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ABSTRACT
Edge-assistedAR supports high-quality AR on resource-constrained
mobile devices by offloading high-rate camera-captured frames to
powerful GPU edge servers to perform heavy vision tasks. Since
the result of an offloaded frame may not come back in the same
frame interval, edge-assisted AR designs resort to local tracking on
the last server returned result to generate more accurate result for
the current frame. In such an offloading+local tracking paradigm,
reducing the staleness of the last server returned result is critical
to improving AR task accuracy.

In this paper, we present MPCP, an online offloading scheduling
framework that minimizes the staleness of server-returned result in
edge-assistedAR by optimally pipelining network transfer of frames
to the edge server and the Deep Neural Network inference on the
edge server. MPCP is based on model predictive control (MPC). Our
evaluation results show that MPCP reduces the depth estimation
error by up to 10.0% compared to several baseline schemes.
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1 INTRODUCTION
A complex Augmented Reality (AR) app often needs to perform a
number of challenging tasks, e.g., pose estimation, object detection,
and depth estimation, in order to understand and interact with the
physical environment to provide the user with truly immersive
experience. In recent years, Deep Neural Networks (DNN) models
have been developed for performing these tasks with high accu-
racy. However, such DNN models are typically too computation-
intensive to run on resource-constrained mobile devices in real
time. As a result, edge-assisted AR, which offloads DNN inference
to more powerful edge servers, has emerged as a popular approach
to supporting high-quality AR (e.g., [8, 14, 17, 19, 27, 31]).

Since the result of an offloaded frame may not come back in the
same frame interval, instead of simply reusing the last server re-
turned result (for an older frame), edge-assisted AR designs (e.g., [7,
8, 19]) typically resort to performing local tracking to generate more
accurate result for the current frame. Specifically, a local tracker
runs on the mobile device and adjusts the DNN inference results
for the last offloaded frame 𝑓𝑙 sent back by the server to generate
refined results for the current frame 𝑓𝑐 , by analyzing the changes
between the stale frame 𝑓𝑙 and the current frame 𝑓𝑐 .

A variety of local trackers have been developed for popular
computer vision tasks. For example, object detection local track-
ers makes of feature extraction & matching [4, 8], correlation fil-
ters [20, 26] and optical flow [7], depth estimation local trackers
are based on warping [21], and human pose estimation utilizes
motion vectors [12, 19, 30]. However, local trackers cannot fully
eliminate the impact of stale results, and their accuracy drops with
the distance between 𝑓𝑙 and 𝑓𝑐 . For example, while object detection
local trackers can follow existing objects in the frame, they typically
cannot detect new objects. Therefore, in such an offloading+local
tracking paradigm, reducing the staleness of the returned result
directly translates into improved accuracy.

In this paper, we study how to apply pipelining, to minimize the
staleness of the last server returned result used in local tracking
in edge-assisted AR. We make a key observation that the intuitive
solution of simply offloading the most recent frame just in time
to keep the GPU server busy, which results in offloading the most
frames, may not minimize the staleness of the last server returned
result, due to an intricate discretization effect, i.e., server DNN
inference time is often not an integer multiple of the frame interval
(e.g., 33.3ms under 30 FPS).
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Figure 1: The offloading + tracking paradigm.

We then present an online offloading scheduling algorithm called
MPC-based pipelining (MPCP) that employs model predictive con-
trol [6] to optimally pipeline network transfer of frames to the
edge server and DNN inference on the edge server to minimize the
staleness of server-returned result in edge-assisted AR.

We have implemented MPCP in an Android app and evaluated
it under Wi-Fi and emulated LTE and 5G networks based on recent
measurements for two representative AR tasks, object detection
and depth estimation, under a wide variety of videos generated
from a photo-realistic simulator commonly used for autonomous
driving, CARLA. Our evaluation results show that MPCP reduces
the depth estimation errors by up to 10.0% over several baseline
schemes, under different network conditions.

2 BACKGROUND
2.1 The Offloading + Tracking Paradigm
Due to the high accuracy of computational-heavy DNNs, offloading
(also known as edge-assisted solutions) has been increasingly used
to enable high-quality AR [8, 19, 31]. When offloading an AR task
to the server, the offloaded result usually cannot return in the same
frame interval (i.e. 33.3 ms for 30 FPS). The reason is two-fold. First,
even with fast server GPUs, the inference latency of a typical DNN
is tens of milliseconds. For example, the median inference latency
of the 64 models in Meta’s object detection model zoo [2] is 69.5ms
on the Nvidia V100 GPU, and only 3% of the models run within
33.3ms. Second, the network transfer time and RTT latency also
contribute to the total latency. The RTT can be a few milliseconds
under Wi-Fi, 14-20 milliseconds under 5G mmWave, and 35-55
milliseconds under LTE [13]. Consequently, running under today’s
GPUs and networks, an offloaded frame’s result typically returns
several frames later, and hence the result for a past frame, i.e., the
last server returned result, has to be used for the frames until the
next result is returned from the server.

To mitigate the staleness of the returned results, fast-tracking has
been commonly used by researchers [8, 19, 22] and practitioners
[3, 29]. It refers to a family of lightweight algorithms that run locally
on the device, take as input the result for the last offloaded frame
𝑓𝑙 , and generate the result for the current frame 𝑓𝑐 . A local tracker
usually finishes within a frame time, as shown in Figure 1. For
example, local trackers for object detection are usually based on
featurematching [4, 8], optical flow [7], or motion vectors [19]; local
trackers for depth estimation employ warping [21], a geometry-
based algorithm.

2.2 The Need for Pipelining
While local tracking mitigates the staleness of the server-returned
result for 𝑓𝑙 and improves the accuracy of the current frame 𝑓𝑐 , its
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accuracy is still inferior compared to the accuracy of running the
DNN directly on 𝑓𝑐 (denoted as offline accuracy, as it could not be
done online), and the gap widens with the tracking stride, measured
as the frame ID difference between 𝑓𝑙 and 𝑓𝑐 . We offline profiled the
local tracker accuracy for the depth estimation task, on a dataset
generated by the Carla simulator (see §4.1). The server runs a state-
of-the-art AdaBins [5] DNN model, and the phone runs warping
[21], a geometric-based algorithm, as the local tracker for depth
estimation. Figure 2 shows that the absolute relative error between
the tracked and ground truth depth map increases by 0.0133 per
tracking stride increment on average.

The offloaded frame 𝑓𝑙 will return after an end-to-end (E2E)
latency of 𝑇𝑒2𝑒 (e.g., 𝐿 frame intervals), and be used by the local
tracker to produce results starting from frame 𝑓𝑙 + 𝐿, to frame
𝑓𝑙 + 𝐿 + 𝑘 − 1, after which the results for the next offloaded frame
𝑓𝑙+𝑘 returns. In other words, the average tracking stride will be
(L+L+1+...+L+k-1) / k = L + (k-1)/2. This suggests that there are two
ways to reduce the average tracking stride. First, reducing the E2E
offloading latency 𝑇𝑒2𝑒 reduces 𝐿 and hence the average tracking
stride. Second, when not every frame can be offloaded (which is
usually the case since the DNN runtimes exceed one frame time),
reducing the interval between two consecutively offloaded frames
𝑘 also reduces the average tracking stride.

Related Works. Reducing the E2E offloading latency has been
extensively studied. Existing approaches include employing image
or video encoding on the offloaded frames [8, 19, 22], splitting
the DNN between the client and the server and offloading the
intermediate representations [11, 16, 17, 27], dividing a frame into
segments to pipeline the frame transmission with DNN inference
[19, 25], and identifying regions of interests (RoI) and encoding
them with a higher quality [10, 19, 31].

There has been little work on reducing the interval between
consecutively offloaded frames. Existing work determines when
to offload a new frame following one of the following policies. (1)
Offload a frame when detecting significant changes in the frame
content [8, 19], which conserves bandwidth usage but will result in
low accuracy due to higher tracking strides. (2) Offload a frame as
soon as the result of the previous offloaded frame has returned [19,
22], which prevents queue buildup in the network or at the server
GPU. However, since the offloading of the next frame happens after
receiving the result for the previous frame, the server GPU will be
idle between sending the result for the previous frame and waiting
to receive the next uploaded frame and hence under-utilized, as
shown in Figure 3.
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In this paper, we study how to apply a classic latency-hiding
technique, pipelining the network transfer and server computation,
in the offloading+tracking paradigm for AR, to improve the accuracy
of the offloaded tasks.

2.3 Challenges
Designing a framework that optimally pipelines network transfer
and GPU inference faces several unique challenges.

The pipelining scheduling needs to adapt to network dy-
namics online. Pipelining the network transfer and DNN inference
depends on the runtime of each. While the DNN inference latency
on the server is generally stable, the client’s network condition
could vary. Today’s highest-performance network, 5G mmWave,
exhibits fast-changing bandwidth due to usermovement [24], which
results in varying uplink and downlink transfer latencies. The user
also experiences vertical handoffs which contribute to varying net-
work latency [15]. Therefore, it is not feasible to decide on a static
pipelining schedule offline that would perform well online. Rather,
the schedule needs to be dynamically adapted online, according
to the network dynamics. This requires a pipelining scheduling
algorithm that can run in real-time.

Always eliminating GPU idle interval may not be benefi-
cial, since it may require sending stale frames. A strawman
design is to perform pipelining such that the server GPU is always
kept busy, by ensuring that there is always a frame uploaded upon
the completion of the previous DNN inference. The intuition is
that this design makes the GPU process more frames, and hence
reduces the average interval between two consecutively offloaded
frames. We refer to this design as Perfect Pipelining (PP). How-
ever, a detailed examination shows that in the unique context of
edge-assisted AR which has a constant frame arrival rate, PP does
not always result in the lowest tracking stride. This is because the
inference latency is usually not a multiple of frame interval (e.g.,
33.3 ms under 30 FPS). In such cases, PP often has to offload a frame
in the middle of a frame interval, so that this frame arrives at the
server right before the GPU inference of the previous offloaded
frame finishes. For example, when the inference latency is 1.2 frame
times in Figure 4, offloaded frame 𝑖+1 arrives at the server at 𝑡 = 1.2
(unit in frame times), frame 𝑖 +2 arrives at 𝑡 = 2.4, frame 𝑖 +3 arrives
at 𝑡 = 3.6, i.e., frame 𝑖 + 3 is already 0.6 unit stale when it arrives at
the server.

To address this stale-frame issue, an alternative design is to stall
the pipeline by skipping the current frame and waiting for and
sending the next frame. We refer to this design as Pipelining with
Stall (PS). As shown in Figure 4, frames in PS are always sent once
they become available; they are 0.3 units stale when arriving at the
server (assuming uploading takes 0.3 frame interval time.)

However, we observe whether PS or PP will result in a lower
average tracking stride is far from obvious; as the tracking stride
is affected by both the offloading frequency and staleness of of-
floaded frames in intricate ways, which in turn depend on the up-
load/download latency and the DNN inference latency, relative to
the frame interval time. We illustrate this using an example shown
in Figure 5. In Figure 5a we assume the uplink and the downlink
latencies (which include the RTT and transmission latency) are
both 0.3 frame times, and the DNN inference latency is 1.2 frame
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Figure 4: PP utilizes GPU in full butmay send a stale frame (in
themiddle of a frame interval). PS always sends a fresh frame
but utilizes less GPU and thus may offload fewer frames.

times. PS achieves a lower average stride of 2.50 by injecting stalls
in the pipeline, compared with 2.74 for PP. However, as shown in
Figure 5b, when the uplink and the downlink latencies increase
from 0.3 to 0.5 frame times, PS instead achieves a higher stride of
3.50 as compared to PP’s 3.26.

In essence, each of PP and PS excels in one metric but falls
short in the other. As shown in Figure 4, offloading in PP keeps
the server GPU busy and thus has the desirable effect of offloading
more frames, but has the undesirable effect of offloading a relatively
stale frame to the GPU server, while the opposite is true for PS.
Maximizing the benefits of pipelining the network transfer and
GPU inference requires carefully balancing these two conflicting
factors. This suggests that the optimal offloading schedule for a
given scenario is to combine PP and PS at the frame granularity.
Going back to our example in Figure 5, the optimal schedule (labeled
as Oracle) strategically adapts between sending an older frame to
keep the GPU busy and stalling the pipeline to send the next, more
recent frame.

No analytical or algorithmic solution. Due to the intricate
discretization effect discussed above, i.e., DNN inference latency
is not a multiple of a frame interval, it is difficult to develop a
closed-form formula that takes as input the DNN inference latency,
upload/download time, and frame interval time, and outputs an
optimal offloading schedule. Furthermore, the problem cannot be
efficiently solved with dynamic programming (DP) as it doesn’t
have the optimal substructure property1.

3 DESIGN
We design MPC-based pipelining (MPCP), a pipelining scheduling
framework for the offloading + tracking paradigm with the goal
of achieving the lowest average tracking stride. The framework
is adaptive to varying network conditions and extensible to DNN
models for different tasks.

3.1 Overview
Wedesign our new scheduler usingmodel predictive control (MPC) [6,
28], a control theory-based technique. Given the model for a system,
MPC produces steps of actions that optimize the system over a finite
time-horizon, but only executes the first one or few steps, and then
optimizes again. This allows it to optimize not only the current step
but also future steps. MPC does not have a learned component, and
thus is naturally extensible to varying DNN models and network
conditions online, to meet our extensibility goals.
1The optimal schedule up to frame 𝑖 , denoted as 𝑆 [𝑖 ], cannot be derived from 𝑆 [𝑖 −𝑘 ]
for some 𝑘 , because the choice of 𝑆 [𝑖 − 𝑘 ] affects the server GPU state up to a certain
number of frames after frame 𝑖 − 𝑘 and thus cannot be solved independently.
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Figure 5: The pipelining timeline and the average tracking stride (over 20 frames, but only first 10 frames shown). The x axis
shows the [Frame ID / tracking stride] pair for each frame, e.g., 3/2 in the PP figure on the left means frame 3 has a tracking
stride 2, because it performs tracking on the server returned result for frame 1.
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Figure 6: The MPCP offloading framework.

Figure 6 shows the workflow of MPCP. The Scheduler runs peri-
odically and produces an offloading schedule. Following this sched-
ule, the Offloader offloads the frames captured from the camera to
the server. The server-returned result is received by the Receiver,
which passes the results to the upper-layer application, and also
collects the runtimes of uplink/downlink transfer (which includes
RTT and transmission time), and DNN inference. These runtimes
are measured by synchronizing the clocks of the client and server
following a similar mechanism to NTP [23], and having the server
continuously report the needed timestamps back to the client. The
client maintains a moving average of runtimes to adapt to dynamic
variations. The measured runtimes are passed to the Scheduler,
which is described below.

3.2 The MPCP Scheduler
Schedule representation. We define a schedule for a horizon of 𝑛
frames as a boolean vector 𝑠 = {𝑏0, 𝑏1, ..., 𝑏𝑛−1}, where 𝑏𝑖 ∈ {0, 1}.
𝑏𝑖 = 1 means the i-th frame will be offloaded, and 𝑏𝑖 = 0 otherwise.
Since the server performs inference on one frame at a time, and
the subsequent frames will queue up if the server GPU is busy,
offloading a frame in the middle of a frame interval (e.g., frame 3 at
𝑡 = 3.5) and arriving at the server right before the previous inference
finishes is equivalent to offloading a frame as soon as it becomes
available (e.g., frame 3 at 𝑡 = 3.0) and arriving at the server before
the previous inference finishes. Therefore, for each frame that needs

to be offloaded, the Offloader offloads it as soon as it becomes
available. Hence, a binary vector is a complete representation of
the entire schedule space.

Search space pruning. Recall that MPC works by finding the
best schedule in a finite horizon. For a horizon of 𝑛 frames, a naive
enumeration of the possible schedules gives a search space of𝑂 (2𝑛),
which quickly becomes intractable once 𝑛 exceeds tens of frames.
When running an AR app at 30 FPS, a 1-second horizon translates
to 30 frames and a search space size of 230 = 1073741824. To tackle
this problem, we prune the search space as follows.

First, we apply a greedy heuristic to prune schedules that will
cause significant congestion or under-utilization of the GPU. With
DNN inference time of 𝑡𝑖𝑛𝑓 frame times, schedules that offload
two frames less than ⌊𝑡𝑖𝑛𝑓 ⌋ frames apart at any point, or more
than ⌈𝑡𝑖𝑛𝑓 ⌉frames apart at any point, are sub-optimal in terms of
tracking stride. This is because offloading two frames (𝑖, 𝑗) less than
⌊𝑡𝑖𝑛𝑓 ⌋ apart will cause frame 𝑗 to queue at least one frame time on
the GPU, so it is sub-optimal to offloading frames (𝑖, 𝑗 +1). Similarly,
offloading frames (𝑖, 𝑗) more than ⌈𝑡𝑖𝑛𝑓 ⌉ apart will cause an idle
period of more than one frame time on the GPU before inference
on 𝑗 begins, so it is sub-optimal to offloading frames (𝑖, 𝑗 − 1).
After removing these sub-optimal schedules, Table 1 shows the size
of the remaining search space for a 30-frame horizon is reduced
significantly. Note that the search space is the same as long as the
𝑡𝑖𝑛𝑓 falls under the same frame time bin.

While the above greedy heuristic significantly cuts the search
space, the search space is still large when the DNN inference time
is small. For example, when the inference time is between 1-2 frame
times, the search space is 1346269. This is because a faster DNN
enables more frames to be offloaded within a fixed horizon, thus
inflating the search space. By plotting the CDF of average tracking
strides for the schedules in the search space, shown in Figure 7, we
observe that the average stride distribution does not have a long tail
for small strides. In other words, there exist many schedules that
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Inference
duration

Search
space

0-1 1
1-2 1346269
2-3 3329
3-4 285
4-5 71

Table 1: The scheduler
search space size after
the greedy-based pruning
heuristic, for a horizon of
30 frames.
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Figure 7: CDF of aver-
age strides of the 1346269
schedules in the search
space, when the DNN in-
ference time is 1.5 frame
times.

give average tracking strides close to that of the optimal schedule.
Therefore, we cap the search space at 𝑁 by randomly sampling up
to 𝑁 candidates, with a high probability some of these candidates
will be close to optimal. In practice, we set 𝑁 = 2000 to achieve
real-time performance.

Selecting the best schedule. Given the uplink time, DNN in-
ference time, and downlink time, we calculate when each offloaded
frame will return and then obtain the tracking stride for the frames
in the horizon. We calculate the average tracking stride for each
candidate schedule and select the schedule with the lowest tracking
stride.

4 EVALUATION
4.1 Methodology
Implementation.We implemented the MPCP pipelining frame-
work in an Android app and the edge server in Python. The client
produces frames at 30 FPS, and performs H264 encoding on the
offloaded frames using the hardware encoder provided by Android
MediaCodec API [1]. The scheduler runs every 500 ms, optimiz-
ing for a horizon of 1 second. We used warping [21], a lightweight
geometry-based algorithm, as the local tracker for depth estimation.

We implemented the server in about 600 lines of Python code
with the PyTorch framework. We chose AdaBins [5] as the DNN
model for depth estimation. The server decodes incoming frames
with ffmpeg, and performs DNN inference on each frame sequen-
tially. The subsequent frames will be queued until the inference on
the current frame finishes. To efficiently transmit the depth maps
to the client, the server downsizes them from 832×256 to 416×128
and quantizes the depth map to uint16.

Evaluation setup.We run the client Android app on a Pixel 5
phone, which has a Qualcomm 765G SoC that is equipped with an
Octa-core Kryo 475 CPU and an Adreno 620 GPU. Our server is
equipped with an NVIDIA A40 GPU. We evaluate the framework
under 802.11ac, LTE, and 5G mmWave networks. For experiments
under 802.11ac, we connect the phone to an 802.11ac access point,
which has a wired connection to the server. For experiments under
LTE and 5GmmWave, we emulate the network latency and through-
put using the Linux tc tool, based on recent measurements [13] (35
ms RTT, 53 Mbps average throughput for LTE, 14 ms and 150 Mbps
average for 5G mmWave).

Datasets. We used CARLA [9], a photo-realistic simulator com-
monly used for autonomous driving, to generate synthetic datasets
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Figure 8: Results for offloading depth estimation.

with ground truth labels for evaluation. We generated 30 videos
each 40 seconds long where the camera is mounted at the top of a
vehicle, capturing frames at 30 FPS with the resolution of 832×256.
We re-trained the depth estimation model using 20 of the videos
and the rest are used for evaluation.

Metrics.We report the average tracking stride, i.e., the staleness
of the last server-returned results, as well as the resulting accuracies
of individual AR tasks using commonly used task-specific accuracy
metrics. For the depth estimation task, we calculate the absolute
relative error (AbsRel) between the estimated depth map and the
ground truth depth map. We also report the number of frames
offloaded which reveals the offloading behaviors of the schedulers
differ. We treat the first 5 seconds of each run as the ramp-up phase
and remove them when reporting the results.

4.2 Baselines
While there are many works on offloading to an edge server, they
are often evaluated on a per-frame basis on a non-AR setting [11, 17,
27, 31], or assume the GPU is not the bottleneck [10, 14, 16, 18], and
thus does not involve a scheduler. Among the works that require a
scheduler, some offload after significant changes are detected [8]
which will inevitably result in high tracking stride and low accuracy,
or offload the new frame if there is no outstanding request [19,
21, 22], which we include as one of our baselines. Additionally,
we include the two baselines described in §2.3. In summary, we
compare with the following baselines:

Back-to-back (BB).When a new frame arrives, it is offloaded if
there is no outstanding offloaded request. This was used in [19, 21,
22].

Perfect Pipelining (PP). This setup was described in §2.3,
which pipelines the frame offloading with the server GPU inference
such that the GPU is kept busy.

Pipelining with Stall (PS). This setup was described in §2.3;
when a new frame arrives, it is offloaded if that does not cause
queuing at the server.

4.3 Results
We evaluate the three baseline schedulers and the MPCP sched-
uler in offloading the depth estimation task under varying network
conditions including Wi-Fi, 5G mmWave, and LTE. The DNN in-
ference latency on the NVIDIA A40 GPU is 40.0 ms. The results
for the schedulers are shown in Figure 8. We make the following
observations:

Tracking stride and percent of frames offloaded. BB sched-
uler is vulnerable to sub-optimal network conditions. The BB sched-
uler achieves tracking stride of 2.53 under Wi-Fi which is close
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to the best scheduler. However, under 5G and LTE it becomes the
worst scheduler, achieving tracking strides of 3.99 and 4.03, respec-
tively. This is because BB does not pipeline network transfer and
DNN inference, and thus is more vulnerable to high network laten-
cies. This is also evident in BB offloading fewer frames (33%, or 1
every 3) than the other schedulers under 5G or LTE, because the
E2E offloading latency is between 2-3 frame times (2.26 and 2.96
respectively).

PP or PS scheduler performs well under selected network conditions.
PP achieves tracking strides of 2.53 and 3.52 under Wi-Fi and LTE
respectively which are similar to the best scheduler, but achieves a
tracking stride of 3.49 under 5G mmWave which is 0.25 higher than
the best scheduler. In contrast, PS performs similarly as the best
scheduler under 5G mmWave, achieving a tracking stride of 3.29,
but performs significantly worse under Wi-Fi and LTE, achieving
tracking strides of 3.04 and 3.97 respectively, which are 0.53 and 0.45
higher. This shows that whether PS or PP is better is not obvious
and depends on the network transfer time. In terms of the percent
of frames offloaded, PP always offloads about 87% of the frames
under all network conditions, because it follows a pipeline that
keeps the GPU busy, whereas PS offloads around 50% of the frames.

The MPCP scheduler achieves the lowest tracking stride in all net-
work conditions.MPCP achieves tracking strides of 2.51, 3.24, and
3.52, under Wi-Fi, LTE, and 5G mmWave respectively. Further-
more, MPCP offloads fewer frames than PP but more frames than
PS, showing that it is able to offload more frames when needed
to strike a balance between offloading more frames to keep the
GPU busy and stalling the pipeline to send the next frame to avoid
sending stale frames.

Application accuracy. Shorter tracking strides translate into
lower depth estimation errors. Across different network conditions,
MPCP reduces the absolute relative error (in absolute) by 0.02% −
1.10% compared to BB, 0.00% − 0.38% compared to PP, and 0.08%
− 0.87% compared to PS, which are considered significant in the
machine learning community [5]. In relative terms, these translate
to 0.3% − 10.0%, 0.0% − 3.4%, and 0.8% − 8.8% error reductions. Note
that the standard deviation of the accuracy is high due to the content
variation across videos. On the other hand, the tracking stride and
percent of frames offloaded show small standard deviations because
they are not affected by video content.

Scheduling overhead.WithDNNs of inference latency between
1 and 2 frame times (where the MPC search space is the largest, as
shown in Table 1), each run of the MPCP scheduler which happens
every 500 ms takes only 3-7 ms, which is well below one frame
time under 30 or 60 FPS.

5 CONCLUSION
With faster networks and larger DNNs, solutions for high-quality
AR are moving towards edge-assisted designs. We presented an
online offloading scheduling algorithm for edge-assisted AR that
minimizes the staleness of server-returned result which translates
into best accuracy of the offloaded AR task. Our scheduler exploits
model predictive control to optimally pipeline network transfer
of frames to the edge server and the DNN inference on the edge
server. Evaluation of our prototype implementation on Android
phones shows that MPCP reduces the errors of edge-assisted depth

estimation by up to 10.0% over several popular baseline schemes
under today’s mobile networks.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful comments.
This project is supported in part by Charter Communications and
by NSF grant 2112778-CNS.

REFERENCES
[1] 2022. Android MediaCodec. https://developer.android.com/reference/android/

media/MediaCodec.html.
[2] 2022. Detectron2. https://github.com/facebookresearch/detectron2/blob/main/

MODEL_ZOO.md.
[3] A. Ahmadyan et al. 2020. Real-Time 3D Object Detection on Mobile Devices with

MediaPipe. https://ai.googleblog.com/2020/03/real-time-3d-object-detection-
on-mobile.html

[4] K. Apicharttrisorn et al. 2019. Frugal following: Power thrifty object detection
and tracking for mobile augmented reality. In Proc. of ACM SenSys.

[5] S. Bhat et al. 2021. Adabins: Depth estimation using adaptive bins. In Proc. of
IEEE CVPR.

[6] E.F. Camacho and C.B. Alba. 2013. Model Predictive Control. Springer London.
https://books.google.com/books?id=tXZDAAAAQBAJ

[7] K. Chen et al. 2018. Marvel: Enabling mobile augmented reality with low energy
and low latency. In Proc. of ACM SenSys.

[8] T. Chen et al. 2015. Glimpse: Continuous, real-time object recognition on mobile
devices. In Proc. of ACM SenSys.

[9] A. Dosovitskiy et al. 2017. CARLA: An open urban driving simulator. In Proc. of
CoRL.

[10] K. Du et al. 2020. Server-driven video streaming for deep learning inference. In
Proc. of ACM SIGCOMM.

[11] A. Eshratifar et al. 2019. JointDNN: An efficient training and inference engine
for intelligent mobile cloud computing services. IEEE TMC 20, 2 (2019), 565–576.

[12] Chengsi Gao et al. 2021. An intelligent video processing architecture for edge-
cloud video streaming. In Proc. of ACM/IEEE DAC.

[13] M. Ghoshal et al. 2022. An in-depth study of uplink performance of 5G mmWave
networks. In Proc. of ACM SIGCOMM 5G-MeMU Workshop.

[14] S. Han et al. 2016. MCDNN: An approximation-based execution framework for
deep stream processing under resource constraints. In Proc. of ACM MobiSys.

[15] A. Hassan et al. 2022. Vivisecting mobility management in 5G cellular networks.
In Proc. of the ACM SIGCOMM.

[16] C. Hu et al. 2019. Dynamic adaptive DNN surgery for inference acceleration on
the edge. In Proc. of IEEE INFOCOM.

[17] Y. Kang et al. 2017. Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge. In Proc. of ACM ASPLOS.

[18] Y. Li et al. 2020. Reducto: On-camera filtering for resource-efficient real-time
video analytics. In Proc. of ACM SIGCOMM.

[19] L. Liu et al. 2019. Edge assisted real-time object detection for mobile augmented
reality. In Proc. of ACM MobiCom.

[20] Ruoyang Liu, Lu Zhang, Jingyu Wang, Huazhong Yang, and Yongpan Liu. 2021.
PETRI: Reducing Bandwidth Requirement in Smart Surveillance by Edge-Cloud
Collaborative Adaptive Frame Clustering and Pipelined Bidirectional Tracking.
In 2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE, 421–426.

[21] J. Meng et al. 2021. Do Larger (More Accurate) Deep Neural NetworkModels Help
in Edge-assisted Augmented Reality?. In Proc. of ACM SIGCOMM NAI Workshop.

[22] J. Meng et al. 2022. Do we need sophisticated system design for edge-assisted
augmented reality?. In Proc. of ACM EdgeSys.

[23] D. Mills. 1985. Network time protocol (NTP). Technical Report.
[24] A. Narayanan et al. 2022. A comparative measurement study of commercial 5G

mmWave deployments. In Proc. of IEEE INFOCOM.
[25] X. Wang et al. 2021. Edgeduet: Tiling small object detection for edge assisted

autonomous mobile vision. In Proc. of IEEE INFOCOM.
[26] Ran Xu et al. 2020. ApproxDet: content and contention-aware approximate object

detection for mobiles. In Proceedings of ACM SenSys.
[27] S. Yao et al. 2020. Deep compressive offloading: Speeding up neural network

inference by trading edge computation for network latency. In Proc. of ACM
SenSys.

[28] X. Yin et al. 2015. A control-theoretic approach for dynamic adaptive video
streaming over HTTP. In Proc. of ACM SIGCOMM.

[29] M. Yong. 2019. Object Detection and Tracking using MediaPipe. https://developers.
googleblog.com/2019/12/object-detection-and-tracking-using-mediapipe.html

[30] Jinrui Zhang et al. 2020. MobiPose: Real-time multi-person pose estimation on
mobile devices. In Proc. of ACM SenSys.

[31] W. Zhang et al. 2021. Elf: accelerate high-resolution mobile deep vision with
content-aware parallel offloading. In Proc. of ACM MobiCom.

41

https://developer.android.com/reference/android/media/MediaCodec.html
https://developer.android.com/reference/android/media/MediaCodec.html
https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md
https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md
https://ai.googleblog.com/2020/03/real-time-3d-object-detection-on-mobile.html
https://ai.googleblog.com/2020/03/real-time-3d-object-detection-on-mobile.html
https://books.google.com/books?id=tXZDAAAAQBAJ
https://developers.googleblog.com/2019/12/object-detection-and-tracking-using-mediapipe.html
https://developers.googleblog.com/2019/12/object-detection-and-tracking-using-mediapipe.html

	Abstract
	1 Introduction
	2 Background
	2.1 The Offloading + Tracking Paradigm
	2.2 The Need for Pipelining
	2.3 Challenges

	3 Design
	3.1 Overview
	3.2 The MPCP Scheduler

	4 Evaluation
	4.1 Methodology
	4.2 Baselines
	4.3 Results

	5 Conclusion
	Acknowledgments
	References

