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Iteratively forecasting biological invasions with
PoPS and a little help from our friends

Chris M Jones!", Shannon Jones!, Anna Petrasova!, Vaclav Petras!, Devon Gaydosl’z, Megan M Skripl, Yu Takeuchi?,

Kevin Bigsby?, and Ross K Meentemeyer'>
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and use by management stakeholders.

-

Ecological forecasting has vast potential to support environmental decision making with repeated, testable predictions across
management-relevant timescales and locations. Yet resource managers rarely use co-designed forecasting systems or embed them
in decision making. Although prediction of planned management outcomes is particularly important for biological invasions to
optimize when and where resources should be allocated, spatial-temporal models of spread typically have not been openly shared,
iteratively updated, or interactive to facilitate exploration of management actions. We describe a species-agnostic, open-source
framework - called the Pest or Pathogen Spread (PoPS) Forecasting Platform - for co-designing near-term iterative forecasts of
biological invasions. Two case studies are presented to demonstrate that iterative calibration yields higher forecast skill than using
only the earliest-available data to predict future spread. The PoPS framework is a primary example of an ecological forecasting
system that has been both scientifically improved and optimized for real-world decision making through sustained participation
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cological forecasting represents a paradigm shift in ecology

focused on making repeated, testable predictions across
management-relevant timescales, geographies, and contexts to
test scientific assumptions and predict near-future conditions
(Clark et al. 2001; Dietze et al. 2018; Dietze and Lynch 2019).
Over the past decade, model forecasts have been developed
to predict species distributions, fisheries harvests, insect
phenology (Crimmins et al. 2020), pests and pathogen risk

( )

In a nutshell:

» Because where something happens is just as important
to anticipate as when, ecological forecasts should predict
changes across both space and time

«+ Resource managers must be co-creators of spatial ecological
forecasting systems to optimize their use for real-world
management decisions

« We developed a forecasting system in collaboration with
partners at the US Department of Agriculture to predict
the spread of pests and pathogens, pairing a user-friendly
interface with a flexible spread model that can be used
for any species

o Our system exemplifies a strategy to make near-term
ecological forecasts actionable for environmental decision
making
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(McMullen et al. 2012), and more (eg see references in Dietze
et al. 2018), and best practices have been codified for the devel-
opment and use of such forecasts (Harris et al. 2018; Hobday
et al. 2019). However, ecological forecasting has yet to reach its
full potential for serving resource management because (1)
researchers and decision makers rarely co-produce forecasts, (2)
forecasters do not incorporate interactive decision analytics to
explore how management actions may affect future conditions,
and (3) spatially explicit modeling approaches for predicting pat-
terns of change across geographic areas have not been adopted.

Involving decision makers and other stakeholders in the co-
development of models (Voinov and Bousquet 2010) and the
design of forecasting systems (Hobday et al. 2016; Gaydos et al.
2019) increases transparency, trust, and relevance. Advocates of
ecological forecasting emphasize the importance of co-production
between modelers and domain experts (eg Payne et al. 2017;
Dietze et al. 2018), but the inherent challenges of knowledge co-
production often preclude the formation of productive partner-
ships between resource managers and research scientists to
co-develop a research agenda (Djenontin and Meadow 2018).
Accordingly, many forecasts produce a quantitative output that
can alert resource managers about future conditions (eg GCC
2020), but few allow stakeholders to interactively explore the
effects that management actions may have on a forecast.

Scenario exploration can be facilitated by computational
tools known as decision analytics: interactive, user-friendly
computer interfaces that allow resource management experts,
and not necessarily modeling experts, to easily modify model
simulations by specifying realistic management actions (Voinov
et al. 2016; Tonini et al. 2017; Gaydos et al. 2019). Some forecast-
ing frameworks report predictions online (eg usanpn.org/data/
forecasts; Crimmins et al. 2020) or permit interaction through
web-based systems to tailor reporting of results (eg www.wheat
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Figure 1. Stakeholder engagement improved the Pest or Pathogen Spread (PoPS) Fore-
casting Platform’s web-based dashboard by providing input on interactive analytics most use-
ful for management. Three features in (a) an early version of the dashboard were expanded in
(b) the current version to include: (1) adaptive management in multiple years, (2) custom draw-
ing tools allowing managers to easily add pre-defined management areas, and (3) a compre-
hensive breakdown of budget. Three new features were added at stakeholders’ request: (4) a
side panel with detailed analytics, (5) a panel for quickly comparing management strategies,
and (6) a time slider showing field observations or forecasted data, depending on the selected
year.

CM Jones et al.

expending resources or making (in hindsight)
deleterious choices in the real world.

Resource management requires complex
decision making across space and time, neces-
sitating forecasts that are spatially explicit (ie
those that take into account the locations of
events or entities and the geographic relation-
ships between them). Spatially explicit fore-
casting is particularly important for biological
invasions, because where a new infestation or
infection will occur is just as important to
anticipate as when it will occur. Research teams
have been modeling the spread of pests and
pathogens both spatially and temporally for
many years (eg Kampmeijer and Zadoks 1977;
Fitzpatrick et al. 2012; Cunniffe et al. 2016), but
these efforts have not heeded the call of Dietze
et al. (2018) to iteratively update model param-
eters with new data or openly share forecasts to
build a community of forecasting practice. Nor
do they integrate decision analytics that sup-
port stakeholder interaction with the models,
as was suggested by Cunniffe et al. (2015a,b).

To meet these challenges, we developed a
species-agnostic forecasting framework called
the Pest or Pathogen Spread (PoPS) Forecasting
Platform, which to the best of our knowledge is
the first example of a flexible, open-source
platform for near-term (< 5 years) iterative
ecological forecasting that combines several
key features typically missing in ecological
models. For example, (1) PoPS was designed,
and continues to be developed, through a col-
laborative, participatory process with govern-
ment analysts and field operations personnel;
(2) the system features interactive decision
analytics for generating and testing manage-
ment interventions; and (3) the underlying
spread model is both dynamic (accounts for
changes over time) and spatially explicit
(incorporates relationships and changes across
space). We developed PoPS specifically for use
by management professionals who do not nec-
essarily have modeling experience and tailored
it for predicting the spread, containment, and
control of biological invasions.

Here, we describe the PoPS Forecasting
Platform and its use for controlling biological
invasions. Our approach emphasizes the value
of co-designing an ecological forecasting sys-
tem that is modifiable for widespread use by

scab.psu.edu; Cunniffe et al. 2015b; NOAA 2019), but to thebest ~ management professionals without modeling expertise. We
of our knowledge none explicitly permit on-the-fly testing of illustrate the potential of PoPS for improving management out-
where and when to apply interventions that resource managers comes using two case studies, one involving a pest (spotted lan-
may want to simulate, thereby predicting impacts before  ternfly [SLF], Lycorma delicatula) and the other a pathogen (the
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Panel 1. The PoPS model

The flexible, customizable Pest or Pathogen Spread (PoPS) Forecasting
Platform simulates reproduction, dispersal, and establishment of pests
and pathogens through space and time. For every location in a land-
scape, at each time step, the model predicts the number of infested
or infected hosts (W). The model is conceptually driven, first, by the
notion of beta (3; Figure 2a). Because conditions are rarely optimal
and locations contain multiple hosts, 3 is modified by the number of
currently infested or infected hosts (/) and environmental conditions in
a location (/) at a particular time () to determine reproduction. The
dispersal kernel then determines where the new dispersing propagules
go; dispersal distance (d) is a function of gamma (y), which indicates
how much dispersal is short-distance (alpha-1, a,) or long-distance
(alpha-2, a,). The distance of each propagule is determined by drawing
from a distribution using either a, or a,, and its direction is drawn
from a distribution that accounts for predominant wind direction (w)
and wind strength (k). Once a propagule has landed in a new location,
its establishment depends on the environmental conditions in that new
location (X, P, T) and the availability of suitable hosts, calculated as the
number of susceptible hosts (S) divided by the total number of potential
hosts (V). Each application of PoPS uses a customized host map that
provides the locations of target hosts in each grid cell across the mod-
eled landscape. The value of W (Figure 2b) is predicted for each cell,
forecasting the spread of a pest or pathogen from infested or infected
hosts to susceptible hosts, among all cells, across the landscape. The
model runs quickly, even for landscapes with millions of cells.
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Figure 2. (a) Beta ([3), the number of pests or pathogens that disperse
from a single host under optimal environmental conditions, is the starting
point of the PoPS model, which can be conceptualized in terms of repro-
duction, dispersal, and establishment. (b) Spread across a landscape is
predicted by calculating infestation or infection (V) for each cell.

water mold that causes sudden oak death [SOD], Phytophthora
ramorum), and show how iterative calibration with new data
improves model skill as measured by accuracy assessments that
capture spatial patterns.

@ Ecological forecasting to manage biological invasions

Worldwide, biological invasions by pests and pathogens
threaten food security (Paini et al. 2016; Savary et al. 2019),
biodiversity (Simberloff et al. 2013), and ecosystem function
(Lovett et al. 2006; Aukema et al. 2010), and represent a
new frontier in ecological forecasting (Dietze et al. 2018).
Spatial-temporal models are useful for understanding spread
dynamics (eg Meentemeyer et al. 2011; Fitzpatrick et al.
2012) and exploring management interventions (eg Cunniffe
et al. 2016), but they have typically been the domain of
academic specialists and are rarely updated with new infor-
mation to incorporate improved understanding of the system
or validate their predictive capacity. Given the dynamic
nature of spread, efforts to contain and control invasions

require flexible, accessible tools to support decision makers;
ecological forecasting presents the opportunity to test and
explore management scenarios in a complex decision-making
space.

Practitioners facing an emerging invasion must make deci-
sions concerning not only what should be done to contain the
pest or pathogen but also when and where interventions would
be most effective. One agency concerned with developing new
tools to improve on-the-ground management of biological
invasions is the US Department of Agriculture (USDA)
Animal and Plant Health Inspection Service (APHIS), which
partnered with our research group at North Carolina State
University to co-develop a spatially explicit spread forecasting
system to support their operations.

The system we developed, PoPS, is open-source, scalable,
and replicable by other research groups. All results presented
below can be replicated through the PoPS web interface
(https://popsmodel.org), and the decision analytics we
designed can be built using the code available on GitHub
(https://ost.io/q32p9) (Jones et al. 2020). Our collaboration
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PoPS was developed, and continues to be
refined, through an “iterative modeling cycle”
(Figure 3), a process we suggest may help
guide ecological forecasters in other contexts.
Meeting with the stakeholders who will use the
forecasts comes first, to discuss their needs and
set mutual objectives. After initial data are
gathered to feed into the model, four revision-
ary loops follow: (1) the Calibration Loop
occurs anytime new occurrence data are
acquired or new biological information about
the pest or pathogen is discovered; new data
require that model parameters be re-calibrated,
validated, and updated in the database. (2) The
Scenario Modeling Loop involves stakeholders
defining a management scenario that they
want to test together, using a fully calibrated
and validated version of the forecast model, to

Transportation
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52 I U < experiment with strategies that they can then
gi‘?g £ e ?:} 8 implement on the ground as part of real-world
33 g, 5 < 3 adaptive management; the process repeats as
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Adaptive ()  Field §§, = % optimal outcome. (3) The Field Observation
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reveal information about species characteris-

Figure 3. The iterative modeling cycle. (1) Calibration Loop, (2) Scenario Modeling Loop,
(3) Field Observation and Scientific Feedback Loop, and (4) Participatory Feedback Loop. See

text for details.

tics (eg environmental tolerances or host pref-
erences); this new information is then added to
the database, potentially leading to new

with APHIS, which is maintained through biweekly meetings
and semi-annual workshops, has influenced PoPS’ web-based
interface design (Figure 1); led to the creation of user-
friendly decision analytics; and resulted in the development
of a customizable species-agnostic model that takes into
account the factors that impact a pest or pathogen’s repro-
duction, dispersal, and establishment (Panel 1; Meentemeyer
etal.2011).

PoPS is a modular, spatially explicit, discrete-time model,
meaning that various components (eg weather effects or long-
range dispersal) can be included or excluded from the model
as necessary (via intuitive on-off switches on the interface)
depending on the drivers that influence the species of interest.
In addition, the model accounts for spatial relationships and
movements between grid cells in a landscape, and forecasts
across sequential time steps, which can be specified as daily,
weekly, monthly, or yearly (Panel 1; Figure 2).

insights that change model assumptions. Such
a change triggers another iteration of the
Calibration Loop, and the results of forecasts (and hindcasts)
with and without the new knowledge are compared. (4) The
Participatory Feedback Loop consists of iterative back-and-
forth discussion with stakeholders to ensure that research pro-
gress matches their needs and vision; stakeholders test and
provide input not only on the forecast model but also on ways
in which they prefer to interact with it.

To date, we and our collaborators have been using PoPS and
the iterative modeling cycle (Figure 3) to forecast the spread of
eight emerging pests and pathogens, including Puccinia strii-
formis (wheat stripe rust), Phytophthora infestans (late blight),
Lobesia botrana (European grapevine moth), Aphthae epizoot-
icae (foot-and-mouth disease), Alphacoronavirus (porcine
epidemic diarrhea virus), and Betaarterivirus suid 1 (porcine
respiratory syndrome virus). Below, we describe the use of
PoPS in two case studies, spotted lanternfly (SLF) and sudden
oak death (SOD), focusing on the Calibration Loop and the
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value of new data supplied by the Field Observation and
Scientific Feedback Loop.

@ Case studies: SLF and SOD

SLF and the pathogenic water mold that causes SOD are
rapidly emerging threats to natural, economic, and cultural
resources in the US, and have motivated the establishment
of quarantine zones in highly affected areas. SLF, a non-
native invasive planthopper, has posed a threat to fruit crops
in Pennsylvania and neighboring states since 2014 (Urban
2019). SOD is responsible for the deaths of millions of trees
in California forests over the past several decades, and the
recent introduction of a novel and more aggressive strain
in Oregon has prompted renewed concern about economic
losses (Gaydos et al. 2019). We have been working closely
with USDA APHIS (on SLF) and the Oregon Department
of Forestry and SOD Mortality Task Force (on SOD) to
forecast the spread of these invasive species and to test
intervention strategies using PoPS (WebFigures 1 and 2).

In all applications of PoPS, the model is calibrated by com-
paring observed data to simulated data and setting thresholds
so that the model iteratively approaches a best fit. Specifically,
we use approximate Bayesian computation with a sequential
Markov chain and a multivariate normal perturbation kernel
(Filippi et al. 2013; Minter and Retkute 2019), an approach
that allows calibration of simulation models when a likeli-
hood function is not available. We use Bayesian updating to
iteratively update model parameters (B, A, a;, a,; see Panel 1
for an explanation of these parameters; Figure 3), and the
weights for the prior and calibrated parameters are based on
the number of observations that contribute to each dataset.
For example, if the model were being calibrated for the year
2017, with 2000 observations, and 2015 and 2016 each had
1000 observations, the prior parameters (from 2015 + 2016
data) and calibrated parameters (for 2017) would each be
weighted by 0.5 toward the posterior distribution of our
parameter set.

SLF forecasts were calibrated using 2015-2019 data pro-
vided by USDA APHIS and the state-level agricultural agencies
of Pennsylvania, New Jersey, Delaware, Maryland, Virginia, and
West Virginia (WebFigures 1 and 2). The distribution of p (pest
or pathogen reproduction rate) increased over time (Figure
4a), presumably due to greater, and more targeted, survey effort
in later years by field personnel that produced more reliable
and comprehensive occurrence data. SOD forecasts were cali-
brated using 2016-2019 data provided by the Oregon
Department of Forestry (WebFigures 1 and 2). Over this time
period, the distribution of B decreased and became less uncer-
tain, suggesting that spread in the first year of data was atypical
(Figure 4b).

In all applications of PoPS, the model’s predictive skill is vali-
dated by hindcasting (ie “forecasting” the past); we ran 100,000
simulations of the model (because it stochastically draws from
dispersal distributions) and compared model results with actual
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Figure 4. Change in beta ([3, pest or pathogen reproductive rate) by spe-
cies, by calibration year. (a) For SLF, 3 generally increased over time, most
likely due to more intense data collection beginning in 2018. (b) SOD
reproductive rate is more variable than SLF; iterative updating with new
data therefore permits capturing the breadth of yearly possibilities, moving
the parameter set closer toward the mean, and decreasing the potential
for outlier years to drive estimates of occurrence. lllustration of SLF and
SOD by L Barringer (Pennsylvania DoA) and M Garbelotto (UC Berkeley),
respectively.

observations over the predicted time interval. For example, if we
start with 2016 data and calibrate a model to forecast 2017 spread,
we then use data collected in 2017 to both (a) forecast 2018
spread and (b) hindcast 2016 and 2017 spread, to see whether
recalibration improved model skill. We repeated this process with
each set of newly collected data.

The large number of simulations run per time interval ena-
bled us to calculate accuracy assessments. Quantity disagree-
ment, an often-used assessment, reflects how many cells are
predicted differently than observed. However, simulations
equally accurate in their predicted number of changed cells may
predict very different spatial patterns of changed cells (eg patchy
versus dispersed; see Pickard et al. 2017). We therefore also cal-
culated configuration disagreement (Pickard et al. 2017) to
quantify mismatch between the predicted and observed spatial
patterns of infestation. For our stakeholders in invasion man-
agement, the ability to understand the pattern of spread is more
important than the exact location of a new infection. We there-
fore urge forecasters to adopt validation metrics like configura-
tion disagreement that assess spatial accuracy of forecasts, to
provide better utility for on-the-ground managers who must
decide where to allocate resources.

Front Ecol Environ doi:10.1002/fee.2357
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Figure 5. Quantity and configuration disagreement summed for all hind-
cast years (2016—2019 SLF, 2017-2019 SOD), by species, by calibration
year. Quantity disagreement was calculated as the absolute value of pre-
dicted occurrences minus observed occurrences, divided by observed
occurrences; configuration disagreement was calculated after Pickard
et al. (2017). Values greater than 100% indicate considerable overpredic-
tion. (a) Quantity for SLF; (b) quantity for SOD; (c) configuration for SLF;
(d) configuration for SOD. Reductions in disagreement over time indicate
improved model skill with iterative calibration using new data. Horizontal
lines within boxes depict median values, boxes represent the interquartile
range (25th—75th percentiles), and whiskers (vertical lines) represent
1.5xinterquartile range. lllustration of SLF and SOD by L Barringer
(Pennsylvania DoA) and M Garbelotto (UC Berkeley), respectively.

We iteratively hindcasted the SLF and SOD outbreaks to
examine the impact of calibration year on model perfor-
mance. We hindcasted SLF spread from 1 Jan 2016 to 31 Dec
2019 (Figure 5, a and c) and SOD spread from 1 Jan 2017 to
31 Dec 2019 (Figure 5, b and d), quantifying how well each
parameter set matched the observed outbreaks. In both
cases, iteratively calibrating the model with more recent data
increased hindcast accuracy (that is, reduced disagreement;
Figure 5). Many models of pest or pathogen spread are cali-
brated at a single point in time or for a single epidemic and
used to make predictions thereafter without iterative calibra-
tion when new data arrives (eg Meentemeyer et al. 2011;
Fitzpatrick et al. 2012; Cunniffe et al. 2016). Our results
underscore the importance of repeatedly calibrating forecast
models with new information to increase their predictive
ability.

CM Jones et al.

@ Co-designing the PoPS forecasting system to make
meaningful decisions

Notably, both the creation and design of PoPS were moti-
vated and shaped by stakeholders in US state and federal
agencies tasked with containing invasive pests and pathogens.
Multiple workshops (Participatory Feedback Loops; Figure
3) with personnel involved in field operations (survey and
management teams), policy (resource deployment decision
makers), and science and technology (economists and data
analysts) led to changes in model outputs, as well as in the
design and capabilities of the interface. Details regarding
those participatory processes and relevant computational
science innovations are forthcoming (Gaydos et al. in press;
Petrasova et al. 2020). Briefly, the PoPS framework incor-
porates decision analytics specifically meant for testing real-
istic management scenarios (WebFigure 3) and forecasting
how spread may change.

On the basis of the guidance from our stakeholders, we ena-
bled PoPS to simulate adaptive management action every year
of a forecast (as opposed to only in Year 1; Figure 1), and incor-
porated different intervention strategies (ie host removal or
pesticide/herbicide applications; WebFigure 3) that match real-
world approaches (eg slowing spread, eradicating an invader,
or maintaining containment) with simulated monetary costs.
Users interact with either a web-based or tangible surface
interface (eg Tonini et al. 2017; Petrasova et al. 2018; Gaydos
et al. 2019) to run PoPS, drawing a polygon or placing a physi-
cal marker to indicate treatment at a particular place and time.
PoPS then predicts how the treatment affects the timing and
spatial configuration of spread, comparing the outcome to a
scenario with no management.

Once a pest or pathogen has been added to the PoPS data-
base, anyone who accesses the system through its web-based
interface can run a treatment scenario for that species. The
user-friendly interface allows stakeholders to calibrate and val-
idate models, test strategies, and make decisions without need-
ing to interact with the code. This approach has been very well
received by management professionals who want to use cali-
brated, validated science-based models to inform their efforts
but who are not themselves modeling experts (Gaydos et al. in
press).

Our stakeholders have also expressed appreciation for the
spatial assessments of accuracy built into the PoPS framework.
Given that where to allocate resources is just as important as
when, reporting forecast configuration accuracy is crucial for
making spatially explicit decisions. We suggest that the config-
uration disagreement metric (described by Pickard et al.
[2017] to evaluate land-use/land-change models) allows stake-
holders to better understand how well a forecast predicts spa-
tial patterns as compared to other metrics (eg odds ratio) that
indicate simply how many grid cells were predicted correctly
versus incorrectly.

Our case studies demonstrate that repeated calibration over
time with continuously updated data yields higher forecast
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skill than using only the earliest-available data to predict future
spread. This result strongly supports the recent appeal for
near-term, iterative forecasting (Dietze et al. 2018), wherein
predictions are quickly and repeatedly challenged with new
data to improve forecast performance. Iterative calibration and
prediction can also help decision makers choose where to col-
lect new data, by refining knowledge of where pests are likely
to occur. We found that iterative, near-term forecasting with
PoPS allows our team to optimize system performance and
helps our collaborators better target sampling and manage-
ment for emerging pests and pathogens.

@ Conclusion

The PoPS framework is a prime example of an ecological
forecasting system that has been both scientifically improved
and optimized for real-world use through sustained partic-
ipation of management stakeholders in both initial and
ongoing development. We urge continued investment in
ongoing data collection so that forecasts can be further val-
idated and improved in the future. Such an approach rep-
resents a response to the request of Dietze et al. (2018) and
others (eg the Ecological Forecasting Initiative, https://ecofo
recast.org) that ecological forecasts be continuously challenged
with new information, thereby improving predictions and
decision making over management-relevant timescales.
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Reckless parenting with a purpose

he “social gatherings” of common loons (Gavia immer) have long

been a distinctive but poorly understood feature of their breeding
ecology (Hydrobiologia 2006; https://doi.org/10.1007/s1075
0-006-0044-0). During July and August, intruding adults of this iconic
northern species fly into territories of breeding pairs. The intruders
and pair members then engage in stereotyped circling behavior for up
to an hour before the visitors depart. Meanwhile, any chicks of the
pair hide among clumps of vegetation near shore. At last, long-term
marking of loons in northern Wisconsin has clarified such events. We
now recognize that social gatherings are motley assemblages of
adults with widely divergent evolutionary interests. These five loons
on Muskellunge Lake, for example, include a female and male from
Muskellunge (middle and right-most, respectively) who have chicks,
and a young female “floater” (left-most, in background) who is scout-
ing for a territory with chicks (an indicator of territory quality) so that
she may later return to evict the female pair member (Anim Behav
2000; https://doi.org/10.1006/anbe.1999.1295). The second and
fourth adults pictured, however, are the most intriguing visitors: they
are a breeding pair from neighboring Clear Lake that have temporarily
abandoned their chicks. Why engage in such seemingly reckless par-
enting? Perhaps by landing on Muskellunge, the Clear pair can

induce local floaters to also land at Muskellunge, where they are likely
to spot the Muskellunge pair’s chicks. If so, floaters will return to evict
the Muskellunge pair, and the Clear pair will have exploited the loon
floaters’ system of social information to decrease the likelihood that
they themselves will be evicted from their home lake.
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