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Porcine reproductive and respiratory syndrome virus (PRRSV) remains widely
distributed across the U.S. swine industry. Between-farm movements of animals
and transportation vehicles, along with local transmission are the primary
routes by which PRRSV is spread. Given the farm-to-farm proximity in high pig
production areas, local transmission is an important pathway in the spread of
PRRSV; however, there is limited understanding of the role local transmission
plays in the dissemination of PRRSV, specifically, the distance at which there is
increased risk for transmission from infected to susceptible farms. We used a
spatial and spatiotemporal kernel density approach to estimate PRRSV relative risk
and utilized a Bayesian spatiotemporal hierarchical model to assess the effects of
environmental variables, between-farm movement data and on-farm biosecurity
features on PRRSV outbreaks. The maximum spatial distance calculated through
the kernel density approach was 15.3 km in 2018, 17.6 km in 2019, and 18 km in
2020. Spatiotemporal analysis revealed greater variability throughout the study
period, with significant differences between the different farm types. We found
that downstream farms (i.e., finisher and nursery farms) were located in areas of
significant-high relative risk of PRRSV. Factors associated with PRRSV outbreaks
were farms with higher number of access points to barns, higher numbers of
outgoing movements of pigs, and higher number of days where temperatures
were between 4°C and 10°C. Results obtained from this study may be used to
guide the reinforcement of biosecurity and surveillance strategies to farms and
areas within the distance threshold of PRRSV positive farms.

PRRS virus, swine disease dynamics, biosecurity, surveillance, local transmission

1. Introduction

Porcine reproductive and respiratory syndrome virus (PRRSV) remains widely distributed
across the United States swine industry (1-3). Disease surveillance, vaccination strategies, and
biosecurity protocols have played a key role in curving PRRSV outbreaks; however, variants of
the endemic North American (NA-type, type 2) and the European (EU-type, type 1) strain
periodically cause outbreaks that lead to significant economic losses (4-9). Outbreaks of PRRSV
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in the United States have been shown to exhibit seasonal patterns
throughout the country, but vary among swine-producing regions (1,
3, 10-12). In the southeastern United States, PRRSV outbreak patterns
are typically characterized by a unimodal peak occurring during the
fall and winter months, followed by decreases in incidence during the
late spring and summer months (1, 3, 10, 13, 14). Summer outbreaks,
while less common, occur sporadically and vary by year (3, 7).

The spread of PRRSV is predominantly governed by direct
contacts facilitated by the movement of infected pigs between farms,
and indirect contacts also referred to as local transmission or area
spread, which encompasses several unmeasured between-farm
dynamics occurring at close geographical proximity (I, 15-25).
Despite local transmission being the least understood transmission
pathway of many infectious diseases in humans and animals (26),
several epidemiological processes have been attributed to contributing
to the local transmission of PRRSV including, the between-farm
movement of contaminated personnel (27, 28), trucks delivering pigs
and feed (18, 21), animal by-products delivered via feed (16, 18, 29,
30), equipment (e.g., boots, coveralls, bleeding equipment) (28), and
airborne viral particle dispersal (23, 31-35). However, differentiating
the contribution of each process remains highly challenging.
Moreover, the distance at which each process poses a greater risk to
neighboring farms remains poorly understood but is fundamental to
the understanding of between-farm transmission dynamics (36).
Between-farm transmission mechanisms acting on a local scale may
vary in relation to the distance between farms and have been reported
to range from 1km to 35km (1, 11, 17, 18, 20, 32, 33, 35, 37-39). Some
of the local transmission mechanisms are also influenced by local
environmental conditions (e.g., temperature, relative humidity, pH),
genetic diversity of PRRSV, differences in management and biosecurity
levels at different farm types, pig density, and the spatial proximity of
susceptible farms to infected farms (farm density) (15, 39-41). Given
the high density of farms and pigs in intensive pig production areas
across the United States, a better understanding of the distance at
which the risk of PRRSV transmission from infected to susceptible
farms is increased may support and inform the implementation of
targeted biosecurity enhancement and surveillance strategies (42, 43).

In this study, we use an adaptive kernel density approach to derive
spatial and spatiotemporal estimates of the variation in PRRSV
relative risk. Using the kernel density estimate approach, we (1) define
the maximum spatial distance at which farms may spread PRRSV
based on the proximity of susceptible farms to infected farms and (2)
identify farm types with elevated risk for local transmission of
PRRSV. Secondly, we implemented a Bayesian spatiotemporal
hierarchical model to account for environmental, on-farm biosecurity
features, pig density, farm density, and between-farm contact networks
metrics to (3) identify factors associated with the risk of PRRSV
local transmission.

2. Materials and methods

2.1. PRRSV data source and processing
PRRSV outbreak data for all production types used in this study

were obtained from the Morrison Swine Health Monitoring Project

(MSHMP) (2). Outbreak data collection was performed by each

production company during outbreak investigations or routine

surveillance activities and shared with MSHMP (2). Data obtained
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includes information on farm-level outbreaks between November 1st,
2017, through December 31st, 2020, from 2,293 farms belonging to
three non-commercially related pig production companies in a dense
pig production region of the United States Information about each farm
includes, pig capacity, a unique farm identification number, geographical
coordinates (hereafter geolocations), production type, and date of
confirmed PRRSV outbreak via PRRSV positive laboratory results.
Additionally, the Euclidean distance between farms was calculated using
farm geolocations. Production types in our farm population (n=2,293)
were classified as finisher (n=1,458, premises that raise pigs from
approximately 10weeks of age until reaching market weight at
approximately 5-6months of age and include wean-to-finish, and
feeder-to-finish), nursery (n=468, premises that raise piglets from
weaning from approximately 3 weeks of age to about 10 weeks of age),
isolation (n=33, premises specialized in holding breeding or genetic
research animals for a temporary period of time), boar stud (n=15), and
sow (n=319, premises with breeding, gestation and/or farrowing rooms
and includes farrow-to-wean and farrow-to-feeder farms).

Farms were divided into cases and controls, where cases were
defined as any farm that reported an outbreak during the time period
of interest, and controls are farms that did not report an outbreak.
PRRSV case and control data were split into years (2018, 2019, and
2020) and a seasonal classification (PRRSV season). We defined the
PRRSV season as a six-month period from November 1st through
May 31st, which represents a time period where increases in farm-
level PRRSV incidence have been previously described for the region
of the United States considered in this study (3, 14).

2.2. Spatial PRRSV relative risk

Spatial kernel density-ratio, also known as spatial “relative risk”
(hereafter risk), is an exploratory approach used to describe the
geographical variation in disease risk based on the distribution of
PRRSV outbreaks (cases) and the underlying at-risk (controls)
population (44-47). PRRSV risk (x) was estimated for each farm
(x= {xl,. X, n=2,293 farms} ) in each year and PRRSV season.
Farms can report several PRRSV outbreaks in a given year or PRRSV
season; however, for the spatial risk analysis, we defined cases as farms
that reported at least one PRRSV outbreak, and controls as the
remaining farms that did not report an outbreak for a given year and
PRRSV season (46). We identified a total of 245 cases in 2018, 190
cases in 2019, and 165 cases in 2020. For the PRRSV seasons, a total
of 227 cases in the 2017-2018 PRRSV season, 167 cases in the 2018-
2019 PRRSV season, and 148 cases in the 2019-2020 PRRSV season
were used. A nonparametric kernel density-ratio approach was used
to estimate the risk p (x) for each farm location (x) in each year and
PRRSV season as follows:

p(x)=log f (x)-logg(x) (1)

where ]A’ (x) represents the log density estimates of cases and § (x)
represents the log density estimates of controls. The natural logis used to
symmetrize the treatment of the density estimate ratios, with p (x) >0,
representing areas of medium to high PRRSV risk (high concentrations
of cases relative to controls), and f)(x) <0, representing areas of low
PRRSYV risk (low concentration of cases relative to controls) (45-48).
Calculating spatial risk relies on the selection of an optimal bandwidth
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(the maximum distance at which local transmission is unlikely to occur)
which directly drives the decline of the risk probability (kernel) given the
geolocation of a farm (45, 46, 87). Given the heterogeneous distribution
of farm density in our study area, we used an adaptive smoothing
approach that allows the bandwidth of each kernel to vary depending on
the density of farms (cases and controls) at a given farm geolocation (49).
This method reduces smoothing at locations where the density of farms
is high (e.g., 10-20 farms per 5km?), and increases the amount of
smoothing in areas where farm density is low (e.g., 1-5 farms per 5km?)
(49). Adaptive smoothing requires the selection of pilot and global
bandwidths, where the pilot bandwidths (i.e., cases and controls have a
separate fixed distance), and the global bandwidth (i.e., cases and controls
have a shared fixed distance), which is a smoothing parameter that
adjusts the pilot bandwidth in areas where case and control densities are
similarly distributed (45). Here, we compared two different approaches-
asymmetric and symmetric adaptive smoothing—for the selection of
the pilot bandwidths (Supplementary material SI; Supplementary
Figures S1-56). Pilot and global bandwidths were then used to calculate

A

/(x) and é A(x) Spatial risk (Equation 1) was then calculated by using
;’ (x) and g (x), and applying a uniform edge-correction, which
accounts for the probability loss of farm geolocations close to the
boundary of the study region (45, 46). Lastly, we used 1,000 iterations of
Monte Carlo simulations to delineate areas of significant spatial risk
(p<0.05) (50). Farms within areas of significant risk were quantified as
the count of case or control farms falling within areas of significant spatial

risk by farm type.

2.3. Spatiotemporal PRRSV relative risk

The spatiotemporal risk of PRRSV was estimated in weekly time
steps of cases for each year and PRRSV season, thus cases were defined
as farms with at least one outbreak per week and controls as farms that
did not report outbreaks for a given week. The entire farm population
(n=2,293) is considered in each weekly time step. A total of 438 cases
with an average of 8.76 cases/week were used in 2018, 279 cases with
an average of 5.47 cases/week in 2019, and 238 cases with an average
of 4.67 cases/week in 2020. Similarly, a total of 382 cases with an
average of 12.7 cases/week were used for the 2017-2018 PRRSV
season, 231 with an average of 7.45 cases/week in the 2018-2019
PRRSV season, and 190 with an average of 6.33 cases/week in the
2019-2020 PRRSV season. In contrast to the spatial risk, the
spatiotemporal risk uses spatial and temporal bandwidths derived
from farm geolocations of cases to generate density estimates of cases,
while density estimates for controls were generated using only the
spatial bandwidth previously calculated for cases since we assume the
farm population to be static between November 1st, 2017 and
December 31st, 2020 (48, 51, 52). Thus, conditional spatiotemporal
risk surfaces were derived as:

f)(x|t)=log?(x,t)—log?(t)—log‘;(x) @)

where f’(x\l ) is the conditional risk, ;’ (x,t) is the log density
estimates of cases at a given time step t = (t1,..., t,, w = 52 weeks per
year; w = 30 weeks per PRRSV season), / () is an estimator for the
marginal temporal case density, and é(x) is the static spatial log
density of the controls (48). One thousand iterations of Monte Carlo
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simulations were used to delineate areas of significant spatiotemporal
risk (p<0.05) (50).

Spatiotemporal risk values generated for the entire farm population
at each time step (¢) were extracted to individual farm geolocations (x
). Farms were then classified as low, medium, and high risk based on
quantiles of the spatiotemporal risk distribution of all the farms in each
year and PRRSV season. Spatiotemporal risk above 60% of the risk
distribution was considered as the exceedance risk threshold (53) since
it represented a midpoint between lower (negative) and higher
(positive) risk values for the years and PRRSV season. Thus, farms with
risk below 60% of the risk distribution were categorized as low risk, 61
to 80% quantile as medium risk, and 81 to 100% quantile as high risk
for each year and PRRSV season (Supplementary Figures S7-S12).

2.4. Priority index

The priority index (PI) is a metric that has been used to facilitate
the communication of spatiotemporal risk (54). The aim of the PI is
to provide an easily interpretable metric, represented as an ordered
percentage that indicates the level of prioritization that should
be given to a farm based on the estimated risk. The priority index
was calculated from the spatiotemporal risk weekly estimates as:

P1=f>(x|f)/ma><(ﬁ(x|t))*100 (3)

where the PI of a farm is a percentage based on the risk f) (xl7) of
a farm in reference to the maximum risk value of the farm population.
Priority indices calculated for each farm were further reclassified as
low (0-30%), medium (31-60%), and high (61-100%) priority
classifications based on quantiles. Priority index classifications were
then summarized by farm types for each year and PRRSV season time
periods and used to set the priority risk order of each farm type.

2.5. Bayesian spatiotemporal hierarchical
model framework

We fit a Bayesian spatiotemporal hierarchical model of PRRSV
weekly outbreak data to account for three on-farm biosecurity features,
six between-farm contact network metrics, six environmental variables,
farm density,and pigdensity (Figure 1; Supplementary material Table S1).
A total of 1,948 farms out of our 2,293 farms were used in the Bayesian
spatiotemporal hierarchical model, since 217 farms lacked between-
farm contact data, 124 lacked on-farm biosecurity features, and four
lacked environmental data. Additionally, between-farm contact data
was not available for the entire study period; therefore, the Bayesian
spatiotemporal hierarchical model was implemented for the year 2020.
Farm geolocations i (i =1i,..., ip, n =1,948 farms in the year 2020)
were defined as ¥; = 1 when a PRRSV outbreak was reported, and ¥; = 0
for farms with no reported outbreaks of each week in the year 2020.
The generalized hierarchical spatiotemporal model was implemented
as a logistic regression, where ¥; follows a binomial distribution:

Y; ~ Bernouilli ;) 4)
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Between-farm contact metrics
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FIGURE 1

The conceptual model framework of the Bayesian spatiotemporal hierarchical model showing the directional relationship between variables and

PRRSV outbreaks. *Variables representing vegetation buffers around farms.

Farm Density

Biosecurity Features

Site entry
Line of separation access point (LOSAP)
Perimeter buffer area access point (PBAAP)

and linear predictors were constructed as:

Logit (i) =a+ X B +v (i) +week (w)+ (i) (5)

where « represents the probability of a PRRSV outbreak, « the
model intercept, X8 describes the matrix of covariates, U(i ) is an
independent and identically distributed (iid) random effect to account
for variation between individual farms, week(w) is an iid random
effect to account for variation between weeks, and a)(i ) represents a
spatial random field (Gaussian field) to account for spatial errors (55).

Briefly, the regression analysis was implemented with a
stochastic partial differential equation (SPDE) model using
integrated nested Laplace approximations (INLA) (56-60). The
process first requires the creation of a mesh of Delaunay
triangulations, which includes the specification of the maximum
triangle edge length, and the model domain boundary. The
resulting mesh (Supplementary Figure S13) consisted of 4,504
triangle vertices, where the model domain boundary was defined
by a polygon representative of our study area in which the
maximum triangle edge length was specified as 10 km within the
inner domain and 20 km in the outer domain (55).

The INLA default priors were used; therefore, the penalized
complexity (PC) priors [(1, 0.01), (0.32, 0.01)] were used for the
spatial random fields where the spatial range and standard deviation
quantile and probability tailored to be higher than 1 is 0.01 (59, 61,
62). Model fixed effect outputs were exponentiated and presented as
odds ratio (63, 64). The sensitivity of priors to the posterior random
field values was examined by comparing the random posterior mean
distribution values of PC priors against log-gamma priors [(1, 0.05),
(1,0.001)] (Supplementary Figure S14).

2.6. Bayesian spatiotemporal hierarchical
model data preparation

Variables considered in our Bayesian spatiotemporal hierarchical
model framework focus on local transmission mechanisms, and
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environmental or anthropogenically mediated factors that may
contribute to increases or decreases in risk of PRRSV outbreaks
(Figure 1; Supplementary material Table S1) (1, 3, 19, 20, 23, 25, 65—
67). On-farm biosecurity feature data were extracted for each farm
from a database of Secure Pork Supply (SPS) biosecurity plans
assembled by the Rapid Access Biosecurity app (RABapp™) (68) and
included: the count of site entries, count of perimeter buffer area access
points (PBAAP), and count of lines of separation access points
(LOSAP) (Supplementary Figure S16; Supplementary material Table S1).
In addition to on-farm biosecurity features, we included pig capacity,
and farm density, which was calculated by creating a spatial buffer of
17km around each farm location and counting the number of farms
within the buffer. A spatial buffer of 17 km was used based on findings
from the spatiotemporal kernel density approach discussed in further
detail in section 3.2.

A directed and static network was reconstructed from
between-farm pig movement data between January 1st, 2020, and
December 31st, 2020, and represented as a graph g=(V, E), where
V represents the nodes (farm) of the network and E represents
the contact between two nodes or edges of the network. The
unique farm identification number in each origin and destination
movement record was used to form the edges of the network (69).
Between-farm contact network metrics: in-degree, out-degree,
PageRank, clustering coefficient, closeness centrality, and
betweenness were calculated to characterize node and network-
level features of the directed, static network and are described in
Supplementary material Table S1. A total of 217 farms were
missing pig movement data in 2020, and thus were excluded from
this dataset. Therefore, between-farm pig movement data
belonging to 1,948 farms was used to calculate between-farm
the
spatiotemporal hierarchical model framework (Figure 1).

contact network metrics considered in Bayesian

Individual farm geolocations were wused to extract
environmental variables: weekly enhanced vegetation index
(EVI), downloaded from the National Aeronautics and Space
Administration (NASA), Moderate Resolution Imaging
Spectroradiometer (MODIS) Land Products (70), and yearly

averages of aboveground biomass density (AGBD), canopy
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height, and land surface elevation, downloaded from the Oak
Ridge National Laboratory, Distributed Active Archive Center for
Biogeochemical Dynamics website (ORNL DAAC) (71). These
variables are meant to represent topographical or vegetative
buffers around farms that reduce or facilitate the spread of
airborne particulate matter and PRRS virus (1, 72-75). Similarly,
farm geolocations were used to extract daily average land surface
temperature, and relative humidity data from Daymet: Daily
Surface Weather Data (76). Temperature and relative humidity
have been shown to impact the infectivity and stability of PRRSV
(41, 65, 67), and were included in our model as the count of days
a farm geolocation i was associated with temperatures between
4°Cand 10°C [T(4°C,10°C)] [e.g., farm geolocation i had 20 days
of T(4°C,10°C) over the studied period], and the count of days a
farm geolocation i was associated with relative humidity below
20% (RH <20%) (e.g., farm geolocation i was 30 days on RH <20%
over the studied period). All variables listed above were
downloaded at a 1 km x 1 km spatial resolution and are described
in further detail in Supplementary material Table S1. A total of
71 farm geolocations were outside the data availability range of
the AGBD, canopy height, or land surface elevation data products;
data
(min =446 m; max =9.8 km)] within a 10 km radius with complete

therefore, from the nearest farm [average=5km
data were used. Four farms were beyond the 10 km threshold and

were excluded from the analysis (Supplementary Figure S15).

2.7. Bayesian spatiotemporal hierarchical
model variable selection and model
comparison

All variables considered in our model framework (Figure 1) were
first examined via univariate analysis following the model established
in Equation 5, and significance was determined by the 95% credible
intervals (CI) in which estimates did not cross one, and the model fit
was evaluated using the Watanabe-Akaike information criteria
(WAIC). Before selecting variables for the multivariate model,
multicollinearity between variables was examined by calculating
Pearson’s correlation coefficient (r), where significant (p<0.05)
correlations above 0.6 were considered highly correlated and would
limit our ability to determine individual effects on PRRSV outbreaks.
The variables T[4°C,10°C] and RH<20% (r=0.98), biosecurity
features LOSAP and PBAAP (r=0.79), and network metrics, page rank
and in-degree (r=0.69) were highly correlated. All other variables were
below 0.6 or had insignificant correlations. Among highly correlated
variables, the variable yielding a lower WAIC in the univariate analysis
was selected for the multivariate model variable selection process. A
backward elimination process was carried out starting with all
significant variables retained from the univariate analysis. Insignificant
variables from the multivariable model were removed one-by-one the
and the best-fitting model was selected based on the WAIC. Given the
high density of farms in our study area, farm density was included in
the multivariate analysis as a confounding factor.

All data extraction, processing, and analyzes presented in this
work were performed in the R (4.2.1) programming language (77)
using the packages: tidyverse (78), sf (79), sp. (80), spatstat (81), sparr
(82), raster (83), igraph (84), MODIStsp (70), daymetr (85), INLA
(56), inlabru (86), and INLAoutputs (64).
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3. Results
3.1. Spatial PRRSV relative risk

The median distance between farms reporting PRRSV outbreaks
was 66.7 km (interquartile range (IQR): 39.4km - 109.3 km) for 2018,
70km (IQR: 40.4km - 114km) for 2019, 61.4km (IQR: 36.6km -
98km) for 2020, and 66km (IQR: 39km - 106.4km) for all years
combined. For the PRRSV seasons, the distance between PRRSV cases
was 64.6km (IQR: 38km - 107.5km) for the 2017-2018 PRRSV
season, 70.7 km (IQR: 40.2km - 120.5km) for the 2018-2019 PRRSV
season, and 63.4km (IQR: 37.3km - 102km) for the 2019-2020
PRRSV season. The maximum distance the spatial PRRSV risk
extended to was, on average, 14.8 km for both the annual and PRRSV
seasons. A total of 377 farms in 2018, 91 in 2019, and 321 in 2020 were
within high risk areas (p <0.05) (Table 1). Among the different farm
types, sow farms consistently had a higher number of infected farms
within areas of significant high risk in both the annual and PRRSV
season time periods, while finisher and nursery farms had more
control farms (Table 1; Supplementary material Tables 52-54).
Comparison among years, 2018 (n=_85) had the greatest number of
PRRSYV infected farms within significant high risk areas compared to
2019 (n=21) and 2020 (n=>57; Table 1).

3.2. Spatiotemporal PRRSV relative risk

The spatiotemporal analysis revealed that the maximum distance
PRRSYV risk extended to was 15.3km in 2018, 17.6km in 2019, and
18km in 2020, and for the PRRSV seasons, 13.6km in the PRRSV
2017-2018, 19.2km in the PRRSV 2018-2019, and 18.9km in the
PRRSV 2019-2020. Spatiotemporal risk estimates for the entire farm
population in each time step were classified as high, medium, and low
risk based on a 60% exceedance threshold where, on average, 20% of
the farms were classified as high risk, 20.1% as medium risk, and
59.9% as low risk for all farm types and years combined
(Supplementary Figures S7-512). Among farm types, boar stud farms
were more frequently located in areas of high risk (30% IQR: 27-38%),
followed by sow (29% IQR: 27-34%), nursery (19% IQR: 18-22%),
finisher (14% IQR: 13-19%) and isolation farms (12% IQR: 9-24%)
(Table 2). However, it is important to note that the higher percentages
seen for boar stud farms may be driven by the fewer number of boar
stud farms (n=15) in the farm population. Spatiotemporal risk
estimates for the PRRSV seasons revealed sow farms we more
frequently classified to be in high risk areas (29% IQR: 24-36%)
during this time period, followed by boar studs (27% IQR: 20-33%),
nursery (21% IQR: 18-24%), isolation farms (12% IQR: 12-30%), and
finisher (18% IQR: 16-25%; Supplementary material Table S5).
Among all farm types, finisher farms (63% IQR: 54-74%) and nursery
farms (57% IQR: 52-67%) were consistently classified to be in areas of
low risk for both the yearly (Table 2) and PRRSV season time periods
(Supplementary material Table S5).

Our spatiotemporal analysis revealed a seasonal signal, marked by
an increase in farms classified as being in high and medium PRRSV
risk areas during the fall, winter, and spring months, with varying
intensity between farm types, and years 2018 to 2019, and 2019 to 2020
(Figure 2; Supplementary Figure 58). The signal onset of the seasonal
pattern appears to begin at an earlier date [mid-summer (Week 28) to
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TABLE 1 Yearly count of cases and controls by farm type within significant (p<0.05) high risk areas estimated using a spatial asymmetric adaptive
smoothing approach for 2,293 farms (n=number of farms per farm type) in a dense pig production region of the United States.

Sow (n=319) Nursery (n=468) Finisher (n=1,458) Isolation (n=33) Boar Stud (n=15)
et Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls
2018 34 49 13 79 21 126 0 2 0 4
2019 27 21 6 52 5 85 0 1 0 2
2020 44 43 7 81 6 135 0 3 0 3

TABLE 2 Percent of high, medium, and low PRRSYV risk levels [median and interquartile range (IQR)] based on weekly risk estimates obtained from the
spatiotemporal analysis by farm type for each year and for the entire study period.

. Nursery Finisher Isolation Boar Stud
Period . . . .
High High High  Med. High | Med.
2018 24/(24-29) | 22(17-31) | 51(40-57) | 18(16-21) | 21(15-30) | 56(50-73) 17(13-25) 20 (10-28) 59 (49-77) | 12(9-19) | 39(19-45) | 45(39-75) | 27(20-27) | 27(20-27) | 53 (47-60)
2019 33(20-37) | 16(14-21) | 49 (45-53) | 18(17-20) | 16(11-23) | 65(55-71) 14(14-20) 17(6-21) | 71(55-79)  12(12-48)  21(12-33)  33(27-88) | 40(33-40) | 13(7-20) | 47 (47-47)
2020 30(28-35) | 27(16-29) | 44 (42-48) | 20(19-25) | 22(20-28) | 53(51-59) 15(13-16) 25(21-28)  61(58-64)  18(6-29) | 42(24-48)  39(33-73) | 27(27-33) | 20(13-27) | 53 (40-60)
2018-2020% | 29 (27-34) | 21(14-28) | 48(43-53) | 19(18-22) | 21(15-26) | 57(52-67) 14(13-19) 21(13-26) 63 (54-74)  12(9-24) | 35(18-45)  42(33-82) | 30(27-38) | 20(13-27) | 47 (47-53)
*Median and IQR for all years combined.
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FIGURE 2
Farm type breakdown of high, medium, and low PRRSV risk levels for the entire farm population (2,293) based on a 60% exceedance relative risk
threshold for each week (from 1 to 52 weeks) in the years 2018 through 2020.

early fall (Week 35)] for the year 2019; however, it is not consistent  increase in the year 2020, but it is not present for other years. Among

among all farm types. Sow farms displayed an interesting pattern  all farm types, sow, finisher and nursery farms appear to more closely
among farm types, with increases in risk during summer months  resemble each other in terms of seasonal risk. Boar stud and isolation
(Week 20-35) (Figure 2; Supplementary Figure S17). Nursery, finisher,

boar stud, and isolation farms appear to show a similar summer

show more erratic changes in risk, however, the large shifts in risk levels
are related to the small number of farms for these farm types.
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Results obtained from calculating the PI, which may be used to
order farms in risk priority, revealed that 79.4% of the farms in 2018
were in the low PI category, 16.1% were in the medium PI, and 4.5%
were in the high PI category (Supplementary material Table S6).
Similarly, 63.7% in 2019 and 67.9% in 2020 were in the low PI category,
28% in 2019 and 23.9% in 2020 were in the medium PI category, and
8.35% in 2019 and 8.28% in 2020 were in the high PI category. Among
the different farm types, sow farms consistently had the most farms in
the high and medium risk category except boar stud farms in 2019 and
2020; however, as noted before, there are fewer boar stud farms as
compared to sow farms in the study population. A similar proportion
of farms with high, medium, and low PI overall and by farm type were
observed for the PRRSV seasons (Supplementary material Table S7).

3.3. Bayesian spatiotemporal hierarchical
model

Results from the univariate analysis revealed that the animal
movement network metric, out-degree, the number of LOSAP,
number of days the temperature was between T [4°C,10°C], and
relative humidity <20% were significantly associated with PRRSV
outbreaks (Table 3). The best fitting multivariate model (WAIC =2,620)
obtained through backward variable selection included the following
variables: out-degree, LOSAP, T [4°C, 10°C], and farm density
(Table 3). The strongest association was related to out-going
movements, which resulted in an increase in the odds of PRRSV
outbreaks by 1.11 times (Table 3). The second most associated variable
was LOSAP, with an increase of 1.04 times the odds of PRRSV
outbreaks for every additional LOSAP. Lastly, T [4°C, 10°C] resulted
ina 1.01 increase in odds for every one unit increase in T [4°C, 10°C].

4. Discussion

We estimated the maximum distance at which the risk of PRRSV
is significantly high given the spatial proximity of farms reporting
PRRSV outbreaks. Through our spatial and spatiotemporal analysis,
we demonstrated that farms within an 11.9km to 17km radius of
PRRSV positive farms were at greater risk of being infected due to
proximity. PRRSV risk was higher during fall winter and early spring
months with variation among the different farm types and years
(Figure 2), which is consistent with seasonal patterns previously
described for this region of the United States (1, 3, 10, 11, 14).
Spatiotemporal risk estimates revealed that approximately 29% of sow
farms were consistently located in areas of high risk. We also show that
outgoing animal movements (out-degree), the number of barn access
points (LOSAP), and the number of days where temperatures were
between 4°C and 10°C [T(4°C,10°C)] were risk factors for PRRSV
outbreaks (Table 3).

Given the temporal dynamics of PRRSV, and in comparison to the
spatial analysis which is a time-static representation of farms reporting
PRRSV outbreaks for an entire year and/or PRRSV season, weekly
PRRSV outbreak reports were used in our spatiotemporal analysis.
Our spatiotemporal analysis showed that the risk of PRRSV
transmission from infected farms was significant up to 17km
compared to 11.9km in our spatial analysis. We attribute the increase
in distance calculated in our spatiotemporal analysis to the density of
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TABLE 3 Summary statistics of the fixed effects of the Bayesian
spatiotemporal hierarchical models, showing odds ratio (OR), 2.5%—
97.5% credible intervals, and WAIC.

Univariate
Cl
Covariate OR 2.5% 97.5% WAIC
Pig capacity 1 1 1 2,456.06
Farm density 1 0.99 1 2,462.08
EVI 1.04 0.07 4.65 2,445.97
T[4°C,10°C] 1.02 1.01 1.03 2,421.68
RH <20% 1.01 1.01 1.02 2,425.71
Aboveground 1 0.97 1.03 2,449.03
biomass density
Canopy height 0.96 0.69 1.30 2,459.40
Elevation 1 0.99 1.01 2,457.84
In-degree 1 0.95 1.01 2,456.86
Out-degree 1.11 1.08 1.14 2,397.36
Closeness —0.14 37.44 229.68 2,448.63
centrality
Betweenness 1 1 1 2,454.07
Clustering 0.28 0.07 1.31 2,451.75
coefficient
Page rank 0 0 0 2,451.87
Site entry 4.102065 x 7.698183 x 12.97760 x 10'° 13,045.11
10* 10
PBAAP 1.03 0.98 1.07 2,448.90
LOSAP 1.05 1.02 1.08 2,423.73

Multivariate

Cl
Covariate OR 2.5% 97.5% WAIC
Out-degree 1.08 1.11 1.14
LOSAP 1.01 1.04 1.07
T[4°C,10°C] 1.01 1.01 1.02
Farm density 1 1 1.01
2,374.83

Bold values correspond to variables that were significant in our analysis.

cases to controls considered in each weekly time step, since we expect
that the farm density modulates the size of the bandwidth radius, thus
increasing the radius distance to compensate for the low density of
cases (46, 87). We remark that the spatial distribution of cases and
controls alone may not be sufficient to fully explain PRRSV risk
dynamics; therefore, we consider that the maximum distance of 17km
calculated in our spatiotemporal analysis reflects a close representation
of PRRSV spatial risk in our study region, since risk estimates consider
temporal patterns associated with PRRRV (3, 10, 11).

Our spatiotemporal analysis showed increases in PRRSV risk
during the fall, winter, and early spring months, which aligns with
previous findings for the dense pig production region considered in
this study (3, 10, 11, 14). The seasonal effect was consistently detected
throughout the study period, but varied in intensity between years and
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farm types. In contrast to the typical seasonal patterns previously
reported for the dense pig production region considered in this study
and continued to be observed in this study, an increase in risk during
the summer (Week 20-35) months was detected in sow farms for all
years in our study period, with nursery and finisher farms displaying
a similar pattern for the years 2018 and 2020, and boar stud and
isolation farms only in 2020 (Figure 2). Summer PRRSV outbreaks in
breeding and finisher farms have been previously reported (3, 7);
however, we show that given the spatial proximity of farms in dense
pig production areas, the risk for a PRRSV outbreak may propagate to
different farm types. This information supports previous findings and
highlights the importance of considering transmission dynamics
between farm types during months outside the typical PRRSV season
to help farm managers and veterinarians plan for enhanced biosecurity
and surveillance (2, 3, 10, 12, 13).

Transmission dynamics of PRRSV involve two main transmission
pathways: direct contacts mediated by the movement of infected pigs
between farms (18, 20, 25, 66), and indirect contacts referred to as
local transmission (1, 11, 15, 16, 18, 19, 23, 33, 66). Local transmission
encompasses several mechanisms of spread and is typically used to
explain processes that occur over short geographical distances and
cannot be attributed to direct contacts caused by live animal shipments
among farms (16, 18, 19, 27, 28, 31, 88). Airborne transmission of
PRRSV has been suggested as a possible source of local transmission,
especially in areas of high farm density; however, evidence has been
inconsistent (31). Experimental studies conducted to examine the
distance airborne between-farm transmission of PRRSV may occur
showed that PRRSV was recovered at a distance of 9.2km (23, 32). In
a recent study, an atmospheric dispersion model was used to
determine that farms within a distance of 25km distance from a
PRRSV positive farm were at high PRRSV risk (33). Dispersion
models, such as the one developed by (33) may be invaluable tools
when conducting outbreak investigations; however, as noted by the
authors, further refinement to include environmental factors (e.g.,
temperature and humidity) and seasonal differences may yield more
accurate estimates. In our study, both the spatial (11.9km - 14.8km)
and spatiotemporal (17km) distances calculated are within the
distances proposed in (23, 33), and given the high density (e.g., 10-20
farms per 5km?) of farms in our study area, the potential for airborne
transmission occurring in our study area cannot be ruled out.
However, given the additional mechanisms (e.g., movement of
contaminated transportation vehicles, equipment, and personnel)
involved in local transmission that have been shown to contribute to
the between-farm transmission of PRRSV (18, 28, 89), the small
number of samples recovered through airborne transmission (23, 32),
and consideration of mechanical (presence of air filtration systems) or
environmental factors (e.g., temperature, humidity, vegetation and
slope) that may impact the survivability or infectivity of PRRSV,
we agree with previous conclusions that airborne transmission is an
infrequent or unlikely event (31).

Breeding farms have been the center of most swine disease
transmission studies (3, 38, 39, 43, 90-92). In this study, we have
shown that the number of sow farms in high-risk areas was larger than
all other farm types. A potential explanation as to why sow farms were
consistently categorized as high risk may be due to the higher level of
systematic testing performed at sow farms as compared to other farm
types (2, 18, 19). Higher levels of surveillance in sow farms increase
the detection rate of PRRSV outbreaks, consequently increasing the
number of analyzed PRRSV outbreaks in our study. Conversely, the
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underdetection of downstream farms, which has been noted in
previous studies as a limitation to understanding PRRSV transmission
dynamics (18, 19, 42, 91, 93), is consistent with our findings in the
spatial analysis where large numbers of PRRSV negative farms were
within areas of significant high risk. A recent work investigated the
association between PPRSV outbreaks and farm proximity to areas of
high commingling (slaughterhouses) and found no association;
however, the study only considered breeding herds, which highlights
the need to consider other farm types that may contribute to disease
circulation (43). Our study showed both upstream and downstream
farm types within areas of significant risk, and until systematic testing
occurs in all farm types, estimations of PRRSV spatial risk will remain
a challenge, especially for the estimations for growing pigs.
We encourage future research to incorporate parameters that evaluate
the sensitivity of the model on the basis of a distribution of possible
surveillance levels among the different farm types.

The most important risk factor associated with PRRSV outbreaks
in this study was the movement of animals, which has been shown to
be the dominant PRRSV transmission route (17, 18, 25, 90, 91, 94,
95-97). Specifically, the effect was related to the out-going movements
of animals, which is usually associated with farm types that have large
and consistent outgoing shipments of pigs, such as sow and nursery
farms. Such farms may usually take on the role of “movement hubs”
in a network, thus facilitating the spread of diseases (38, 90, 91, 98).
The high number of out-going movements is supported in
our findings, where the largest out-degree values were associated
with infected nursery farms with a median value of 9 (IQR: 7-11),
and 8 (IQR: 6-11) for controls (Supplementary material S2;
Supplementary material Table 58). Similarly, positive sow farms had
out-degree median values of 6 (IQR: 4-10), and 6 (IQR: 3-10) for
controls (Supplementary material Table S8).

The second important variable was LOSAP, which can serve as
potential entry pathway for the introduction of pathogens (42, 94).
Entry or exit through a LOSAP may involve several risk events such
as garbage collection, equipment repair, and removal of cull sows that
have been identified as relevant risk events associated with the
introduction of diseases (18, 27, 28, 97, 99). Among the different farm
types, sow farms had the highest median LOSAP values with control
farms having a median value of 5 (IQR: 1-16) LOSAP, and cases
having a median value of 3 (IQR: 1-12) LOSAP.

Temperature and relative humidity have been shown to influence
the survivability and optimal preservation of infectivity of PPRSV (65,
67). Here, we showed that the increased number of days between 4°C
and 10°C and the number of days a farm experienced relative humidity
values below 20% increased the probability of PRRSV outbreaks. This
is consistent with the seasonal signal of increased risk during the fall
and winter months seen in our data and reported in previous research
(3, 14). Lastly, we sought to expand on the investigation of the use of
vegetation buffers as possible means to mitigate PRRSV transmission.
EVI values between 41 and 45, which correspond to dense tree
coverage that is consistent with evergreen broadleaf forests were shown
to prevent the spread of PRRSV (1). We included EVI, AGB, and
canopy height data to capture the structure of the vegetation around
the farms; however, these variables were not significant. Given the
coarse spatial resolution used in this study, and the benefits of using
vegetation buffers to mitigate odor and pathogen emission and
introduction (1, 72, 74), we remark that further exploration into the
use of remotely sensed data to delineate vegetation buffers is warranted
since the availability of imagery from satellites with high temporal and
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spatial resolution continues to become more accessible. Lastly, a
previous study found the slope of the terrain to be associated with
lower PRRSV incidence, with an elevation of 61 meters from sea level
determined to be a safe range (1). We did not find a significant
correlation between PRRSV outbreaks and land slope in our model;
however, we remark that our results may in-part be related to the 1 km
x 1km spatial resolution of our data, and a finer spatial resolution
should be explored.

4.1. Limitations and further remarks

The present study has limitations. Firstly, swine production is
dynamic in nature, with farms being active and inactive throughout
the years. During the time period considered in this study, 34/2,293
farms (1.5%) changed from active to inactive between Nov 1st, 2017
through December 31st 2020, thus we consider our results closely
reflect the current status of the swine industry in our study region
given the high level of participation of the swine production companies
in our study. Another limitation in our study relates to how PRRSV
surveillance systems differ between farm types, with sow farms usually
conducting routine testing while downstream farm testing is not
always performed systematically (39, 42, 93). Differences in systematic
testing between the different farm types could have affected our risk
estimations; however, we believe that the PRRSV database captured by
MSHMTP is still the best alternative to the currently available PRRSV
datasets (2). For our spatiotemporal analysis, we arbitrarily chose the
exceedance risk threshold to be at 60% since it aligned with the
interpretation described in (46), where p(x)>0 represent areas of
higher risk, and f)(x) <0 areas of low risk. In future studies, other
cutoff values should be explored. Additionally, given that a farm may
continue to be reported as having an outbreak for multiple weeks, this
may potentially influence our spatiotemporal relative risk estimates by
increasing the number of cases in a given week. However, since we are
interested in quantifying the risk for the potential transmission of
PRRSYV, it is important we do not omit farms that could contribute to
the dissemination of PRRSV. A future study should consider an
approach that considers observation autocorrelated in time.

Even though we had to restrict our risk factor analysis to 2020
due to limitations of the between-farm movement data, our
results would likely be similar for other years, given how animal
movements are vertically integrated in the United States (18, 2,
66, 91, 100). Environmental factors that are known to vary
through time were averaged for an entire year, which might dilute
the temporal differences in environmental conditions that may
influence PRRSV transmission dynamics (3, 13, 14). However,
results obtained from this study provide the important
groundwork for further exploration of temporal differences
related to factors associated with PRRSV local spread. Despite the
limitations present in this study, here, we address an important
gap related to the spatial range associated with the risk of PRRSV
local transmission and estimate the maximum distance to which
farms may become exposed and or infected from nearby infected
farms. Both results could potentially be used to inform swine
producers within areas of elevated risk to consider enhancing
surveillance, sampling and disease control strategies (2, 96, 101).
In addition, information gathered from this study may be used to
calibrate future PRRSV transmission models by considering the
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calculated spatial bandwidths as the maximum transmission
distance (18-20, 66).

The results of this study suggest that farms within a 17km radius of
farms reporting PRRSV outbreaks are at greater risk of infection.
We demonstrated that PRRSV outbreaks remain mostly seasonal, with
differences in risk intensity between farm types. Our analysis also
captured sporadic summer increases in risk, with differences between
years and farm types. We found that sow farms had the highest number
of cases within areas of significant high risk and were collocated with
at-risk finisher and nursery farms. These findings suggest that
downstream farms (i.e., finisher farms) may play an important role in
maintaining the circulation of PRRSV within the farm population, and
support the need for systematic testing among the different farm types.
Lastly, out-going movement of pigs, the number of access points and
temperature were significant risk factors of PRRSV outbreaks. Ultimately,
we provide insights into PRRSV risk dynamics among farm types and
establish a maximum distance for the risk of PPRSV local transmission,
which could be used to inform targeted surveillance and disease control
strategies and calibrate future PRRSV transmission models.
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