the order Thysanoptera after
E occidentalis [3] and T. palmi [2]. The quality of this

genome can be attributed to PacBio sequencing, which
reduced the total number of gaps relative to an assem-
bly based on short-read sequences [3, 91, 92]. Despite
the taxonomic closeness between the two Frankliniella
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species, their ecological interactions between hosts and Determination of dN/dS [93] was conducted for
viruses vary [12]. This study aimed at understanding orthologous gene pairs between E fusca and E occiden-
those variations from physiological, evolutionary, and talis to assess variation in selective pressures among
epigenetic perspectives. genes. Genes with dN/dS>1, consistent with positive
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selection, were identified among differentially regu-
lated and alternative spliced genes following virus
infection. ~97% of these genes were differentially regu-
lated in FE fusca larvae and adults, but not in the least
metabolically active pupal stage. Of the forty-seven 1:1
orthologous xenobiotic-metabolizing CYP enzymes
[69, 94] identified, two exhibited dN/dS values consist-
ent with positive selection. Acyl-CoA, which is also
involved detoxification of xenobiotics in insects [65, 95,
96], also exhibited a signature of positive selection and
was differentially expressed in larvae. Additional genes
putatively subject to positive selection that were differ-
entially regulated and/or alternatively spliced included
heat shock proteins, which are known to inhibit virus
infection in insects [72, 97]. Similarly, nicotinamide
adenine dinucleotide (NADH) dehydrogenase exhibited
a signature of positive selection and was differentially
expressed in larvae and adults [98, 99]. The expression
of these immunity-related genes may be influenced by
epigenetic mechanisms that alter transcriptional activ-
ity in response to infection [100].

The CpGo/e of the E fusca genome serves as a proxy to
determine where DNA methylation has been present in
the genome during recent evolutionary history [86, 101].
E fusca exhibited a bimodal distribution of CpGo/e for
exons, whereas other genomic features such as promoters
and introns were found to have skewed/higher CpGo/e
values, indicating less DNA methylation than exons, as

is typical in insects [102]. A bimodal distribution show-
ing high and low CpGo/e has been documented in the
coding sequences of many insect species [88], including
E occidentalis [88], A. mellifera [86], two cricket species
[59, 103], A. pisum [104], and two termite species [105].

When we assessed the signature of DNA methylation
patterns for differentially expressed and alternatively
spliced genes following virus infection, methylation was
revealed to be preferentially targeted to genes alterna-
tively spliced in adults and downregulated in adults and
larvae following virus infection. Virus infection-induced
changes in DNA methylation have been observed to
occur among insects in the silkworm (Bombyx mori Lin-
naeus) following infection by B. mori cytoplasmic poly-
hedrosis virus (BmCPV) [106]. Methylation patterns
in eukaryotes are established and maintained by DNA
methyltransferases DNMT3 and DNMT1 respectively
[107, 108]. While the function of the multiple DNMT3s
we observed in E fusca has yet to be resolved, one pos-
sible explanation for the high copy number is that some
of these DNMT3s have undergone subfunctionalization,
in which two or more copies of a duplicated genes divide
the function of the ancestral gene [109, 110]. Another
possibility is neofunctionalization of DNMT3 alleles
[111]. It has been suggested that some DNMTs in other
arthropod species may have varying biological processes
[108, 112, 113]. Further exploration into the DNMTs in F
fusca may resolve functionality of these genes.
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Conclusions

This study generated a genomic resource for E fusca
using long-read sequence data. The genome assembly
allowed for investigation into the evolutionary history
of E fusca in more depth than was possible with a tran-
scriptome. The assembly allowed for the reanalyzing of
previously published RNA-seq data [32] for differen-
tial expression and novel analysis of alternative splicing
events following orthotospovirus-infection. By compar-
ing the sequence divergence of protein-coding genes in
E fusca with orthologs in E occidentalis, we revealed
many genes that may be evolving under positive selec-
tive pressure relating to orthotospovirus-infection.
Within the genus Orthotospovirus, TSWYV is one of the
most studied thrips-transmitted viruses, which has con-
tributed broadly to our understanding of virus-insect
interactions [114].

The CpGo/e patterns of differentially expressed and
alternatively spliced genes indicated different patterns
of potential methylation events in relation to orthoto-
spovirus-infection. Additionally, high counts of incom-
plete DNA methyltransferases were found within the
genome, consistent with sub- or neo-functionalization.
This genomic resource should facilitate further investiga-
tion into the potential roles of DNA methylation in thrips
gene regulation and virus transmission. The addition of
more high-quality thrips genomes will broaden these
inferences.

Materials and methods

Sampling, extraction, and sequencing

One thousand male F fusca heads from an 11** genera-
tion inbred line were used for DNA extraction. Samples
were pooled to obtain enough material for high qual-
ity library construction. Heads were chosen to reduce
potential sources of contamination. The Qiagen DNeasy
Blood & Tissue kit was used for extraction with half the
recommended volumes for each reagent and 50 pL elu-
tion. An Illumina sequencing library was constructed,
and samples were sequenced on a HiSeq 2000 used with
150PE reads at the University of Maryland Genomic
Facility. PacBio library preparation was performed with
the Sequel-2 chemistry kit and sequenced on two single-
molecule real-time (SMRT) cells, also at the University
of Maryland Genomic Facility. Voucher specimens were
retained and stored in 95% alcohol at -20C at North Car-
olina State University.

lth

Genome assembly and quality control

The assembly was performed with the use of the program
Flye v2.6 [115, 116], which ran for two iterations with the
expected haploid genome size being 400 Mb [117]. This
unphased assembly had Illumina sequence data mapped
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to it using Minimap2 v2.17 [118] and Samtools v1.10
[119, 120]. Error correction was performed with Pilon
v1.10 [121] using the mapped Illumina reads. Assembly
quality was checked with Quality Assessment Tool for
Genome Assemblies (QUAST) v5.0.2 [122] and BUSCO
v4.0.5 [34]. Assembly fragments larger than 2.5 Mb were
extracted with Seqtk (https://github.com/lh3/seqtk). The
genome assembly was visualized using Bandage v0.8.1
[123] and Circos v0.69 [124]. The BUSCO scores were
searched against the Insecta odb10 with the species set
to the default of “Fly”. The BUSCO scores were checked
against the 1,367 core genes that exist in the Insecta
0db10. The BUSCO Insecta odb10 is comprised of core
genes from 75 insect species across 14 orders, which
includes Thysanoptera as represented by E occidentalis.
Screening was performed with recommended VecScreen
[125] parameters being “-task blastn -reward 1 -penalty
-5 -gapopen 3 -gapextend 3 -dust yes -soft_masking true
-evalue 700 -searchsp 1,750,000,000,000” to remove any
potential contamination. The quality of the gene models
were assessed using BUSCO v4 and the lineage Insecta
0db10 ortholog set with 1,367 core genes [34]. Counting
of k-mers was conducted using the tool JELLYFISH for
k-mers of length 19, 21, 23, 25, 27, 31, and 100 (Addi-
tional file 1: Fig. S11A) [126].

Genome annotation

To run the annotation steps efficiently, the main assem-
bly file was split up into smaller subfiles using BBMap
v38.73 parition.sh [127]. Each subfile contained about
5% (or 72) of the contigs from the main file. The tool
MAKER v3.01.02-beta [35] was used and run through
four rounds to refine the annotation quality. The first
round of MAKER included external evidence from a F
fusca and E tritici transcriptome, E occidentalis tran-
scriptome and proteome, and additional proteomes from
UniProt: fruit fly (Drosophila melanogaster Meigen)
(UP000000803), A. pisum (UP000007819), red flour bee-
tle (Tribolium castaneum Herbst) (UP000007266), body
louse (Pediculus humanus subsp. Corporis Linneaus)
(UP000009046), and the Nevada termite (Zootermopsis
nevadensis Hagen) (UP000027135). Subsequent rounds
of MAKER required training with SNAP-Zoe v2006-
07-28 (http://www.hiv.lanl.gov) [128] and AUGUSTUS
v3.2.3 [129] with the output from the previous MAKER
run (AUGUSTUS also requires BEDTools v2.29.2 for
proper formatting). The total quality of each round of
MAKER was assessed using annotation edit distance
(AED) scores, which is a metric describing how well
genome annotations are supported by evidence such as
the sequence homology and expressed sequence tags
(ESTs) [130]. Repeat masking was handled internally
within MAKER using RepeatMasker v4.0.7 (A.F.A. Smit,
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R. Hubley & P. Green RepeatMasker at http://repeatmask
er.org). All rounds of MAKER were set to generate a sin-
gle annotation for each gene using the default param-
eter (alt_splice=0). The functional annotations were
performed using the OmicsBox v1.4.11 toolkit [131].
Web Gene Ontology Annotation Plot (WEGO) v2 was
used to visualize and determine significant enrichment of
GO terms [132, 133].

Orthologous gene detection

OrthoFinder v2.3.7 [134, 135] was used to construct a
species tree based on several insect proteomes, using the
following parameters: gene tree inference (-M) msa, mul-
tiple sequence alignment (-A) mafft [136], and tree infer-
ence program (-T) raxml [137]. This tree was generated
from OrthoFinder2, which internally uses the programs
STRIDE and STAG for comparing proteins and gener-
ating orthogroups [138]. The tree was viewed using the
tool FigTree v1.4.4 (https://github.com/rambaut/figtree/)
from the output from IQ-TREE v1.6.12 after 1000 itera-
tions to calculate bootstrap values [139-141]. Additional
gene family comparisons were made with OrthoVenn2
using a cutoff of e [60]. Eggnog-mapper v1.0.3 was
used to assign GO terms using the eggNOG database [36,
142]. This was accomplished using default parameters
and checking across all available species and genes in the
database.

Gene counts for detoxification and virus responsive genes
were determined by searching the InterPro database [143].
Genes containing the following domains were considered:
heat shock protein 70 family (IPR013126), heat shock pro-
tein Hsp90, N-terminal (IPR020575), acyl-CoA desaturase
(IPR0O15876), mitogen-activated protein (MAP) kinase,
JNK (IPR008351), dicer dimerisation domain (IPR005034),
chytochrome P450 (IPR001128), ABC transporter-like,
ATP-binding domain (IPR003439), glutathione S-trans-
ferase, N-terminal (IPR004045), phospholipase/ carboxy-
lesterase/ thioesterase (IPR003140), aminopeptidase N-like
(IPR033581), peroxiredoxin, C-terminal (IPR019479), pep-
tidoglycan recognition protein (IPR015510), amino acid
transporter, transmembrane domain (IPR013057), serine
proteases, trypsin domain (IPR001254), and 40S ribosomal
protein (IPR032277).

Differentially expressed and alternatively spliced genes

The RNA-Seq data comes from the NCBI sequence read
archives (SRA): SRX2788009, SRX2788011, SRX2788013,
SRX2788010, SRX2788012, and SRX2788014 [57]. RNA-
Seq by Expectation—Maximization (RSEM) v1.3.3 and
Bowtie2 v2.4.1 were used for mapping to the reference
gene models and determination of gene counts with
default parameters (~42-65% alignment; Additional
file 1: Table S19) [144, 145]. DESeq2 v3.13 was used
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for differential expression analysis [146]. STAR aligner
v2.7.9 was used with default parameters to map reads
to the genome (~87-94% alignment; Additional file 1:
Table S20) [147]. SAMtools v1.10 was used to sort the
alignments [119]. DEXSeq was used with default param-
eters to calculate the amount of alternative splicing of
exons [148].

Protein evolution rate

The 1:1 orthologs detected from Orthofinder2 were used
for dN/dS calculations. Pal2Nal v14 [149] and PAML v4.9
[150] were used to calculate the respective dN/dS values.
Using custom R script, genes were partitioned into sig-
nificantly and non-significantly expressed genes for each
stage.

GO term enrichment

The Bioconductor package topGO (https://bioconductor.
org/packages/release/bioc/html/topGO.html) was used
to determine the significantly enriched GO terms from
genes of interest under the DEG, AS genes, and the inter-
section between DEGs and AS genes. Revigo and rrvgo
(https://bioconductor.org/packages/release/bioc/html/
rrvgo.html), with respect to the D. melanogaster ortholog
database, were used downstream to visualize the GO
term enrichment [151].

DNA methylation targeting of genomic elements
Determination of the observed to expected CpG content
in the coding regions of the genome was performed using
CpG.pl (https://github.com/swebbl/cpg_tools) using the
default parameters. GffRead v0.9.12 was used to extract
the CDS [152]. BEDTools v2.26.0 was used to extract the
exons, introns, and promoter regions [153]. EDTA v1.9.9
was used to annotate the TEs using default parameters
(Additional file 1: Fig. S11B) [154—161]. Promoter regions
were parsed out using (https://github.com/milesroberts-
123/extract-promoter-sequences), with the parameters
upstream (-u) 1500 and downstream (-d) 0 from the tran-
scription start site. Characterization of the DNMTs in E
fusca was performed using the OmicsBox v1.4.11 toolkit
[131], which includes Blast2GO [162] and Pfam database
search [41]. The resulting OmicsBox annotations were
compared with MAKER v3.01.02-beta [35] annotations,
which were assigned by InterProScan [163]. The DNMT
tree was built from an InterProScan of A. mellifera DNMT
domain BlastP [164] with default parameters against the
following species: E fusca, F. occidentalis, A. mellifera, N.
vitripennis, A. pisum, and H. sapiens. The tree was viewed
using the tool FigTree v1.4.4 (https://github.com/ramba
ut/figtree/) from the output from IQ-TREE v1.6.12 after
1000 iterations over the mafft multiple alignments [136]
to calculate bootstrap values [139-141].
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TSWV Tomato spotted wilt orthotospovirus

CNV Copy number variation

ABC ATP-binding cassette

CE Carboxylesterase

CYp Cytochrome P450 monooxygenase

HSP Heat shock protein

MAP Mitogen-activated protein

JNK Jun N-terminal kinase

PGRP Peptidoglycan recognition protein

dN/dS Non-synonymous substitutions and synonymous substitutions ratio
CpGo/e  CpG observed/expected

TE Transposable element

DNMT DNA methyltransferase

BUSCO Benchmarking Universal Single-Copy Orthologs
KEGG Kyoto Encyclopedia of Genes and Genomes
GO Gene ontology

DEG Differentially expressed genes

AS Alternatively spliced

CDS Coding sequence

UTR Untranslated region

TSS Transcription start site

NADH Nicotinamide adenine dinucleotide

SMRT Single-molecule real-time

QUAST Quality Assessment Tool for Genome Assemblies
WEGO Web Gene Ontology Annotation Plot

RBH Reciprocal best hits

NCBI National Center for Biotechnology Information
SRA Sequence read archives

RSEM RNA-Seq by Expectation—Maximization

TSA Transcriptome shotgun assembly
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