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Ecological forecasting represents a paradigm shift in ecology   
focused on making repeated, testable predictions across 

management-relevant timescales, geographies, and contexts to 
test scientific assumptions and predict near-future conditions 
(Clark et al. 2001; Dietze et al. 2018; Dietze and Lynch 2019). 
Over the past decade, model forecasts have been developed 
to  predict species distributions, fisheries harvests, insect 
phenology (Crimmins et al. 2020), pests and pathogen risk 

(McMullen et al. 2012), and more (eg see references in Dietze 
et al. 2018), and best practices have been codified for the devel-
opment and use of such forecasts (Harris et al. 2018; Hobday 
et al. 2019). However, ecological forecasting has yet to reach its 
full potential for serving resource management because (1) 
researchers and decision makers rarely co-produce forecasts, (2) 
forecasters do not incorporate interactive decision analytics to 
explore how management actions may affect future conditions, 
and (3) spatially explicit modeling approaches for predicting pat-
terns of change across geographic areas have not been adopted.

Involving decision makers and other stakeholders in the co-
development of models (Voinov and Bousquet 2010) and the 
design of forecasting systems (Hobday et al. 2016; Gaydos et al. 
2019) increases transparency, trust, and relevance. Advocates of 
ecological forecasting emphasize the importance of co-production 
between modelers and domain experts (eg Payne et al. 2017; 
Dietze et al. 2018), but the inherent challenges of knowledge co-
production often preclude the formation of productive partner-
ships between resource managers and research scientists to 
co-develop a research agenda (Djenontin and Meadow 2018). 
Accordingly, many forecasts produce a quantitative output that 
can alert resource managers about future conditions (eg GCC 
2020), but few allow stakeholders to interactively explore the 
effects that management actions may have on a forecast.

Scenario exploration can be facilitated by computational 
tools known as decision analytics: interactive, user-friendly 
computer interfaces that allow resource management experts, 
and not necessarily modeling experts, to easily modify model 
simulations by specifying realistic management actions (Voinov 
et al. 2016; Tonini et al. 2017; Gaydos et al. 2019). Some forecast-
ing frameworks report predictions online (eg usanpn.org/data/
forecasts; Crimmins et al. 2020) or permit interaction through 
web-based systems to tailor reporting of results (eg www.wheat​
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In a nutshell:
•	 Because where something happens is just as important 

to anticipate as when, ecological forecasts should predict 
changes across both space and time

•	 Resource managers must be co-creators of spatial ecological 
forecasting systems to optimize their use for real-world 
management decisions

•	 We developed a forecasting system in collaboration with 
partners at the US Department of Agriculture to predict 
the spread of pests and pathogens, pairing a user-friendly 
interface with a flexible spread model that can be used 
for any species

•	 Our system exemplifies a strategy to make near-term 
ecological forecasts actionable for environmental decision 
making

http://www.wheatscab.psu.edu
mailto:﻿
http://crossmark.crossref.org/dialog/?doi=10.1002%2Ffee.2357&domain=pdf&date_stamp=2021-06-03


Front Ecol Environ doi:10.1002/fee.2357

CM Jones et al.412    CONCEPTS AND QUESTIONS

scab.psu.edu; Cunniffe et al. 2015b; NOAA 2019), but to the best 
of our knowledge none explicitly permit on-the-fly testing of 
where and when to apply interventions that resource managers 
may want to simulate, thereby predicting impacts before 

expending resources or making (in hindsight) 
deleterious choices in the real world.

Resource management requires complex 
decision making across space and time, neces-
sitating forecasts that are spatially explicit (ie 
those that take into account the locations of 
events or entities and the geographic relation-
ships between them). Spatially explicit fore-
casting is particularly important for biological 
invasions, because where a new infestation or 
infection will occur is just as important to 
anticipate as when it will occur. Research teams 
have been modeling the spread of pests and 
pathogens both spatially and temporally for 
many years (eg Kampmeijer and Zadoks 1977; 
Fitzpatrick et al. 2012; Cunniffe et al. 2016), but 
these efforts have not heeded the call of Dietze 
et al. (2018) to iteratively update model param-
eters with new data or openly share forecasts to 
build a community of forecasting practice. Nor 
do they integrate decision analytics that sup-
port stakeholder interaction with the models, 
as was suggested by Cunniffe et al. (2015a,b).

To meet these challenges, we developed a 
species-agnostic forecasting framework called 
the Pest or Pathogen Spread (PoPS) Forecasting 
Platform, which to the best of our knowledge is 
the first example of a flexible, open-source 
platform for near-term (≤ 5 years) iterative 
ecological forecasting that combines several 
key features typically missing in ecological 
models. For example, (1) PoPS was designed, 
and continues to be developed, through a col-
laborative, participatory process with govern-
ment analysts and field operations personnel; 
(2) the system features interactive decision 
analytics for generating and testing manage-
ment interventions; and (3) the underlying 
spread model is both dynamic (accounts for 
changes over time) and spatially explicit 
(incorporates relationships and changes across 
space). We developed PoPS specifically for use 
by management professionals who do not nec-
essarily have modeling experience and tailored 
it for predicting the spread, containment, and 
control of biological invasions.

Here, we describe the PoPS Forecasting 
Platform and its use for controlling biological 
invasions. Our approach emphasizes the value 
of co-designing an ecological forecasting sys-
tem that is modifiable for widespread use by 

management professionals without modeling expertise. We 
illustrate the potential of PoPS for improving management out-
comes using two case studies, one involving a pest (spotted lan-
ternfly [SLF], Lycorma delicatula) and the other a pathogen (the 

Figure 1. Stakeholder engagement improved the Pest or Pathogen Spread (PoPS) Fore­
casting Platform’s web-based dashboard by providing input on interactive analytics most use­
ful for management. Three features in (a) an early version of the dashboard were expanded in 
(b) the current version to include: (1) adaptive management in multiple years, (2) custom draw­
ing tools allowing managers to easily add pre-defined management areas, and (3) a compre­
hensive breakdown of budget. Three new features were added at stakeholders’ request: (4) a 
side panel with detailed analytics, (5) a panel for quickly comparing management strategies, 
and (6) a time slider showing field observations or forecasted data, depending on the selected 
year.

(a)

(b)
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water mold that causes sudden oak death [SOD], Phytophthora 
ramorum), and show how iterative calibration with new data 
improves model skill as measured by accuracy assessments that 
capture spatial patterns.

Ecological forecasting to manage biological invasions

Worldwide, biological invasions by pests and pathogens 
threaten food security (Paini et al. 2016; Savary et al. 2019), 
biodiversity (Simberloff et al. 2013), and ecosystem function 
(Lovett et al. 2006; Aukema et al. 2010), and represent a 
new frontier in ecological forecasting (Dietze et al. 2018). 
Spatial–temporal models are useful for understanding spread 
dynamics (eg Meentemeyer et al. 2011; Fitzpatrick et al. 
2012) and exploring management interventions (eg Cunniffe 
et al. 2016), but they have typically been the domain of 
academic specialists and are rarely updated with new infor-
mation to incorporate improved understanding of the system 
or validate their predictive capacity. Given the dynamic 
nature of spread, efforts to contain and control invasions 

require flexible, accessible tools to support decision makers; 
ecological forecasting presents the opportunity to test and 
explore management scenarios in a complex decision-making 
space.

Practitioners facing an emerging invasion must make deci-
sions concerning not only what should be done to contain the 
pest or pathogen but also when and where interventions would 
be most effective. One agency concerned with developing new 
tools to improve on-the-ground management of biological 
invasions is the US Department of Agriculture (USDA) 
Animal and Plant Health Inspection Service (APHIS), which 
partnered with our research group at North Carolina State 
University to co-develop a spatially explicit spread forecasting 
system to support their operations.

The system we developed, PoPS, is open-source, scalable, 
and replicable by other research groups. All results presented 
below can be replicated through the PoPS web interface 
(https://popsm​odel.org), and the decision analytics we 
designed can be built using the code available on GitHub 
(https://osf.io/q32p9) (Jones et al. 2020). Our collaboration 

Panel 1. The PoPS model

The flexible, customizable Pest or Pathogen Spread (PoPS) Forecasting 
Platform simulates reproduction, dispersal, and establishment of pests 
and pathogens through space and time. For every location in a land-
scape, at each time step, the model predicts the number of infested 
or infected hosts (Ψ). The model is conceptually driven, first, by the 
notion of beta (β; Figure 2a). Because conditions are rarely optimal 
and locations contain multiple hosts, β is modified by the number of 
currently infested or infected hosts (I ) and environmental conditions in 
a location (i ) at a particular time (t ) to determine reproduction. The 
dispersal kernel then determines where the new dispersing propagules 
go; dispersal distance (d ) is a function of gamma (γ), which indicates 
how much dispersal is short-distance (alpha-1, α1) or long-distance 
(alpha-2, α2). The distance of each propagule is determined by drawing 
from a distribution using either α1 or α2, and its direction is drawn 
from a distribution that accounts for predominant wind direction (ω) 
and wind strength (κ). Once a propagule has landed in a new location, 
its establishment depends on the environmental conditions in that new 
location (X, P, T ) and the availability of suitable hosts, calculated as the 
number of susceptible hosts (S ) divided by the total number of potential 
hosts (N ). Each application of PoPS uses a customized host map that 
provides the locations of target hosts in each grid cell across the mod-
eled landscape. The value of Ψ (Figure 2b) is predicted for each cell, 
forecasting the spread of a pest or pathogen from infested or infected 
hosts to susceptible hosts, among all cells, across the landscape. The 
model runs quickly, even for landscapes with millions of cells.

Figure 2. (a) Beta (β), the number of pests or pathogens that disperse 
from a single host under optimal environmental conditions, is the starting 
point of the PoPS model, which can be conceptualized in terms of repro­
duction, dispersal, and establishment. (b) Spread across a landscape is 
predicted by calculating infestation or infection (Ψ) for each cell.

(a)

(b)
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with APHIS, which is maintained through biweekly meetings 
and semi-annual workshops, has influenced PoPS’ web-based 
interface design (Figure 1); led to the creation of user-
friendly decision analytics; and resulted in the development 
of a customizable species-agnostic model that takes into 
account the factors that impact a pest or pathogen’s repro-
duction, dispersal, and establishment (Panel 1; Meentemeyer 
et al. 2011).

PoPS is a modular, spatially explicit, discrete-time model, 
meaning that various components (eg weather effects or long-
range dispersal) can be included or excluded from the model 
as necessary (via intuitive on–off switches on the interface) 
depending on the drivers that influence the species of interest. 
In addition, the model accounts for spatial relationships and 
movements between grid cells in a landscape, and forecasts 
across sequential time steps, which can be specified as daily, 
weekly, monthly, or yearly (Panel 1; Figure 2).

PoPS was developed, and continues to be 
refined, through an “iterative modeling cycle” 
(Figure 3), a process we suggest may help 
guide ecological forecasters in other contexts. 
Meeting with the stakeholders who will use the 
forecasts comes first, to discuss their needs and 
set mutual objectives. After initial data are 
gathered to feed into the model, four revision-
ary loops follow: (1) the Calibration Loop 
occurs anytime new occurrence data are 
acquired or new biological information about 
the pest or pathogen is discovered; new data 
require that model parameters be re-calibrated, 
validated, and updated in the database. (2) The 
Scenario Modeling Loop involves stakeholders 
defining a management scenario that they 
want to test together, using a fully calibrated 
and validated version of the forecast model, to 
experiment with strategies that they can then 
implement on the ground as part of real-world 
adaptive management; the process repeats as 
stakeholders compare strategies possible under 
a realistic financial budget and decide on the 
optimal outcome. (3) The Field Observation 
and Scientific Feedback Loop is engaged when 
stakeholders use the forecast to determine 
management and monitoring priorities; these 
new surveys and management actions are 
recorded in the database, triggering another 
iteration of the Calibration Loop. The Field 
Observation and Scientific Feedback Loop can 
also be triggered when new scientific studies 
reveal information about species characteris-
tics (eg environmental tolerances or host pref-
erences); this new information is then added to 
the database, potentially leading to new 
insights that change model assumptions. Such 
a change triggers another iteration of the 

Calibration Loop, and the results of forecasts (and hindcasts) 
with and without the new knowledge are compared. (4) The 
Participatory Feedback Loop consists of iterative back-and-
forth discussion with stakeholders to ensure that research pro-
gress matches their needs and vision; stakeholders test and 
provide input not only on the forecast model but also on ways 
in which they prefer to interact with it.

To date, we and our collaborators have been using PoPS and 
the iterative modeling cycle (Figure 3) to forecast the spread of 
eight emerging pests and pathogens, including Puccinia strii-
formis (wheat stripe rust), Phytophthora infestans (late blight), 
Lobesia botrana (European grapevine moth), Aphthae epizoot-
icae (foot-and-mouth disease), Alphacoronavirus (porcine 
epidemic diarrhea virus), and Betaarterivirus suid 1 (porcine 
respiratory syndrome virus). Below, we describe the use of 
PoPS in two case studies, spotted lanternfly (SLF) and sudden 
oak death (SOD), focusing on the Calibration Loop and the 

Figure 3. The iterative modeling cycle. (1) Calibration Loop, (2) Scenario Modeling Loop, 
(3) Field Observation and Scientific Feedback Loop, and (4) Participatory Feedback Loop. See 
text for details.
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value of new data supplied by the Field Observation and 
Scientific Feedback Loop.

Case studies: SLF and SOD

SLF and the pathogenic water mold that causes SOD are 
rapidly emerging threats to natural, economic, and cultural 
resources in the US, and have motivated the establishment 
of quarantine zones in highly affected areas. SLF, a non-
native invasive planthopper, has posed a threat to fruit crops 
in Pennsylvania and neighboring states since 2014 (Urban 
2019). SOD is responsible for the deaths of millions of trees 
in California forests over the past several decades, and the 
recent introduction of a novel and more aggressive strain 
in Oregon has prompted renewed concern about economic 
losses (Gaydos et al. 2019). We have been working closely 
with USDA APHIS (on SLF) and the Oregon Department 
of Forestry and SOD Mortality Task Force (on SOD) to 
forecast the spread of these invasive species and to test 
intervention strategies using PoPS (WebFigures 1 and 2).

In all applications of PoPS, the model is calibrated by com-
paring observed data to simulated data and setting thresholds 
so that the model iteratively approaches a best fit. Specifically, 
we use approximate Bayesian computation with a sequential 
Markov chain and a multivariate normal perturbation kernel 
(Filippi et al. 2013; Minter and Retkute 2019), an approach 
that allows calibration of simulation models when a likeli-
hood function is not available. We use Bayesian updating to 
iteratively update model parameters (β, λ, α1, α2; see Panel 1 
for an explanation of these parameters; Figure 3), and the 
weights for the prior and calibrated parameters are based on 
the number of observations that contribute to each dataset. 
For example, if the model were being calibrated for the year 
2017, with 2000 observations, and 2015 and 2016 each had 
1000 observations, the prior parameters (from 2015 + 2016 
data) and calibrated parameters (for 2017) would each be 
weighted by 0.5 toward the posterior distribution of our 
parameter set.

SLF forecasts were calibrated using 2015–2019 data pro-
vided by USDA APHIS and the state-level agricultural agencies 
of Pennsylvania, New Jersey, Delaware, Maryland, Virginia, and 
West Virginia (WebFigures 1 and 2). The distribution of β (pest 
or pathogen reproduction rate) increased over time (Figure 
4a), presumably due to greater, and more targeted, survey effort 
in later years by field personnel that produced more reliable 
and comprehensive occurrence data. SOD forecasts were cali-
brated using 2016–2019 data provided by the Oregon 
Department of Forestry (WebFigures 1 and 2). Over this time 
period, the distribution of β decreased and became less uncer-
tain, suggesting that spread in the first year of data was atypical 
(Figure 4b).

In all applications of PoPS, the model’s predictive skill is vali-
dated by hindcasting (ie “forecasting” the past); we ran 100,000 
simulations of the model (because it stochastically draws from 
dispersal distributions) and compared model results with actual 

observations over the predicted time interval. For example, if we 
start with 2016 data and calibrate a model to forecast 2017 spread, 
we then use data collected in 2017 to both (a) forecast 2018 
spread and (b) hindcast 2016 and 2017 spread, to see whether 
recalibration improved model skill. We repeated this process with 
each set of newly collected data.

The large number of simulations run per time interval ena-
bled us to calculate accuracy assessments. Quantity disagree-
ment, an often-used assessment, reflects how many cells are 
predicted differently than observed. However, simulations 
equally accurate in their predicted number of changed cells may 
predict very different spatial patterns of changed cells (eg patchy 
versus dispersed; see Pickard et al. 2017). We therefore also cal-
culated configuration disagreement (Pickard et al. 2017) to 
quantify mismatch between the predicted and observed spatial 
patterns of infestation. For our stakeholders in invasion man-
agement, the ability to understand the pattern of spread is more 
important than the exact location of a new infection. We there-
fore urge forecasters to adopt validation metrics like configura-
tion disagreement that assess spatial accuracy of forecasts, to 
provide better utility for on-the-ground managers who must 
decide where to allocate resources.

Figure 4. Change in beta (β, pest or pathogen reproductive rate) by spe­
cies, by calibration year. (a) For SLF, β generally increased over time, most 
likely due to more intense data collection beginning in 2018. (b) SOD 
reproductive rate is more variable than SLF; iterative updating with new 
data therefore permits capturing the breadth of yearly possibilities, moving 
the parameter set closer toward the mean, and decreasing the potential 
for outlier years to drive estimates of occurrence. Illustration of SLF and 
SOD by L Barringer (Pennsylvania DoA) and M Garbelotto (UC Berkeley), 
respectively.

(a)

(b)
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We iteratively hindcasted the SLF and SOD outbreaks to 
examine the impact of calibration year on model perfor-
mance. We hindcasted SLF spread from 1 Jan 2016 to 31 Dec 
2019 (Figure 5, a and c) and SOD spread from 1 Jan 2017 to 
31 Dec 2019 (Figure 5, b and d), quantifying how well each 
parameter set matched the observed outbreaks. In both 
cases, iteratively calibrating the model with more recent data 
increased hindcast accuracy (that is, reduced disagreement; 
Figure 5). Many models of pest or pathogen spread are cali-
brated at a single point in time or for a single epidemic and 
used to make predictions thereafter without iterative calibra-
tion when new data arrives (eg Meentemeyer et al. 2011; 
Fitzpatrick et al. 2012; Cunniffe et al. 2016). Our results 
underscore the importance of repeatedly calibrating forecast 
models with new information to increase their predictive 
ability.

Co-designing the PoPS forecasting system to make 
meaningful decisions

Notably, both the creation and design of PoPS were moti-
vated and shaped by stakeholders in US state and federal 
agencies tasked with containing invasive pests and pathogens. 
Multiple workshops (Participatory Feedback Loops; Figure 
3) with personnel involved in field operations (survey and 
management teams), policy (resource deployment decision 
makers), and science and technology (economists and data 
analysts) led to changes in model outputs, as well as in the 
design and capabilities of the interface. Details regarding 
those participatory processes and relevant computational 
science innovations are forthcoming (Gaydos et al. in press; 
Petrasova et al. 2020). Briefly, the PoPS framework incor-
porates decision analytics specifically meant for testing real-
istic management scenarios (WebFigure 3) and forecasting 
how spread may change.

On the basis of the guidance from our stakeholders, we ena-
bled PoPS to simulate adaptive management action every year 
of a forecast (as opposed to only in Year 1; Figure 1), and incor-
porated different intervention strategies (ie host removal or 
pesticide/herbicide applications; WebFigure 3) that match real-
world approaches (eg slowing spread, eradicating an invader, 
or maintaining containment) with simulated monetary costs. 
Users interact with either a web-based or tangible surface 
interface (eg Tonini et al. 2017; Petrasova et al. 2018; Gaydos 
et al. 2019) to run PoPS, drawing a polygon or placing a physi-
cal marker to indicate treatment at a particular place and time. 
PoPS then predicts how the treatment affects the timing and 
spatial configuration of spread, comparing the outcome to a 
scenario with no management.

Once a pest or pathogen has been added to the PoPS data-
base, anyone who accesses the system through its web-based 
interface can run a treatment scenario for that species. The 
user-friendly interface allows stakeholders to calibrate and val-
idate models, test strategies, and make decisions without need-
ing to interact with the code. This approach has been very well 
received by management professionals who want to use cali-
brated, validated science-based models to inform their efforts 
but who are not themselves modeling experts (Gaydos et al. in 
press).

Our stakeholders have also expressed appreciation for the 
spatial assessments of accuracy built into the PoPS framework. 
Given that where to allocate resources is just as important as 
when, reporting forecast configuration accuracy is crucial for 
making spatially explicit decisions. We suggest that the config-
uration disagreement metric (described by Pickard et al. 
[2017] to evaluate land-use/land-change models) allows stake-
holders to better understand how well a forecast predicts spa-
tial patterns as compared to other metrics (eg odds ratio) that 
indicate simply how many grid cells were predicted correctly 
versus incorrectly.

Our case studies demonstrate that repeated calibration over 
time with continuously updated data yields higher forecast 

Figure 5. Quantity and configuration disagreement summed for all hind­
cast years (2016–2019 SLF, 2017–2019 SOD), by species, by calibration 
year. Quantity disagreement was calculated as the absolute value of pre­
dicted occurrences minus observed occurrences, divided by observed 
occurrences; configuration disagreement was calculated after Pickard 
et al. (2017). Values greater than 100% indicate considerable overpredic­
tion. (a) Quantity for SLF; (b) quantity for SOD; (c) configuration for SLF; 
(d) configuration for SOD. Reductions in disagreement over time indicate 
improved model skill with iterative calibration using new data. Horizontal 
lines within boxes depict median values, boxes represent the interquartile 
range (25th–75th percentiles), and whiskers (vertical lines) represent 
1.5×interquartile range. Illustration of SLF and SOD by L Barringer 
(Pennsylvania DoA) and M Garbelotto (UC Berkeley), respectively.

(a) (b)

(c) (d)
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skill than using only the earliest-available data to predict future 
spread. This result strongly supports the recent appeal for 
near-term, iterative forecasting (Dietze et al. 2018), wherein 
predictions are quickly and repeatedly challenged with new 
data to improve forecast performance. Iterative calibration and 
prediction can also help decision makers choose where to col-
lect new data, by refining knowledge of where pests are likely 
to occur. We found that iterative, near-term forecasting with 
PoPS allows our team to optimize system performance and 
helps our collaborators better target sampling and manage-
ment for emerging pests and pathogens.

Conclusion

The PoPS framework is a prime example of an ecological 
forecasting system that has been both scientifically improved 
and optimized for real-world use through sustained partic-
ipation of management stakeholders in both initial and 
ongoing development. We urge continued investment in 
ongoing data collection so that forecasts can be further val-
idated and improved in the future. Such an approach rep-
resents a response to the request of Dietze et al. (2018) and 
others (eg the Ecological Forecasting Initiative, https://ecofo​
recast.org) that ecological forecasts be continuously challenged 
with new information, thereby improving predictions and 
decision making over management-relevant timescales.
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Reckless parenting with a purpose

The “social gatherings” of common loons (Gavia immer) have long  
  been a distinctive but poorly understood feature of their breeding 

ecology (Hydrobiologia 2006; https://doi.org/10.1007/s1075​
0-006-0044-0). During July and August, intruding adults of this iconic 
northern species fly into territories of breeding pairs. The intruders 
and pair members then engage in stereotyped circling behavior for up 
to an hour before the visitors depart. Meanwhile, any chicks of the 
pair hide among clumps of vegetation near shore. At last, long-term 
marking of loons in northern Wisconsin has clarified such events. We 
now recognize that social gatherings are motley assemblages of 
adults with widely divergent evolutionary interests. These five loons 
on Muskellunge Lake, for example, include a female and male from 
Muskellunge (middle and right-most, respectively) who have chicks, 
and a young female “floater” (left-most, in background) who is scout-
ing for a territory with chicks (an indicator of territory quality) so that 
she may later return to evict the female pair member (Anim Behav 
2000; https://doi.org/10.1006/anbe.1999.1295). The second and 
fourth adults pictured, however, are the most intriguing visitors: they 
are a breeding pair from neighboring Clear Lake that have temporarily 
abandoned their chicks. Why engage in such seemingly reckless par-
enting? Perhaps by landing on Muskellunge, the Clear pair can 

induce local floaters to also land at Muskellunge, where they are likely 
to spot the Muskellunge pair’s chicks. If so, floaters will return to evict 
the Muskellunge pair, and the Clear pair will have exploited the loon 
floaters’ system of social information to decrease the likelihood that 
they themselves will be evicted from their home lake.
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