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Abstract. We perform a detailed comparison of the dynamics of cosmic string loops obtained
in cosmological field theory simulations with their expected motion according to the Nambu-
Goto action. We demonstrate that these loops follow the trajectories predicted within the
NG effective theory except in regions of high curvature where energy is emitted from the
loop in the form of massive radiation. This energy loss continues for all the loops studied
in this simulation until they self-intersect or become small enough that they annihilate and
disappear well before they complete a single oscillation. We comment on the relevance of this
investigation to the interpretation of the results from cosmological field theory simulations
as well as their extrapolation to a cosmological context.
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1 Introduction

Many non-linear field theories have in their spectrum solitonic solutions that play a significant
role in the dynamics of the theory. These objects have been extensively studied over the past
few decades in connection to many different fields of research from condensed matter to
cosmology. One important aspect of these studies has been the investigation of the dynamics
and interactions of these solitons.

One can explore these issues by performing numerical experiments in a lattice simu-
lation. This lattice does not know anything about the solitonic configuration and simply
evolves every point in space as any other one following the equations of motion. One can
then recover the information of the evolution of the fields in the lattice and interpret the re-
sults in terms of a collection of solitons in motion possibly interacting with each other. This
is a useful way to analyse the microphysics of the solitons since one can probe the profiles of
the fields at scales smaller than the characteristic soliton size1. In particular, one could use
this technique to find out whether the solitons remain in their lowest energy state or whether
they are typically excited at some point during the simulation.

On the other hand, this procedure is computationally very expensive if one wants to
simulate a volume that is large compared to the size of the soliton. This is particularly
relevant in simulations that involve many solitons or whenever one is interested in investi-
gating an effect whose typical scale is much larger than the soliton’s thickness. In these cases
one is forced to look for some effective theory that captures the degrees of freedom that are
relevant for the problem without having to simulate every point in a lattice. This drastic
reduction in the number of degrees of freedom that one needs to compute to simulate the
soliton’s dynamics suggests the possibility of another kind of simulation. Such simulations
based on effective theories allow for a much larger dynamic range in the simulation, which in
turn will help us obtain a better understanding of the large scale dynamics of the problem.
However, one needs to make sure that there are no microphysical effects that are missing in

1This is always the case since one of the requirements of our lattice spacing should be that it is always
smaller than the soliton characteristic scale.

– 1 –



the effective theory that could potentially become relevant for the large scale dynamics that
one wants to faithfully reproduce in the simulation.

These two types of simulations are therefore complementary. One can use the lattice
simulations to learn the important field theory effects that need to be accounted for in the
effective theory of the solitons. Once this is done, one should be able to find some common
ground where both these simulations can be compared and where an agreement can be
reached on the important dynamics to study. Once this is achieved, an extrapolation to the
interesting scales can be safely done using the effective theory.

In this paper we would like to take the first step towards showing this agreement between
these two approaches in the context of local cosmic string networks. In this case, we will
consider the Abelian-Higgs model as the field theory where local cosmic strings occur as
solitons [1] and the Nambu-Goto (NG) action as the effective theory at low energies [2, 3].
Cosmological simulations of both types, lattice field theory [4–11] and Nambu-Goto dynamics
[12–21], have been extensively studied in the past. However, there seems to be an important
disagreement about the abundance of non-self-intersecting (NSI) loops between these two
numerical techniques. As its name suggests, non-self-intersecting loops are loops that in
their dynamics do not self-intersect. All the loops found so far in field theory simulations do
self intersect, and the loops seem to decay in a short period of time. Nambu-Goto simulations
also produce self-intersecting loops, but over the course of their evolution a large number of
non-self-intersecting loops appear. These non-self-intersecting loops are important, since
their main energy loss mechanism is via gravitational waves, whereas loops that continually
intersect lose energy also via massive radiation.

This apparent disagreement has been the source of a debate for a very long time, since
some of the first field theory simulations of string networks [4]. One possible explanation
could be that field theory simulations have not been lucky enough to produce a large enough
NSI loop. This is a reasonable explanation, since field theory simulations have much fewer
loops in general, and Nambu-Goto dynamics shows that NSI conditions in a random loop are
rare compared to self-intersecting ones.

It is important to remember at this point that the NG action is only an approximation to
the actual dynamics of the strings and, as we will describe in detail in this paper, can certainly
break down under some special circumstances. However, field theory simulations of individual
smooth strings have shown conclusively that these strings follow almost exactly the Nambu-
Goto dynamics [22, 23]. This makes this disagreement with field theory simulations more
puzzling and has prompted some authors to suggest that another reason for the disagreement
may be due to the presence of excitations on the strings in the network simulations [8, 24].

These field theory excitations have been found in many soliton solutions, in particular
in cosmic strings [25–28], and have been recently studied in a series of papers in different
models in [29–31]. The results of these studies show that many solitonic solutions may store
a significant amount of energy in the form of excitations [29, 32]. In particular, the phase
transition that creates these solitons could lead to an excited initial state due to the extra
energy floating around the bulk as the soliton is formed. Furthermore, these papers show
that the time scale for the decay of these excitations could be much larger than the typical
time scale of the soliton, the light-crossing time of the width of the soliton [29, 33]. This
suggests that the effect of these excitations could play some role in the dynamics of strings
in field theory simulations. In particular, the presence of these extra modes localized on the
string could modify their equation of state rendering their dynamics quite different from the
one predicted by the Nambu-Goto action. However, the existence of this extra energy on
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cosmic strings has never been conclusively shown in any field theory simulation of the string
network2.

In this paper we will study this problem by carefully analysing the evolution of loops
extracted directly from field theory simulations. Specifically, we obtain the position and
velocity of some of the largest loops found in the course of a field theory simulation of a
network of strings and compare their evolution with the one predicted by the Nambu-Goto
action.

The results indicate that these loops follow the same trajectories as their NG counter-
parts, except in localized regions where the curvature of the strings is large compared with
the string core thickness, where the NG approximation is not good by definition. As we will
argue in the main part of the text, this shows that there is no significant deviation from the
Nambu-Goto dynamics due to a new equation of state for the strings in the parts where the
curvature is not high. In other words, it seems that the strings in our simulations do not
have a large amount of energy stored in them in the form of localized excitations.

The organization of the paper is the following. In section 2, we comment on the charac-
teristics of the field theory simulations that were used to generate the field theory trajectories
of the loops. In section 3, we describe the techniques we use to compare the dynamics of field
theory loops and their Nambu-Goto predictions. In section 4, we show our results with a few
snapshots of the string trajectories comparing both field theory and Nambu-Goto. Finally, in
section 5, we comment on the implications of these results for the cosmological extrapolation
of field theory cosmic string networks.

2 Field theory simulations of cosmic string loops

The field theory that we will investigate in this paper is the Abelian-Higgs model, whose
Lagrangian density,

L = DµφD
µφ∗ − λ

4

(

|φ|2 − η2
)2 − 1

4e2
FµνFµν , (2.1)

describes the dynamics of a complex scalar field, φ(x), coupled to a vector field, Aµ(x),
through the covariant derivative, Dµφ = (∂µ − iAµ)φ. Furthermore, the usual field strength
for the vector field is given by Fµν = ∂µAν−∂νAµ. We will consider the case β = λ/(2e2) = 1,
which means that the masses of the excitations in the vacuum for the vector and scalar fields
are equal: m = ms = mv.

It is well known that the equations of motion obtained from this theory allow for the
existence of solitonic field theory vortices [1]. In 3+1 dimensions the vortices become strings
whose energy is concentrated in a core thickness of the order of δ ∼ m−1.

In order to investigate the loops in this theory we follow the prescription detailed in
[24], where network loops are created from some random initial conditions in the lattice. We
point the interested reader to [24] for details, but we summarize here the necessary basic
information. After discretization of the Hamiltonian that corresponds to the Lagrangian
(2.1), we obtain the equations of motion and solve them in cubic lattices with periodic
boundary conditions.

2The closest study of this kind in the literature is the one presented in [32] where the authors perform
cosmological simulations of 2+1 dimensional global vortices. Their results indicate that the amount of energy
in this case is rather low.
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The initial configuration of the system is chosen to be such that all fields are set to zero
except for the scalar field, which is set to be a stationary Gaussian random field with a power
spectrum given by

Pφ = Ae−klφ , (2.2)

where the amplitude A is chosen so that
〈

|φ|2
〉

= η2. The free parameter which rules the

initial randomness is the correlation length lφ, which can be set initially to different values.
These random initial conditions lead to a considerable excess of energy in the simulation

volume. Therefore, a cooling process is applied using a diffusive period of evolution, and once
a smooth field distribution is obtained, the network evolves following the true equations of
motion in flat space.

It is important to mention that after the diffusive period the network is at rest, which
means that any loop at this initial stage will start from a static configuration. We will
comment on these primordial loops in Appendix A, but let us for now comment on the fact
that they are not the main interest to us since they are not representative of the typical loops
in a network simulation. In the course of the evolution of the network, loops of strings will
be formed by either self-intersections or intercommutation of long strings and these are the
loops that we are mainly interested in. By this stage the string is in motion and so the loops
formed are not static. Note that the numerical evolution of the string network was performed
in flat spacetime, in other words on a Minkowski lattice spacetime.

In order to localize the position of the strings and the subsequent loops we first identify
all the plaquettes with a non-trivial winding in our simulations. In this way the connection
between all the centers of these plaquettes will constitute the string. We follow the evolution
of the network outputting the windings and confirm the formation of loops coming from
intersections by visual inspection.

Since, as mentioned, the simulations are done using periodic boundary conditions, all
the strings in the box can be considered to be closed loops; but these loops can be “broken”
by the periodic boundary conditions. Thus, if one were to plot the loop directly, some would
not appear to be a connected piece of string. In order to avoid this we reconstruct the
loops that are broken by the periodic boundary conditions applying spatial translations and
assigning new coordinates to the string positions. In this manner, we have a list of connected
positions in space for all loops.

In total we have analyzed 7 loops (and their descendants) from the simulations in [24].
These loops were obtained using two different correlation lengths, lφ = 15 and 25 in η−1

units. All of them were produced using lattices of N = 1024 points per dimension with a
spatial resolution of δx = 0.125 and temporal resolution of δt = 0.2δx, again in η−1 units.
We refer the reader to [24] for more specific details on the preparation of these simulations.
Moreover, the loops, which are reconstructed following the above prescription, are output at
each time step of the evolution so that the field theory information available for the Nambu-
Goto prediction is the most accurate possible. Furthermore, as explained in [24] by the time
the loops we use here get formed, the large scale dynamics of the string network is consistent
with a scaling regime 3.

This data, extracted directly from the field theory simulations, is the starting point of
our analysis.

3Recall, however, that the simulation here is done in flat space. It would be very interesting to analyze
loops from a lattice simulation on an expanding background. Some effort in this direction is already underway.

– 4 –



3 Comparison of Field Theory data with the Nambu-Goto action

As we said above, the effective action that describes the dynamics of local strings is expected
to be the Nambu-Goto action [2, 3]. This can be justified by making a judicious choice
of coordinate system around the center of the string and integrating the action along the
transverse directions of the string [34]: the resulting action can be shown to be of the Nambu-
Goto form. This argument rests on several assumptions that we now list in detail.

First, it assumes that the local curvature of the string is small compared to its thickness.
In fact, one can consider the Nambu-Goto action as the lowest order approximation of an
infinite expansion in terms of the ratio of δ/R, where δ is the nominal thickness of the string
soliton and R is the radius of curvature of the string in space. In a cosmological setting,
truncating this series keeping only the first term seems quite reasonable since the separation
of scales from the microphysical size of the strings to any cosmologically relevant scale is
phenomenally large. Of course, this separation of scales is not so large in a field theory
simulation of a string network.

The second assumption, which is somewhat related to the previous one, is that the string
does not lose energy by radiation in the course of its evolution. This is of course built in the
NG action since, as we discuss below, there is a conservation law for the invariant energy of
a loop. However, from the point of view of field theory, one might imagine a situation where
solitonic strings lose part of their energy into radiation in the form of propagating modes in
the bulk. Of course this cannot happen for a relaxed static string, since by definition this
object is the lowest energy configuration with the particular boundary conditions, the winding
of the scalar field. Boosting this object can not lead to radiation either. So the only way this
string can radiate is due to acceleration. This is easy to achieve in strings since during their
evolution they can develop regions of curvature that will induce acceleration. The question is
then a quantitative one. How much energy is radiated from the typical acceleration present
in the evolution of strings? In order to answer this question we should remind ourselves that
all the propagating modes in this model of local strings are massive. This suggests that one
should wiggle the string with a frequency at least of the order of this mass, m in our case, if
one wants to produce any radiation. Below this frequency, the source for the radiation does
not have a large enough frequency to produce propagating modes. This argument has been
extensively used in the past and demonstrated explicitly in numerical simulations of strings
in [23] and more recently in the analogous situation in domain wall strings in [30]4.

There are of course moments where the string can release part of its energy. The simplest
way to visualize this is in the lower dimensional process of vortex-antivortex annihilation. In
these events, it is clear that the arguments leading to the conclusions above do not apply
since the topological stability of the solitons disappears. Extending this to 3+ 1 dimensions,
we can classify other instances where similar processes occur. A clear example of these kinds
of events is the interaction between two long strings, the so-called intercommutation process
by which string loops can detach themselves from long strings [35]. Of course, this process
cannot be described by the NG action. Other processes closely related to these are cusp
formation and kink-kink collisions. During the formation of the cusp, part of the string
annihilates with itself releasing energy in the process [22]. Similarly, kink-kink collisions [36]
or in general the appearance of very high curvature regions [23, 30] lead to a similar energy

4In fact, the situation is a little more complicated since the thickness of the source (the oscillating string)
is typically also of the order of the inverse of the mass of the radiated particle, namely, δ ∼ m

−1. This means
that for higher frequencies the radiation is also cut-off due to interference effects [30].
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ejection from the string. All these non-perturbative processes are by now well understood
and need to be accounted for separately from the NG evolution.

Finally, another important assumption in the use of the NG action to describe strings
is the general expectation that, in their rest frame, the solitonic strings would be well ap-
proximated by the static solution of lowest energy. The underlying idea for this expectation
is the supposition that excitations on the string will decay in a time scale of the order of the
light-crossing time of the thickness of the string. This is a very small time scale to have any
relevance for the evolution of a loop even in a field theory simulation. However, this assump-
tion has been recently brought into question [24] due to the existence of localized excitations
of the field theory string that can have a long lifetime [29, 32, 33]. The presence of this extra
energy can change the equation of state of the strings and so modify the trajectory of strings.
These ideas have been recently explored in several papers in lower dimensional models with
solitons [29, 30, 32]. The results of these studies seem to indicate that even though some of
these solitons could have some extra energy at the moment of formation, it is difficult to see
how they can achieve the necessary significance to alter the evolution of the solitons.

Here we set out to investigate the relevance of all these possible effects in the evolution
of cosmic string loops from cosmological network simulations. In particular, we will compare
the evolution of the string extracted from field theory following the procedure we indicated
earlier with the one that one would infer from NG dynamics. In the following section we will
explain how to obtain the prediction of the NG dynamics from the field theory data at any
moment in time.

3.1 The Nambu-Goto dynamics for a cosmic string loop

The Nambu-Goto action for a relativistic string is given by

SNG = −µ

∫

d2ξ
√−γ , (3.1)

where µ is the energy per unit length of the string and γ is the induced metric on the world-
sheet parametrized by the coordinates ξ1,2. The equations of motion for a string propagating
in flat spacetime can be obtained from this action and are given by5

ẍ− x′′ = 0 , (3.2)

where x(t, σ) parametrizes the position of the string and dotted and primed quantities denote
their differentiation with respect to the two worldsheet parameters, (t, σ). Moreover, we have
also imposed the gauge conditions

ẋ · x′ = 0 , (3.3)

so the only physical velocity is perpendicular to the string, and

ẋ2 + x′2 = 1 , (3.4)

which means that the spacelike parameter, σ, is proportional to the energy per unit length
along the string. These equations can be integrated, so the most general solution is of the
form

x(t, σ) =
1

2
(a(σ − t) + b(σ + t)) , (3.5)

5See, for example, [37] for an account of all the details of the NG action.
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where the constraints impose the conditions

|a′| = 1 , (3.6)

|b′| = 1 . (3.7)

This means that all one needs to do in practice to obtain the evolution of a string is to
find the form of the two functions a(σ−) and b(σ+) with respect to their argument. In the
following we will describe an algorithm to obtain these functions from the position of the
string at two different time steps. This will allow us to apply this procedure to the data
obtained from the field theory simulation.

Note that after obtaining these functions at a particular moment, eq. (3.5) will allow us
to find the position of the string at any subsequent time. This can in turn be compared with
the position in field theory. If the string moves exactly as the NG predicts, we could obtain
the form of these functions at any moment in time and the result would be the same. In the
following we will explain that it will be convenient to repeat this procedure at several times.

Another important point about the NG dynamics is the fact that one can find the
integral of the parameter σ along the string. This is a constant of motion of any loop of
string and so can also be used as a measure of the NG dynamics.

3.2 Obtaining the NG dynamics from field theory data

As we mentioned earlier, we extract the information about individual loops from the lattice
field theory simulation of the network by identifying their position at any moment in time.
Here we will explain in detail how to transform that into a prediction of the NG evolution.

We start with the position of the string through the lattice as a list of spatial positions
of plaquette centers, pn, n = 1, 2, . . .. The first thing we do is to smooth out these position
vectors since otherwise we will have big jumps related to the discrete nature of the lattice.
One reasonable possibility is to smooth this data by a Gaussian window function whose width
is given by a few lattice spacings, Mδx. In order to justify this choice, let us first remember
that in order to have a faithful simulation of the relevant dynamics the thickness of the string
is somewhat larger than the lattice spacing. Therefore, one should not expect to know the
position of the center of the strings with a precision much larger than this width6.

Using this smoothed data, we obtain the list of vectors that describe the normalized
tangent vector of the string by computing

p̂′

n
=

pn+1 − pn

|pn+1 − pn|
. (3.8)

Now we need to compute the velocity vectors for each point of the string. In order to do that,
we will assume the NG evolution and consider that the string moves in the direction per-
pendicular to its tangent vector. This allows us to compute this velocity using the following
algorithm.

First, we find the point of the string at a later time described by t + ∆T that is the
intersection of the plane perpendicular to the tangent vector at the original position of the
string (at time t) with the string at t + ∆T . Let’s denote this point by p̃n(∆T ). Then we
estimate the velocity vector of this segment of the string in the NG approximation by taking

ẋn = (p̃n(∆T )− pn)/∆T . (3.9)

6We use M = 2 for the loops presented in this paper. We have checked that our results do not change
significantly using M = 5 .
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Here we should comment on an important point. In the previous algorithm we have
not specified what is the relation between the time interval between the two sets of strings
positions we have in the original data and the computing time interval in the numerical field
theory simulation, δt. In our case, we have experimented with different values and finally
settled on ∆T = 8 δt. The reason to take these two snapshots of the string separated in time
larger than the minimal possible time separation, δt, is to try to smooth out possible errors
in the estimate of the velocity7.

Using this velocity and the normalized tangent vectors we can now compute the tangent
vector correctly parametrized according to the usual NG gauge. This means that we can
define the new tangent vectors as

x′

n =
(

√

1− |ẋn|2
)

p̂′

n
. (3.10)

Using the velocity and the tangent vectors we can in turn compute the functions a′ and
b′ using

a′n = x′

n − ẋn , (3.11)

b′

n = x′

n + ẋn , (3.12)

and from here it is easy to find the position of the string at any moment in time following
the prescription of the NG solution in eq. (3.5).

Finally, using this data we can easily compute the local Lorentz factor associated with
each segment, namely,

Γn =
1

√

1− |ẋn|2
, (3.13)

as well as the amount of σ parameter in each segment of the string by computing

∆σn = Γn|xn+1 − xn| . (3.14)

Integrating this over our list of elements of the string we obtain the invariant energy of the
loop, ENG = µ

∑

n∆σn.
As we mentioned earlier, in the course of the reconstruction there are points that lead

to an estimation of the velocity from |ẋn| very close to the speed of light or even above it. In
order to suppress the pathological behaviour that these points could have on the total energy
we have decided to put an artificial cap to the velocity of each individual point. We replace
any estimate of |ẋn| > 0.9 by vmax = 0.9. We have tried other regularization procedures
and checked that the total energy of the loop is not significantly affected by the different
procedures.

4 Results

Using the techniques we have outlined above, we can compare the evolution of field theory
loops from our simulations with the motion predicted from the NG dynamics. Using the data
from two steps in the field theory simulation separated by ∆T since the formation of the loop,

7Using a smaller value of ∆T induces the presence of points of super-luminal motion. This is of course an
error induced in regions of high velocity of the string. Note also that regions of self-annihilation would give
rise to these problems. However, it is clear that this is to be expected since in those regions the string does
not behave as NG, so this algorithm should definitely fail.
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we build the a(σ) and b(σ) functions. This allows us to plot the predicted string NG position
for all times. This comparison shows that the field theory string follows the NG solution very
accurately for the large majority of the string length. This seems to suggest that these loops
extracted directly from the simulation are not endowed with a significant amount of extra
energy as conjectured in [24], or at least, not enough to change the trajectory of the string
perceptibly. A large amount of energy in bound states would change the equation of state of
the string and its local velocity would be changed with respect to the one obtained in NG.
This is not observed for most parts of the string length.

There are, however, regions where we see a departure of the field theory string position
when compared to NG. Many of the places where we see this departure are regions where
the NG dynamics predicts the existence of a high curvature section on the string. As we
mentioned earlier it is therefore not a surprise that the field theory string does not follow the
NG prediction in those regions.

An example of such local departure from NG dynamics is shown in figure 1. We present
several snapshots of this loop’s evolution in field theory (in blue) and in the NG dynamics
(in red) obtained using the algorithm described in the previous section. In order to represent
the field theory string, we give it a width of the order of δ (the thickness of the solitonic
object). The predicted position of the NG action is hidden inside of the blue tube describing
the position of the field theory string for most of the string. The two curves only deviate
from one another in a small section of the whole string. In that region, the NG string curves
itself at the scale of the order of the string thickness, but the field theory string does not do
that and finds a shortcut.

These episodes of high curvature act as a source of energy loss from the string. Some of
these events resemble the cusp annihilation simulated several years ago in [22]. Others just
correspond to the interaction of wiggles on the string that produce high curvature regions. In
some cases, these interactions lead to the formation of tiny daughter loops that immediately
annihilate in the field theory side.

The subsequent evolution of the field theory string does not follow the NG prediction
after those episodes. The reason for this is also clear. The NG action conserves energy, and
therefore it does not account for this energy loss mechanism. This means that the evolution
from field theory would start being different in the region where energy is radiated. As time
passes, this departure from FT and NG spreads over the rest of the string. If one waits
long enough, the difference becomes quite visible, and if one were to continue the comparison
forward, the shapes of the loops would grow more different. However, this is not a real
measure of the different local dynamics.

In order to do a better job of identifying the reason for the different evolution we
follow a procedure also used in the past in [22]. After we have identified one of these high
curvature events on the string, we reconstruct the NG data again. This yields different a

and b functions that should be valid for the subsequent evolution. The interesting point is
that the field theory after these events have passed is again accurately described by the new
NG data. We show in figure 2 a comparison of the position of the string obtained from field
theory to the NG reconstruction after the first episode of high curvature radiation. We notice
that there is no visible departure of the field theory evolution from the prediction of NG.

This behaviour continues for a while until a new episode occurs. This is shown in
figure 3, where we clearly see another region where the NG prediction deviates from the field
theory result in a localized region. It is clear that the string in field theory does not want
to curve itself so much as the NG predicts and takes a shortcut. This process radiates again
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Figure 1. Several snapshots of the evolution of one of the field theory loops. We show in blue the
position of the string obtained directly from the lattice simulation. In red is the predicted position
obtained from the reconstruction of the NG data at the initial conditions and evolved using the NG
dynamics until the time shown. The agreement between these two descriptions is very good for most
of the loop’s evolution. We have zoomed in on a region of the string at a particular moment where
there is a visible departure between them.
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Figure 2. The evolution of the field theory string seems to follow the NG prediction obtained from
the reconstruction of the string after the high curvature event. There is no visible departure between
the NG and the FT descriptions.

some portion of the energy of the string.
We have seen a similar behaviour in all our loops. Some of the examples are clear, but

some other ones are harder to visualize since more than one of these high curvature events
happen to have some non-trivial overlap in time 8. In fact, this already happens in our
example loop. We show in figure 4 a third event situated quite far away in space from the
previous one but that overlaps in time with the event represented in figure 3.

We also look at the energy computed from the local reconstruction of the NG string

8However, we would like to emphasize that the results we present here, with this particular loop, are indeed
a good representation of what we obtain in our analysis of all the other 6 loops from [24].
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Figure 3. Another high curvature event on the same loop. The NG description (in red) is the one
obtained after the first event in figure 1.

obtained from the field theory data at any moment in time. In a purely NG dynamics, this
quantity (the total amount of σ of the loop) should be a constant of motion. We plot in
figure 5 this energy for the same loop that we discussed before. We observe that the energy
overall tends to go down. There are some episodic events where the decrease in energy is
sharper, and some of those can be linked with the high-curvature events. We mark in figure 5
the three different episodes that we have been discussing above by shading in light purple
the ranges of times displayed in figures 1, 3, and 4. Looking at the energy, there seems to be
a connection between these events and the regions where the energy starts to decrease.

There are other instances (between t ∼ 200 and t ∼ 400) where the energy seems to
be constant, represented in grey in figure 5. These correspond to the times where the NG
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Figure 4. Another high curvature event on the same loop. The NG description (in red) is the one
obtained after the first event in figure 1. The evolution between these episodes is well represented by
the NG dynamics.

reconstruction was made after the first episode, as shown in figure 2, where there is a very
good agreement with the FT data.

There are, however, regions where the energy slowly decreases that are not so obviously
associated with any of these individual events (see figure 6, which corresponds to times 450,
500 and 550). The reasons for these are not so clear. The curvature does not seem to be
very high, and could also be understood as small scale structure in the loop that leads to
energy loss by radiation. In other words, this could be due to events similar to the ones
already mentioned that are not so clearly visible in our procedure. Looking at figure 6 one
indeed sees several regions of slight departure between NG and FT dynamics, especially at
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Figure 5. Total amount of invariant energy (total amount of σ) for the NG reconstruction of the
field theory data of the loop analyzed in other figures. The purple regions correspond to the high
curvature events presented in figures 1,3 and 4. The grey region corresponds to figure 2, where the
energy remains roughly constant. The white region (between t ∼ 400 and 550) corresponds to figure 6,
where there is a small deviation from the NG dynamics.

t = 550. Note that identifying small regions of high curvature from the NG reconstruction is
sometimes quite difficult due to numerical error. In the future we will design new methods
to quantify this effect and understand the reason for this energy loss in these regions as well.
It is remarkable, and somewhat puzzling, that though the energy goes down roughly by the
same percentage as in a high-curvature event, the visual inspection of the loop dynamics
does show a rather small deviation from the NG trajectory. This could just be due to the
combined effect of several smaller regions where the deviation is small instead of a single
large event like in the other cases.

5 Conclusions

In this paper we have compared the evolution of field theory loops obtained in the course
of a cosmological lattice simulation with their expected dynamics in the NG approximation.
Understanding the discrepancy between these two approaches is of paramount importance in
order to make an accurate prediction of the observational signatures of strings. In particular,
it is crucial in the estimate of the gravitational wave signature from strings in current and
future gravitational wave observatories (see [38] and references therein).

Our investigations show that loops in field theory seem to behave according to the NG
action in regions where the curvature is not high. The visual comparison with the NG motion
does not support the need for any departure in the equation of state of field theory loops,
also, in regions where the curvature is not high. The strings move with the local trajectories
dictated by NG. However, we have found that the strings lose part of their energy in the course
of their evolution. Some of these energy loss regions correspond to high curvature sections
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Figure 6. The evolution of the field theory string in times where the energy decreases. One can
not identify any single event of high curvature associated with this decline in energy. Instead we see
several regions of high curvature where the deviation from NG is clearly visible but not as striking as
in the previous examples.

where some portion of the string annihilates with an adjacent part. These high curvature
events are indeed predicted by the NG evolution obtained from the original reconstruction
of the field theory string. Of course, the NG dynamics cannot account accurately for the
subsequent evolution of the field theory string since part of the energy of the string is lost
in these events. This can be bypassed by reconstructing the NG data again after one of
these incidents. The result we obtain by following this prescription seems to show that
the evolution of the strings is again described by NG with this new data. There are other
instances where the string loses energy, which cannot be so clearly pinpointed as regions of
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high curvature, at least following our visual inspection. Remarkably, though, the trajectory
of the string does not seem to be altered perceptibly in these events. They deserve further
investigation.

The picture that emerges from our detailed comparison of both descriptions of the
string motion is the following. Most of the time, loops behave as NG predicts, but there are
instances where the NG action breaks down and one needs to interrupt this comparison for
a while until the NG behaviour resumes again. The study of the conserved NG energy backs
up that there are instances where the energy drops that correspond to high curvature events.

This localized energy loss mechanism makes the loops shrink and sometimes self-intersect
before they have a chance to oscillate for a full period. So at the end the resultant loops are
too small to expect them to behave as NG and they finally disappear. This could explain
why we do not get at the end any non-self-intersecting loop from our simulation even though
the dynamics of loops is well explained by NG for most of their evolution.

The question arises then: if the loops behave almost everywhere like NG, then, would
one expect to get NSI loops also in FT, and thus a big chunk of the energy of the network
be released as GW? The direct obvious way of answering this question might be to keep
simulating loops of this kind until a NSI loop is found in field theory. This is not a good
strategy, because, as indicated previously, NSI conditions are not so easy to come by. Many
large NSI loops are found in NG simulations [20], because one simulates a much, much larger
volume with many more loops [20]. Unfortunately, we do not have the dynamic range in field
theory to do such simulations. Of course, we may be lucky and find one such loop in our
simulations after a large number of them.

Another idea would be to start with a different set of loops. For example, we could get
loops from field theory simulations in the radiation or matter era. These loops should be
smoother and have a greater chance to become non-self-intersecting.

One would also be tempted to look for larger initial loops. However, even though it is
important to have large loops, so their size is large compared to their thickness, what we have
seen in these simulations is that this is not the most important fact. One can have a very
large loop with wiggles that lead to high curvature regions, which would thus lose energy by
this mechanism.

The best scenario would be to start with a large enough loop that radiates most of
this energy in the high curvature regions in its first few moments leaving behind a smoother
loop that now should behave mostly as NG (except maybe for the presence of cusps). This
expectation is based on the results obtained in field theory simulations of the collisions of
wiggles that lead to high curvature regions [23, 30]. That is the analogous situation to what
we are seeing here in these loops, but in long, infinite strings. The results there ndicate that
the radiation from these events decreases quite fast after their first encounter. The wiggles
become milder, and their subsequent interaction is not so violent. This argues for a period
of smoothing of the loops of the order of one oscillation time after which the loops would
become quite close to NG in all their evolution.

If this is the correct view, it means that loops created in a real cosmological network
have a transient period where they emit massive radiation from these highly curved regions.
After this initial stage (of the order of the period of the loop) this effect should smooth out the
loop and loops would behave as the NG action predicts. Furthermore, as the universe evolves,
if the above picture is right, the sizes of structures on loops would increase proportionally to
the horizon distance, while the string core size remains fixed. Thus, over cosmological time,
the curvature radii seen on loops would become many orders of magnitude larger than the
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string thickness, the radiative processes we see here would disappear, and the loop motion
would be accurately given by NG.

Nevertheless, the study reported here is quite preliminary. We have analyzed only
a few loops, and we do not understand their dynamics completely. So it is possible that
more is going on than the simple description above. In that case many alternative scenarios
[4, 7, 8, 24] may be possible.

In summary, we believe we have made a major step forward in our understanding of
the dynamics of loops from field theory simulations. It is clear that loops appear to move as
NG for most of their evolution. One clear situation in which this is not happening is, not
surprisingly, in events of high-curvature. There are other instances in which the energy of
the loops does not seem to follow a NG prediction, and yet the behaviour of the loop does
not present big departures from the NG trajectory. The details of this picture need to be
confirmed by further study. In the future we will perform new numerical experiments and
use different field theory simulations that could corroborate this picture. Some of this work
is already underway.
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A Primordial loops

As we explained in the main part of the text, we create our string network with an initial
period of diffusion. One can of course look at the initial evolution of some of the loops created
at this time as well. However, we should note that they are quite different from the ones
we have analyzed in the rest of the paper. First of all, they are much smoother due to the
period of diffusion and furthermore they are all created at rest, meaning all the segments
of the string start their evolution without any initial velocity. These properties make these
loops rather special from the point of view of their Nambu-Goto evolution. It is easy to show
that an initially static loop will overlap with itself along the entirety of its physical length in a
half of its period if it moves according to the NG description [39]. It is therefore clear that we
cannot use these loops to illustrate the typical behaviour of a loop in a realistic cosmological
setting. However, as we will describe in the following, we can use these primordial loops to
check the validity of our results and our conclusions.

We show in figure 7 the comparison of the evolution of these primordial loops with
their predicted NG dynamics. The pictures demonstrate that the evolution is pretty much
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Figure 7. Snapshots of the evolution of a primordial loop. The loop starts from rest. We notice
how the evolution of the field theory (in blue) is very close to the NG (red) except towards the end
of evolution where the loop has shrunk by a large fraction and the NG predicts a complete overlap of
the extent of the string on itself.
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Figure 8. Total amount of invariant energy (total amount of σ) for the NG reconstruction of the
field theory data of the primordial loop.

identical in both cases all the way until moments before the predicted overlap of the loop.
There are no departures from the NG dynamics due to high curvature regions for much of
its evolution. This is easy to understand since the loop is indeed much smoother due to the
diffusion period. However, as the loop shrinks, we start seeing some deviations from the NG
behaviour, although not so dramatic as in the non-primordial loops. As the loop comes close
to its overlap, the difference between both field theory and NG becomes more apparent. This
is also to be expected since the interaction of different regions of the string in this pathological
self-intersection is of course not handled by the NG dynamics. Nevertheless, the fact that
up to this point both descriptions agree with one another can be seen as a validation of both
the field theory and NG reconstruction codes.

We also show in figure 8 the energy of this loop using the NG reconstruction at each
moment in time. We notice that the energy is pretty much constant until t ∼ 40, which is
also the moment where there is the first signal of deviation from NG dynamics in the loop’s
evolution (see figs. 7). The deviation from the NG prediction happens in several places in
the loop and even though they are associated with high curvature regions, they are not so
obvious, at least not visually, as the ones presented earlier in the non-primordial loop. This
is somewhat similar to what happens in figure 6. The energy of the loop is decreasing, and
yet the dynamics of the loop seems to follow quite closely that of NG.
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