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Network experiment designs for
inferring causal effects under
interference

Zahra Fatemi* and Elena Zheleva

Department of Computer Science, University of Illinois Chicago, Chicago, IL, United States

Current approaches to A/B testing in networks focus on limiting interference,
the concern that treatment effects can “spill over” from treatment nodes to
control nodes and lead to biased causal effect estimation. In the presence of
interference, two main types of causal effects are direct treatment effects and total
treatment effects. In this paper, we propose two network experiment designs that
increase the accuracy of direct and total effect estimations in network experiments
through minimizing interference between treatment and control units. For direct
treatment effect estimation, we present a framework that takes advantage of
independent sets and assigns treatment and control only to a set of non-adjacent
nodes in a graph, in order to disentangle peer effects from direct treatment
effect estimation. For total treatment effect estimation, our framework combines
weighted graph clustering and cluster matching approaches to jointly minimize
interference and selection bias. Through a series of simulated experiments on
synthetic and real-world network datasets, we show that our designs significantly
increase the accuracy of direct and total treatment effect estimation in network
experiments.

KEYWORDS

causal inference, direct treatment effects, total treatment effects, interference, spillover,
selection bias

1. Introduction

Causal inference plays a central role in many disciplines, from economics (Varian, 2016;
Holtz et al., 2020) to health sciences (Antman et al., 1992; Loucks and Thuma, 2003) and
social sciences (Sobel, 2000; Gangl, 2010). The goal of causal inference is to estimate the effect
of an intervention on individuals’ outcomes. The gold standard for inferring causality is the
use of controlled experiments, also known as A/B tests and Randomized Controlled Trials
(RCTs), in which experimenters can assign treatment (e.g. a news feed ranking algorithm) to
arandom subset of a population and compare their outcomes with the outcomes of a control
group, randomly selected from the same population (e.g., a group of users who used the old
news feed ranking algorithm). Through randomization, the experimenter can control for
confounding variables that can impact the treatment and outcome assignment but are not
present in the data and assess whether the treatment can cause the target variable to change.

While it is straightforward to randomly assign treatment and control to units that are
iid., it is much harder to do that for units that interact with each other. The goal of
designing network experiments is to ensure reliable causal effect estimation in controlled
experiments for potentially interacting units. One of the challenges in network experiment
design is dealing with interference (or spillover), the problem of treatment “spilling over”
from a treated node to a control node. The presence of interference breaks the Stable
Unit Treatment Value Assumption (SUTVA), the assumption that one unit’s outcome is
unaffected by another unit’s treatment assignment, and challenges the validity of causal
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inference (Imbens and Rubin, 2015). Different types of causal
estimands are possible in the presence of interference: 1) the
difference between the average outcomes of treated and untreated
individuals due to the treatment alone (Direct Treatment Effects),
2) the influence of peers’ behavior on the units response to
the treatment (Peer Effects), and 3) the combination of direct
treatment effects and peer effects (Total Treatment Effects).
Different estimands lead to different inference procedures—both
from a design and an analysis point of view. As a motivating
example, consider the problem of quantifying the effect of changing
the news feed ranking algorithm of an online social network website
on the time that users spend interacting with the site. Direct
treatment effects capture the effect of changing the news feed
ranking algorithm on the time that a user spends on the website,
regardless of the behavior of other users in the study. Peer effects
quantify the effect of friends time spent on the website on the time
that a user spends on the website. Total treatment effects show the
total effect of changing the news feed ranking algorithm on the time
all users spend on the website which is equal to the sum of peer
effects and direct treatment effects.

The focus of this paper is measuring direct and total treatment
effects in network data. The total treatment effect of applying
a treatment to all units compared with applying a different
(control) treatment to all units is a common causal estimand in
network experiments. Prominent methods for total treatment effect
estimation rely on two-stage or cluster-based randomization, in
which clusters are identified using graph clustering and cluster
randomization dictates the node assignment to treatment and
control (Ugander et al.,, 2013; Eckles et al., 2016; Saveski et al.,
2017; Pouget-Abadie et al., 2018; Fatemi and Zheleva, 2020). Graph
clustering aims to find densely connected clusters of nodes, such
that few edges exist across clusters (Schaeffer, 2007). The basic idea
of applying it to causal inference is that little interference can occur
between nodes in different clusters.

Clustering a connected graph component is guaranteed to leave
edges between clusters, therefore removing interference completely
is impossible. At the same time, some node pairs are more likely
to interact than others, and assigning such pairs to different
treatment groups is more likely to lead to undesired spillover (and
biased causal effect estimation) than separating pairs with a low
probability of interaction. We make the key observation that there
is an inherent tradeoff between interference and selection bias
in cluster-based randomization based on the chosen number of
clusters (as demonstrated in Figure 1). Due to the heterogeneity of
real-world graphs, discovered clusters can be very different from
each other, and the nodes in these clusters may not represent the
same underlying population (Fatemi and Zheleva, 2020). Therefore,
cluster randomization can lead to selection bias in the data with
causal effects that are confounded by the difference in node features
of each cluster.

Here, we propose two methods for network experiment design
in the presence of interference. First, we focus on quantifying
direct treatment effects by designing a network experiment that
disentangles peer effects from direct treatment effects and provides
an unbiased estimation of direct treatment effects. We develop
CauselS, a framework that leverages independent algorithms on
network nodes to divide nodes into two sets: 1) independent set
nodes, and 2) graph nodes that are not in the independent set
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FIGURE 1

The tradeoff between selection bias (distance) and undesired
spillover (RMSE) in cluster-based randomization; each data point is
annotated with the number of clusters.

referred to as bystander nodes. By assigning the independent set
nodes to treatment and control groups, we ensure that there are
no peer effects between nodes participating in the experiment,
regardless of whether they are in different treatment groups or the
same treatment group. Key to the proposed experiment design is
the idea that in expectation, the peer effects of bystander nodes on
the treatment group are the same as the peer effect of bystander
nodes on the control group, thus canceling each other in the total
treatment effect estimation.

The second method focuses on total treatment effect
estimation. We develop CMatch, a framework for network
experiment design that minimizes both interference and selection
bias through a novel objective function for matching clusters
and combining node matching with weighted graph clustering
to provide a more accurate estimation of total treatment effects
(Fatemi and Zheleva, 2020). We introduce the concept of “edge
spillover probability” as the probability of interaction between
entities and account for it in the design. In this work, incorporating
node matching and edge spillover probabilities into graph
clustering is novel.

2. Related works

By attracting attention toward network experiments, dependent
on the assumptions made in the study different causal estimands
for direct, peer, and total treatment effects have been proposed
(Halloran and Struchiner, 1995; Hudgens and Halloran, 2008;
Green et al., 2016; Taylor and Eckles, 2018; Pouget-Abadie et al,,
2019; Ugander and Yin, 2020; Aronow et al., 2021; Sévje et al., 2021).
In this section, we give an overview of relevant works to quantify
direct and total treatment effects in RCTs.

2.1. Direct treatment effect estimation

Estimating the effect of treatment alone has been studied in
the context of network experiment design. Jagadeesan et al. (2020)
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propose an approach to reduce the bias of the Neymanian estimator
of direct treatment effect estimation under interference and
homophily. In this approach, treatment assignment is considered
as a quasi-coloring on a graph and every treated node is tried
to be matched with a control node with an identical number of
treated and control neighbors to create a balanced interference in
network experiments. In networks where perfect quasi-coloring
is not possible, nodes are ordered by degree and then nodes
with a similar degree are paired and assigned to treatment or
control. The accuracy of causal effect estimation in this method
depends on the network structure, degree distribution of the
nodes, and approaching perfect quasi-coloring to perfect quasi-
coloring. Recently, Li and Wager (2022) explore the problem of
direct treatment effect estimation under random graph asymptotics
where an interference graph is a random draw from an (unknown)
graphon. Sussman and Airoldi (2017) propose an approach to
estimate direct treatment effects considering a fixed design for
potential outcomes. Similar to these approaches, we focus on
estimating direct treatment effects in the presence of peer effects,
but our approach can be applied in networks with different
structural properties.

2.2. Total treatment effect estimation

Recent work that addresses interference in graphs relies on
separating data samples through graph clustering (Backstrom and
Kleinberg, 2011; Ugander et al, 2013; Gui et al., 2015; Eckles
et al., 2016; Saveski et al, 2017; Pouget-Abadie et al., 2018),
relational d-separation (Maier et al., 2010, 2013; Rattigan et al,,
2011; Marazopoulou et al.,, 2015; Lee and Honavar, 2016), or
sequential randomization design (Toulis and Kao, 2013). Among
these approaches, cluster-based randomization methods attract
significant attention recently. Graph clustering aims to find
subgraph clusters with high intra-cluster and low inter-cluster edge
density (Zhou et al., 2009; Yang and Leskovec, 2015). A number
of algorithms exist for weighted graph clustering (Schaeffer,
2007). Node representation learning approaches range from graph
motifs (Milo et al., 2002) to embedding representations (Hamilton
et al., 2017) and statistical relational learning (SRL) (Rossi et al.,
2012). Eckles et al. (2016) evaluate different methods for designing
and analyzing randomized experiments and find substantial bias
reduction in cluster-based randomization approaches, especially
in networks with more clusters and stronger peer effects.
Saveski et al. propose a procedure to detect interference bias in
network experiments and propose a cluster-based randomization
approach to mitigate interference bias in such studies. By
comparing completely randomized and Cluster-based randomized
experiments (Saveski et al., 2017) on LinkedIn’s experimental
platform, they indicate the presence of network effects and bias
in standard RCTs in a real-world setting. However, cluster-based
randomized approaches have high variance, making them more
difficult to accurately estimate the treatment effect. Ugander et al.
(2013) define a restricted-growth condition on the growth rate of
node’s connections and show that the variance of estimators is
bounded by the linear function of the degrees.

In controlled experiments, the treatment assignment is
randomized by the experimenter, whereas in estimating causal
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effects from observational data, the process by which the treatment
is assigned is not decided by the experimenter and is often
unknown. Matching is a prominent method for mimicking
randomization in observational data by pairing treated units
with similar untreated units. Then, the causal effect of interest
is estimated based on the matched pairs, rather than the full
set of units present in the data, thus reducing the selection
bias in observational data (Stuart, 2010). There are two main
approaches to matching, fully blocked and propensity score
matching (PSM) (Stuart, 2010). Fully blocked matching selects
pairs of units whose distance in covariate space is under a pre-
determined distance threshold. PSM models the treatment variable
based on the observed covariates and matches units that have the
same likelihood of treatment. The few research articles that look
at the problem of matching for relational domains (Oktay et al.,
2010; Arbour et al., 2014) consider SRL data representations. None
of them consider cluster matching for a two-stage design which is
one of our contributions.

3. Preliminaries

In this section, we formally define the data model, the potential
outcomes frameworks, and different types of causal estimands.

3.1. Data model

A graph G = (V,E) consists of a set of n nodes V and a set
of edges E = {e;;} where e;; denotes that there is an edge between
node v; € V and node v; € V. Let N; denote the set of neighbors
for node v;, i.e. set of nodes that share an edge with v;. Let v; X
denote the pre-treatment node feature variables (e.g., Twitter user
features) for unit v;. Let v;.Y denote the outcome variable of interest
for each node v; (e.g., voting), and v;.T € {0, 1} denote whether
node v; (e.g., social media user) has been treated (e.g., shown a
post about the benefits of voting), v;.T = 1, or not, v;.T = 0. Let
Z € {0,1}" be the treatment assignment vector of all nodes. V
and Vj indicate the sets of units in treatment and control groups,
respectively. For simplicity, we assume that both v;.T and v;.Y are
binary variables. The edge spillover probability e;.p refers to the
probability of interference occurring between two nodes.

3.2. Potential outcomes framework

The fundamental problem of causal inference is that we can
observe the outcome of a target variable for an individual v;
in either the treatment or control group but not in both. Let
vi.y(1) and v;.y(0) denote the potential outcomes of vy if unit
v; were assigned to the treatment or control group, respectively.
The treatment effect (or causal effect) is the difference g(i) =
vi.y(1) — v;.y(0). Since we can never observe the outcome of a unit
under both treatment and control simultaneously, the effect /& of a
treatment on an outcome is typically calculated through averaging
outcomes over treatment and control groups via difference-in-
means: L = V1.Y — V.Y (Stuart, 2010). For the treatment effect to
be estimable, the following identifiability assumptions have to hold:
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o Stable unit treatment value assumption (SUTVA) refers to
the assumption that the outcomes v;.y(1) and v;.y(0) are
independent of the treatment assignment of other units:
{viy(1), vip(0)} Lv;. T, Vv; # v; € V.

e Ignorability (Imbens and Rubin, 2015)—also known as
conditional independence (Pearl, 2009) and absence of
unmeasured confoundness—is the assumption that all variables
v;.X that can influence both the treatment and outcome
v;.Y are observed in the data and there are no unmeasured
confounding variables that can cause changes in both the
treatment and the outcome: {v;.y(1), vi.»(0)} Lv;. T | vi. X.

e Overlap is the assumption that each unit assigned to the
treatment or control group could have been assigned to the
other group. This is also known as positivity assumption:
P(v;.T|v;.X) > 0 for all units and all possible T and X.

3.3. Types of causal effects in networks

We follow Hudgens and Halloran (2008) to define causal
estimands for different types of effects possible in the presence of
interference. However, our setting is different in a way that all nodes
in the same group receive a similar treatment.

Total Treatment Effects (TTE) is defined as the outcome
difference between two alternative universes, one in which all nodes
are assigned to treatment (Z; = {1}"V) and one in which all nodes
are assigned to control (Zg = {0}") (Ugander et al., 2013; Saveski
etal., 2017):

1
TTE = N Z(vi.Y(Zl) —v.Y(Zy)).

V,‘EV

TTE is estimated as averages over the treatment and control
group, and it accounts for two types of effects, Direct Treatment
Effects (DTE) and Peer Effects (PE):

TTE = V1.Y — Vo.Y = DTE(V) + PE(V,) — PE(Vy). (1)

Direct Treatment effects (DTE) reflects the difference between
the outcomes of treated and untreated subjects which can be
attributed to the treatment alone. They are estimated as:

DTE(V)= E [vi.Ym.T=1]— E [v.Yn.T =0]. (2)
Vi€ vieV

Peer effects (PE), known also as indirect effects in the prior
studies (Halloran and Struchiner, 1995; Hudgens and Halloran,
2008; Jagadeesan et al., 2020), reflect the difference in outcomes
that can be attributed to the influence of other subjects in the
experiment. Let Nj.r denote the vector of treatment assignments to
node v;’s neighbors N;. Average PE is estimated as having neighbors
with a treatment vector:

PE(V)= E [vi.Yv.T =t,Ni.wr] — E [v;.Y|v,.T =t,N; = ¢].
vieV vieV
(3)

Here, we distinguish between two types of peer effects,
allowable peer effects (APE) and unallowable peer effects (UPE).
Allowable peer effects are peer effects that occur within the same
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treatment group, and they are a natural consequence of network
interactions. For example, if a social media company wants to
introduce a new feature (e.g., nudging users to vote), it would
introduce that feature to all users and the total effect of the
feature would include both individual and peer effects. Unallowable
peer effects are peer effects that occur across treatment groups
and contribute to undesired spillover and incorrect causal effect
estimation.

For each node v; in treatment group ¢, we have two types of
neighbors: 1) neighbors N! in the same treatment class as node
v; with treatment assignment set NI.w; 2) set of neighbors in a
different treatment class Nl-? (f # t) with treatment assignment
denoted by Nl-?.rr. The APE is defined as:

APE(V) = E [vp.Yn.T =t,Ni.w] — ]Ev[v,-.Ym.T: t,NI =¢],
Vi€

vieV
4)
and the UPE is defined as:

UPE(V) = E [v.Y|vi.T = t,N'.x] — E [v.Y|v.T = t,N! =0].
V,‘EV ViEV
(5)

4. Problem statement

The goal of designing network experiments is to ensure reliable
causal effect estimation in controlled experiments by minimizing
both unallowable peer effects in node assignment to treatment and
control. In this work, we are interested to design two network
experiments for quantifying direct and total treatment effects.

4.1. Direct treatment effect estimation

The question we are interested to answer is: What is the causal
effect of the treatment alone? This question has many practical
applications for estimating the effectiveness of different policy
interventions. Some examples include: What is the individual
protection from a disease due to vaccination alone (and not herd
immunity)? What is the effect of advertisements on motivating
a person to buy a new phone? In network experiments, it is
challenging to disentangle DTE from PE and this is one of the main
goals of this paper. More formally:

Problem 1 (Network experiment design for direct treatment effect).
estimation. Given an undirected graph G = (V,E), and a set of
attributes V.X associated with each node. Find a treatment
assignment vector Z of a population with three different subsets of
nodes, the treatment nodes V; € V, the control nodes V € V, and
nodes excluded from the experiment V, € V, such that:

a. VoNVi NV, =40.
b. |Vo| + V1] is maximized.
c. PE(V;) — PE(Vy) ~ 0.

The first component aims to choose treatment, control, and
bystander nodes excluded from the experiments that do not

overlap. The second component ensures to choose of as many
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nodes as possible from V to be assigned to treatment and control
groups. The third component removes peer effects from causal
effect estimation.

4 2. Total treatment effect estimation

TTE is one of the most popular causal estimands in network
experiments, especially in cluster-based randomization approaches
(Eckles et al., 2016; Pouget-Abadie et al., 2018). There are two main
challenges with causal effect estimation in graphs.

4.2.1. Challenge no. 1: it is hard to separate a
graph into treatment and control nodes without
leaving edges across

The presence of interference breaks the SUTVA assumption
and leads to biased causal effect estimation in relational data. The
two-stage experimental design addresses this problem by finding
groups of units that are unlikely to interact with each other (stage 1)
and then randomly assigning each group to treatment and control
(stage 2). Clustering has been proposed as a way to discover such
groups that are strongly connected within but loosely connected
across, thus finding treatment and control subgraphs that have a
low probability of spillover from one to the other. However, due to
the density of real-world graphs, graph clustering techniques can
leave as many as 65% to 79% of edges as inter-cluster edges (Table
2 in Saveski et al., 2017). Leaving these edges across treatment
and control nodes would lead to a large amount of spillover.
Incorporating information about the edge probability of spillover
into the clustering helps alleviate this problem and is one of the
main contributions of our work.

4.2.2. Challenge no. 2: there is a tradeoff between
interference and selection bias in cluster-based
network experiments

While randomization of i.i.d. units in controlled experiments
can guarantee ignorability and overlap, the two-stage design does
not. One of the key observations in our work is that dependent
on the number of clusters, there is a tradeoff between interference
and selection bias in terms of the treatment and control group not
representing the same underlying distribution. Figure 1 illustrates
this tradeoff for Cora, one of the datasets in our experiments, using
reLDG as the clustering method. When a network is separated
into very few clusters, the Euclidean distance between nodes in
treatment and control clusters is larger than the Euclidean distance
when a lot of clusters are produced over the same network (e.g., 0.4
vs. 0.18 for 2 and 1,000 clusters). This is intuitive because as the
clusters get smaller and smaller, their randomization gets closer to
mimicking full node randomization (shown as a star). At the same
time, a larger number of clusters translates to a higher likelihood of
edges between treatment and control nodes, which leads to higher
undesired spillover and causal effect estimation error (e.g., 0.015 vs.
0.059 for 2 and 1000 clusters).

Ideally, we would like to measure TTE = DTE(V) +
APE(Vy) — APE(V)). Due to undesired spillover in a controlled
experiment, what we are able to measure instead is the overall
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effect that comprises both allowable and unallowable peer effects
TTE = DTE(V) + APE(V,) — APE(Vy) + UPE(V,) — UPE(Vp).
Therefore, when we design an experiment for minimum
interference, we are interested in setting it up in a way that makes
UPE(V,) = 0 and UPE(Vy) = 0. More formally:

Problem 2 (Network experiment design for total treatment
effect estimation). Given a graph G = (V, E), a set of attributes V.X
associated with each node and a set of spillover probabilities E.P
associated with the graph edges, we want to construct two sets of
nodes, the control nodes Vy € V and the treatment nodes V| € V
such that:

VoNV; =40.

|[Vo| 4 | V1| is maximized.

6 = UPE(V1) — UPE(Vy) is minimized.
Vo.X and V;.X are identically distributed.

a0 o

This problem definition describes the desired qualities of the
experiment design at a high level. The first component ensures
that the treatment and control nodes do not overlap. The second
component aims to keep as many nodes as possible from V in the
final design. The third component minimizes unallowable spillover.
The fourth component requires that there is no selection bias
between the treatment and control groups. The second and third
components are at odds with one another and require a tradeoft
because the lower 6, the lower the number of selected nodes for the
experiment V| 4 [V1]. As we showed in Figure 1, there is also a
tradeoft between the third and fourth components.

5. CauselS: a network experiment
design framework for direct treatment
effect estimation

In this section, we define an objective function corresponding
to the problem of this paper and describe our proposed framework
which we refer to as CauselS for estimating direct treatment effects
in network experiments.

Typically, total treatment effect estimation includes both APE
and UPE. In a randomized approach, TTE is estimated as:

TTE(V) = DTE(V)-(APE(V,)—APE(V,))+(UPE(V,)— UPE(V,)).

(6)

In this work, we propose an approach that makes APE(V;)=0

and APE(V()=0 and in expectation makes UPE(V)-UPE(V()=0,

thus making the estimated TTE correspond to DTE. We first

define an objective function that addresses the goals specified
in Problem 1.

5.1. Objective function

The goal of the objective function is to find a subset of V
with maximum cardinality (Problem 1.b) such that by randomizing
treatment assignment over the selected subset, the allowable peer
effects from the experiment are removed (Problem 1.c). We define
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s € {0,1} such that s; = 1 if node v; is in the set of selected nodes,
elses; = 0.

4
maximize Z S
i=1
subject to si+si<1 Vej€E
Si € {0,1} YvieV

The two constraints together guarantee that adjacent nodes are
not included in our network experiment design. This optimization
can be solved by reducing our problem to the maximum
independent set problem in graph theory (Eisenbrand et al., 2003)
such that nodes in the independent set correspond to the nodes
selected for the network experiment.

(V,E), IS C V is a subset of nodes
IS and v; € IS
there is no shared edge between them (e;; ¢ E). A maximal

Given a graph G =
such that for each pair of nodes v; €

independent set is an independent set that is not a subset of any
other independent sets of the graph. Using a greedy sequential
approach, a maximal independent set of a graph can be found
in O(|E]) (Blelloch et al., 2012) but there are parallel algorithms
that can solve this problem much faster in O(log(N)) (Luby,
1985; Yves et al,, 2009). A maximal independent set with the
largest possible size for a given graph is known as a maximum
independent set. Finding maximum independent sets in graphs
is known to be NP-hard. There are exact algorithms that can
find maximum independent sets in 0(1.1996"n°M)y  (Xiao and
Nagamochi, 2017) and also approximation algorithms that can find
it in O(n/(logn)z) (Boppana and Halldérsson, 1990).

5.2. CauselS Framework

We propose CauselS, a network experiment design for robust
estimation of Direct Treatment Effects by disentangling peer effects
from DTE. CauselS has two main steps:

1. Finding a maximum independent set of the graph (Independent
set graph in Figure 2).

2. Assigning nodes of the maximum independent set to treatment
and control in a randomized fashion (CauselS output graph in
Figure 2).

In this framework, we find the treatment assignment vector Z
of nodes by dividing the population into treatment, control, and
bystander nodes. Considering the proposed objective function, we
first use an algorithm to find the maximum independent set of the
given graph which partitions the graph into two sets of nodes: 1)
nodes in the maximum independent set denoted by MIS (MIS € V)
where by randomizing treatment assignment over these nodes, we
achieve treatment (V) and control (Vy) groups, and 2) bystander
nodes (V) that are not in MIS where V, C V, V, N MIS = {,
and V, U MIS = V. The main idea is to assign nodes of MIS to
treatment and control at random and ensure that there is no peer
effect across treatment and control nodes.

Figure 2 represents the pipeline of the CauselS framework.
Input graph shows the graph of the network that the network
experiment is conducted on. After using an independent set
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algorithm on the Input graph, independent set and bystander nodes
are selected from the graph that is shown in Independent set graph.
Finally, by randomizing treatment assignment over independent
set nodes, treatment, and control nodes are selected. CauselS
output graph shows the assignment of Input graph nodes to three
treatment groups where APE is removed from the experiment.

We remove bystander nodes from the randomized treatment
assignment because of the interaction within these nodes which
leads to APE in treatment effect estimation. However, it is still
possible that information flows from peers in V; to Vi and Vj,
leading to undesired peer effects (nodes 1,5,7,9, 10 in Figure 2). In
the running example, an infected person in V, may infect his peers
in Vg and V;.

By removing APE from Equation (6), we have TTE(V) =
DTE(V) + (UPE(V,) — UPE(V))). By randomizing the treatment
assignment over MIS nodes, we aim to provide a chance for
treatment and control nodes to have the same number of peers
in bystander nodes V,. Let «; be the set of bystander nodes that
are activated neighbors of treatment nodes, and «, be the set of
bystander nodes that are activated neighbors of control nodes at
time t-1. Let V1, and Vp, represent the set of treatment and
control nodes activated by «; and o at time t, and let V; _, and
Vo,—« denote the set of treatment and control nodes not activated
by bystander nodes, respectively. Through randomization over set
MIS, we obtain |a;| & |ag|. In this setup, TTE can be estimated as:

~ 1 1
TTE = (— .Y — — v.Y)
V1] 2 v Vol 2 v

vieV] o vi€Vo,—o
1 1
1 ViV 0 vieVou

If the probability of activating a treatment and a control node
by a bystander node is equal, then, in expectation, an equal number
of nodes in treatment and control nodes would get activated
by bystander nodes (|Vi4| & [Voql|) and UPE(V1) is equal to
UPE(V0), i.e., |V711\va'evm V.Y &~ |V710\Zw€Vo,a v;.Y. As a result,
we have:

. 1 1
TTE= — Y vY—— Y wyY. (8)
Vil & Vol &
i 1,—a ViEVo,—a

Since by design there are no peer effects between the
treatment and control groups, Equation (8) estimates the DTE
(TTE ~ DTE).

6. CMatch: a network experiment
design framework for total treatment
effect estimation

In this section, we describe our proposed CMatch framework
that increases the accuracy of TTE by combining clustering and
matching techniques.

6.1. CMatch framework

Our network experiment design framework CMatch, illustrated
in Figure 3, has two main goals: 1) spillover minimization which it
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‘ Independent set
graph 4

FIGURE 2

Illustration of CauselS frameworks in network experiments. Input graph: a graph of nodes and the connection between them. Independent set
graph: a graph of bystander and independent set nodes selected by the independent set algorithm. CauselS output graph: the output graph that
represents randomized treatment assignment of independent set nodes and peer effects that exists in the experiment.

CauselS output
>
grap. y
@ treatment node
O control node
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+== == Unallowable Peer Effect (UPE)
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Input CMatch

FIGURE 3
Illustration of CMatch framework for minimizing interference and selection bias in controlled experiments. Input: a graph of nodes and the
connection between them. CMatch: node and cluster matching; the dashed circles indicates the clusters. Matched nodes are represented with a
similar circle border. Output: assigning the matched cluster pairs to treatment and control randomly; circles with the same color represent matched
clusters.
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achieves through weighted graph clustering, and 2) selection bias
minimization which it achieves through cluster matching. Clusters
in each matched pair are assigned to different treatments, thus
achieving covariate balance between treatment and control (Fatemi
and Zheleva, 2020). The first goal addresses part ¢ of Problem 1
and the second goal addresses part d. While the first goal can be
achieved with existing graph mining algorithms, solving for the
second one requires developing novel approaches. To achieve the
second goal, we propose an objective function, which can be solved
with maximum weighted matching, and present the nuances of
operationalizing each step.

Frontiersin Big Data

6.1.1. Step 1: interference minimization through
weighted graph clustering

Existing cluster-based techniques for network experiment
design assume unweighted graphs (Backstrom and Kleinberg,
2011; Ugander et al., 2013; Gui et al., 2015; Eckles et al., 2016;
Saveski et al., 2017) and do not consider that different edges can
have different likelihood of spillover. Incorporating information
about the edge probability of spillover into the clustering helps
alleviate this problem and is one of the main contributions
of our work. In order to minimize undesired spillover, we
operationalize minimizing 6 as minimizing the edges, and more
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specifically the edge spillover probabilities, between treatment and
control nodes: § = ZVVI_E‘,O’W}_GVI ejj.p. To achieve this, CMatch
creates graph clusters for two-stage design by employing two
functions, edge spillover probability estimation and weighted graph
clustering.

6.1.1.1. Edge spillover probability estimation

We consider edge strength, how strong the relationship
between two nodes is, as a proxy for edge spillover probability.
This reflects the notion that the probability of a person influencing
a close friend to do something is higher than the probability
of influencing an acquaintance. We can use common graph
mining techniques to calculate edge strength, including ones based
on topological proximity (Liben-Nowell and Kleinberg, 2007),
supervised classification (Gilbert and Karahalios, 2009), or latent
variable models (Li et al., 2010).

6.1.1.2. Weighted graph clustering

In order to incorporate edge strength into clustering, we can
use any existing weighted graph clustering algorithm (Enright
et al., 2002; Schaeffer, 2007; Yang and Leskovec, 2015). In our
experiments, we use a prominent non-parametric algorithm, the
Markov Clustering Algorithm (MCL) (Enright et al., 2002) which
applies the idea of random walk for clustering graphs and produces
non-overlapping clusters. We also compare this algorithm with
reLDG which was the basis of previous work (Saveski et al,
2017). One of the advantages of MCL is that it automatically finds
the optimal number of clusters, rather than requiring it as input.
The main idea behind MCL is that nodes in the same cluster
are connected with higher-weighted shortest paths than nodes in
different clusters.

6.1.2. Step 2: selection bias minimization through
cluster matching

Randomizing treatment assignment over clusters in a two-
stage design does not guarantee that nodes within those clusters
would represent random samples of the population. We propose
to address this selection bias problem by cluster matching and
balancing covariates across treatment and control clusters. While
methods for matching nodes exist (Oktay et al., 2010; Stuart, 20105
Arbour et al,, 2014), this work is the first to propose methods for
matching clusters.

6.1.2.1. Objective function

The goal of cluster matching is to find pairs of clusters with
similar node covariate distributions and assign them to different
treatment groups. We propose to capture this through a maximum
weighted matching objective over a cluster graph in which each
discovered cluster from step 1 is a node and edges between clusters
represent their similarity. Suppose that graph G is partitioned into
C = {c1,¢2, ...,cg} clusters. We define A € {0, 1}, such that aj=1 if
two clusters ¢; and ¢j are matched, else a;; = 0. w;; € R represents
the similarity between two clusters ¢; and ¢;. Then the objective
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function of CMatch is as follows:

g g
argmax Z Z (ajj - wij)
A i=1 j=it1
lcil
subjectto  V¢; € C,Zaij < La; €{0,1}.
j=1

This objective function maps to a maximum weighted
matching problem for which there is a linear-time approximation
algorithm (Duan and Pettie, 2014) and a polynomial-time exact
algorithm with O(N%376) (Mucha and Sankowski, 2004; Harvey,
2009).

6.1.2.2. Solution

In order to operationalize the solution to this objective, the
main question that needs to be addressed is: what does it mean
for two clusters to be similar? We propose to capture this cluster
similarity through matched nodes. The more nodes can be matched
based on their covariates across two clusters, the more similar the
two clusters are. Thus, the operationalization comes down to the
following three questions which we address next:

1. What constitutes a node match?

2. How are node matches taken into consideration in computing
the pairwise cluster weights (cluster similarity)?

3. Given a cluster weight, what constitutes a potential cluster
match, and thus an edge in the cluster graph?

Once these three questions are addressed, the cluster graph can
be built and an existing maximum weighted matching algorithm
can be applied to it to find the final cluster matches.

6.1.2.2.1. Node Matching

The goal of node matching is to reduce the imbalance
between treatment and control groups due to their different
feature distributions. Given a node representation, fully blocked
matching would look for the most similar nodes based on
that representation  (Stuart, 2010). It is important to note
that propensity score matching does not apply here because it
models the probability of treatment in observational data and
treatment is unknown at the time of designing a controlled
experiment. In its simplest form, a node can be represented as
a vector of attributes, including node-specific attributes, such
as demographic characteristics, and structural attributes, such
as node degree. For any two nodes, it is possible to apply an
appropriate similarity measure sim(v;, v;), in order to match two
nodes, including cosine similarity, Jaccard similarity, or Euclidean
distance.

We consider two different options to match a pair of nodes in
different clusters (and ignore matches within the same cluster):

e Threshold-based node matching (TNM): Node vy in cluster
¢i is matched with node v, from a different cluster ¢; if the
pairwise similarity of nodes sim(vy, v;) > «. The threshold «
can vary from 0, which liberally matches all pairs of nodes, to
the maximum possible similarity which matches nodes only if
they are exactly the same. In our experiments, we set o based
on the covariate distribution of each dataset and consider
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different quartiles of pairwise similarity as thresholds. This
allows for each node to have multiple possible matches across
clusters.

e Best node matching (BNM): Node v in cluster ¢; is matched
with only one node v; which is most similar to v, in the
whole graph; v; should be in a different cluster. This is a
very conservative matching approach in which each node is
uniquely matched but allows the matching to be asymmetric.

6.1.2.2.2. Cluster Weights

After the selection of a node matching mechanism, we are
ready to define the pairwise similarity of clusters which is the
basis of cluster matching. We consider three simple approaches
and three more expensive approaches which require maximum
weighted matching between nodes:

e Euclidean distance (E): This approach is the simplest of all
because it does not consider node matches and it simply
calculates the Euclidean distance between the node attribute
vector means of two clusters.

e Matched node count (C): The first approach counts the
number of matched nodes in each pair of clusters ¢; and ¢;
and considers the count as the clusters’ pairwise similarity:
wij = }21 !le r]ijl. A node in cluster ¢; can have multiple
matched nodes in ¢;.

e Matched node average similarity (S): Instead of the count,
this approach considers the average similarity between
matched nodes across two clusters ¢; and ¢;:

Sl 37 o simtvan)

[ il ij
Dk 2121 Tk

Wij =

These first two approaches allow a single node to be matched
with multiple nodes in another cluster and each of those matches
counts toward the cluster pair weight. In order to distinguish this
from a more desirable case in which multiple nodes in one cluster
are matched to multiple nodes in another cluster, we propose
approaches that allow each node to be considered only once in the
matches that count toward the weight. For each pair of clusters, we
build a node graph in which an edge is formed between nodes v;
and v; in the two clusters and the weight of this edge is sim(v;, v}).
Maximum weighted matching will find the best possible node
matches in the two clusters. We consider three different variants for
calculating the cluster pair weight based on the maximum weighted
matching of nodes:

e Maximum matched node count (MC): This method
calculates the cluster weight the same way as C except that the
matches (whether er is 0 or 1) are based on the maximum
weighted matching result.

e Maximum matched node average similarity (MS): This
method calculates the cluster weight the same way as S except
that the node matches are based on the maximum weighted
matching result.

e Maximum matched node similarity sum (MSS): This
method calculates the cluster weight similarly to MS except
that it does not average the node similarity: w; =

il gl i
k’=‘1 lzjlr]fl-szm(vk,vl).
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6.1.2.2.3. Cluster graph

Once the cluster similarities have been determined, we need to
decide what similarity constitutes a potential cluster match. Such
potential matches are added as edges in the cluster graph which is
considered for maximum weighted matching. We consider three
different options:

e Threshold-based cluster matching (TCM): Cluster ¢; is
considered as a potential match of cluster ¢; if their weight
wij > pB. The threshold # can vary from 0, which allows
all pairs of clusters to be potential matches, to the maximum
possible similarity which allows matching between clusters
only if they are exactly the same. In our experiments, we set
B based on the distribution of pairwise similarities and their
quartiles as thresholds.

e Greedy cluster matching (GCM): For each cluster c;, a sorted
list of the similarities between ¢; and all other clusters is
defined. Cluster ¢; is considered a potential match only to the
cluster with the highest similarity value in the list.

The last step in CMatch runs maximum weighted matching on
the cluster graph. For every matched cluster pair, it assigns one
cluster to treatment and the other one to control at random. This
completes the network experiment design.

6.1.3. Analysis of the estimation bias

We follow Eckles et al. (2016) to analyze the estimation bias
of the proposed cluster-based approach. One of the common
approaches to measuring the causal effect 1 of a treatment on
an outcome is averaging outcomes over treatment and control
groups via difference-in-means: w = pd(VY) — pnd(Ve.Y)
where 14(V1.Y) and 14(V,.Y) are the mean outcomes of treatment
and control nodes under experiment design d, respectively. In
the presence of interference, u does not yield the true total
treatment effects (u? — u # 0). The impact of each node on
the estimation bias is equal to the difference between the expected
outcome of a node due to the treatment alone and the observed
outcome under global treatment assignment where all nodes in the
network have a treatment assignment. The experimental design can
control the size of this bias by controlling the global treatment
assignment. Eckles et al. prove that this bias in the cluster-based
randomization approach is less than or equal to the absolute bias
under randomized assignment. Following this study, if we assume
that we have a linear outcome model for each node v; € V as Eckles
etal. (2016):

Ev.Y(Z)] = a; + Z BijVj.T,

VeV

(10)

Where B is the coefficient matrix, then true TTE p is calculated
as Eckles et al. (2016):

p= (2~ 2o = > 3By, (1)
ij
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Under cluster-based randomization assignment, we have Eckles
etal. (2016):

p =Y BC) = COy) (12)

V,',VJ'EV

Where C(v;) denotes the cluster assignment of v;. Under
randomized assignment, we have Eckles et al. (2016):

1
and _ ; Z B;i.

vieV

(13)

Equations (11)-(13) imply that g — wr < o — prend,
The effectiveness of cluster-based randomization in reducing bias
depends on the strength of interactions within clusters. The ability
of the clustering algorithm to capture the coefficient matrix B in
a consistent manner also affects the degree of bias reduction. By
incorporating the strength of connections between units into the
clustering process, the method can better capture the structure of
dependence between units, resulting in a smaller bias (1 — wery.
Considering Equations (11)-(12), the relative bias is measured as
Eckles et al. (2016):

" 2 viev Bil[C(vi) = C(vj)]
MCbr B ZV,‘,V]‘GV Bij

—1. (14)

If the clustering fails to capture the structural dependencies,
the numerator in Equation (14) will be much smaller than the
denominator. As a result, the method will underestimate the true
total treatment effects.

/. Experiments

In this section, we evaluate the performance of CauselS and
CMatch in treatment effect estimation compared to the baselines.
We first describe datasets used in our experiments and then discuss
the experimental setup and results.

7.1. Data generation

Since existing network datasets do not have ground truth for
treatment and its causal effect on the outcome, we use synthetic
and real-world data structures and simulate the outcome and causal
effect in the experiments.

7.1.1. Synthetic data
For generating synthetic networks, we use two network
generation models:

e Barabasi-Albert (BA) model: This model generates random
scale-free networks using the preferential attachment model.
In the beginning, the network is constructed from my
connected nodes. Then, new nodes are connected to m existing
nodes with a probability that is proportional to the number
of edges that the existing nodes already have (Albert and
Barabdsi, 2002). We set m = 3 in all experiments.
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e Forest Fire (FF) model: In this model, a new node v; attaches
to an existing node v; and then links to nodes connected to
vj with forward and backward burning probabilities denoted
by py and py, respectively. Leskovec et al. (2007) show that
the synthetic network generated by this model can mimic
most real-world structure characteristics. In the experiments,
we generate all the graphs with forward burning probability
pr = 0.3 and backward burning probability p, = 0.3.

After generating the network structure, we generate 10
attributes for each node with a uniform distribution where the
values vary in [—1, 1].

7.1.2. Real-world data

We use five real-world datasets in our experiments. The
50 Women dataset (Michell and Amos, 1997) includes sport,
smoking, drug, and alcohol habits of 50 students with 74 friendship
(Sen et al, 2008)
incorporate the citation networks of 2,708 and 3,312 article with

connections. Cora and Citeseer datasets
binary bag-of-words attributes for each article and 4, 675 and 5278
(Zheleva et al., 2008)
includes the online friendship network of 2,059 hamsters with
10, 943 edges. Hateful users dataset (Ribeiro et al., 2018) is a sample
of Twitter’s retweet graph containing 100,386 users with 1,024

edges, respectively. Hamsterster dataset

attributes and more than two millions retweet edges. In hateful
users dataset, we remove singletons and nodes with degree 1 from
the graph.

7.1.3. Synthetic causal effect

We assume that the underlying probability of activating a node
(changing the outcome) due to treatment and allowable peer effects
in the treatment group is 0.4 and the underlying probability of
activating a control node due to treatment and allowable peer
effects is 0.2 which makes the true causal effect TTE = 0.2.
Based on these probabilities, we randomly assign each node as
activated or not. For each inactivated node, we simulate two types of
interference considering both fixed values (0.1 and 0.5) and values
based on the edge weights for e.p:

1. Direct interference: each treated neighbor of a control node
activates the node with an unallowable spillover probability of
e.p.

2. Contagion: inactive treated and untreated nodes get activated
with the unallowable spillover probability of e.p if they are
connected to at least one activated node in a different treatment
class.

7.2. Main algorithms and baselines

Our baselines differ corresponding to the causal effect of
interest. In the following, we describe the main baselines for direct
and total treatment effect estimation.
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7.2.1. Baselines for Direct Treatment Effect
Estimation

We compare the performance of four different approaches in
our experiments.

e Randomized: This algorithm assigns nodes to treatment and
control randomly, ignoring the network.

e Match: This algorithm matches nodes using the maximum
weighted matching algorithm and then randomly assigns
nodes in each matched pair to treatment and control at
random without considering clustering.

e CauselS: In our proposed framework, we use an algorithm to
find the maximum independent set MIS and then assign nodes
of the set to treatment or control at random.

e CauselS_match: This method uses the CauselS framework,
but it matches nodes of MIS and then assigns nodes of matched
pairs to treatment or control at random.

The goal of comparing our method with Match and CauselS_Match
is to show whether our method has selection bias. Using matching
for RCT is unusual, but in small datasets altering the randomization
process by posing structural constraints on the graph may lead to
worse randomization and matching can mitigate this problem.

7.2.2. Baselines for total treatment effect
estimation

For TTE, all our baseline and main algorithm variants take an
attributed graph as an input and produce a set of clusters, each
assigned to treatment, control, or none. For graph clustering, we
considered two main algorithms, Restreaming Linear Deterministic
Greedy (reLDG) (Nishimura and Ugander, 2013) and Markov
Clustering Algorithm (MCL) (Enright et al., 2002). reLDG takes as
input an unweighted graph and desired the number of clusters
and produces a graph clustering. reLDG was reported to perform
very well in state-of-the-art methods for network experiment
design (Saveski et al., 2017). MCL is a non-parametric algorithm
that takes as input a weighted graph and produces a graph
clustering. The edge weights which correspond to the probabilities
of spillover are estimated based on node pair similarity using one
minus the normalized L2 norm: 1 — Ly (v;.x, v.x).

The main algorithms and baselines are:

e CR (Saveski et al., 2017): The Completely Randomized (CR)
algorithm was used as a baseline in Saveski et al. (2017).
The algorithm clusters the unweighted graph using reLDG
algorithm, assigns similar clusters to the same strata, and
assigns nodes in strata to treatment and control in a
randomized fashion.

o CBRyerpG (Saveski et al., 2017): Cluster-based Randomized
assignment (CBR) is the main algorithm proposed by Saveski
et al. (2017). The algorithm clusters the unweighted graph
using reLDG, assigns similar clusters to the same strata, and
randomly picks clusters within the same strata as treatment or
control.

o CBRycr: A variant of CBR that we introduce for the sake of
fairness which uses MCL for weighted-graph clustering.
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o CMatchyerpg: This method uses our CMatch framework but
works on an unweighted graph. It uses reLDG for graph
clustering.

e CMatchyicr: This is our proposed technique which uses MCL
for weighted graph clustering.

We consider Randomized and Match techniques described in
Section 7.2.1 as two more baselines for total treatment effect
estimation. CMatch uses the maximum_weight_matching function
from the NetworkX Python library.

7.3. Experimental setup

We run a number of experiments varying the underlying
spillover assumptions, clustering algorithms, number of clusters,
and node matching algorithms. Our experimental setup measures
the desired properties for network experiment design, as described
in Problem 2 and follows the experimental setups in existing
work (Stuart, 2010; Maier et al., 2013; Arbour et al., 2014; Eckles
et al.,, 2016; Saveski et al., 2017).

To measure the strength of interference bias in different
estimators, we report on two metrics:

1. Root Mean Squared Error (RMSE) of the treatment effect
calculated as:

RMSE =

1 N
S 2 (G-
s=1

where S is the number of runs and z; and 7 are the true and
estimated causal effect in run s, respectively. We set S = 10 in all
experiments. The error can be attributed to undesired spillover
only.

2. The number of edges and the sum of edge weights between
treatment and control nodes are assigned by each algorithm.

To show the selection bias, we want to assess how different
treatment vs. control nodes are. We compute the Euclidean
distance between the attribute vector mean of treated and untreated
nodes. We show the average and standard deviation over 10 runs.
To show the strength of UPE imposed by bystander nodes in
the CauselS framework, we calculate the difference between the
percentage of edges from bystander nodes to treatment and control

nodes as:
1
— di;i — d;;) x 100 15
|E|<Z = > dij) (15)
B,’JEE E,'JEE
V,'ET V,'GC
vjeB vieB

Where d;; = 1 if there is an edge between node v; and v;. T and
C show the vector of treatment and control nodes.

in our experiments, we use the maximal_independent_set
function from the NetworkX Python library to find a maximal
independent set of each graph which implements the approach by
Blelloch et al. (2012).

We run all 115 possible combinations of CMatch options for
node matching, cluster weights, and cluster graphs for each dataset.
We consider four different values for the threshold o in TNM:

frontiersin.org


https://doi.org/10.3389/fdata.2023.1128649
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Fatemi and Zheleva

10.3389/fdata.2023.1128649

ep

=0.1 ep=0.5

e.p = edge-weight

0251 mmm Randomized 0.175 A
” Match
¥ 0204 = CauselS 0.150 A
il CauselS_Match
‘5‘:‘1 0.125 -
£ 015
3 0.100 A
=
g
£ 0.101 0.075
5
) 0.050 4
Z 0.05

0.025 -
0.00 - 0.000 -

Cora

Citeseer

Cora Hamsterster 50 Women Hateful Users Citeseer

FIGURE 4

Hamsterster 50 Women Hateful Users

RMSE of direct treatment effects in real-world datasets considering different unallowable peer effect probabilities

0.25

0.20 A

0.15

0.10 A

0.05 A

0.00 -

Citeseer Cora Hamsterster 50 Women Hateful Users

A B
mmm Randomized
0.16 1 Match

o 0.12 mm CauselS
G 0.14 1 CauselS_Match
5 ;
0 0.10
2 0.12 1

[
£ 0.08 0.10 1

©

g
= 0.061 0.08 -

[}
£ 0.06
a 061
2 0.04

o
% 0.04
s 0.021
o« 0.02 4

0:00:7 0.00
500 1000 10,000 20,000 30,000 40,000 50,000 R
’ 4 : : : 500 1000 10,000 20,000 30,000 40,000 50,000
210 429 4,335 11,596 12,911 17,271 21,517 206 411 4227 8448 12,715 16,932 21,137
Population size Population size
FIGURE 5

RMSE of direct treatment effect in synthetic data with a different number of nodes and edges. Numbers in the first row of the x-axis show the
number of nodes in graphs, and the second row represents the size of MIS. (A) Forest Fire model. (B) Barab'asi-Albert model.

0 (TNMO), first (TNM1), second (TNM2) and third (TNM3)
quantile of pairwise nodes’ similarity distribution where sim(v;, vj)=
(1- the normalized L, norm). For TCM, we consider four different
B values: 0 (TCMO), first (TCM1), second (TCM2) and third
(TCM3) quantile of the pairwise clusters’ similarity distribution for
each dataset. We use TNM2 + C + TCM2 in all the experiments of
CMatchyerpG.

Unless otherwise specified, the number of clusters is the
same for all CBR and CMatch versions based on the optimal
determination by MCL as optimal for each respective dataset.
The number of clusters determined by MCL is 2,497 for
Citeseer, 1,885 for Cora, 1,056 for Hamsterster and 20 in 50
Women dataset.

7.4. Results

Here, we present the experimental results for the proposed
framework. We first describe the performance of the CauselS
approach in estimating direct treatment effects. Then, we show the
effectiveness of the CMatch framework in mitigating interference
and selection bias.
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7.4.1. Performance of CauselS framework
7.4.1.1. Evaluation of direct treatment effect estimation

To assess the accuracy of CauselS in estimating DTE compared
to the baselines, we measure causal effect estimation error for
different unallowable peer effect probabilities. Figure 4 shows
the RMSE of DTE in real-world data sets. In all five datasets,
CauselS and CauselS_Match get lower estimation error, compared
to Randomized and Match, especially in Hamsterster with 72.1%
and 76.6% estimated error reduction for e.p = edge_weight and
e.p = 0.5 and Hateful Users with 69.4% estimated error reduction
for e.p = 0.1. By increasing the spillover probability from 0.1 to 0.5,
we get higher estimation errors because the probability of changing
treatment and control outcomes through peer effects increases.

Synthetic data experiments depict a similar picture. Figure 5
shows the stronger performance of CauselS and CauselS_Match
over Randomized and Match methods in reducing causal effect
estimation error. For example, CauselS’s error is more than half
of the error of Randomized approach (0.04 vs. 0.12 for graphs
with 10,000 nodes, 0.13 vs. 0.035 for graphs with 20, 000 nodes in
Forest Fire model). In graphs with 50,000 nodes, CauselS obtains
63.4% and 69.9% estimation error reduction in Forest Fire and
Barabasi-Albert models respectively, compared to other graphs.
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RMSE of direct treatment effects in synthetic data with 10,000 nodes and different densities. Numbers in the first row of the x-axis show the number
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In both synthetic and real-world datasets, Randomized and
Match on one hand and CauselS and CauselS_Match on the other
hand show similar performances. This is intuitive because they use
similar randomization techniques. While MIS size is approximately
half of the population size in all datasets, by increasing the size of
MIS the estimation error of CauselS is still significantly lower than
Randomized methods with smaller population size.

7.4.1.2. Sensitivity to the density of networks

To assess the impact of network density on the estimation error
of various models, we computed the average estimation error across
10 randomly generated graphs containing 10,000 nodes for each
density value. We adjusted the density of graphs in the Barabasi-
Albert model by altering the value of m within the range of 1-9,
while for the Forest Fire model, we set py = p, and varied py
between 0.01 and 0.35. Figure 6 illustrates that as the density of the
graphs increases, the estimation error for all methods also increases.
This observation is expected since an increase in the number
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of edges between treatment and control raises the possibility of
unallowable peer effects in the experiment. However, the CauselS
and CauselS_Match methods consistently outperform the other
two baseline methods in all graphs. Moreover, an increase in the
density of the graph leads to a decrease in the size of the MIS. A
higher MIS rate (meaning fewer bystander nodes) implies fewer
spillover effects from bystander nodes to treatment and control,
resulting in smaller estimation errors.

7.4.1.3. Selection bias evaluation

In this experiment, we evaluate the selection bias of different
methods by comparing the Euclidean distance between treatment
and control nodes’ attributes in real-world and synthetic datasets
with different population sizes. Figure 7 shows this comparison of
real-world and synthetic data. It is not surprising that the Match
method gets the lowest selection bias in all datasets because it
matches most similar treatment and control nodes based on the
similarity of attributes. CauseIS_Match has a higher selection bias
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than Match because the number of nodes matched in this approach
is less than the Match method. Although CauselS has a high
selection bias, CauselS_Match reduces selection bias to some extent.

Next, we look at how sample size impacts selection bias. We
expect that asymptotically, there would be no selection bias with
randomization for any design. Figure 7 shows that independent
from the network generating model, by increasing the population
size the similarity between treatment and control nodes’ attributes
reduces, and the value of matching decreases and disappears. For
example, in graphs with 500 nodes generated by the Forest Fire
model, the difference between Fuclidean distance of treatment and
control nodes in CauselS is 0.24, while in graphs with 50,000
nodes, this difference decreases to 0.024. These results confirm the
advantage of the matching technique in small datasets.

7.4.1.4. Peer effect evaluation

To measure the extent to which UPE(V,) and UPE(V;) can
cancel each other out, we consider the percentage of edges from
bystander nodes to treatment and control nodes. Figure 8 shows
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this quantity in real-world and synthetic datasets using CauselS and
CauselS_Match methods. As expected, results show that for graphs
with fewer number of nodes, the difference between the number
of edges to treatment and control nodes is higher compared to
larger graphs, 2.5 vs. 0.04 in 50 Women vs. Hateful Users dataset.
In synthetic data with higher population sizes (40, 000 and 50, 000),
the difference between the percentages of edges to treatment and
control is close to zero.

In both synthetic and real-world datasets, we observe that
by increasing the sample size, the causal effect estimation error
decreases because by increasing the density of the graph edges the
percentage of edges from bystander nodes to treatment and control
nodes becomes more similar and UPE(V;) - UPE(V)) goes to zero.

7.4.1.5. Degree distribution evaluation

To assess the extent to which the maximal independent set
chosen by CauselS biases the degree distribution of selected
treatment and control nodes, we compare the degree distributions
of treatment and control nodes selected by CauselS and
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TABLE 1 The tradeoff between selection bias (distance) and undesirable spillover (RMSE) in CMatch variants in the Cora dataset.

TCMO TCM1 TCM2 TCM3
RMSE ED RMSE ED RMSE ED RMSE
TNMO 0.052 0.184 0.007 0.267 0.017 0.263 0.014 0.26 0.048 0.789
TNM1 0.055 0.176 0.051 0.177 0.008 0.258 0.012 0.26 0.031 0.6
C TNM2 0.054 0.171 0.042 0.171 0.01 0.253 0.017 0.251 0.036 0.591
TNM3 0.043 0.175 0.043 0.175 0.0173 0.046 0.018 0.231 0.034 0.592
BNM 0.012 0.262 0.037 0.481 0.049 0.485 0.059 0.479 0.025 0.274
TNMO 0.056 0.16 0.058 0.159 0.048 0.16 0.056 0.162 0.035 034
TNM1 0.055 0.16 0.053 0.162 0.057 0.165 0.054 0.166 0.026 031
S TNM2 0.056 0.162 0.054 0.168 0.048 0.165 0.033 0.183 0.039 0.292
TNM3 0.057 0.169 0.041 0.174 0.024 0.198 0.015 0.211 0.021 0.275
BNM 0.014 0.253 0.017 0.264 0.02 027 0.027 0.303 0.014 0277
TNMO 0.049 0.177 0.015 0.261 0.01 0.262 0.008 0.263 0.042 0.189
TNM1 0.055 0.173 0.052 0.174 0.01 0.257 0.012 0.253 0.040 0.191
MC TNM2 0.047 0.171 0.051 0.177 0.013 0.261 0.007 0.263 0.024 0211
TNM3 0.047 0.173 0.049 0.178 0.051 0.176 0.011 0.249 0.012 0.244
BNM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
TNMO 0.048 0.155 0.051 0.156 0.052 0.156 0.058 0.157 0.018 0271
TNM1 0.051 0.156 0.057 0.157 0.048 0.156 0.052 0.16 0.022 0.264
MS TNM2 0.059 0.156 0.057 0.157 0.054 0.158 0.056 0.157 0.021 0.258
TNM3 0.053 0.157 0.05 0.159 0.056 0.155 0.051 0.156 0.028 027
BNM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
TNMO 0.059 0.162 0.048 0.162 0.061 0.159 0.036 0.184 0.026 0271
TNM1 0.056 0.16 0.054 0.161 0.047 0.161 0.03 0.194 0.029 0.275
MSS TNM2 0.052 0.161 0.057 0.161 0.045 0.172 0.028 0.195 0.021 0.281
TNM3 0.049 0.168 0.035 0.186 0.023 0.199 0.022 0.212 0.033 0.278
BNM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
E N/A 0.051 0.178 0.05 0.18 0.031 0.203 0.012 0.242 0.042 0718

CMatchycy, variants used in Figure 10 are in bold.

Randomized. Figure 9 shows that CauselS selects treatment and
control groups with roughly similar degree distribution in all
datasets, except in 50 Women dataset where the assignment looks
more biased, likely due to its small size. CauselS removes high-
degree nodes from the experiment which results in incorporating
treatment and control groups with a more balanced degree
distribution in the experiments.

7.4.2. Performance of CMatch framework
7.4.2.1. Tradeoff between interference and selection bias
in CMatch variants and baselines

Given the large number of CMatch option combinations (115),
we first find which ones of these combinations have a good tradeoft
between RMSE and Euclidean distance (between treatment and
control) with e.p = edge-weight. Depending on the node matching
and cluster matching thresholds, which are specified by the user, the
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performance of CMatch options varies. Based on these experiments,
we notice that 1) methods with stricter cluster thresholds (TCM2
and TCM3) tend to have a lower error, 2) stricter node match
thresholds (TNM2 and TNM3) have lower error than others for
S and MSS and 3) MS has high error across thresholds. We show
the detailed results for Cora in Table 1.

Figure 10 shows the results for the CMatch variants with the
best tradeoffs and their better performance when compared to the
baselines for Cora. Full CMatch results can be found in Table 1.
The figure clearly shows that the selection bias decreases at the
expense of interference bias. For example, while the Euclidean
distance for TNM0+MS+TCMO is low (0.155) when compared to
TNM2+C+TCM2 (0.253), its RMSE is higher, 0.048 vs. 0.01. The
comparison between CBR,.;pc with different possible number of
clusters is consistent with the tradeoff shown in Figure 1. CBRy1pG
with the highest error (annotated with 1885) and CMatchycy, have
the same number of clusters. It is intuitive that the Match method
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has the least selection bias because all nodes have their best matches.
However, similar to the Randomized method, it suffers from high
interference bias (RMSE) because of the high density of edges
between treatment and control nodes.

7.4.2.2. Interference evaluation for contagion

We choose two CMatch variants with low estimation errors:
TNM2 + MSS + TCM3 and TNM2 + C + TCM2, denoted by
CMatchpcry,s and CMatchycr,. respectively, and compare their
causal effect estimation error with the baselines. The first method
uses a simpler cluster weight assignment while the second one uses
the expensive maximum weighted matching of nodes. Figure 11
shows that both variants of CMatchycr get significantly lower
error than other methods, especially in Citeseer and Cora with
75.5% and 81.8% estimated error reduction in comparison to
CBRyerpG for e.p = edge-weight. CMatchprcr,ss has higher error
than CMatchpcr in most of the experiments which are expected
as shown in Figure 10. Randomized and Match approaches have
similar performance in all datasets because of their similarity in the
node randomization approach. We also notice that CBR,.;p; has
the highest estimation error in Hamsterster data which confirms
that clustering has a significant effect on the unallowable spillover.
Meanwhile, CMatch,e;pg outperforms other baselines in some
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datasets (Citeseer) but not in others (Hamsterster and 50 Women).
In Citeseer, the CR method gets the largest estimation error.

Figure 11 also shows that the higher the unallowable spillover
probability, the larger the estimation error but also the better
our method becomes relative to the baselines. For example, by
increasing the unallowable spillover probability from 0.1 to 0.5
in Citeseer, the estimation error increases from 0.005 to 0.02 for
CMatchpicr and from 0.023 to 0.086 for CBRe1pG-

7.4.2.3. Interference evaluation for direct interference
Figure 12 shows the difference between the RMSE of different
estimators over the presence of direct interference for e.p = edge-
weight. In four datasets, both variants of CMatchycy, get the lowest
estimation error in comparison to baseline methods. For example,
CMatchpcr,’s error is approximately half of the error of CBR,.1pg
(0.06 vs. 0.13 for Citeseer, 0.1 vs. 0.22 for Cora, 0.31 vs. 0.54 for
Hamsterster, 0.15 vs. 0.36 for 50 Women). Similar to contagion,
Match, and Randomized methods have similar estimation errors.

7.4.2.4. Potential spillover evaluation

Table 2 shows the potential spillover between treatment and
control nodes assigned by different methods. This applies to both
contagion and direct interference. CMatch has the lowest sum of
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TABLE 2 Percentage of edges (and edge weights) between treatment and control nodes.

Dataset Randomized CBRycL Match CMatchyerpG CMatchpcre
Citeseer 49.9% (50%) 35.9% (36.3%) | 39.8% (38.4%) | 38.9% (38.4%) | 53.9% (56.6%) 35.8% (34.4%) 7.5% (7.2%)
Cora 49.7% (49.7%) 37.6% (37.6%) | 43.4% (42.8%) | 38.9% (33.6%) | 51.8% (53.3%) 38.7% (38.2%) 8.6% (9.1%)
Hamsterster 50.2% (50.1%) 31.7% (30.4%) | 48.3% (48.3%) | 35.1% (34.7%) | 50% (50.1%) 43.3% (44.4%) 34.8% (34.4%)
50 Women 48.5% (48.1%) 31.8% (30.5%) | 36.6% (34.3%) | 18.3% (11.4%) | 52.5% (52.7%) 16% (18.6%) 12.8% (9.7%)

The lower the number, the lower probability of undesired spillover. The smallest percentages are shown in bold.
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clusters, the lower the selection bias.

Euclidean distance between the attribute vector means of treatment and control nodes for a different number of clusters. The higher the number of
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edges and edge weights between treatment and control nodes across
all datasets. The difference between CMatchpcr. and the baselines
in Cora and Citeseer is substantial: CMatchycr. has between 13.5
and 34.8% lower number of edges between treatment and control
across datasets.

7.4.2.5. Selection bias evaluation for contagion

In this experiment, we look at the relationship between the
number of clusters and the difference between treatment and
control nodes with and without cluster matching. Figure 13 shows
the Euclidean distance between the average of treatment and
control nodes” attributes in CMatch,e;pG, CBRerpG and reLDG
for three different numbers of clusters and unallowable spillover
probability e.p = edge-weight. Since CMatch,,;p; optimizes for
selection bias directly, it is not surprising that it results in treatment
and control nodes that have more similar feature distributions than
the other two methods. In Citeseer the differences are more subtle
than in the other datasets. Error bars show the variance of averages
over 10 runs which confirm the low variance of estimations in all
datasets except in 50 Women, which is a small dataset.
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RMSE of total effect in the presence of contagion using three
different similarity methods to calculate spillover probability: Cosine
(co), Jaccard (ja) and L2 similarity.

7.4.2.6. Sensitivity to spillover probability metrics

Our last experiment compares metrics for calculating the
spillover probability, Cosine similarity, Jaccard similarity, and the
L2-based similarity used in all other experiments. We report
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on RMSE of total effect using CMatchycr. and CMatchpycr g
methods under contagion. Figure 14 shows that CMatchyicr. with
L2-based similarity obtains the least error in all datasets except
for Citeseer where Cosine similarity has a slightly lower error.
For CMatchpcr,gs> Cosine similarity has the lowest RMSE in
Citeseer and 50 Women dataset, while Euclidean similarity has the
lowest error in the other datasets. Jaccard similarity has the highest
estimation error in all almost all cases.

8. Conclusion

In this paper, we proposed two different frameworks for
network experiment designs that provide a more accurate
estimation of two common causal estimands under interference:
direct treatment effects and total treatment effects. For direct
treatment effect estimation, we presented CauselS, a framework
that uses an independent set explicitly to disentangle peer
effects from direct treatment effect estimation and increase the
accuracy of direct treatment effect estimation. For total treatment
effect estimation, we introduced CMatch, the first optimization
framework that minimizes both interference and selection bias
in cluster-based network experiment design. Our experiments
on synthetic and real-world datasets confirm that this approach
decreases direct and total treatment effect estimation error
significantly. Some possible extensions of our frameworks include
understanding the impact of network structural properties on
estimation, jointly optimizing for interference and selection bias,
and developing frameworks that are able to mitigate multiple-hop
diffusions.
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