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Residual torsion-free nilpotence,
bi-orderability, and two-bridge links

Jonathan Johnson

Abstract. Residual torsion-free nilpotence has proved to be an important property for knot groups

with applications to bi-orderability and ribbon concordance. Mayland proposed a strategy to show

that a two-bridge knot group has a commutator subgroup which is a union of an ascending chain

of para-free groups. This paper proves Mayland’s assertion and expands the result to the subgroups

of two-bridge link groups that correspond to the kernels of maps to Z. We call these kernels the

Alexander subgroups of the links. As a result, we show the bi-orderability of a large family of two-

bridge link groups. This proof makes use of a modified version of a graph-theoretic construction

of Hirasawa and Murasugi in order to understand the structure of the Alexander subgroup for a

two-bridge link group.

1 Introduction

Given an oriented smooth link L in S3, the link group of L, denoted π(L), is the
fundamental group of the complement of L in S3. Also, let ΔL(t) denote theAlexander
polynomial of L (see [23, Chapter 6] for details).

Let h ∶ π(L) → H1(S3 − L) be the Hurewicz map, and let φ ∶ H1(S3 − L) → Z be
the map defined by identifying the oriented meridians of each component of L with
each other. The group π(L) is canonically an extension of Z by ker(φ ○ h) as follows:

(1.1)

1 ker(φ ○ h) π(L) Z 1

H1(S3 − L)
h

φ○h

φ

We call the subgroup ker(φ ○ h) the Alexander subgroup of the oriented link L. When
L is a knot, the Alexander subgroup is the commutator subgroup of π(L).

A group G is residually torsion-free nilpotent if for every nontrivial element x ∈ G,
there is a normal subgroup N ⊲ G such that x ∉ N andG/N is a torsion-free nilpotent
group.The residual torsion-free nilpotence of the Alexander subgroup of a link group
has applications to bi-orderability [13] and ribbon concordance [10]. Several knots are
known to have groups with residually torsion-free nilpotent commutator subgroups
including fibered knots (since free groups are residually torsion-free nilpotent [17] and
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2 J. Johnson

Figure 1: The (4, 2)-torus link.

the commutator subgroup of a fibered knot group is a finitely generated free group),
twist knots [18], all knots in Reidemeister’s knot table (see [26]) except 813, 925, 935,
938, 941, and 949 [18], and pseudo-alternating links whose Alexander polynomials
have prime power leading coefficients [20]. This paper confirms that many two-
bridge links, including all two-bridge knots, have groups with residually torsion-free
nilpotent Alexander subgroups.

Theorem 1.1 If L is an oriented two-bridge link whose Alexander polynomial has
relatively prime coefficients (collectively, not pairwise), then the Alexander subgroup of
π(L) is residually torsion-free nilpotent.
Remark 1.2 The condition on the coefficients of the Alexander polynomial cannot
be removed. For example, if L is the (4, 2)-torus link, as shown in Figure 1, then L has
Alexander subgroup isomorphic to

⟨{S i}i∈Z ∣ S2i = S2i+1 , i ∈ Z⟩,
which is not residually nilpotent. (For details on computing the Alexander subgroup,
see Section 3.) The Alexander polynomial of L is ΔL(t) = 2t − 2.

It is a well-known fact that ΔK(1) = ±1 for every knot K [2]. It follows that the
coefficients of the Alexander polynomial of K are relatively prime, so we have the
following corollary.

Corollary 1.3 The commutator subgroup of a two-bridge knot group is residually
torsion-free nilpotent.

The following conjecture is an analog of a question by Mayland in [18].

Conjecture 1.4 The Alexander subgroup of a link group of an alternating link is
residually torsion-free nilpotent whenever the link’s Alexander polynomial has relatively
prime coefficients.

1.1 Summary of the techniques used

The proof of Theorem 1.1 relies on Baumslag’s work on para-free groups [3, 4]. Let G
be a group. Define γ1G ∶= G, and for each positive integer n, define γn+1G ∶= [G , γnG].
A group G is para-free of rank r if:

(1) for some free group F of rank r, G/γnG ≅ F/γnF for each n, and
(2) G is residually nilpotent.

Baumslag provides a sufficient condition for a group to be residually torsion-free
nilpotent.
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Residual torsion-free nilpotence, bi-orderability, 2-bridge links 3

Proposition 1.5 (Baumslag [4, Proposition 2.1(i)]) Suppose G is a group which is the
union of an ascending chain of subgroups as follows:

G0 < G1 < G2 < ⋯ < Gn < ⋯ < G = ∞⋃
n=1

Gn .

Suppose each Gn is para-free of the same rank. If for each nonnegative integer n, ∣Gn+1 ∶
Gn[Gn+1 ,Gn+1]∣ is finite, then G is residually torsion-free nilpotent.

Thus, Theorem 1.1 follows from the following lemma.

Lemma 1.6 Suppose L is an oriented two-bridge link, and let Y be the Alexander
subgroup of L. If the Alexander polynomial of L has relatively prime coefficients, then
Y can be written as a union of an ascending chain of subgroups Y0 < Y1 < Y2 < ⋯ < Y
such that:

(a) each Yn is para-free of the same rank and
(b) ∣Yn+1 ∶ Yn[Yn+1 ,Yn+1]∣ is finite for each n.

Let H be a para-free group of rank r. An element h ∈ G is homologically primitive
if the class of h in H/[H,H] ≅ Zr can be extended to a basis.

Proposition 1.7 (Baumslag [3, Proposition 3]) Let H be a para-free group of rank r,
and let ⟨x⟩ be an infinite cyclic group generated by x. Let h be an element in H, and let
n be a positive prime integer. If h generates its own centralizer and h is homologically
primitive in H, then the group

H ∗
h=xn

⟨x⟩
is para-free of rank r.

Proposition 1.7 can be strengthened to the following statement.

Proposition 1.8 Let H be a para-free group of rank r, and let ⟨x⟩ be an infinite cyclic
group generated by x. Let h be an element in H, and let n be any positive integer. If h is
homologically primitive in H, then

H ∗
h=xn

⟨x⟩
is para-free of rank r.

Proof Let H be a para-free group of rank r, and let h be an element in H which is
homologically primitive. Suppose an element g ∈ H commutes with h, and consider,⟨g , h⟩, the subgroup of H generated by g and h. A theorem of Baumslag [4, Theorem
4.2] states that any two-generator subgroup of a para-free group is free. Since g and
h commute, ⟨g , h⟩ cannot be a rank-2 free group, so ⟨g , h⟩ is an infinite cyclic group.
Since h is homologically primitive, it must be a generator of ⟨g , h⟩, so g = h l for some
integer l. Therefore, h generates its own centralizer.
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4 J. Johnson

Let n = p1⋯pk be the prime decomposition of n. Let ⟨x1⟩, . . . , ⟨xk⟩ be infinite cyclic
groups. Define G0 = H and x0 = h. Then, for j = 1, . . . , k, define

G j ∶= H ∗ ⟨x1⟩ ∗ ⋯ ∗ ⟨x j⟩
N(x−10 x

p1
1 , x−11 x

p2
2 , . . . , x−1j−1x

p j

j ) ,
where N means the normal closure of the indicated elements. Thus,

G j = G j−1 ∗
x j−1=x

p j

j

⟨x j⟩(1.2)

for each j. We can substitute x
p i

i for x i−1 for i = 1, . . . , j so that

G j ≅ H ∗
h=x

n j

j

⟨x j⟩,
where n j = p1⋯p j .

Since h is homologically primitive in H, the class of h in H′, the abelianization of
H, extends to a basisB ofH′ ≅ Zr . After adjoining a root of h to obtainG j ,H

′ embeds
into G′j , the abelianization of G j .

The elements in B remain linearly independent in G′k . Removing the class of h
from B and replacing it with the class of x j produces a basis of G

′
j . Therefore, x j is

homologically primitive in G j .
Since G0 = H is para-free of rank r, inductively, each G j is para-free of rank r by

(1.2) and Proposition 1.7. Thus,

Gk ≅ H ∗
h=xn

⟨x⟩
is para-free of rank r. ∎

Mayland [19] proposes a strategy that uses the Reidemeister–Schreier rewriting
process to describe the commutator subgroup of a two-bridge knot group as the union
of an ascending chain of subgroups satisfying the conditions of Lemma 1.6. The first
term Y0 is a free group, and ideally, for each n ≥ 1, Yn is isomorphic to Yn−1 after
adjoining roots of homologically primitive elements, in the manner of Proposition
1.8, a finite number of times. Mayland attempts to show that, for a given two-bridge
knot, each Yn is obtained by adjoining roots to Yn−1 using a recursive argument.
However, it is not at all obvious that Mayland’s recursive argument is valid. While
it is straightforward to verify Mayland’s argument on a case-by-case basis, proving his
recursive argument works in general is quite difficult. Furthermore, there are errors
inMayland’s argument that the elements, whose roots are adjoined, are homologically
primitive. Unfortunately, Mayland never published a proof of his assertion. In a later
paper byMayland andMurasugi [20], it is stated thatMayland plans to present a proof
using a different strategy. This paper has not appeared.

Here, we use a slightly different approach. In this paper, we use a graph-theoretic
construction similar to one used by Hirasawa and Murasugi [11] to relate the Alexan-
der subgroups of more complicated two-bridge link groups to those of simpler two-
bridge link groups. Then, it is proved inductively that the Alexander subgroups of all
two-bridge links can be described by adjoining roots to a free group, and we show that
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Residual torsion-free nilpotence, bi-orderability, 2-bridge links 5

when two-bridge links have Alexander polynomials with relatively prime coefficients,
their Alexander subgroups satisfy Lemma 1.6 via Mayland’s strategy.

1.2 Application to bi-orderability

Residually torsion-free nilpotence is useful for determining when a link group is bi-
orderable, i.e., admits a total order invariant under both left and right multiplication
[7, 25, 30]. Let L be a smooth link in S3. The link group π(L) is an extension of ⟨t⟩ (an
infinite cyclic group generated by t) by the Alexander subgroup Y. Let Y ab denote the
abelianization of Y, and let Lt be the linear map induced on Q⊗ Y ab by conjugating
Y by t. The following result is shown by Linnell, Rhemtulla, and Rolfsen [13] and is
stated more explicitly by Chiswell, Glass, and Wilson [6].

Theorem 1.9 (Chiswell–Glass–Wilson [6, Theorem B]) Suppose Y is residually
torsion-free nilpotent. If the dimension of Q⊗ Y ab is finite and all the eigenvalues of
Lt are real and positive, then π(L) is bi-orderable.

The Alexander polynomial of L, ΔL(t), is a scalar multiple of the characteristic
polynomial of Lt , and the dimension of Q⊗ Y ab is the degree of ΔL(t) (for details,
see [27, Chapter VIII]), which implies the following corollary.

Corollary 1.10 Let L be a link in S3. If the Alexander subgroup of L is residually torsion-
free nilpotent and ΔL(t) has all real positive roots, then π(L) is bi-orderable.
Remark 1.11 Linnell, Rhemtulla, and Rolfsen actually show that a weaker condition
on the Alexander polynomial is sufficient for bi-orderability. However, since two
bridge links are alternating, the coefficients of their Alexander polynomials alternate
sign [8], so the signs of the even degree terms are all opposite to the signs of the odd
degree terms. It follows that the Alexander polynomials of two-bridge links cannot
have negative roots.Therefore, for a two-bridge link, having an Alexander polynomial
which is “special” in the sense of Linnell, Rhemtulla, and Rolfsen [13] is equivalent to
the Alexander polynomial having all real and positive roots.

By combiningTheorem 1.1 with Corollary 1.10, we have the following result.

Theorem 1.12 Let L be an oriented two-bridge link with Alexander polynomial ΔL(t).
If all the roots of ΔL(t) are real and positive and the coefficients of ΔL(t) are relatively
prime, then the link group of L is bi-orderable. In particular, if K is a two-bridge knot
and all the roots of ΔK(t) are real and positive, then the knot group of K is bi-orderable.

Remark 1.13 Theorem 1.12 is not true if either condition on the Alexander polyno-
mial is removed. The link group of the (4, 2)-torus link has presentation

⟨x , y∣x−1 y−2xy2⟩.
Since x and y do not commute but x commutes with y2, the (4, 2)-torus link does
not have bi-orderable link group [24, Lemma 1.1]. As stated in Remark 1.2, the (4, 2)-
torus link, oriented as in Figure 1, has Alexander polynomial 2t − 2, which has only
one real positive root but does not have relatively prime coefficients. If we reverse
the orientation of one of the components, the Alexander polynomial is t3 − t2 + t − 1,
which has relatively prime coefficients, but no real roots.
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6 J. Johnson

Figure 2: Schubert’s projection of L(8/3).

1.3 A family of bi-orderable two-bridge links

Every oriented two-bridge link is the closure of rational tangle. Thus, by Conway’s
correspondence, we can associate a two-bridge link to a rational fraction p/q with p >
0 (see [5, Chapter 12] for details). Let L(p/q) denote the two-bridge link represented
by p/q. Choose an orientation of L(p/q) so that the two overstrands of Schubert’s
projection of L(p/q) are oriented away from each other, as shown in Figure 2. This
correspondence satisfies the following properties:

(1) L(p/q) and L(p′/q′) are equivalent as unoriented links if and only if:
(a) p = p′ and
(b) q ≅ q′ (mod p) or qq′ ≅ 1 (mod p).

(2) L(p/q) and L(p′/q′) are equivalent as oriented links if and only if:
(a) p = p′ and
(b) q ≅ q′ (mod 2p) or qq′ ≅ 1 (mod 2p).

(3) L(p/q) is a knot if and only if p is odd.
(4) L(p/q) and L(−p/q) are mirrors.
(5) If L(p/q) is a link, L(p/(q ± p)) is the oriented link obtained by reversing the

orientation of one of the components of L(p/q).
When q is odd, there are nonzero integers k1 , . . . , kn such that p/(p − q) =[2k1 , . . . , 2kn]. Here, [2k1 , . . . , 2kn] denotes the continued fraction expansion

[2k1 , . . . , 2kn] = 2k1 + 1

2k2 + 1
2k3+

1

⋯+ 1

2kn

.

The integers 2k1 , . . . , 2kn correspond to the number of twist in the rational tangle
p/q (see Figure 3). See [23, Chapter 9] for details on fraction expansions and rational
tangles. When n is even, L(p/q) is a knot with genus n/2. When n is odd, L(p/q) is a
two-component link with genus (n − 1)/2.

Every oriented two-bridge link is associated to a fraction p/qwith q odd and ∣p/q∣ >
1.When L(p/q) is a link, p is always even and q is always odd. Suppose L(p/q) is a knot
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Figure 3: Rational tangle form of a two-bridge knot (top) and link (bottom).

with q even. Let q′ be the inverse qmodulo 2p. Since q is even, q′ is odd, and L(p/q) is
equivalent to L(p/q′). Furthermore, since L(p/q) is equivalent to L(p/(q + 2pk)) for
all integers k, q can be chosen such that −p < q < p so ∣p/q∣ > 1. Therefore, we adopt
the convention that p > ∣q∣ > 0 and q is odd.

Chiswell, Glass, and Wilson showed that groups that admit presentations with
two generators and one relator satisfying certain conditions have residually torsion-
free nilpotent commutator subgroups [6]. Clay, Desmarais, and Naylor used this to
show that twist knots (knots represented by [2, 2k]with k > 0) have bi-orderable knot
groups in [7]. In [30], Yamada used the same idea to extend this to the family of two-
bridge links represented by [2, 2, . . . , 2, 2k], where k > 0. Using the following result of
Lyubich and Murasugi, this paper extends this family further.

Theorem 1.14 (Lyubich–Murasugi [16, Theorem 2]) Let p/q be a fraction of co-prime
integers p and q with q ≠ 0, and let L be the two-bridge link L(p/q). If for some positive
integer n, p/q = [2k1 , . . . , 2kn] with k i > 0 for each i = 1, . . . , n, then all the roots of
ΔL(t) are real and positive.

Combining this theorem with Corollary 1.3 implies the following.

Corollary 1.15 Let p/q be a fraction of co-prime integers p and q with q ≠ 0, and
p/(p − q) = [2k1 , . . . , 2kn] with k i > 0 for each i = 1, . . . , n.

If the coefficients of the Alexander polynomial of L(p/q) are relatively prime, then
the link group of L(p/q) is bi-orderable. In particular, when L(p/q) is a knot, the knot
group of L(p/q) is bi-orderable.

Theorem 1.14 does not characterize all two-bridge links with Alexander polynomial
that have all real and positive roots.

Example 1.16 Let K = L(81/49). 81/(81 − 49) = [2, 2,−8,−2],
ΔK(t) = 4t4 − 20t3 + 33t2 − 20t + 4 = (t − 2)2(2t − 1)2 ,

which has two real roots of multiplicity 2. Thus, the knot group of K is bi-orderable.
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1.4 Genus one two-bridge links

Suppose L is an oriented genus-one two-bridge link L(p/q). When L is a genus-
one knot, p/(p − q) = [2k1 , 2k2] for some nonzero integers k1 and k2. The Alexander
polynomial of L is

ΔL(t) = k1k2 t
2 − (2k1k2 + 1)t + k1k2 .

When k1k2 > 0, ΔL(t) has two positive real roots, so π(L) is bi-orderable byTheorem
1.12. When k1k2 < 0, ΔL(t) has no real roots. In this case, since deg ΔL = 2, an
obstruction by Clay, Desmarais, and Naylor [7, Theorem 3.3] implies that π(L) is not
bi-orderable.

Proposition 1.17 Suppose L is the two-bridge knot L(p/q) with p/(p − q) =[2k1 , 2k2]. The knot group π(L) is bi-orderable if and only if k1k2 > 0.

When L is a genus-one two-component link, p/(p − q) = [2k1 , 2k2 , 2k3] for some
nonzero integers k1, k2, and k3. The Alexander polynomial of L(p/q) is

ΔL(t) = k1k2k3 t
3 − (3k1k2k3 + k1 + k3)t2 + (3k1k2k3 + k1 + k3)t − k1k2k3

= (t − 1)(k1k2k3 t2 − (2k1k2k3 + k1 + k3)t + k1k2k3).
The discriminant, D, of the second factor is

D = 4k1k2k3(k1 + k3) + (k1 + k3)2 ,
soD ≥ 0 if k1k2k3(k1 + k3) ≥ 0. It follows that ΔL(t) has three real positive roots when
k1k2k3(k1 + k3) ≥ 0.

Let A = k1k2k3 and B = 3k1k2k3 + k1 + k3. The coefficients of ΔL are relatively
prime precisely when gcd(A, B) = 1, and gcd(A, B) = 1 if and only if gcd(k1 , k3) = 1
and gcd(k2 , k1 + k3) = 1.

Therefore, Theorem 1.12 implies the following result.

Proposition 1.18 Suppose L is the two-component two-bridge link L(p/q)with p/(p −
q) = [2k1 , 2k2 , 2k3]. If gcd(k1 , k3) = 1, gcd(k2 , k1 + k3) = 1, and k1k2k3(k1 + k3) ≥ 0,
then π(L) is bi-orderable.

1.5 Application to ribbon concordance

The residual torsion-free nilpotence of the commutator subgroup of a knot group has
an application to ribbon concordance as well. Given two knots K0 and K1 in S3, A
ribbon concordance from K1 to K0 is a smoothly embedded annulus C in [0, 1] × S3

such thatC has boundary−({0} × K0) ∪ {1} × K1 andC has only index 0 and 1 critical
points. K1 is said to be ribbon concordant to K0, denoted K1 ≥ K0, if there is a ribbon
concordance from K1 to K0. The relation ≥ is clearly reflexive and transitive. Gordon
[10] conjectures that ≥ is a partial order on knots in S3.

Gordon gives conditions under which ≥ behaves antisymmetrically.

Theorem 1.19 (Gordon [10]) If K0 ≥ K1 and K1 ≥ K0 and the commutator subgroup of
π(K0) is transfinitely nilpotent, then K0 and K1 are ambient isotopic.
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Remark 1.20 Transfinite nilpotence follows from residual torsion-free nilpotence
(see [10] for a definition of transfinitely nilpotent).

Here, we state the following corollary.

Corollary 1.21 If K1 ≥ K0 and K0 ≥ K1 and K0 is a two-bridge knot, then K0 and K1

are ambient isotopic.

Remark 1.22 Since this article’s initial posting, Agol showed thatGordon’s conjecture
is true [1] subsuming Corollary 1.21.

1.6 Outline

The rest of this paper is devoted to the proof of Lemma 1.6. In Section 2, we illustrate
the proof of Lemma 1.6 by verifying the lemma for the two-bridge knot L(17/13).
Section 3 investigates the properties of a presentation for the Alexander subgroup Y
obtained by the Reidemeister–Schreier rewriting procedure. The proof of Lemma 1.6
is completed in Section 3.4. In Section 4, we define the cycle graph of a two-bridge
link. Cycle graphs are used to prove a key lemma in Section 5.

The Appendix covers some background material on presentation matrices of
modules over a principal ideal domain (PID).

2 An example

In this section, we use the two-bridge knot K ∶= L(17/13) to provide an example of the
proof of Lemma 1.6. Using the Schubert normal form [29], we obtain a presentation
of π(K):

π(K) = ⟨a, b ∣ avb−1v−1⟩,
where

v = ba−1ba−1b−1ab−1aba−1ba−1b−1ab−1a.

Denote the Alexander subgroup of π(K) by Y. Using the Reidemeister–Schreier
rewriting process, we obtain the following presentation ofY (see Section 3 for details):

Y ≅ ⟨{Sk}k∈Z ∣ {Rk}k∈Z⟩.
Here, Sk ∶= akba−k−1 and the relators Rk are defined as follows:

⋮
R−1 ∶= S0S0S

−1
−1S
−1
−1S0S0S

−1
−1S
−1
−1S
−1
−1S−2S−2S

−1
−1S
−1
−1S−2S−2S

−1
−1S
−1
−1 ,

R0 ∶= S1S1S
−1
0 S−10 S1S1S

−1
0 S−10 S−10 S−1S−1S

−1
0 S−10 S−1S−1S

−1
0 S−10 ,

R1 ∶= S2S2S
−1
1 S−11 S2S2S

−1
1 S−11 S−11 S0S0S

−1
1 S−11 S0S0S

−1
1 S−11 ,

⋮
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10 J. Johnson

Define a sequence of groups {Yn}∞n=0 as follows:
Y0 ∶= ⟨S−1 , S0 ∣ ∅⟩,
Y1 ∶= ⟨S−2 , S−1 , S0 , S1 ∣ R−1 , R0⟩,
Y2 ∶= ⟨S−3 , S−2 , S−1 , S0 , S1 , S2 ∣ R−2 , R−1 , R0 , R1⟩,

⋮
Define pA1, pA2, pV1, and pV2 as follows:

pA1 = S21 S
−2
0 ,

pA2 = S1 ,

pV1 = S−10 S2−1S
−2
0 S2−1S

−2
0 ,

pV2 = S−20 .

(2.1)

Let H1 be the group obtained by adjoining a square root of pV−11 to Y0 as follows:

H1 ∶= Y0 ∗
pV−1
1
=t2

1

⟨t1⟩.
Similarly, let H2 be the group obtained by adjoining a square root of t1 pV−12 to H1 as
follows:

H2 ∶= H1 ∗
t1 pV−1

2
=S2

1

⟨S1⟩.
Thus, H2 has the following group presentation:

H2 ≅ ⟨S−1 , S0 , S1 , t1 ∣ t21 pV1 = 1, t1 = S21 pV2⟩
≅ ⟨S−1 , S0 , S1 ∣ (S21 pV2)2 pV1 = 1, ⟩
≅ ⟨S−1 , S0 , S1 ∣ R0⟩.

Define qA1, qA2, qV1, and qV2 as follows:

qA1 = S2−2S
−2
−1 ,

qA2 = S−2 ,

qV1 = S20S
−2
−1 S

2
0S
−3
−1 ,

qV2 = S−2−1 .

(2.2)

Let H3 be the group obtained by adjoining a square root of qV−11 to H2:

H3 ∶= H2 ∗
qV−1
1
=t2

2

⟨t2⟩.
Let H4 be the group obtained by adjoining a square root of t2 qV−12 to H3:

H4 ∶= H3 ∗
t2 qV−1

2
=S2−2

⟨S−2⟩.
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Therefore, H4 is isomorphic to Y1:

H4 ≅ ⟨S−2 , S−1 , S0 , S1 , t2 ∣ R0 , qV1 t
2
2 = 1, t2 = S2−2 qV2⟩

≅ ⟨S−2 , S−1 , S0 , S1 ∣ R−1 , R0⟩
≅ Y1 .

In conclusion, Y1 is Y0 after adjoining roots four times, and since Rn±1 is Rn with all
the subscripts changed by±1, Yn+1 is Yn after adjoining roots four times.Thus, for each
n, Yn embeds into Yn+1. Therefore, Y is the union of an ascending chain of subgroups
as follows:

Y0 < Y1 < ⋯ < Y = ∞⋃
n=0

Yn .

By Proposition 1.5, if each Yn is para-free of the same rank, then Y is residually
torsion-free nilpotent. Y0 is clearly para-free of rank 2 since it is a rank-2 free group.
We need to verify that each time we adjoin a root of an element, that element is
homologically primitive. Then, by Proposition 1.8, we can conclude that each Yn is
also para-free of rank 2.

Claim For each n ≥ 0, if Yn is para-free of rank 2, then so is Yn+1.

Proof Let n be a nonnegative integer, and suppose Yn is para-free of rank 2. In an

abuse of notation, let pA1, pA2, pV1, and pV2 be as defined in (2.1) except with the subscripts

of each S i increased by n. Similarly, let qA1, qA2, qV1, and qV2 be as defined in (2.2) except
with the subscripts of each S i decreased by n. Also, let H1, H2, H3, and H4 be the

groups obtained by adjoining square roots of pV−11 , t1 pV−12 , qV−11 , and t2 qV−12 to Yn as
before.

Let Y ab
n denote the abelianization of Yn , and let B1 be the quotient of Y

ab
n obtained

by killing the class of pV−11 in Y ab
n . Since Yn is para-free of rank 2, Y

ab
n ≅ Z⊕Z. Thus,

B1 ≅ Z⊕ Z

CZ

for some integer C.
Now, we view Y ab

n as a Z-module and use addition as the group operation. Y ab
n is

generated by S′−n−1 , S
′
−n , . . . , S

′
n , where S′i denotes the class of S i in Y ab

n . Using this
generating set, Y ab

n has a (2n) × (2n + 2) presentation matrix:

⎛⎜⎜⎜⎝

4 −9 4
4 −9 4⋱ ⋱ ⋱

4 −9 4

⎞⎟⎟⎟⎠
.

Throughout this paper, missing entries in matrices are zeros. See the Appendix for

definition and background on presentation matrices. The class of pV−11 in Y ab
n is
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12 J. Johnson

−4S′n−1 + 5S′n . Thus, B1 has the following (2n + 1) × (2n + 2) presentation matrix,
which we will also call B1:

B1 =
⎛⎜⎜⎜⎜⎜⎝

4 −9 4
4 −9 4⋱ ⋱ ⋱

4 −9 4−4 5

⎞⎟⎟⎟⎟⎟⎠
.

By Lemma A.1, the integer C is the greatest common divisor of the determinants of
every (2n + 1) × (2n + 1) minor of B1. By deleting the last column, we get a square
minor of B1 with determinant −42n+1. However, by deleting the first column, we see
B1 has a minor with odd determinant. (Modulo 2, the matrix obtained from B1 by
deleting the first column is the identity matrix.) Thus, C = 1.

Therefore, B1 is a rank-1 free abelian group. It follows that pV−11 is homologically
primitive in Yn , and H1 is para-free of rank 2 by Proposition 1.8.

Let B2 be the quotient of Hab
1 obtained by killing the class of t1 pV−12 in Hab

1 , the
abelianization of H1. H

ab
1 is generated by S′−n−1 , S

′
−n , . . . , S

′
n , t
′
1, where t

′
1 is the class of

t1 in Hab
1 . Hab

1 has a (2n + 1) × (2n + 3) presentation matrix:

⎛⎜⎜⎜⎜⎜⎝

4 −9 4
4 −9 4⋱ ⋱ ⋱

4 −9 4−4 5 2

⎞⎟⎟⎟⎟⎟⎠
.

The class of t1 pV−12 in Hab
1 is 2S′n + t′1. Thus, B2 has the following (2n + 2) × (2n + 3)

presentation matrix:

B2 =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 −9 4
4 −9 4⋱ ⋱ ⋱

4 −9 4
4 −5 2

2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Using the 1 in the bottom-right corner, we apply a row and a column operation.
Then, we kill the last row and column to get the following presentation matrix:

B2 ≅
⎛⎜⎜⎜⎜⎜⎝

4 −9 4
4 −9 4⋱ ⋱ ⋱

4 −9 4
4 −9

⎞⎟⎟⎟⎟⎟⎠
.

Thus, B2 is a rank-1 free abelian group, by an argument similar to the one used for

B1. It follows that t1 pV−12 is homologically primitive in H1, and H2 is para-free of rank
2 by Proposition 1.8.
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Residual torsion-free nilpotence, bi-orderability, 2-bridge links 13

Similarly, qV−11 and t2 qV−12 are homologically primitive in H2 and H3, respectively.
Therefore, H4 ≅ Yn+1 is para-free of rank 2. ∎

For any group G, if H is G with an nth root adjoined, then

H/G ≅ Z/nZ ,

so ∣H ∶ G[H,H]∣ = ∣H ∶ G∣ = n. Thus, since for each n, Yn+1 is Yn with square roots
adjoined four times, ∣Yn+1 ∶ Yn[Yn+1 ,Yn+1]∣ = 16.

Since Y0 is para-free of rank 2, each Yn is para-free of rank 2 by induction.
Therefore, Y is residually torsion-free nilpotent by Proposition 1.5.

3 A group presentation of the Alexander subgroup

In this section, we give a group presentation of the Alexander subgroup of an arbitrary
two-bridge link group using the Reidemeister–Schreier rewriting process. From this
presentation of the Alexander subgroup, we can describe the subgroup as the union
of an ascending chain of subgroups which satisfy conditions (a) and (b) of Lemma 1.6
when the Alexander polynomial of the link has relatively prime coefficients.

3.1 A presentation from Reidemeister–Schreier

Consider the two-bridge link L ∶= L(p/q) where 1 ≤ ∣q∣ < p with q odd. For each
integer i, define

ε i ∶= (−1)⌊ iqp ⌋ .(3.1)

Proposition 3.1 (Schubert [29]) Given the two-bridge link L(p/q),
π(L(p/q)) ≅ ⟨a, b∣w⟩,

where a and b are classes of meridians of L(p/q) and w = aε0bε1 . . . aε2p−2bε2p−1 .

Let Y be the Alexander subgroup of L. A group presentation for Y can be obtained
using the Reidemeister–Schreier rewriting procedure, developed by Reidemeister [26]
and Schreier [28]. The Reidemeister–Schreier rewriting procedure is described in
detail in Section 2.3 of the text by Karrass, Magnus, and Solitar [12]. The application
of this procedure to the situation at hand is discussed below.

Under the map φ ○ h ∶ π(L) → π(L)/Y ≅ Z from (1.1), a and b are both sent to 1 or
both sent to −1. Consider A ∶= {ak}k∈Z as a set of coset representatives for π(L)/Y .
Given an element x in π(L), let x be the coset representative of x in A. For each x ∈{a, b} and k ∈ Z, define

γ(ak , x) ∶= akx(akx)−1 .
Note that γ(ak , a) = 1 and γ(ak , b) = akba−k−1. Given a word u = x s11 x

s2
2 ⋯x snn with

x i ∈ {a, b} and s i ∈ {1,−1} for all i, define
τ(u) ∶= γ(t1 , x1)s1γ(t2 , x2)s2⋯γ(tn , xn)sn ,
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14 J. Johnson

where

t i ∶= { x s11 ⋯x s i−1i−1 (possibly trivial) , s i = 1,
x s11 ⋯x s ii , s i = −1.

For each integer k, define

Sk ∶= γ(ak , b)
and define

S ∶= {Sk}k∈Z .
Since, for all k, γ(ak , a) = 1, for each word u, τ(u) is a product Sk1Sk2⋯Sk l . For each
integer k, define

Rk ∶= τ(akwa−k).
Define

σi ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑i−1

j=0 ε j , when i > 0,

∑−1j=i ε j , when i < 0,

0, when i = 0,

(3.2)

for each integer i.

Proposition 3.2 Suppose R0 = τ(w) = S
η1

i1
S
η2

i2
. . . S

ηn

in
, where each i j is an integer and

each η j is ±1. Then:

(a) n = p.
(b) η j = ε2 j−1, for each j = 1, . . . , p .
(c) i j = σ2 j if η j = 1 and i j = σ2 j+1 if η j = −1 for each j = 1, . . . , p.

(d) For every integer k, Rk = S
η1

i1+k
S
η2

i2+k
. . . S

ηp

ip+k
.

Proof Since γ(ak , a) is trivial, the S i-generators inR0 come from the b-generators in
w. For (a), notice that the length of thewordR0 is the number of times b and b−1 appear
inw, which is equal to p. By definition, η j is equal to the exponent of the corresponding
b or b−1 in w, which is ε2 j−1 showing (b). Since a = b modulo Y, then for any word u
in a and b, u = as where s is the sum of the exponents of the a’s and b’s in u.Thus, both
(c) and (d) follow by a straightforward computation. ∎
Proposition 3.3 (Karrass–Magnus–Solitar [12, Theorem 2.9])

Y ≅ ⟨{Sk}k∈Z ∣ {Rk}k∈Z⟩.
3.2 Group presentation properties

This group presentation of Y has a few notable properties which will be of use.
Given a word W in S, let [W] denote the class of W in the free abelian group

generated by S. For each integer k, define S′k ∶= [Sk]. Denote themaximal andminimal
subscripts of S appearing in the word R0 byM andm, respectively, so that

[R0] = aMS′M + aM−1S
′
M−1 +⋯+ am+1S

′
m+1 + amS

′
m

for some integers am , . . . , aM .
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Proposition 3.4 Suppose L is a two-bridge link, and suppose Y is the Alexander
subgroup of L with presentation as defined in Section 3.1.

(a) For each integer n,

[Rn] = aMS′M+n + aM−1S
′
M−1+n +⋯+ am+1S

′
m+1+n + anS

′
m+n .

(b) Let g be the genus of L.When L is a knot, M −m = 2g, andwhen L is a link, M −m =
2g + 1.

(c) For all j = m, . . . ,M,

a j = { ag+m− j , if m ≤ j ≤ m + g ,

ag+ j−M , if M − g ≤ j ≤ M ,

where

ΔL(t) = ag t
2g +⋯+ a0 t

g +⋯+ ag

when L is a knot, and

ΔL(t) = ag t
2g+1 +⋯+ a0 t

g+1 + a0 t
g +⋯+ ag

when L is a link. In particular, for all j = 0, . . . ,M −m,

aM− j = am+ j .

Proof Part (a) follows from Proposition 3.2(d).
For each i = 1, . . . , 2p, denote by w i the word obtained from the first i generators

of the relation w. Also, define

θ(s) ∶= { 1, if s = 1,
0, if s = −1.

We compute the Alexander polynomial by performing Fox calculus on wwith respect
to b (see [9, Section 3]):

∂w

∂b
= aε0 ( ∂

∂b
(bε1) + bε1aε2 ( ∂

∂b
(bε3)) +⋯ + bε2p−3aε2p−2 ( ∂

∂b
(bε2p−1))⋯)

= p∑
i=1

w2i−1
∂

∂b
(bε2i−1)

= p∑
i=1

ε2i−1w f (i) ,

where

f (i) = 2i − θ(ε2i−1).
For each i = 1, . . . , 2p, w i = aσ i . Let t = a = b. Up to multiplication by powers of t,

ΔL(t) = φ′ (∂w
∂b

) = p∑
i=1

ε2i−1 t
σ f (i) ,(3.3)

where φ′ ∶ Z[π(L)] → Z[t] is the map induced by φ ○ h.
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16 J. Johnson

By Proposition 3.2,

Rk = Sε1σ f (1)+k
Sε3σ f (2)+k

⋯S
ε2p−1
σ f (p)+k

,

so

[Rk] = ε1S
′
σ f (1)+k

+ ε3S
′
σ f (2)+k

+⋯+ ε2p−1S
′
σ f (p)+k

= p∑
i=1

ε2i−1S
′
σ f (i)+k

.
(3.4)

The degree of ΔL is 2g when L is a knot and 2g + 1 when L is a link [8, 21, 22]. Thus,
parts (b) and (c) follow from (3.3) and (3.4). ∎

3.3 An ascending chain of subgroups

With the group presentation from Proposition 3.3, we can describe Y as an ascending
chain of subgroups.

Define Y0 to be the free group

Y0 ∶= ⟨Sm , Sm+1 , . . . , SM−1 ∣ ∅⟩,(3.5)

and define Yn to be the group with presentation

Yn ∶= ⟨Sm−n , Sm−n+1 , . . . , SM+n−1 ∣ R−n , . . . , Rn−1⟩(3.6)

for each positive integer n.
Yn+1 is Yn with two extra generators, Sm−n−1 and SM+n , and two extra relators,

R−n−1 and Rn . It turns out that all of the appearances of SM+n in Rn are contained in
nested repeating patterns of words. Similarly, all of the appearances of Sm−n−1 in R−n−1
are contained in nested repeating patterns of words. Given an explicit two-bridge link,
one can find these patterns easily, as we did in Section 2 for L(17/13), yet showing that
these patterns exist for an arbitrary two-bridge link is much more complicated.

Once it is established that these patterns exist, however, it follows that for each
nonnegative integer n, Yn+1 is Yn after adjoining roots a finite number of times. This
implies that each Yn embeds into Yn+1. Since Y is the direct limit of the sequence of
Yn ’s, Y is the union of the ascending chain of Yn ’s. When the coefficients of ΔL are
relatively prime, the elements whose roots are adjoining are homologically primitive.

The following lemma explicitly describes the relator Rn as nested patterns of
repeating words. For simplicity of notation, let δ = ±1.
Lemma 3.5 For each integer n, there exist a positive integer N, sequences of words in
S,

pA0 , pA1 , . . . , pAN ,

pV1 , . . . , pVN ,

and

xW1 , . . . , xWN ,

and a sequence of positive integers n1 , . . . , nN such that all of the following hold:
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(M1) pA0 is a cyclic permutation of Rn .

(M2) pAN = SδM+n .
(M3) For each i = 1, . . . ,N,

xW−1
i

pA i−1
xWi = pAn i

i
pVi .

(M4) For each i = 1, . . . ,N, pVi and xWi are contained in the subgroup generated by the
set

{Sm+n , Sm+n+1 , . . . , SM+n−1}.
(M5) For each i = 1, . . . ,N, there is some l with m < l ≤ M and integers b l , . . . , bM

(which depend on i) such that

[ pA i] = M∑
j=l

b jS
′
j+n = b l S

′
l+n + b l+1S

′
l+n+1 +⋯ + bMS′M+n

with ∣b l+ j ∣ = ∣bM− j ∣.
Also, there are sequences

qA0 , qA1 , . . . , qAN ,

qV1 , . . . , qVN ,

and

|W1 , . . . , |WN ,

such that:

(m1) qA0 is a cyclic permutation of Rn .

(m2) qAN = Sδm+n .
(m3) For each i = 1, . . . ,N,

|W−1
i

qA i−1
|Wi = qAn i

i
qVi .

(m4) For each i = 1, . . . ,N, qVi and |Wi are contained in the subgroup generated by the
set

{Sm+n+1 , . . . , SM+n−1 , SM+n}.
(m5) For each i = 1, . . . ,N, there is some l ′ with m ≤ l ′ < M, and integers bm , . . . , b l ′

(which depend on i) such that

[ qA i] = l ′∑
j=m

b jS
′
j+n = bmS

′
m+n +⋯+ b l ′S

′
l ′+n

with ∣bm+ j ∣ = ∣b l ′− j ∣.
Remark 3.6 Y1 is obtained from Y0 by adding 2N roots. In order of increasing index,

each pA i is added as the n i th root of some element, then each qA i is added as an n i th
root. The conditions (M5) and (m5) are used to show that the elements whose roots
are added are homologically primitive.
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Lemma 3.5 is proved in Section 5.7.

Proposition 3.7 The Alexander subgroup Y of any oriented two-bridge link is a union
of an ascending chain of subgroups

Y0 < Y1 < Y2 < ⋯ < Yi < ⋯ < ∞⋃
n=1

Yn ≅ Y ,

where Yn+1 is obtained from Yn by adjoining a finite number of roots.

Proof Define the sequence Y0 ,Y1 ,Y2 , . . . as in (3.5) and (3.6). Consider Yn for some
nonnegative integer n:

Yn = ⟨Sm−n , . . . , SM+n−1 ∣ R−n , . . . , Rn−1⟩
and

Yn+1 = ⟨Sm−n−1 , . . . , SM+n ∣ R−n−1 , . . . , Rn⟩.
By Lemma 3.5, there are an integer N, sequences of words

pA0 , . . . , pAN ,

pV1 , . . . , pVN ,

and

xW1 , . . . , xWN ,

and a sequence of integers

n1 , . . . , nN

satisfying (M1)–(M4).
Let ⟨t i⟩ be an infinite cyclic group generated by t i for each i = 1, . . . ,N . Also, let t0

be the identity element of Yn .
Define

H0 = Yn ,(3.7)

and for each i = 1, . . . ,N , recursively define

H i ∶= H i−1 ∗
ph i=t

ni
i

⟨t i⟩,(3.8)

where

ph i = xW−1
i t i−1xWi

pV−1i .(3.9)

We know that ph i is an element of H i−1 since pVi and xWi only use generators in{Sm+n , . . . , SM+n−1} by Lemma 3.5(M4).
We can write the following presentation for HN :

HN ≅ ⟨Sm−n , . . . , SM+n−1 , t1 , . . . , tN ∣ R−n , . . . , Rn−1 , {ph−1i tn i

i }Ni=1⟩.(3.10)
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For each i = 1, . . . ,N , ph−1i tn i

i = 1, so by (3.9),

1 = t−1i−1xWi t
n i

i
pVi

xW−1
i .(3.11)

Now, we find a new presentation of HN by altering the one in (3.10). Since by Lemma

3.5(M2), pAN is SδM+n , we can add the generator SM+n and identify it with tδN by adding

the relation t−1N
pAN . By backward substitution using Lemma 3.5(M3) and (3.11),

t i−1 = xWi
pAn i

i
pVi

xW−1
i = pA i−1

for each i = N , . . . , 1. Thus, each of the relations ph−1i tn i

i in (3.10) is equivalent to t−1i A i

for i = 0, . . . ,N − 1. In particular, since t0 is trivial, A0 = 1. After these alterations, HN

has the following presentation:

HN ≅ ⟨Sm−n , . . . , SM+n , t1 , . . . , tN ∣ R−n , . . . , Rn−1 , pA0 , t
−1
1

pA1 , . . . , t
−1
N

pAN⟩.
We can now use the relations t−11 pA1 , . . . , t

−1
N

pAN to eliminate the generators t1 , . . . , tN .
Since A0 is a cyclic permutation of Rn by Lemma 3.5(M1), A0 can be replaced by Rn

producing the following presentation:

HN ≅ ⟨Sm−n , . . . , SM+n ∣ R−n , . . . , Rn⟩.
Likewise, by Lemma 3.5, there are sequences of words

qA0 , . . . , qAN ,

qV1 , . . . , qVN ,

and

|W1 , . . . , |WN ,

satisfying (m1)–(m4).
For each i = 1, . . . ,N , define

H i+N ∶= H i+N−1 ∗
qh i=t

ni
i

⟨t i⟩,(3.12)

where

qh i = |W−1
i t i−1|Wi

qV−1i ,

H2N ≅ ⟨Sm−n , . . . , SM+n , t1 , . . . , tN ∣ R−n , . . . , Rn , {qh−1i tn i

i }Ni=1⟩.
We can identify tN with qAN which is Sδm−n−1 by Lemma 3.5(m2). By backward
substitution using (m1)–(m3) of Lemma 3.5,

H2N ≅ ⟨Sm−n−1 , . . . , SM+n , t1 , . . . , tN ∣ R−n , . . . , Rn−1 , qA0 , t
−1
1

qA1 , . . . , t
−1
N

qAN⟩
≅ ⟨Sm−n−1 , . . . , SM+n ∣ R−(n+1) , . . . , Rn⟩
≅ Yn+1 .

(3.13)

Consider Yn and Yn+1 for a nonnegative integer n. For each i = 0, . . . , 2N − 1, H i

embeds into H i+1 since H i+1 is a free product of H i and Z amalgamated along infinite
cyclic subgroups. Let φ i ∶ H i → H i+1 be the embeddingwhichmaps Sk ↦ Sk and tk ↦

https://doi.org/10.4153/S0008414X2300007X Published online by Cambridge University Press



20 J. Johnson

tk for all k. The composition fn = φ2N−1 ○ ⋯ ○ φ0 is an embedding of Yn into Yn+1

which maps Sk ↦ Sk for all k.
Thus, we have the following sequence of embeddings:

Y0

f0
↪−→ Y1

f1
↪−→ Y2

f2
↪−→⋯ fn−1

↪−→ Yn

fn
↪−→⋯.

The Alexander subgroup Y is the direct limit of this sequence. Since each fn is an
embedding, Y is a union of an ascending chain of subgroups as desired. ∎

3.4 Proof of Lemma 1.6

We now turn our attention to proving Lemma 1.6. First, we state a more precise and
detailed version of Lemma 1.6.

Lemma 3.8 Suppose that Y is the Alexander subgroup of a two-bridge link whose
Alexander polynomial has relatively prime coefficients so that Y is an ascending chain of
subgroups

Y0 < Y1 < Y2 < ⋯ < Y = ∞⋃
n=1

Yn

as defined in (3.5) and (3.6). For each n ∶
(a) Yn is para-free of the rank M −m and
(b) ∣Yn+1 ∶ Yn[Yn+1 ,Yn+1]∣ = a2g , where ag is the leading coefficient of the Alexander

polynomial of L.

Proof First, we show (a). Y0 is a para-free of rank M −m since it is a rank M −m
free group. Suppose that for some n ≥ 0, Yn is para-free of rank M −m. By Lemma
3.5, there is are integer N, sequences of words

pA0 , . . . , pAN ,

pV1 , . . . , pVN ,

and

xW1 , . . . , xWN ,

and a sequence of integers

n1 , . . . , nN ,

satisfying (M1)–(M4).
Define H0 , . . . ,H2N as in (3.7), (3.8), and (3.12), so H2N ≅ Yn+1 as in (3.13).
SupposeHk−1 is para-free of rankM −m for some k such that 0 < k ≤ N , soHab

k−1 ≅
ZM−m . Define

B ∶= Hk−1

⟨phk⟩[Hk−1 ,Hk−1] ≅ ZM−m−1 ⊕ Z

CZ
,

where

phk = xW−1
k tk−1xWk

pV−1k
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and C is an integer. If B ≅ ZM−m−1, then phk is homologically primitive in Hk−1, and
inductively, by Proposition 1.8, each Hk is para-free of rank M −m.

By Proposition 3.4, Hab
0 = Y ab

n has a 2n × (2n +M −m) presentation matrix:

⎛⎜⎝
am am+1 ⋯ aM−1 aM⋱ ⋱ ⋱

am am+1 ⋯ aM−1 aM

⎞⎟⎠ .

Hk−1 is H0 with the n j root of ph j added for each j = 1, . . . , k − 1. Thus, B is Hab
0 after

killing the classes [ph−1j t
n j

j ] for each j = 1, . . . , k − 1 and killing the class [ph−1k ]. B is

generated by S′m−n , . . . , S
′
M+n−1 , t

′
1 , . . ., t

′
k−1, where t′j is the class [t j]. Using these

generators, B has the following (2n + k) × (2n + k +M −m − 1) presentation matrix:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

am am+1 ⋯ aM−1 aM⋱ ⋱ ⋱
am am+1 ⋯ aM−1 aM
0 ←..... [pV1] .....→ n1

0 ←..... [pV2] .....→ −1 n2

0 ←..... [pV3] .....→ 0 −1 n3⋮ ⋱ ⋱
0 ←..... [pVk−1] .....→ 0 ⋯ 0 −1 nk−1

0 ←..... [pVk] .....→ 0 ⋯ 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Applying the row operations row j + n j+1row j+1 → row j for each row j = 2n + k −
1, . . . , 2n + 1 results in the matrix

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

am am+1 ⋯ aM−1 aM⋱ ⋱ ⋱
am am+1 ⋯ aM−1 aM
0 ←..... [U1] .....→ 0
0 ←..... [U2] .....→ −1 0
0 ←..... [U3] .....→ 0 −1 0⋮ ⋱ ⋱
0 ←..... [Uk−1] .....→ 0 ⋯ 0 −1 0
0 ←..... [Uk] .....→ 0 ⋯ 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

[U j] = [pVj] + n j([pVj+1] + n j+1([pVj+2] + ⋯ + nk−2([pVk−1] + nk−1[pVk])⋯).
Eliminating the last k − 1 rows and columns results in the (2n + 1) × (2n +M −m)
presentation matrix D:

D =
⎛⎜⎜⎜⎜⎜⎝

am am+1 ⋯ aM−1 aM
am am+1 ⋯ aM−1 aM⋱ ⋱ ⋱

am am+1 ⋯ aM−1 aM
cm cm+1 ⋯ cM−1

⎞⎟⎟⎟⎟⎟⎠
,
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where

[U1] = cmS
′
m+n + cm+1S

′
m+n+1 +⋯+ cM−1S

′
M+n−1 .

By Lemma 3.5(M5), for some l with m < l ≤ M, there are integers b l , . . . , bM such
that

[ pAk] = M∑
j=l

b jS
′
j+n(3.14)

and ∣b l+ j ∣ = ∣bM− j ∣.
Claim 1 For each j = m, . . . ,M − 1,

c j = { a j , when m ≤ j < l ,

a j − (∏k
s=1 ns)b j , when l ≤ j < M − 1.

∎
From the row operations,

[U1] = [pV1] + n1([pV2] + n2([pV3] + ⋯ + nk−2([pVk−1] + nk−1[pVk])⋯))
= [pV1] + n1[pV2] + n1n2[pV3] + ⋯ + (k−2∏

s=1

ns) [pVk−1] + (k−1∏
s=1

ns) [pVk]

= k∑
j=1

⎛
⎝

j−1∏
s=1

ns

⎞
⎠[pVj].

We use the convention that any empty product ∏0
j=1(x j) is 1. By Lemma 3.5(M3),

pVj = pA
−n j

j
xW−1

j
pA j−1

xWj , so [pVj] = [ pA j−1] − n j[ pA j]. Thus,

k∑
j=1

⎛
⎝

j−1∏
s=1

ns

⎞
⎠[pVj] = k∑

j=1

⎛
⎝

j−1∏
s=1

ns

⎞
⎠([ pA j−1] − n j[ pA j])

= k∑
j=1

⎛
⎝

j−1∏
s=1

ns

⎞
⎠[ pA j−1] − k∑

j=1

⎛
⎝

j∏
s=1

ns

⎞
⎠[ pA j]

= [ pA0] − ( k∏
s=1

ns) [ pAk].
Therefore, since pA0 is a cyclic permutation of Rn by Lemma 3.5(M1),

[U1] = [Rn] − ⎛⎝
k∏
s=1

ns

⎞
⎠[ pAk].(3.15)

The statement of the claim follows from Proposition 3.4(a), (3.14), and (3.15).
By Lemma A.1, C is the gcd of all the (2n + 1) × (2n + 1) minors of D. Suppose a

prime d divides C, so d divides the determinant of every (2n + 1) × (2n + 1)minor of
D. The determinant of the minor of D given by the first 2n + 1 columns is a2n+1m , so d
divides am .
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Claim 2 There is some (2n + 1) × (2n + 1) minor of D whose determinant is not
divisible by d.

By Proposition 3.4(c), the integers am , . . . , aM are the coefficients of the Alexander
polynomial. Since the coefficients of ΔL(t) are relatively prime, there is some coef-
ficient that d does not divide. Let m + i be the minimal index such that d does not
divide am+i . We prove this claim in two cases.

Case 1. Suppose at least one of the following holds:

• m + i < l ,
• d divides some ns with s ≤ k, or
• d divides b j for all j = l , . . . , i.

Then, either m + i < l or d must divide (∏k
s=1 ns)b j for all j = l , . . . ,m + i. By Claim

1, d divides c j when j < m + i and d does not divide cm+i .
Let E be the (2n + 1) × (2n + 1) minor of D consisting of the n + 1 consecutive

columns starting with the first column which with am+i (or cm+i if n = 0) at the top.
Thus, working modulo d, we have the following minor:

E =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

am+i ∗ ∗ ⋯ ∗ ∗
0 am+i ∗ ⋯ ∗ ∗
0 0 am+i ⋯ ∗ ∗⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ am+i ∗
0 0 0 ⋯ 0 cm+i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since d does not divide am+i or cm+i , d cannot divide det(E).
Case 2. Suppose all of the following hold:

• l ≤ m + i,
• d does not divide any ns with s ≤ k, and
• there is some j ≤ m + i such that d does not divide b j .

Let F1 be the (2n + 1) × 2n minor given by the 2n consecutive columns with the
coefficient aM−i . By Proposition 3.4(c), am+ j = aM− j for all j = 0, . . . ,M −m, soM − i
is the maximal index such that d divides aM−i . Thus, modulo d, F1 has the following
form:

F1 =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

aM−i 0 0 ⋯ 0∗ aM−i 0 ⋯ 0∗ ∗ aM−i ⋯ 0⋮ ⋮ ⋮ ⋱ ⋮∗ ∗ ∗ ⋯ aM−i∗ ∗ ∗ ⋯ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We need to find a column inDwith the first 2n entries divisible by d and the last entry
not divisible by d.
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Let l + i′ be the minimal index such that d does not divide b l+i′ , so l + i′ ≤ m + i.
Since d does not divide b l+i′ and b l+i′ = bM−i′ , d does not divide bM−i′ . By Lemma

3.5(M4), for all j, the coefficient of S′M+n in [pVj] is zero, so by (3.15),
aM = bM

k∏
s=1

ns .

Since am = aM and d divides am , d must also divide bM . Therefore, d divides b l , so
i′ > 0 and M − i′ ≤ M − 1.

SinceM − i′ ≤ M − 1, there is some column F2 which ends with cM−i′ . Every other
entry in F2 is 0 or a j for some j > M − i′. Since l + i′ ≤ m + i and m < l ,

0 < l −m ≤ i − i′ ,

so M − i < M − i′. Thus, by Claim 1, d does not divide cM−i′ , and for all j > M − i′, d
divides a j .

Combine F1 and F2 to get a (2n + 1) × (2n + 1)minor F of D. Working modulo d,
we have the minor:

F =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

aM−i 0 0 ⋯ 0 0∗ aM−i 0 ⋯ 0 0∗ ∗ aM−i ⋯ 0 0⋮ ⋮ ⋮ ⋱ ⋮ ⋮∗ ∗ ∗ ⋯ aM−i 0∗ ∗ ∗ ⋯ ∗ cM−i′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since d does not divide aM−i or cM−i′ , d cannot divide det(F).
In conclusion, there are no primes which divide every determinant of (2n + 1) ×(2n + 1) submatrices of D, so C = 1. Thus, B ≅ ZM−m−1, and Hk is para-free of rank

M −m. By induction, HN is para-free of rank M −m.
By a similar induction argument, HN , . . . ,H2N are also para-free of rank M −m.

Therefore, Yn+1 ≅ H2N is para-free of rank M −m, so by induction Yn is para-free of
rank M −m for each nonnegative integer n.

For (b), consider the group Yn+1/Yn[Yn+1 ,Yn+1], which is an abelian group with
the following presentation:

Yn+1

Yn[Yn+1 ,Yn+1] ≅ ⟨S
′
m−n−1 , . . . , S

′
M+n ∣ [R−n−1], . . . , [Rn], S′m−n , . . . , S′M+n−1⟩.

By Proposition 3.4,

[R j] = agS
′
M+ j + ag−1S

′
M−1+ j +⋯+ ag−1S

′
m+1+ j + agS

′
m+ j .

After eliminating the generators S′m−n , . . . , S
′
M+n−1, we have that

Yn+1

Yn[Yn+1 ,Yn+1] ≅ ⟨S
′
m−n−1 , S

′
M+n ∣ agS

′
M−n−1 , agS

′
m+n⟩,

so

∣Yn+1/Yn[Yn+1 ,Yn+1]∣ =
44444444444
Z

agZ
⊕ Z

agZ

44444444444 = a2g .
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Figure 4: The incremental path Γ.

4 Cycle graphs

Explicitly, Lemma 3.5 is about nested patterns of repeating words in the relator R0.
However, this pattern is inherited from patterns in the sequences of ε i ’s and σi ’s
defined in (3.1) and (3.2). In the spirit of Hirasawa and Murasugi [11], graphs are used
in order to gain intuition about how the sequences of ε i ’s and σi ’s behave; however,
the construction here slightly differs from the one Hirasawa and Murasugi used.

4.1 Incremental paths and cycles

A graded directed graph is a connected directed graph Γwithmap gr ∶ V(Γ) → Z called
the grading. Here, V(Γ) denotes the set of vertices of Γ. Two graded directed graphs
Γ and Γ′ are isomorphic if there is a directed graph isomorphism f ∶ Γ → Γ′ such that
for every vertex P in Γ, gr( f (P)) = gr(P). Γ and Γ′ are called relatively isomorphic if
there is a directed graph isomorphism f ∶ Γ → Γ′ and an integer k such that for every
vertex P in Γ, gr( f (P)) = gr(P) + k.

An incremental path is a graded directed path graph Γ where the gradings of
adjacent vertices differ by ±1. Similarly, an incremental cycle is a graded directed
cycle graph Γ where the gradings of adjacent vertices differ by ±1. An edge (P, P′)
in an incremental path or cycle is positive if gr(P′) − gr(P) = +1 and negative if
gr(P′) − gr(P) = −1.
Example 4.1 Let Γ be a directed graph with five vertices P1 , . . . , P5, and edges(P1 , P2), . . . , (P4 , P5). Define a grading on the vertices as follows:

gr(P1) = 0, gr(P2) = 1, gr(P3) = 2, gr(P4) = 1, gr(P5) = 2.

Γ is an incremental path (see Figure 4).

Let Γ and Γ′ be two incremental paths in which the grading of the last vertex in Γ
is equal to the grading of the first vertex in Γ′. Define the concatenation of Γ and Γ′,
denoted Γ ∗ Γ′, to be the graded directed graph obtained by identifying the last vertex
in Γ with the first vertex in Γ′ (see Figure 5).

If the gradings of the first and last vertices in Γ are the same, Γ is called closable and
the closure of Γ, cl(Γ), is defined to be the incremental cycle obtained by identifying
the first and last vertices in Γ.

4.2 Cycle graphs of co-prime pairs

Ultimately, Lemma 3.5 is a statement about the sequences of ε i ’s and σi ’s for co-
prime pairs of integers. As computed in Proposition 3.2, the ith S-generator in R0
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Figure 5: The concatenation of Γ and Γ′.

Figure 6: Γ(33, 23).

is determined by the values of σ2i−1 and σ2i . Here, we construct a graph to analyze the
sequences of ε i ’s and σi ’s.

We call a pair of integers (p, q) a relevant co-prime pair if p and q are co-prime,
q is odd, and p > ∣q∣ > 0. Define the sequences ε i and σi as in (3.1) and (3.2) for each
integer i. Define the incremental path Γ(p, q) as follows: The vertex set of Γ(p, q) is{P0 , . . . , P2p}, and the edge set of Γ(p, q) is

E(Γ(p, q)) = {(P0 , P1), (P1 , P2), . . . , (P2p−1 , P2p)}.
The grading of each vertex is defined by gr(Pi) = σi . Γ(p, q) is always closable, and the
cycle graph of p and q, Γ(p, q), is defined to be cl(Γ(p, q)). When studying Γ(p, q),
it is convenient to think of its vertices {P0 , . . . , P2p−1} being indexed by elements of
Z/(2pZ). See Figure 6 for example.

Proposition 4.2 Let (p, q) be a relevant co-prime pair. The cycle graphs Γ(p, q) and
Γ(p,−q) are relatively isomorphic.

Proof Let {ε i}i∈Z be the sequence of signs of (p, q) defined in (3.1). For each integer
i, define

ε i ∶= (−1)⌊ −iqp ⌋ ,
which is the sequence of signs of (p,−q). Let q′ be the unique integer such that 0 <
q′ < 2p and q′q ≡ p − 1 modulo 2p, so q′q = p − 1 + 2pk for some integer k.

We claim that the following equivalence holds:

ε i = ε i+q′ .(4.1)
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Consider the following computation:

⌊−iq
p
⌋ = ⎧⎪⎪⎨⎪⎪⎩

−⌊ iq
p
⌋, iqmod p = 0,

−⌊ iq
p
⌋ − 1, iqmod p ≠ 0,

⌊(i + q′)q
p

⌋ = ⌊ iq + q′q

p
⌋ = ⌊ iq + p − 1 + 2pk

p
⌋ = ⌊ iq − 1

p
⌋ + 2k + 1

= ⎧⎪⎪⎨⎪⎪⎩
⌊ iq

p
⌋ + 2k, iqmod p = 0,

⌊ iq
p
⌋ + 2k + 1, iqmod p ≠ 0.

We get the following equivalences modulo 2:

−⌊ iq
p
⌋ ≡ ⌊ iq

p
⌋ + 2k, (mod 2)

−⌊ iq
p
⌋ − 1 ≡ ⌊ iq

p
⌋ + 1 + 2k. (mod 2)

Thus,

(−1)⌊ −iqp ⌋ = (−1)⌊ (i+q′)qp
⌋ .

For each integer i = 0, . . . , 2p, define

ς i ∶= i−1∑
j=0

ε i ,

which are the gradings of the vertices of Γ(p,−q). By (4.1),
ς i = σi+q′ − σq′

for every positive integer i. Since the σi ’s are the gradings of the vertices of Γ(p, q), it
follows that Γ(p, q) and Γ(p,−q) are relatively isomorphic. ∎

4.3 Structure of cycle graphs

Given an incremental cycle Γ, a positive(negative) k-segment is a set of k consecutive
positive(negative) edges in Γ which are followed and preceded by negative(positive)
edges (see Figure 7a). For each relevant co-prime integer pair (p, q), Γ(p, q) is the
closure of the concatenation of segments of alternating sign as follows:

Γ(p, q) = cl(Λ0 ∗ Λ1 ∗⋯ ∗ Λn−1).
As a convention, let Λ0 denote the segment in Γ(p, q) containing the edge (P0 , P1).

Propositions 4.3 and 4.4 are analogs of the properties proved in Section 6 of
Hirasawa and Murasugi’s paper [11].

Proposition 4.3 Let (p, q) be a relevant co-prime pair with q > 0. Denote the vertices
of Γ(p, q) by P0 , . . . , P2p−1 as defined in Section 4.2, and let

Γ(p, q) = cl(Λ0 ∗ Λ1 ∗⋯ ∗ Λn−1),
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(a) A negative 3-segment (b) A 2-block of length 4

Figure 7: Examples of a segment and a block.

where Λ0 , . . . , Λn−1 are segments. Also, let κ and ξ be integers such that p = κq + ξ and
0 ≤ ξ < q:

(a) The number of segments n in Γ(p, q) is equal to 2q.
(b) Pi is at the beginning of a segment precisely when iqmod p < q.
(c) Pi is at the beginning of a κ-segment precisely when ξ ≤ iqmod p < q, and Pi is at

the beginning of a (κ + 1)-segment precisely when iqmod p < ξ.
(d) Λ0 is a positive (κ + 1)-segment.
(e) The number of (κ + 1)-segments in Γ(p, q) is 2ξ .
Proof For (a), the number of segments in Γ(p, q) corresponds to the number of

distinct floored quotients ⌊ iq
p
⌋ there are when i = 0, . . . , 2p − 1. Since p > q, these

quotients range from 0 to 2q − 1 without skipping, so there are exactly 2q segments.
A segment begins precisely when

⌊(i − 1)q
p

⌋ ≠ ⌊ iq
p
⌋,

which happens when (iqmod p) < q, proving (b).
For (c), suppose Pi is the beginning of a k-segment. k is the smallest positive integer

such that

⌊ iq
p
⌋ ≠ ⌊(i + k)q

p
⌋,

so

(iqmod p) + (k − 1)q < p

and

(iqmod p) + kq ≥ p.

When ξ ≤ (iqmod p) < q, k = κ. Likewise, when (iqmod p) < ξ, k = κ + 1.
Since Pi is the beginning of a segment, iqmod p < q, so exactly one of either

ξ ≤ (iqmod p) < q or (iqmod p) < ξ is true. This determines precisely when κ- and(κ + 1)-segments occur.
For part (d), it follows from (c) that Λ0 is a (κ + 1)-segment. Since ε0 is positive,

Λ0 is a positive segment.
Part (e) immediately follows from (c). ∎
When q = 1, ε i = 1 for 0 ≤ i < p and ε i = −1 for p ≤ i < 2p. Thus, Γ(p, q) is the

concatenation of two κ-segments.When q > 1, Γ(p, q) has more interesting structure.
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A k-block of length l in Γ(p, q) is a sequence of l consecutive k-segments that is not
preceded or followed by a k-segment (see Figure 7b). A k-block of length 1 is called an
isolated block.

Proposition 4.4 Let (p, q) be a relevant co-prime pair with q > 1, and let P0 , . . . , P2p−1
be the vertices of Γ(p, q) as defined in Section 4.2. Let κ, ξ, κ′, and ξ′ be integers such
that

p = κq + ξ with 0 < ξ < q(4.2)

and

q = κ
′ξ + ξ′ with 0 ≤ ξ′ < ξ.(4.3)

(a) All of the κ-blocks in Γ(p, q) have length κ′ or κ′ − 1.
(b) If Pj is the start of a κ-block, then when

q − ξ′ ≤ jqmod p < q,

the κ-blocks have length κ′ and when

q − ξ ≤ jqmod p < q − ξ′ ,

the κ-blocks have length κ′ − 1.
(c) If κ′ ≥ 2, then all the (κ + 1)-blocks in Γ(p, q) are isolated.
(d) If κ′ = 1, then all the κ-blocks in Γ(p, q) are isolated.
Proof Similar to the proof of Proposition 4.3, this proposition is just a matter of
determining when κ-blocks and (κ + 1)-blocks appear in Γ(p, q).

Suppose Pi is the beginning of a (κ + 1)-segment. The next segment begins at Pj

where j = i + κ + 1, and by (4.2),

jqmod p = ((i + κ + 1)q)mod p

= (iq + κq + q)mod p

= (iq + p − ξ + q)mod p

= ((iqmod p) + q − ξ)mod p.

Since Pi is the beginning of a (κ + 1)-segment, (iqmod p) < ξ by Proposition 4.3(c),
so

q − ξ ≤ (iqmod p) + q − ξ < q < p.(4.4)

Thus,

jqmod p = (iqmod p) + q − ξ.(4.5)

For (a) and (b), suppose a κ-block starts at vertex Pj . The length of the κ-block
starting at Pj is the smallest positive integer n, such that Ps(n) is the start of a (κ + 1)-
block where s(k) = j + kκ, so n is the smallest positive integer such that

0 ≤ s(n)qmod pξ < ξ.
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By (4.2),

s(k)qmod p = ( j + kκ)qmod p

= ( jq + kκq)mod p

= ( jq + kp − kξ)mod p

= (( jqmod p) − kξ)mod p.

By (4.4) and (4.5), since Pj is the beginning of a κ-segment,

q − ξ ≤ jqmod p < q.

We compute the length n for each of the two cases q − ξ ≤ ( jqmod p) < q − ξ′ and
q − ξ′ ≤ ( jqmod p) < q.

Suppose that

q − ξ′ ≤ jqmod p < q.(4.6)

By (4.3),

(( jqmod p) − κ
′ξ = (( jqmod p) − q + ξ′

and

0 ≤ (( jqmod p) − q + ξ′ < ξ′ ,

so

0 ≤ s(κ′)qmod p < ξ′ < ξ.

Thus, n ≤ κ
′.

Suppose k ≤ κ
′ − 1. By (4.3) and (4.6),

ξ ≤ (( jqmod p) − q + ξ′ + ξ

= (( jqmod p) − κ
′ξ + ξ

= (( jqmod p) − (κ′ − 1)ξ,
so

ξ ≤ (( jqmod p) − kξ < q.

Thus,

ξ ≤ s(k)qmod p < q,

so n ≥ κ
′. Therefore, n = κ

′.
Suppose

q − ξ ≤ ( jqmod p) < q − ξ′ .

By (4.3),

(( jqmod p) − (κ′ − 1)ξ = (( jqmod p) − q + ξ′ + ξ

and

0 ≤ ξ′ ≤ (( jqmod p) − q + ξ′ + ξ < ξ,
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so

0 ≤ s(κ′ − 1)qmod p < ξ.

Thus, n ≤ κ
′ − 1.

Suppose k ≤ κ
′ − 2. By (4.3) and (4.6),

ξ ≤ (( jqmod p) − q + ξ′ + 2ξ

= (( jqmod p) − (κ′ − 2)ξ,
so

ξ ≤ (( jqmod p) − kξ < q.

Thus,

ξ ≤ s(k)qmod p < q,

so n ≥ κ
′ − 1. Therefore, n = κ

′ − 1. Thus, all of the κ-blocks have length κ
′ or κ′ − 1.

For (c), suppose that κ′ ≥ 2. By (4.3),

q − ξ = (κ′ − 1)ξ + ξ′ ,

and since κ′ ≥ 2,

ξ ≤ ξ + ξ′ ≤ q − ξ,

so by (4.4),

ξ ≤ (iqmod p) + q − ξ < q.

Thus, by (4.5),

ξ ≤ jqmod p < q.

By Proposition 4.3(c), Pj must be the beginning of a κ-segment, so (κ + 1)-segments
cannot occur consecutively. Therefore, (κ + 1)-blocks are isolated.

Statement (d) follows immediately from (a). ∎
4.4 Reducing cycle graphs

Let (p, q) be a relevant co-prime pair with q > 1. Let κ, ξ, κ′, and ξ′ be defined as in
Proposition 4.4, and decomposition Γ(p, q) into segments Λ0 , . . . , Λ2q−1 as follows:

Γ(p, q) = cl(Λ0 ∗⋯ ∗ Λ2q−1).(4.7)

Again, Λ0 is the segment containing the edge (P0 , P1). By Proposition 4.3(e), 2ξ
of the segments in (4.7) are (κ + 1)-segments. Let j0 , . . . , j2ξ−1 be the indices in

ascending order of the (κ + 1)-segments in (4.7). Define a reduction of Γ(p, q),
denoted R(Γ)(p, q), to be the following graded directed cycle graph with 2ξ vertices
Q0 , . . . ,Q2ξ−1 with edge set

{(Q0 ,Q1), (Q1 ,Q2), . . . , (Q2ξ−2 ,Q2ξ−1), (Q2ξ−1 ,Q0)}.
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Figure 8: Reducing Γ(33, 23).

Define gr(Q0) = 0. For each i = 1, . . . , 2ξ − 1, define gr(Q i) ∶= gr(Q i−1) + 1 when Λ j i

is a positive segment, and gr(Q i) ∶= gr(Q i−1) − 1 when Λ j i is a negative segment.

Essentially, R(Γ)(p, q) is Γ(p, q) with the κ-segments removed and the (κ + 1)-
segments replaced with edges according to the sign of the segment. For example, see
Figure 8.

Lemma 4.5 Let (p, q) be a relevant co-prime pair with q > 1 and ξ > 1. Define p∗ to
be ξ, and define q∗ as follows:

q∗ ∶= { ξ′ , when κ
′ is even,

ξ′ − ξ, when κ
′ is odd,

(a) p∗ is always positive and q∗ is always odd.
(b) R(Γ)(p, q) is isomorphic to Γ(p∗, q∗).
Proof For (a), clearly, p∗ = ξ is positive. Also, notice that q is odd and

ξ′ = q − κ
′ξ.

If κ′ is even, then q∗ = ξ′ is odd. If κ′ is odd, then ξ′ and ξmust have opposite parities,
so q∗ = ξ′ − ξ is odd.
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Figure 9: The (κ + 1)-segments of Γ(17, 5).The indices of the segments are j0 = 0, j1 = 2, j2 = 5,
and j3 = 7.The indices of the vertices at the beginning of each (κ + 1)-segment are l0 = 0, l1 = 7,
l2 = 17, and l3 = 24.

For (b), consider Γ(p, q). By definition, R(Γ)(p, q) has 2ξ edges and 2ξ vertices.
Let {Q0 , . . . ,Q2ξ−1} be the vertex set of R(Γ)(p, q), and let {P∗0 , . . . , P∗2ξ−1} be the

vertex set of Γ(p∗ , q∗). Since R(Γ)(p, q) and Γ(p∗ , q∗) are cycle graphs with the same
number of vertices, there is an ungraded directed graph isomorphism between them
mapping Q i ↦ P∗i . Since gr(Q0) and gr(P∗0 ) are both 0 by definition, it only remains
to show that

gr(Q i+1) − gr(Q i) = gr(P∗i+1) − gr(P∗i )
for each i = 0, . . . , 2ξ − 1.

For i = 0, . . . , 2ξ − 1, define

ε i ∶= gr(Q i+1) − gr(Q i)
and

η i ∶= (−1)⌊ i ξ′ξ ⌋ .
If q∗ = ξ′, then

gr(P∗i+1) − gr(P∗i ) = η i ,

and if q∗ = ξ′ − ξ, then

gr(P∗i+1) − gr(P∗i ) = (−1)⌊ i(ξ′−ξ)ξ
⌋ = (−1)iη i .

Lt l i be the index of the vertex in Γ(p, q) at the beginning of Λ j i (see Figure 9).

By definition of R(Γ)(p, q), ε i is positive precisely when Λ j i is a positive segment.
Thus, ε i+1 = ε i when Λ j i and Λ j i+1 are separated by an even number of κ-segments,
and ε i+1 = −ε i when Λ j i and Λ j i+1 are separated by an odd number of κ-segments.The
desired result will follow from three claims.

Claim 1 Whenever 0 ≤ (iξ′mod ξ) < ξ − ξ′,

η i+1 = η i ,
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and whenever (iξ′mod ξ) ≥ ξ − ξ′,

η i+1 = −η i .

∎
When 0 ≤ (iξ′mod ξ) < ξ − ξ′, there are integers s and t with

iξ′ = sξ + t and 0 ≤ t < ξ − ξ′ ,

so

sξ ≤ (i + 1)ξ′ = sξ + t + ξ′ < (s + 1)ξ.
Thus,

η i+1 = (−1)s = η i .

When (iξ′mod ξ) ≥ ξ − ξ′, there are integers s and t with

iξ′ = sξ + t and ξ − ξ′ ≤ t < ξ,

so

(s + 1)ξ ≤ (i + 1)ξ′ = sξ + t + ξ′ < (s + 1)ξ + ξ′ < (s + 2)ξ.
Thus,

η i+1 = (−1)s+1 = −η i .

Claim 2 The segments Λ j i and Λ j i+1 are separated by a κ-block of length κ
′ when

ξ − ξ′ ≤ (l iqmod p) < ξ

and a κ-block of length κ
′ − 1 (possibly zero) when

0 ≤ (l iqmod p) < ξ − ξ′ .

By Proposition 4.4(b), every κ-block begins at a vertex Pl where

q − ξ ≤ (lqmod p) < q.

The length of the block is κ′ when

q − ξ′ ≤ (lqmod p) < q,(4.8)

and the length is κ′ − 1 when

q − ξ ≤ (lqmod p) < q − ξ′ .(4.9)

The vertex at the end of the segment Λ j i is the same as the vertex at the beginning
the segment Λ j i+1, so Λ j i+1 begins at the vertex with index l ′ ∶= l i + κ + 1. By Propo-
sition 4.3(b),

0 ≤ l iqmod p + q − ξ < q < p,
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so

l ′qmod p = (l i + κ + 1)qmod p

= (l iqmod p + q − ξ)mod p

= l iqmod p + q − ξ.

By (4.8), Λ j i and Λ j i+1 are separated by a κ-block of length κ
′ when

q − ξ′ ≤ (l ′qmod p) < q,

so

ξ − ξ′ ≤ (l iqmod p) < ξ.

By (4.9), Λ j i and Λ j i+1 are separated by a κ-block of length κ
′ − 1 when

q − ξ ≤ (l ′qmod p) < q − ξ′ ,

so

0 ≤ (l iqmod p) < ξ − ξ′ .

Claim 3 For each i = 0, . . . , 2ξ − 1,

l iqmod p = iξ′mod ξ.

Pl i and Pl i+1 are separated by a (κ + 1)-segment and a κ-block.Therefore, when the
length of the κ-block is κ′,

l i+1 = l i + (κ + 1) + κ
′
κ,

so

l i+1qmod p = (l iq + κq + q + κ
′
κq)mod p

= (l iqmod p + ξ′ − ξ)mod p.

The last equality follows from (4.2) and (4.3). By Claim 2,

0 ≤ l iqmod p + ξ′ − ξ < ξ′ < p.

Therefore,

l i+1qmod p = l iqmod p + ξ′ − ξ.(4.10)

When the length of the κ-block is κ′ − 1,

l i+1 = l i + (κ + 1) + (κ′ − 1)κ = l i + 1 + κ
′
κ,

so

l i+1qmod p = (l iq + q + κ
′
κq)mod p

= (l iqmod p + ξ′)mod p.

By Claim 2,

0 < ξ′ ≤ l iqmod p + ξ′ < ξ < p.
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Therefore,

l i+1qmod p = l iqmod p + ξ′ .(4.11)

If either (4.10) or (4.11) holds,

l i+1qmod p = (l iqmod p + ξ′)mod ξ,

so since l0 = 0,

l iqmod p = iξ′mod ξ

for each i = 0, . . . , 2ξ − 1 by induction. This completes the proof of the claim.
Suppose κ′ is even. When Λ i+1 and Λ i are separated by a κ-block of length κ

′ − 1,
Λ i+1 and Λ i have the same sign, so

ε i+1 = ε i .

By the three claims,

0 ≤ (iξ′mod ξ) < ξ − ξ′ ,

so

η i+1 = η i .

When Λ i+1 and Λ i are separated by a κ-block of length κ
′, Λ i+1 and Λ i have

opposite signs, so

ε i+1 = −ε i .
By the three claims,

(iξ′mod ξ) ≥ ξ − ξ′ ,

so

η i+1 = −η i .

Since ε0 = η0 = 1, for every i = 0, . . . , 2ξ − 1,

ε i = η i ,

so when q∗ = ξ′,

gr(P∗i+1) − gr(P∗i ) = η i = ε i = gr(Q i+1) − gr(Q i).
Suppose κ′ is odd. When Λ i+1 and Λ i are separated by a κ-block of length κ

′, then
ε i+1 = ε i .WhenΛ i+1 andΛ i are separated by aκ-block of lengthκ

′ − 1, then ε i+1 = −ε i .
Thus, by the claims, ε i+1 = ε i when η i+1 = −η i , and ε i+1 = −ε i when η i+1 = η i .

Again, ε0 = η0 = 1. Therefore, for every i = 0, . . . , 2ξ − 1,

ε i = (−1)iη i ,

so when q∗ = ξ′ − ξ, then

gr(P∗i+1) − gr(P∗i ) = (−1)iη i = ε i = gr(Q i+1) − gr(Q i).
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Figure 10: Expanding an incremental path.

Example 4.6 Consider the co-prime pair (33, 23). R(Γ)(33, 23) is isomorphic to
Γ(10, 3) (see Figure 8).

4.5 Expanding cycle graphs

We can also reverse the reduction process. Let Γ be an incremental path with vertices
P0 , . . . , Pn indexed such that (Pi , Pi+1) is an edge in Γ for each i = 0, . . . , n − 1. Let s
and b be positive integers, and let e = ±1. Define Ẽ(Γ, s, b, e) to be the incremental
path graph constructed as follows:

(1) Create an (s + 1)-segment, Λ i , for each edge (Pi , Pi+1) in Γ. Choose Λ i to be
positive or negative according to the sign of the edge (Pi , Pi+1).

(2) Between each pair Λ i and Λ i+1, for i = 0, . . . , n − 2, add an s-block of length b or
b − 1.The length of the s-block is odd if the edges Λ i and Λ i+1 have the same sign,
and the length is even if Λ i and Λ i+1 have opposite signs. Also, the first s-segment
in the block has sign opposite of the sign of Λ i .

(3) Add another s-block to the beginning of Λ0 of length b or b − 1 depending on the
signs of Λ0 and e following the same convention as the previous step. Also, the
first s-segment in the block has sign opposite of e.

(4) Finally, set the grading of the first vertex Q0 as follows:

gr(Q0) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

gr(P0) + s, when e and (P0 , P1) are both positive,
gr(P0) − s, when e and (P0 , P1) are both negative,
gr(P0), when e and (P0 , P1) have opposite sign.

(4.12)

For example, see Figure 10.
We begin by investigating the gradings of the vertices in Ẽ(Γ, s, b, e).

Lemma 4.7 Let Q0 be the vertex at the beginning of Ẽ(Γ, s, b, e). For i = 1, . . . , n,
let Q i be the vertex at the end of (s + 1)-segment Λ i−1 as in the definition of Ẽ.
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For each i = 1, . . . , n:

(a) If the signs of Λ i−1 and e are the same, then

gr(Q i) − gr(Q0) = gr(Pi) − gr(P0).
(b) If Λ i−1 is positive and e is negative, then

gr(Q i) − gr(Q0) = gr(Pi) − gr(P0) + s.

(c) If Λ i−1 is negative and e is positive, then

gr(Q i) − gr(Q0) = gr(Pi) − gr(P0) − s.

Proof Let Γ′ be the subgraph of Ẽ(Γ, s, b, e) starting at Q0 and ending at Q i . Γ
′ is

the concatenation of sum number of (s + 1)- and s-segments. Let D+ and D− be the
number of positive or, respectively, negative (s + 1)-segments in Γ′. Likewise, let d+

and d− be the number of positive or, respectively, negative s-segments in Γ′. Note that
D+ and D− are also the number of positive and negative edges separating P0 and Pi in
Γ, so

D+ − D− = gr(Pi) − gr(P0).
Suppose Λ i−1 and e have the same sign, then the number of positive segments in

Γ′ is equal to the number of negative segments, so

D+ + d+ = D− + d− .

Thus,

gr(Q i) − gr(Q0) = D+(s + 1) − D−(s + 1) + d+s − d−s

= (D+ + d+)s − (D− + d−)s + D+ − D−

= D+ − D−

= gr(Pi) − gr(P0).
Suppose Λ i−1 is positive and e is negative, then the total number of positive

segments in Γ′ is one more than the total number of negative segments, so

gr(Q i) − gr(Q0) = D+(s + 1) − D−(s + 1) + d+s − d−s

= (D+ + d+)s − (D− + d−)s + D+ − D−

= s + D+ − D−

= gr(Pi) − gr(P0) + s.

Suppose Λ i−1 is negative and e is positive, then the total number of positive
segments in Γ′ is one less than the total number of negative segments, so

gr(Q i) − gr(Q0) = D+(s + 1) − D−(s + 1) + d+s − d−s

= (D+ + d+)s − (D− + d−)s + D+ − D−

= −s + D+ − D−

= gr(Pi) − gr(P0) − s. ∎
From this, we can show that concatenation behaves well under expansion.
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Lemma 4.8 Suppose Γ and Γ′ are incremental paths where the last vertex in Γ has the
same grading as the first vertex in Γ′. Let e′ be the sign of the last edge in Γ. For any
positive integers s and b and any sign e = ±1,

Ẽ(Γ ∗ Γ′ , s, b, e) ≅ Ẽ(Γ, s, b, e) ∗ Ẽ(Γ′ , s, b, e′).
Proof Theconclusionwill be true by definition of the expansion procedure as long as
Ẽ(Γ, s, b, e) and Ẽ(Γ′ , s, b, e′) can be concatenated. Thus, our goal is to show that the
last vertex in Ẽ(Γ, s, b, e) has the same grading as the first vertex in Ẽ(Γ′ , s, b, e′).This
can be done by computing the gradings of Ẽ(Γ ∗ Γ′ , s, b, e) for many cases depending
on the signs of e, the last edge in Γ, and the first edge in Γ′.

For example, suppose e, the last edge in Γ, and the first edge in Γ′ are all positive.
Let P0 and Pn be the first and last vertices of Γ. Let P′0 be the first vertex in Γ′ so
gr(Pn) = gr(P′0). Let Q0 and Qn be the first and last vertices of Ẽ(Γ, s, b, e). Finally,
let Q′0 be the first vertex in Ẽ(Γ′ , s, b, e′).

By (4.12),

gr(Q′0) = gr(P′0) + s = gr(Pn) + s.

By Lemma 4.7,

gr(Qn) = gr(Pn) − gr(P0) + gr(Q0)
= gr(Q′0) − s − gr(P0) + gr(P0) + s

= gr(Q′0).
The proofs of all the other cases are similar. ∎

Let Γ be a closable incremental path, and let e be the sign of the last edge in Γ. For
any two positive integers s and b, define

E(Γ, s, b) ∶= Ẽ(Γ, s, b, e).
When Γ is closable, E(Γ, s, b) is also closable.

Suppose Γ′ is a closable incremental path such that cl(Γ) ≅ cl(Γ′). By construction,
cl(E(Γ, s, b)) ≅ cl(E(Γ′ , s, b))(4.13)

for all positive integers s and b.
For an incremental cycle Γ, define

E(Γ, s, b) ∶= cl(E(Γ, s, b)),
where Γ is any incremental path such that cl(Γ) ≅ Γ. By (4.13), E(Γ, s, b) is well
defined.

Reduction and expansion are naturally opposite operations.

Proposition 4.9 Suppose (p, q) is a relevant co-prime pair with q > 1. Define κ and κ′

as in (4.2) and (4.3):

E(R(Γ)(p, q),κ,κ′) ≅ Γ(p, q).
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Proof By Proposition 4.3, Γ(p, q) is the concatenation of κ-segments and (κ + 1)-
segments. The reduction R replaces (κ + 1)-segments with single edges of the same
sign. The expansion E transforms all the edges back into (κ + 1)-segments.

By Proposition 4.4(a), the (κ + 1)-segments of Γ(p, q) are separated by κ-blocks
of length κ

′ or κ′ − 1 (possibly zero). The blocks in Γ(p, q) have even length precisely
when the preceding and following (κ + 1)-segments have opposite sign.

R removes these κ-blocks, and E restores them. The signs of consecutive edges in
R(Γ(p, q)) correspond to the signs of the preceding and following (κ + 1)-segments
in Γ(p, q), so the length of each κ-block after the expansion will be the same as it was
before the reduction.

It remains to check that gradings are preserved. Consider the edge in R(Γ(p, q))
corresponding to Λ0 in Γ(p, q) as labeled in (4.7). Label the vertices at the beginning
and end of this edge P0 and P1, respectively.

By the definition of R, the grading of P0 is equal to the grading of the vertex at the
beginning of Λ0.

Consider Λ′0, the (κ + 1)-segment resulting from expansion of the edge after P0.
Let Q0 be the grading at the end of the Λ′0 as in Lemma 4.7, and let Q′1 be the vertex
at the beginning of Λ′0.

Now, we show that gr(P0) = gr(Q′1). The edge after P0 is always positive since it
corresponds to Λ0. Thus,

gr(P1) = gr(P0) − 1(4.14)

and

gr(Q1) − gr(Q′1) = κ + 1.(4.15)

When the edge before P0 is also positive,

gr(Q′1) − gr(P0) = gr(Q′1) − gr(Q1) + gr(Q1) − gr(Q0) + gr(Q0) − gr(P0)
= (−κ − 1) + (gr(P1) − gr(P0)) + (gr(P0) + κ) − gr(P0)
= gr(P1) − gr(P0) − 1

= 0.

The second equality follows from (4.15), Lemma 4.7, and (4.12). The last equality
follows from (4.14). Similarly, when the edge before P0 is negative,

gr(Q′1) − gr(P0) = gr(Q′1) − gr(Q1) + gr(Q1) − gr(Q0) + gr(Q0) − gr(P0)
= (−κ − 1) + (gr(P1) − gr(P0) + κ) + gr(P0) − gr(P0)
= 0. ∎

Given an arbitrary relevant co-prime pair (p∗ , q∗) and integers s and b, the
expansion E(Γ(p∗ , q∗), s, b) may not be Γ(p, q) for any co-prime (p, q) with q
odd. Consider the pair (5, 3). Suppose E(Γ(5, 3), 2, 3) ≅ Γ(p, q) for some pair (p, q).
Define κ, κ′, ξ, and ξ′ for (p, q) as in (4.2) and (4.3). Since the sizes of the segments
of E(Γ(5, 3), 2, 3) are either 2 or 3 and the blocks have length 3 or 2, κ must be 2,
and κ

′ must be 3. By Proposition 4.9, Γ(5, 3) ≅ R(Γ)(p, q). By Lemma 4.5, q∗ = 3 is
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equal to ξ or ξ′ − ξ. Since ξ′ − ξ cannot be positive, ξ = 3. Also, by Proposition 4.5,
pmod q = ξ = 5. Thus, q = 3(5) + 3 = 18, which is not odd.

5 Proof of Lemma 3.5

In this section, we reinterpret Lemma 3.5 as a set of properties of the cycle graph
Γ(p, q).These properties will hold for simple relevant co-prime pairs (p, q)with q = 1
or (pmod q) = 1.Then, it is shown that these conditions hold for any relevant co-prime
pair of integers p and q with p positive and q odd by a strong induction argument
using the relative isomorphism between Γ(p, q) and Γ(p,−q) and the reduction from
Γ(p, q) to R(Γ)(p, q).

5.1 Making words from graphs

Given an incremental path Γ, a word ρ(Γ) in S can be defined as follows: Let{P1 , . . . , Pn} be the vertices of Γ indexed so that the edge (Pi , Pi+1) is in Γ. For
i = 2, . . . , n, let s i = gr(Pi) − gr(Pi−1) and let N i = gr(Q i) + θ(s i) where θ(1) = 1 and
θ(−1) = 0. Define

ρ(Γ) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ss3N3
Ss5N5

⋯SskNk
, if n > 2 and gr(P1) is even,

Ss2N2
Ss4N4

⋯SskNk
, if n > 1 and gr(P1) is odd,

1, otherwise,

(5.1)

where k = n − 1, if n ≡ gr(P1) modulo 2, and k = n, if n /≡ gr(P1) modulo 2. Given a
two-bridge link L(p/q), by Proposition 3.2, ρ(Γ(p, q)) is the word R0.

Lemma 5.1 Given incremental paths Γ and Γ′ such that the last vertex of Γ has the
same grading as the first vertex of Γ′,

ρ(Γ ∗ Γ′) = ρ(Γ)ρ(Γ′).
Proof Let {P1 , . . . , Pn} and {P′1 , . . . , P′n′} be the vertex sets for incremental paths Γ
and Γ′, respectively. Also, define N2 , . . . ,Nn and s2 , . . . , sn for Γ as in the definition of
ρ. Similarly, defineN ′2 , . . . ,N

′
n′ and s

′
2 , . . . , s

′
n′ for Γ

′. Let Γ′′ = Γ ∗ Γ′, which has length
n + n′ − 1, and define N ′′2 , . . . ,N

′′
n+n′−1 and s′′2 , . . . , s

′′
n+n′−1 for Γ′′ as the analogous

integers are defined for Γ and Γ′.
This result is just a matter of computing ρ(Γ ∗ Γ′) for each case of (5.1) for Γ and Γ′.

For example, suppose gr(P1) and n are even, n > 2, and n′ > 1. Then, since n is even,

gr(P′1) = gr(Pn) ≡ (gr(P1) + n − 1) ≡ gr(P1) + 1, (mod 2)
so since gr(P1) is even, gr(P′1) is odd. Thus,

ρ(Γ) = Ss3N3
Ss5N5

⋯Ssn−1Nn−1

and

ρ(Γ′) = Ss2N2
Ss4N4

⋯SskNk
,

where k = n′ when n′ is even and k = n′ − 1 when n′ is odd.
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Figure 11: Closable graphs Γ and Γ′ with isomorphic closures with the subgraphs Υ (dashed)

and Ω (dotted) shown.

For each i = 1, . . . , n + n′ − 1,

gr(P′′i ) = { gr(Pi), when 1 ≤ i ≤ n,
gr(P′i−n+1), when n ≤ i ≤ n + n′ − 1.

Thus, when 2 ≤ i ≤ n, s′′i = s i , and N ′′i = N i , and when n + 1 ≤ i ≤ n + n′ − 1, s′′i =
s i−n+1, and N ′′i = N i−n+1. Therefore,

ρ(Γ ∗ Γ′) = Ss3N3
Ss5N5

⋯Ssn−1Nn−1
S
s′
2

N ′
2

S
s′
4

N ′
4

⋯S
s′k
N ′

k

= ρ(Γ)ρ(Γ′).
The proofs of all the other cases are similar. ∎

Lemma 5.2 Given two closable incremental paths Γ and Γ′ such that cl(Γ) is isomor-
phic to cl(Γ′), then ρ(Γ) and ρ(Γ′) are cyclic permutations of each other.

Proof Since Γ and Γ′ have isomorphic closures, they must have the same number
of vertices. Let {P0 , . . . , Pn} and {P′0 , . . . , P′n} be the vertices in order of Γ and Γ′,
respectively. Let {Q0 , . . . ,Qn−1} be the vertex set of cl(Γ) chosen such that gr(Q i) =
gr(Pi) for i = 0, . . . , n − 1. Likewise, let {Q′0 , . . . ,Q′n−1} be the vertex set of cl(Γ′)
chosen such that gr(Q′i) = gr(P′i ) for i = 0, . . . , n − 1.

Since cl(Γ) ≅ cl(Γ′), there is a directed graph isomorphism from f ∶ cl(Γ) ≅
cl(Γ′), which preserves gradings. Let k be the index of the vertex in cl(Γ) such that
f (Qk) = Q′0. If k = 0, then f maps Q i to Q′i for each i = 0, . . . , n − 1. It follows that
gr(Pi) = gr(P′i ) for each i = 0, . . . , n so ρ(Γ) = ρ(Γ′).

Suppose k ≠ 0. Let Υ be the subgraph of Γ induced by P0 , . . . , Pk , and let Ω be
the subgraph of Γ induced by Pk , . . . , Pn . Since f (Q0) = Q′n−k and f (Qk) = Q′0, the
subgraph of Γ′ induced by P′n−k , . . . , P

′
n must be isomorphic to Υ, and the subgraph of

Γ′ induced by P′0 , . . . , P
′
n−k must be isomorphic to Ω.Thus, Γ ≅ Υ ∗Ω and Γ′ ≅ Ω ∗ Υ

(see Figure 11 for example). Therefore, ρ(Γ) = ρ(Υ)ρ(Ω) and ρ(Γ′) = ρ(Ω)ρ(Υ). ∎
5.2 Summits and bottoms in cycle graphs

Let (p, q) be a relevant co-prime pair, and defineM andm for L(p/q) as in Section 3.
Our goal is to prove Lemma 3.5. By Proposition 3.2(d), it is sufficient to show Lemma
3.5 for the relator R0. Thus, we are interested in the appearances of SδM and Sδm in
the word R0. When M is odd, the ith S-generator of R0 is SδM precisely when σ2i =
M + 1, and whenM is even, the ith S-generator of R0 is S

δ
M when σ2i−1 = M + 1. Thus,
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Figure 12: A symmetric incremental cycle. The first and last vertices are identified. ϕ is the

unique order-reversing bijection defined by ϕ(P1) = P10 .

appearances of SδM in R0 correspond to the indices when σi is maximal. Similarly, the
ith S-generator of R0 is S

δ
m precisely when σ2i−1 = m whenm is odd or σ2i = m when

m is even. Thus, appearances Sδm in R0 correspond to the indices when σi is minimal.
A vertex, P, in a graded graph Γ is called a summit if gr(P) ≥ gr(Q) for any vertex

Q in Γ. Similarly, P is called a bottom if gr(P) ≤ gr(Q) for any vertex Q in Γ. For
each relevant co-prime pair (p, q), the grading of a summit of Γ(p, q) is alwaysM + 1
and the grading of a bottom of Γ(p, q) is always m. Furthermore, the appearances of
SM in R0 correspond precisely to the summits in Γ(p, q), and the appearances of Sm
correspond to bottoms.

5.3 Symmetric incremental paths and cycles

It is useful to know when an incremental cycle is relatively isomorphic to itself after
rotating 180○ and reversing its edges. More precisely, we call an incremental cycle Γ
symmetric if there is a bijection ϕ ∶ V(Γ) → V(Γ) such that:

(1) (P,Q) is an edge of Γ if and only if (ϕ(Q), ϕ(P)) is an edge of Γ for any two
vertices P and Q in Γ and

(2) for some integer k, gr(P) + gr(ϕ(P)) = k for every vertex P in Γ.

An incremental path Γ is called symmetric if cl(Γ) is symmetric (see Figure 12). The
symmetry of incremental paths and cycles plays an important role in investigating
properties (M5) and (m5) of Lemma 3.5.

5.4 Reinterpretation of Lemma 3.5

Here, we reinterpret Lemma 3.5 in terms of incremental paths and cycles. Given a
closable incremental path Γ and a positive integer n, define Γn to be the concatenation
of n copies of Γ. We call a relevant co-prime pair (p, q) an pre-RTFN pair if for some
incremental path Γ whose closure is isomorphic to Γ(p, q), there are a positive integer
N, sequences of subgraphs of Γ,

Γ0 , . . . , ΓN ,

Υ1 , . . . , ΥN ,

and

Ω1 , . . . , ΩN ,
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Figure 13: The graph Γtop.

Figure 14: (33, 23) is a pre-RTFN pair.

and a sequence of positive integers

n1 , . . . , nN

such that the following conditions are satisfied:

(R1) Γ0 = Γ.
(R2) ΓN is isomorphic to the graph Γtop defined in Figure 13.
(R3) For each i = 1, . . . ,N ,

Γi−1 ≅ Υi ∗ Γn i

i ∗Ω i .

(R4) For each i = 1, . . . ,N , no summits of cl(Γ) appear in Υi or Ω i .
(R5) For each i = 0, . . . ,N , Γi is symmetric, and when i ≥ 1, Γi contains no bottoms

of cl(Γ).
For example, Figure 14 demonstrates that (33, 23) is a pre-RTFN pair.

Lemma 5.3 (p, q) is a pre-RTFN pair if and only if (p,−q) is a pre-RTFN pair.

Proof By Proposition 4.2, Γ(p, q) and Γ(p,−q) have relatively isomorphic closures,
so the conclusion of the lemma follows immediately. ∎
Lemma 5.4 Suppose (p, q) is a relevant co-prime pair. If (p, q) is a pre-RTFN pair,
then L(p/q) satisfies Lemma 3.5.

Proof By Proposition 3.2(d), it is sufficient to show that Lemma 3.5 holds for R0. Let(p, q) be a pre-RTFN pair. Then, we have a graph Γ whose closure is isomorphic to
Γ(p, q) satisfying (R1)–(R5).
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For each i = 0, . . . ,N , define

pA i ∶= ρ(Γi),
and when i > 0, define

pVi ∶= ρ(Ω i)ρ(Υi) and xWi ∶= ρ(Υi).
Proof of (M1) and (M2) By (R1), cl(Γ0) is isomorphic to Γ(p, q). Therefore, by

Lemma 5.2, pA0 = ρ(Γ0) is a cyclic permutation of ρ(Γ(p, q)) which is R0. ∎
By (R2),

AN = ρ(ΓN) = SδM .

Proof of (M3) Suppose i is an integer with 1 ≤ i ≤ N . By (R3),

Γi−1 ≅ Υi ∗ Γn i

i ∗Ω i .

Therefore,

pA i−1 = ρ(Γi−1)
= ρ(Υi ∗ Γn i

i ∗Ω i)
= ρ(Υi)ρ(Γi)n i ρ(Ω i)
= ρ(Υi)ρ(Γi)n i ρ(Ω i)ρ(Υi)ρ(Υi)−1
= xWi

pAn i

i
pVi

xW−1
i ,

so

xW−1
i

pA i−1
xWi = pAn i

i
pVi . ∎

Proof of (M4) For each vertex P in Γ(p, q), m ≤ P ≤ M + 1. Thus, since for each

i = 1, . . . ,N , xWi and pVi are subgraphs of Γ(p, q), ρ(xWi) and ρ(pVi) are contained in
the subgroup generated by {Sm , . . . , SM}. Since no summits of Γ appear in Υi or Ω i ,

SδM cannot appear in pVi or xWi . ∎
Proof of (M5) Suppose i is an integer with 0 ≤ i ≤ N . The maximum grading of a
vertex in Γi isM + 1. Let l be the minimum grading of a vertex in Γi . For some integer
coefficients b l , b l+1 . . . , bM ,

[ρ(Γi)] = b l S
′
l + b l+1S

′
l+1 +⋯+ bMS′M .

Our goal is to show that for each j = 0, . . . ,M − l , ∣b l+ j ∣ = ∣bM− j ∣. ∎
Thevertices of cl(Γi) can be classified into four types according to Figure 15. Define

v(∗∗)(n) to be the number vertices in cl(Γi) of type (∗∗) with grading n.
Suppose n = l , . . . ,M. When n is even, Sn always has exponent −1 in ρ(Γi), and

S−1n appears precisely when there is negative edge followed by a vertex in cl(Γi) with
grading n, so

∣bn ∣ = v(−−)(n) + v(−+)(n).(5.2)
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Figure 15: The four vertex types.

Similarly, when n is odd, Sn always has exponent 1 in ρ(Γi), and Sn appears precisely
when there is a vertex in cl(Γi) with grading n followed by a positive edge, so

∣bn ∣ = v(++)(n + 1) + v(+−)(n + 1).(5.3)

Since Γi is symmetric by (R5), there is an order-reversing bijection ϕ of the vertex
set of cl(Γi) such that gr(P) + gr(ϕ(P)) = l +M + 1 for each vertex P in cl(Γi).
Furthermore, P and ϕ(P) have types rotated 180○ with arrows reversed (see Figure 16).
As a consequence,

v(−−)(n) = v(−−)(l +M + 1 − n),
v(−+)(n) = v(+−)(l +M + 1 − n),
v(++)(n) = v(++)(l +M + 1 − n),
v(+−)(n) = v(−+)(l +M + 1 − n).

(5.4)

Each positive edge connects a vertex of type (∗+) to a vertex of type (+∗). Likewise,
each negative edge connects a vertex of type (∗−) to a vertex of type (−∗) (see Figure
17). Thus,

v(++)(n) + v(−+)(n) = v(++)(n + 1) + v(+−)(n + 1),
v(−−)(n) + v(+−)(n) = v(−−)(n − 1) + v(−+)(n − 1).(5.5)

The incremental path Γi is closable, and the gradings of adjacent vertices in Γi differ
by ±1. It follows that every time Γi passes from below to above some grading level at a
vertex, Γi must pass from above to below the same grading level at some other vertex.
Thus, in each grading n,

v(++)(n) = v(−−)(n).(5.6)

Now, we show that ∣b l+ j ∣ = ∣bM− j ∣. Let j be an integer such that 0 ≤ j ≤ M − l .When
l + j and M − j are both even,

∣b l+ j ∣ = v(−−)(l + j) + v(−+)(l + j)
= v(−−)(M − j + 1) + v(+−)(M − j + 1)
= v(−−)(M − j) + v(−+)(M − j)
= ∣bM− j ∣

by (5.2), (5.4), and (5.5).
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Figure 16: The effect of ϕ on vertex type.

Figure 17: Vertex types of adjacent vertices.

When l + j and M − j are odd,

∣b l+ j ∣ = v(++)(l + j + 1) + v(+−)(l + j + 1)
= v(++)(M − j) + v(−+)(M − j)
= v(++)(M − j + 1) + v(+−)(M − j + 1)
= ∣bM− j ∣

by (5.3)–(5.5).
When l + j is even and M − j is odd,

∣b l+ j ∣ = v(−−)(l + j) + v(−+)(l + j)
= v(−−)(M − j + 1) + v(+−)(M − j + 1)
= v(++)(M − j + 1) + v(+−)(M − j + 1)
= ∣bM− j ∣

by (5.2), (5.4), (5.6), and (5.3).
When l + j is odd and M − j is even,

∣b l+ j ∣ = v(++)(l + j + 1) + v(+−)(l + j + 1)
= v(++)(M − j) + v(−+)(M − j)
= v(−−)(M − j) + v(−+)(M − j)
= ∣bM− j ∣

by (5.3), (5.4), (5.6), and (5.2).
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When i ≥ 1, no bottoms appear in Γi , so l > m.

Proof of (m1)–(m5) Since Γ0 = Γ is symmetric, there is an order-reversing bijection
ϕ on the vertices of cl(Γ) such that

gr(P) + gr(ϕ(P)) = m +M + 1

for each vertex P in cl(Γ). Thus, ϕ induces a map on the subgraphs of cl(Γ).
For each i = 0, . . . ,N , define

qA i ∶= ρ(ϕ(ΓN−i)),
and when i > 0, define

qVi ∶= ρ(ϕ(ΥN−i))ρ(ϕ(ΩN−i)) and |Wi ∶= ρ(ϕ(ΩN−i)).
(m1)–(m5) follow from proofs similar to the those used for (M1)–(M5). ∎

5.5 Using reductions for induction

Suppose (p, q) is a relevant co-prime pair with q > 1 and with (pmod q) ≠ 1. By
Lemma 4.5, R(Γ)(p, q) is isomorphic to Γ(p∗, q∗) for some relevant co-prime pair(p∗ , q∗) defined as in Lemma 4.5. Along with Lemma 5.3, Γ(p, q) can be simplified
through a sequence of reductions and relative isomorphisms to Γ(p0 , q0) such that
q0 = 1 or (pmod q) = 1.

Example 5.5

Γ(119, 43) R→ Γ(33,−23) re l .≅ Γ(33, 23) R→ Γ(10, 3).
The goal now is to show that when (p∗ , q∗) is a pre-RTFN pair, (p, q) is also a

pre-RTFN pair.

5.6 Leading and trailing vertices

Call a vertex in Γ(p, q) at the end of a (κ + 1)-segment a leading vertex, and a vertex at
the beginning of a (κ + 1)-segment a trailing vertex (see Figure 18). Let P be a leading
vertex in Γ(p, q), and let ΛL be the (κ + 1)-segment of Γ(p, q) immediately preceding
P. Define fL(P) to be the vertex at the end of the edge in R(Γ)(p, q) corresponding to
ΛL . Let P be a trailing vertex in Γ(p, q), and let ΛT be the (κ + 1)-segment of Γ(p, q)
immediately following P. Define fT(P) to be the vertex at the beginning of the edge in
R(Γ)(p, q) corresponding to ΛT . When the path from a leading vertex PA to a trailing
vertex PB is a κ-block, fL(PA) = fT(PB).

fL is a bijection from the leading vertices of Γ(p, q) to the vertex set of R(Γ)(p, q),
and fT is a bijection from the trailing vertices of Γ(p, q) to the vertex set of R(Γ)(p, q).
Let P∗ be a vertex in R(Γ)(p, q). Since f −1L (P∗) and f −1T (P∗) are separated by a κ-
block of length κ

′ or κ′ − 1, the gradings of f −1L (P∗) and f −1T (P∗) are either the same
of differ by ±κ.

Any vertex in Γ(p, q) at the end of a positive (or negative) segment is called a peak
(resp. valley). There is a relationship between the gradings of the vertices in Γ(p, q)
and R(Γ)(p, q).
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Figure 18: PA is a leading vertex of Γ(13, 11), and PB is a trailing vertex of Γ(13, 11) (left).
fL(PA) = fT(PB) = P

∗ in R(Γ)(13, 11) (right).

Proposition 5.6 Let P and Q be leading vertices of Γ(p, q).
(1) If P and Q are both peaks or both valleys, then

gr( fL(P)) − gr( fL(Q)) = gr(P) − gr(Q).
(2) If P is a valley and Q is a peak, then

gr( fL(P)) − gr( fL(Q)) = gr(P) − gr(Q) − κ.

(3) If P is a peak and Q is a valley, then

gr( fL(P)) − gr( fL(Q)) = gr(P) − gr(Q) + κ.

Proof This follows from Lemma 4.7. Let Γ∗ be the unique path subgraph of
R(Γ)(p, q) beginning with fL(P) and ending fL(Q). Let e be the sign of the edge in
R(Γ)(p, q) preceding fL(P). Let Γ be Ẽ(Γ∗ ,κ,κ′ , e). Finally, let Q0 be the first vertex
in Γ.

The vertices P and Q are at the end of (κ + 1)-segments, which we will denote as
ΛP and ΛQ , respectively. The first vertex in Γ∗ is fL(P). Also, e and ΛP will always
have the same sign. Therefore,

gr(P) − gr(Q0) = 0.

Thus,

gr(P) − gr(Q) = (gr(P) − gr(Q0)) − (gr(Q) − gr(Q0))
= gr(Q0) − gr(Q).(5.7)

Also, the first vertex P0 in Γ∗ is fL(P), so
gr(P0) − gr( fL(Q)) = gr( fL(P)) − gr( fL(Q)).(5.8)

The signs of e are determined by whether P is a peak or a valley:

e = ⎧⎪⎪⎨⎪⎪⎩
1, P is a peak,

−1, P is a valley.

Also, ΛQ is positive when Q is a peak and negative when Q is a valley. The desired
result follows from Lemma 4.7, (5.7), and (5.8). ∎
Corollary 5.7 Given a leading vertex P of Γ(p, q), P is a summit of Γ(p, q) if and only
if fL(P) is a summit of R(Γ)(p, q).
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Proof Suppose a leading vertex P of Γ(p, q) is a summit. Consider a vertex in
R(Γ)(p, q) which is fL(Q) for some leading vertexQ of Γ(p, q). Since P is a summit,
gr(P) − gr(Q) ≥ 0. Since P is a peak, by Proposition 5.6, either

gr( fL(P)) − gr( fL(Q)) = gr(P) − gr(Q) ≥ 0

or

gr( fL(P)) − gr( fL(Q)) = gr(P) − gr(Q) + κ ≥ 0.

Thus, fL(P) is a summit of R(Γ)(p, q).
Conversely, suppose for some leading vertex P of Γ(p, q) that fL(P) is a summit of

R(Γ)(p, q). LetQ be a summit of Γ(p, q), so gr(P) − gr(Q) ≤ 0. SinceQ is a peak, by
Proposition 5.6,

gr(P) − gr(Q) ≥ gr( fL(P)) − gr( fL(Q)) ≥ 0.

The last inequality is true since fL(P) is a summit. Thus, gr(P) = gr(Q), so since Q is
a summit of Γ(p, q), P is also. ∎

5.7 Proof of Lemma 3.5

Wenowhave everythingwe need to show that every relevant co-prime pair (p, q)with
p positive and q odd is a pre-RTFN pair. For each relevant co-prime pair, we need to
find a positive integer N, sequences of subgraphs of Γ(p, q)

Γ0 , . . . , ΓN ,

Υ1 , . . . , ΥN ,

and

Ω1 , . . . , ΩN ,

and integers

n1 , . . . , nN ,

satisfying (R1)–(R5). We prove this using a strong induction starting with the base
cases below.

Let Γ be an incremental path, and let P, P′ be vertices in Γ. Define ω(Γ, P′ , P), the
unique path in cl(Γ) from P′ to P.

Lemma 5.8 Let (p, q) be a relevant co-prime pair with p and q positive and q odd. If
q = 1 or (pmod q) = 1, then (p, q) is a pre-RTFN pair.

Proof Γ(p, q) has 2p + 1 vertices P0 . . . , P2p .
When q = 1, the grading are

gr(Pi) =
⎧⎪⎪⎨⎪⎪⎩
i , 0 ≤ i ≤ p,

2p − i , p ≤ i ≤ 2p.

See Figure 19a.
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Figure 19: Cycle graphs with q = 1 and (pmod q) = 1.

Make the following choices of subgraphs and integers:

• Let N = 1.
• Let Γ0 = Γ(p, q).
• Let Γ1 = Γtop.
• Let n1 = 1.
• Let Υ1 = ω(Γ(p, q), P0 , Pp−1).
• Let Ω1 = ω(Γ(p, q), Pp+1 , P2p).

It is clear that (R1) and (R2) are satisfied.

Γ0 = Γ(p, q) = ω(Γ(p, q), P0 , Pκ) ∗ ω(Γ(p, q), Pκ , Pκ+2) ∗ ω(Γ(p, q), Pκ+2 , P2p)
= Υ1 ∗ ω(Γ(p, q), Pκ , Pκ+2) ∗Ω1

= Υ1 ∗ Γ1 ∗Ω1 .

Thus, (R3) is satisfied.
The grading of a summit of Γ(p, 1) is p. Since the maximum grading of a vertices

in Υ1 or Ω1 is p − 1, Υ1 or Ω1 contain no summits of Γ(p, 1), so (R4) is satisfied.
Consider the map ϕ ∶ Γ(p, 1) → Γ(p, 1) defined by

ϕ(Pi) ∶=
⎧⎪⎪⎨⎪⎪⎩
Pp−i , 0 ≤ i ≤ p,

P3p−i , p < i < 2p,

When 0 ≤ i ≤ p,

gr(Pi) + gr(ϕ(Pi)) = i + p − i = p.

When p < i < 2p,

gr(Pi) + gr(ϕ(Pi)) = 2p − i + 2p − (3p − i) = p,

so Γ0 is symmetric.
Since Γ1 ≅ Γtop, its closure has two vertices: one graded p − 1 and one graded p.

Consider the map ϕ ∶ cl(Γ1) → cl(Γ1), which exchanges the two vertices. For each
vertex P in cl(Γ1),

gr(P) + gr(ϕ(P)) = p + p − 1 = 2p − 1,
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so Γ1 is symmetric. Also, the minimum grading of a vertex in Γ(p, 1) is 0, and the
minimum grading of a vertex in Γ1 is p. Therefore, no bottoms of Γ(p, 1) are in Γ1.
Thus, (R5) is satisfied.

When pmod q = 1, define κ and κ
′ as in (4.2) and (4.3). Since pmod q = 1, κ′ = q,

which is odd. By Proposition 4.3(a) and (e), Γ(p, q) has two (κ + 1)-segments, and
has 2q − 2 κ-segments. By Proposition 4.4(a), the κ-segments must be contained in
two κ-blocks of length q − 1. It follows that Γ(p, q) is the concatenation of a positive(κ + 1)-segment, a κ-block of length q − 1, a negative (κ + 1)-segment, followed by
another κ-block of length q − 1 (see Figure 19b).

Explicitly, the gradings are

gr(Pi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, i = 0 ≤ i ≤ κ + 1,

jκ + 2 − i,
( j − 1)κ + 1 ≤ i ≤ jκ + 1 and

j = 2, 4, . . . , q − 1,

i − jκ,
jκ + 1 ≤ i ≤ ( j + 1)κ + 1 and

j = 2, . . . , q − 1,

p + κ + 1 − i , p ≤ i ≤ p + κ + 1,

i − p − ( j − 1)κ − 1,
p + ( j − 1)κ + 1 ≤ i ≤ p + jκ + 1 and

j = 2, . . . , q − 1,

p + ( j + 1)κ + 1 − i ,
p + jκ + 1 ≤ i ≤ p + ( j + 1)κ + 1 and

j = 2, . . . , q − 1.

.

When κ = 1, make the following choices:

• Let N = 1.
• Let Γ0 = Γ(p, q).
• Let Γ1 = Γtop.
• Let n1 = (q + 1)/2.
• Let Υ1 = ω(Γ(p, q), P0 , P1).
• Let Ω1 = ω(Γ(p, q), P1+2n1

, P2p).
When κ > 1, make the following choices:

• Let N = 2.
• Let Γ0 = Γ(p, q).
• Let Γ1 = ω(Γ(p, q), P1 , P1+2κ).
• Let Γ2 = Γtop.
• Let n1 = (q + 1)/2.
• Let n2 = 1.
• Let Υ1 = ω(Γ(p, q), P0 , P1).
• Let Ω1 = ω(Γ(p, q), P1+2κn1

, P2p).
• Let Υ2 = ω(Γ(p, q), P1 , Pκ).
• Let Ω2 = ω(Γ(p, q), Pκ+2 , P2κ+1).

Again, it is clear that (R1) and (R2) are satisfied.
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When κ = 1,

Γ0 = Γ(p, q) = ω(Γ(p, q), P0 , P1) ∗ ω(Γ(p, q), P1 , P1+2n1
) ∗ ω(Γ(p, q), P1+2n1

, P2p)
= Υ1 ∗ Γn1

1 ∗Ω1 .

When κ > 1,

Γ0 = Γ(p, q) = ω(Γ(p, q), P0 , P1) ∗ ω(Γ(p, q), P1 , P1+2κn1
) ∗ ω(Γ(p, q), P1+2κn1

, P2p)
= Υ1 ∗ Γn1

1 ∗Ω1

and

Γ1 = ω(Γ(p, q), P1 , P1+2κ)
= ω(Γ(p, q), P1 , Pκ) ∗ ω(Γ(p, q), Pκ , Pκ+2) ∗ ω(Γ(p, q), Pκ+2 , P2κ+1)
= Υ2 ∗ Γ2 ∗Ω2 .

Thus, (R3) is satisfied.
The grading of a summit of Γ(p, 1) is κ + 1. The maximum grading of a vertex in

Υ1 is 1, and the maximum grading of a vertex in Υ1, Ω1, or Ω2 is κ. Thus, Υ1, Υ2, Ω1, or
Ω2 contains no summits of Γ(p, q), so (R4) is satisfied.

Consider the map ϕ ∶ Γ(p, q) → Γ(p, q) defined by

ϕ(Pi) ∶= {Pκ+1−i , 0 ≤ i ≤ κ + 1,

P2p+κ+1−i , κ + 1 < i < 2p.

When 0 ≤ i ≤ κ + 1,

gr(Pi) + gr(ϕ(Pi)) = i + κ + 1 − i = κ + 1.

When p ≤ i ≤ p + κ + 1,

p ≤ 2p + κ + 1 − i ≤ p + κ + 1.

Thus,

gr(Pi) + gr(ϕ(Pi)) = p + κ + 1 − i + p + κ + 1 − (2p + κ + 1 − i) = κ + 1.

Let j ∈ {2, 4, . . . , q − 1}.
When ( j − 1)κ + 1 ≤ i ≤ jκ + 1,

2p + κ + 1 − ( jκ + 1) ≤ 2p + κ + 1 − i ≤ 2p + κ + 1 − (( j − 1)κ + 1).
Since p = qκ + 1, we can substitute 2p = p + qκ + 1 on each side to obtain

p + (q + 1 − j)κ + 1 ≤ 2p + κ + 1 − i ≤ p + (q + 2 − j)κ + 1.

Let l = q + 1 − j. Thus,

p + lκ + 1 ≤ 2p + κ + 1 − i ≤ p + (l + 1)κ + 1.

Therefore,

gr(Pi) + gr(ϕ(Pi)) = jκ + 2 − i + p + (l + 1)κ + 1 − (2p + κ + 1 − i)
= ( j + l)κ + 2 − p

= qκ + 1 − p + κ + 1

= κ + 1.
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When jκ + 1 ≤ i ≤ ( j + 1)κ + 1,

2p + κ + 1 − (( j + 1)κ + 1) ≤ 2p + κ + 1 − i ≤ 2p + κ + 1 − ( jκ + 1).
We substitute 2p = p + qκ + 1 on each side to obtain

p + (q − j)κ + 1 ≤ 2p + κ + 1 − i ≤ p + (q − j + 1)κ + 1.

Thus,

p + (l − 1)κ + 1 ≤ 2p + κ + 1 − i ≤ p + lκ + 1.

Therefore,

gr(Pi) + gr(ϕ(Pi)) = i − jκ + 2p + κ + 1 − i − p − (l − 1)κ − 1

= −( j + l)κ + p + κ + κ

= −(q + 1)κ + p + κ + κ

= p − qκ + κ

= κ + 1.

When p + jκ + 1 ≤ i ≤ p + ( j + 1)κ + 1, there is some integer c such that

( j − 1)κ + 1 ≤ c ≤ jκ + 1

and Pi = ϕ(Pc). Since ϕ2 is the identity map,

gr(Pi) + gr(ϕ(Pi)) = gr(ϕ(Pc)) + gr(Pc) = κ + 1.

When p + ( j − 1)κ + 1 ≤ i ≤ p + jκ + 1, there is some integer c such that

jκ + 1 ≤ c ≤ ( j + 1)κ + 1

and Pi = ϕ(Pc). Similar to the previous case,

gr(Pi) + gr(ϕ(Pi)) = gr(ϕ(Pc)) + gr(Pc) = κ + 1.

Therefore, Γ0 is symmetric.
The choices of Γ1 and Γ2 are relatively isomorphic to either Γ(κ, 1) or Γtop which are

symmetric. Therefore, Γ1 and Γ2 are symmetric.
When (pmod q) = 1, the minimum grading of a vertex in Γ(p, q) is 0. The min-

imum grading for a vertex in Γ1 is 1. The minimum grading for a vertex in Γ2 is κ.
Therefore, no bottoms of Γ(p, q) are contained in Γ1 or Γ2. Thus, (R5) is satisfied.

In conclusion, Γ(p, q) is a pre-RTFN pair when q = 1 or (pmod q) = 1. ∎
Let (p, q) be a relevant co-prime pair with q > 1 and (pmod q) > 1, and let (p∗ , q∗)

be the co-prime pair defined by Lemma 4.5. Suppose (p∗ , q∗) is a pre-RTFN pair, so
there are a positive integer N∗ and subgraphs

Γ∗0 , . . . , Γ
∗
N∗ ,

Υ∗1 , . . . , Υ
∗
N∗ ,

and

Ω∗1 , . . . , Ω
∗
N∗ ,
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and integers

n∗1 , . . . , n
∗
N∗ ,

satisfying (R1)–(R5).
To show that (p, q) is a pre-RTFN pair, we need to defineN, the subgraphs {Γi}Ni=0,{Υi}Ni=1, and {Ω i}Ni=1, and the integers {n i}N1 for (p, q). This choice depends on how

expansion affects the nested repeating pattern of summits in Γ(p∗ , q∗).
Define κ and κ

′ as in (4.2) and (4.3), so Γ(p, q) ≅ E(Γ(p∗ , q∗),κ,κ′) by Proposi-
tion 4.9. Suppose Γ∗ is a proper subgraph of Γ(p∗ , q∗), so Γ∗ naturally embeds into
Γ(p∗ , q∗). Let e∗ be the sign of the edge immediately preceding Γ∗ in Γ(p∗ , q∗). For
simplicity of notation, we define

Ẽ(Γ∗) ∶= Ẽ(Γ∗ ,κ,κ′ , e∗),
and when Γ∗ is closable, define

E(Γ∗) ∶= E(Γ∗ ,κ,κ′).
Notice that E(Γ∗) and Ẽ(Γ∗) are not always the same.

Ideally, when i = 0, . . . ,N∗, we want to define Γi to be E(Γ∗i ) and set n i equal to
n∗i . Then, we examine the structure of E(Γ∗N∗). The hope is that since the expansion
operation is compatible with concatenation (see Lemma 4.8), we can leverage the pre-
RTFN pair properties of the Γ∗i , Υ

∗
i , and Ω∗i sequences to prove that Γi , Υi , and Ω i

also satisfy the pre-RTFN properties. This turns out to be more subtle than one might
first expect.

For all i = 1, . . . ,N∗,

Γ∗i−1 ≅ Υ∗i ∗ (Γ∗i )n∗i ∗Ω∗i

by (R3) for (p∗ , q∗). By Lemma 4.8,

Ẽ(Γ∗i−1) ≅ Ẽ(Υ∗i ) ∗ Ẽ((Γ∗i )n∗i ) ∗ Ẽ(Ω∗i ).(5.9)

However, if Γi is E(Γ∗i ), then Γn i

i is E(Γ∗i )n∗i , and E(Γ∗i )n∗i may not be equal to

Ẽ((Γ∗i )n∗i ). We show that they can be made equal by adding or removing κ edges.
See Figure 20.

Consider i ∈ {1, . . . ,N∗}. Define Γ̃i ∶= Ẽ((Γ∗i )n∗i ). Let Γ̃+i be Γ̃i with the κ edges in

Γ(p, q) preceding the first vertex of Ẽ((Γ∗i )n∗i ) added. Let Γ̃−i be Γ̃i with the first κ
vertices with their incident edges removed.

Lemma 5.9 One of Γ̃i , Γ̃
+
i , or Γ̃

−
i is isomorphic to E(Γ∗i )n∗i .

Proof Consider (Γ∗i )n i as a subgraph of Γ(p∗ , q∗). For all but the first Γ∗i in (Γ∗i )n i ,
Ẽ(Γ∗i ) ≅ E(Γ∗i ), so

Γ̃i ≅ Ẽ(Γ∗i ) ∗ (E(Γ∗i ))n∗i −1 .
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Figure 20: Expanding Γ(4, 3) to Γ(26, 11).

Let e0 be the sign of the first edge in Γ∗i , and define

Γshort ∶=
⎧⎪⎪⎨⎪⎪⎩
Ẽ(Γ∗i ,κ,κ′ ,+1), (e0 is 1 and κ

′ is even) or (e0 is -1 and κ
′ is odd)

Ẽ(Γ∗i ,κ,κ′ ,−1), (e0 is 1 and κ
′ is odd) or (e0 is -1 and κ

′ is even)
and

Γlong ∶=
⎧⎪⎪⎨⎪⎪⎩
Ẽ(Γ∗i ,κ,κ′ ,−1), (e0 is 1 and κ

′ is even) or (e0 is -1 and κ
′ is odd),

Ẽ(Γ∗i ,κ,κ′ ,+1), (e0 is 1 and κ
′ is odd) or (e0 is -1 and κ

′ is even).
Notice that Γlong is a κ-segment concatenated with Γshort. Each of Ẽ(Γ∗i ) and E(Γ∗i ) is
isomorphic to Γlong or Γshort.

When Ẽ(Γ∗i ) is isomorphic to E(Γ∗i ), Γ̃i is isomorphic to E(Γ∗i )n∗i .
When Ẽ(Γ∗i ) is isomorphic to Γshort and E(Γ∗i ) is isomorphic to Γlong, Γ̃

−
i is

isomorphic to E(Γ∗i )n∗i .
When Ẽ(Γ∗i ) is isomorphic to Γlong and E(Γ∗i ) is isomorphic to Γshort, Γ̃

+
i is

isomorphic to E(Γ∗i )n∗i . ∎
Now, we analyze the structure of E(Γ∗N∗). In particular, we want to know where

the summits Γ(p, q) are located. By Corollary 5.7, the leading summits of Γ(p, q)
correspond to the summits of Γ(p∗ , q∗). Now, we consider the nonleading summits
in Γ(p, q). Let d be κ′ or κ′ − 1 whichever is even.
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Let Γtop and Γ
∗
top be defined for (p, q) and (p∗ , q∗), respectively, as shown in Figure

13. By (R2), Γ∗N∗ is isomorphic to Γ∗top. By definition, E(Γ∗top) is the concatenation of
a κ-block of even length, a positive (κ + 1)-segment, another κ-block of even length,
and a negative (κ + 1)-segment. It follows that every summit in Γ(p∗ , q∗) corresponds
to d/2 + 1 summits in Γ(p, q).

We are ready to defineN, {Γi}N0 , {Υi}N0 , {Ω i}N0 and {n i}N1 . Let Γ be an incremental
path with vertex set {V0 , . . . ,Vn}, and let Υ be a connected subgraph of Γ with
vertices Vi , . . . ,Vi+k . Define Left(Γ, Υ) to be ω(Γ,V0 ,Vi), and define Right(Γ, Υ) to
be ω(Γ,Vi+k ,Vn).

For each i = 1, . . . ,N∗, exactly one of the subgraphs Γ̃i , Γ̃
+
i , or Γ̃

−
i is isomorphic to

E(Γ∗i )n∗i by Lemma 5.9. Call this subgraph Γ′i . For each i = 0, . . . ,N∗, we make the
following choices.

• Let Γi = E(Γ∗i ).
• Let n i = n∗i .
• Let Υi = Left(Γi−1 , Γ′i ).
• Let Ω i = Right(Γi−1 , Γ′i ).
Note that since Γi−1 is E(Γ∗i−1), Γ′i is a subgraph of Γi−1 by (5.9).

Let {Q0 , . . . ,Qn} be the vertex set of ΓN∗ . Since ΓN∗ = E(Γ∗N∗),
n = 2(κ + dκ + 1).

Suppose κ′ = 1, so n = 2(κ + 1).
• Let N = N∗ + 1.
• Let ΓN = Γtop.
• Let nN = d/2 + 1.
• Let ΥN = ω(ΓN∗−1 ,Q0 ,Qκ).
• Let ΩN = ω(ΓN∗−1 ,Qκ+2 ,Qn).

Suppose κ = 1.

• Let N = N∗ + 1.
• Let ΓN = Γtop.
• Let nN = d/2 + 1.
• Let ΥN = ω(ΓN∗−1 ,Qd ,Qd+1).
• Let ΩN = ω(ΓN∗−1 ,Qn−1 ,Qn).

Suppose κ′ > 1 and κ > 1.

• Let N = N∗ + 2.
• Let ΓN−1 be a positive κ-segment followed by a negative κ-segment.
• Let ΓN = Γtop.
• Let nN−1 = d/2 + 1.
• Let nN = 1.
• Let ΥN−1 = ω(ΓN∗−1 ,Qdκ ,Qdκ+1).
• Let ΩN−1 = ω(ΓN∗−1 ,Q2dκ+3 ,Qn).
• Let ΥN = ω(ΓN∗−1 ,Qdκ+1 ,Qdκ+κ).
• Let ΩN = ω(ΓN∗−1 ,Qdκ+κ+2 ,Qdκ+2κ+1).
Lemma 5.10 The integers {n i}Ni=1 and the subgraphs {Γi}Ni=0, {Υi}Ni=1, and {Ω i}Ni=1
satisfy (R1)–(R4).
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Proof Since Γ∗0 ≅ Γ(p∗ , q∗),
Γ0 ≅ E(Γ(p∗ , q∗)) ≅ Γ(p, q),

so (R1) is satisfied.
By definition, ΓN ≅ Γtop, so (R2) is satisfied.
When N∗ < i ≤ N , (R3) and (R4) are satisfied by proofs similar to those in Lemma

5.8.
Suppose i ∈ {1, . . . ,N∗}:

Γi−1 = Left(Γi−1 , Γ′i ) ∗ Γ′i ∗ Right(Γi−1 , Γ′i )
≅ Υi ∗ E(Γ∗i )n∗i ∗Ω i

= Υi ∗ Γn i

i ∗Ω i .

Therefore, (R3) is satisfied.
Ẽ((Γ∗i )n∗i ) is Γ′i possibly with κ edges added to or removed from the beginning.

Also,

Υi ∗ Γ′i ∗Ω i ≅ Γi−1 ≅ Ẽ(Γ∗i−1) ≅ Ẽ(Υ∗i ) ∗ Ẽ((Γ∗i )n∗i ) ∗ Ẽ(Ω∗i ).
It follows that Ω i is Ẽ(Ω∗i ) and Υi is Ẽ(Υ∗i )with possiblyκ edges added to or removed
from the end (see Figure 20).

Since no summits of Γ(p∗ , q∗) are in Υ∗i , there are no summits of Γ(p, q) in Ẽ(Υ∗i ).
It follows that if Υi is equal to Ẽ(Υ∗i ) or is Ẽ(Υ∗i )with edges removed, then Υi contains
no summits of Γ(p, q).

Consider the case when Υi is Ẽ(Υ∗i )with a κ-segment added. Let P be the vertex at
the end of Ẽ(Υ∗i ). If the segment added is negative, then the gradings of the vertices
added to Ẽ(Υ∗i ) are less than gr(P), so they cannot be summits.

If the segment added is positive, then P is at the end of either a κ-segment or a(κ + 1)-segment. In either case, the maximum grading of a vertex in Ẽ(Υ∗i ) is at least
gr(P) + κ. Since none of the vertices of Ẽ(Υ∗i ) are summits of Γ(p, q), the grading
of a summit of Γ(p, q) must be bigger than gr(P) + κ. Since only κ edges are being
added, the gradings of the vertices added to Ẽ(Υ∗i ) are no bigger than gr(P) + κ, so
they cannot be summits of Γ(p, q). Thus, there are no summits in Υi .

Since no summits are in Ω∗i , there are no summits Ẽ(Ω∗i ) ≅ Ω i . Therefore, (R4) is
satisfied. ∎
Lemma 5.11 The subgraphs {Γi}N0 satisfy (R5).

Proof First, we show that Γi has no bottoms for each i = 1, . . . ,N . Since N∗ ≥ 1, Γ1 =
E(Γ∗1 ). Since Γ∗1 has no bottoms, Γ1 does not have bottoms. When 1 ≤ i ≤ N ,

Γi−1 ≅ ΥiΓ
n i

i ∗Ω i ,

so Γi is a subgraph of Γ1. Therefore, Γi has no bottoms.
Suppose 0 ≤ i ≤ N . Here, we show that Γi is symmetric. When i > N∗, Γi is either

the concatenation of a positive κ-segment and a negative κ-segment or Γtop. In both
cases, Γi can be shown to be symmetric by an argument similar to those used in the
proof of Lemma 5.8.
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Figure 21: The incremental cycles cl(Γi) (top) and cl(Γ∗i ) (bottom) are shown. P is a leading

vertex, and fL(P) is denoted P∗. ϕ(P) is a trailing vertex, and ϕ∗(P∗) = fT(ϕ(P)).

Suppose 0 ≤ i ≤ N∗. In this case, Γi = E(Γ∗i ). Our goal is to show that since Γ∗i is
symmetric, Γi is also symmetric.

Since Γ∗i is symmetric, there are an order-reversing bijection ϕ∗ on the set of
vertices of cl(Γ∗i ) and an integer k∗ such that for each P∗ in cl(Γ∗i ),

gr(P∗) + gr(ϕ∗(P∗)) = k∗ .(5.10)

Let VL and VT be the sets of leading and trailing vertices of cl(Γi), respectively, and
let V∗ be the vertex set of cl(Γ∗i ). Define ϕ to be the unique order-reversing bijection
on the vertices of cl(Γi) such that the following diagram commutes:

VL VT

V∗ V∗

ϕ∣VL

fL fT

ϕ∗

In particular, ϕmaps leading vertices bijectively to trailing vertices (see Figure 21).
Let PS be a leading summit of Γi , and let P∗S = fL(PS) in Γ∗i .

Let k = gr(PS) + gr(ϕ(PS)), and let P be an arbitrary vertex in Γi . The goal is to
show that gr(P) + gr(ϕ(P)) = k, which is done in four cases.

Case 1. Suppose P is a leading vertex and P∗ ∶= fL(P) has the same vertex type
as P, either a peak (type (−+)) or valley (type (+−)). Recall from Figure 16 how the
automorphism ϕ∗ affects vertex type. If P∗ is of type (−+), then ϕ∗(P∗) is of type(+−), and if P∗ is of type (+−), then ϕ∗(P∗) is of type (−+).Therefore, either f −1L (P∗)
and f −1T (P∗) are both peaks and f −1L (ϕ∗(P∗)) and f −1T (ϕ∗(P∗)) are both valleys or
f −1L (P∗) and f −1T (P∗) are both valleys and f −1L (ϕ∗(P∗)) and f −1T (ϕ∗(P∗)) are both
peaks. In either case,

gr( f −1L (ϕ∗(P∗))) = gr( f −1T (ϕ∗(P∗))).(5.11)

Thus,

gr(P) + gr(ϕ(P)) − k = gr(P) − gr(PS) + gr(ϕ(P)) − gr(ϕ(PS))
= gr( f −1L (P∗)) − gr( f −1L (P∗S ))
+ gr(ϕ( f −1L (P∗))) − gr(ϕ( f −1L (P∗S )))

= gr( f −1L (P∗)) − gr( f −1L (P∗S ))
+ gr( f −1T (ϕ∗(P∗))) − gr( f −1T (ϕ∗(P∗S ))).
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Summits are of type (−+), so by (5.11),
gr( f −1T (ϕ∗(P∗))) − gr( f −1T (ϕ∗(P∗S ))) = gr( f −1L (ϕ∗(P∗))) − gr( f −1L (ϕ∗(P∗S ))).

By Proposition 5.6 and (5.10),

gr(P) + gr(ϕ(P)) − k = gr( f −1L (P∗)) − gr( f −1L (P∗S ))
+ gr( f −1L (ϕ∗(P∗))) − gr( f −1L (ϕ∗(P∗S )))= gr(P∗) − gr(P∗S ) + gr(ϕ∗(P∗)) − gr(ϕ∗(P∗S ))= gr(P∗) + gr(ϕ∗(P∗)) − (gr(P∗S ) + gr(ϕ∗(P∗S )))= k∗ − k∗ = 0.

Therefore,

gr(P) + gr(ϕ(P)) = k.

Case 2. Suppose P is a leading peak and P∗ ∶= fL(P) has type (++). In this case,
f −1L (P∗) and f −1L (ϕ∗(P∗)) are both peaks and f −1T (P∗) and f −1T (ϕ∗(P∗)) are both
valleys. Thus,

gr( f −1L (ϕ∗(P∗))) = gr( f −1T (ϕ∗(P∗))) + κ,

and

gr(P) + gr(ϕ(P)) − k = gr(P) − gr(PS) + gr(ϕ(P)) − gr(ϕ(PS))
= gr( f −1L (P∗)) − gr( f −1L (P∗S ))
+ gr(ϕ( f −1L (P∗))) − gr(ϕ( f −1L (P∗S )))

= gr( f −1L (P∗)) − gr( f −1L (P∗S ))
+ gr( f −1T (ϕ∗(P∗))) − gr( f −1T (ϕ∗(P∗S )))

= gr( f −1L (P∗)) − gr( f −1L (P∗S ))
+ gr( f −1L (ϕ∗(P∗))) − gr( f −1L (ϕ∗(P∗S )))= gr(P∗) − gr(P∗S ) + gr(ϕ∗(P∗)) − gr(ϕ∗(P∗S ))= 0.

Case 3. Suppose P is a leading valley and P∗ ∶= fL(P) has type (−−). In this case,
f −1T (P∗) and f −1T (ϕ∗(P∗)) are both peaks and f −1L (P∗) and f −1L (ϕ∗(P∗)) are both
valleys. Thus,

gr( f −1L (ϕ∗(P∗))) = gr( f −1T (ϕ∗(P∗))) − κ,

and

gr(P) + gr(ϕ(P)) − k = gr(P) − gr(PS) + gr(ϕ(P)) − gr(ϕ(PS))
= gr( f −1L (P∗)) − gr( f −1L (P∗S ))
+ gr(ϕ( f −1L (P∗))) − gr(ϕ( f −1L (P∗S )))

= gr( f −1L (P∗)) − gr( f −1L (P∗S ))
+ gr( f −1T (ϕ∗(P∗))) − gr( f −1T (ϕ∗(P∗S )))
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Figure 22: In solid black, the subgraphs ω(cl(Γi), P
′ , P) (left) and ω(cl(Γi), ϕ(P), ϕ(P

′))
(right) are shown. The dashed gray arrows are other edges in cl(Γi). The case shown is when

P′ is a peak.

= gr( f −1L (P∗)) − gr( f −1L (P∗S ))
+ gr( f −1L (ϕ∗(P∗))) − gr( f −1L (ϕ∗(P∗S )))= gr(P∗) − gr(P∗S ) + gr(ϕ∗(P∗)) − gr(ϕ∗(P∗S ))= 0.

Case 4. Suppose P is not a leading vertex. Let P′ be the leading vertex in cl(Γi) such
that the length of the path ω(cl(Γi), P′ , P) is minimal. It follows that ω(cl(Γi), P′ , P)
is isomorphic to a subgraph of a κ-block as in Figure 22. In particular, there are no
leading vertices between P′ and P in cl(Γi); therefore, there are no trailing vertices
between ϕ(P) and ϕ(P′) in cl(Γi), so ω(cl(Γi), ϕ(P), ϕ(P′)) is also isomorphic to a
subgraph of a κ-block.

Let Q be the closest vertex (in the forward direction) to P with grading gr(Q) =
gr(P′). When P′ is a peak, Q is a peak. Likewise, when P′ is a valley, Q is a valley.
Define d be the distance (going forward) from P′ to Q. Since P is in a κ-block which
starts at P′, Q and P lie on the same segment, so

gr(Q) − gr(P) = { d , when Q is a peak,−d , when Q is a valley;

also, ϕ(Q) and ϕ(P) lie on the same segment, so

gr(ϕ(Q)) − gr(ϕ(P)) = { −d , when Q is a peak,
d , when Q is a valley.

If P′ and Q are peaks, then

gr(P) = gr(Q) − d = gr(P′) − d

and

gr(ϕ(P)) = gr(ϕ(Q)) + d = gr(ϕ(P′)) + d .

If P′ and Q are valleys, then

gr(P) = gr(Q) + d = gr(P′) + d
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and

gr(ϕ(P)) = gr(ϕ(Q)) − d = gr(ϕ(P′)) − d .

In both cases,

gr(P) + gr(ϕ(P)) = gr(P′) + gr(ϕ(P′)) = k.

Therefore, for every vertex P in cl(Γi), gr(P) + gr(ϕ(P)) = k, so Γi is symmetric. ∎
Proof of Lemma 3.5 By Lemma 5.4, it is sufficient to show that every relevant co-
prime pair is a pre-RTFN pair.

Let (p, q) be a relevant co-prime pair. If q = 1 or (pmod q) = 1 with q positive, then(p, q) is a pre-RTFN pair by Lemma 5.8. If q = −1, then (p, q) is a pre-RTFN pair by
Lemma 5.3.

Suppose ∣q∣ ≠ 1 and (pmod q) > 1, and assume every relevant co-prime pair (p′, q′)
with ∣q′∣ < ∣q∣ is a pre-RTFN pair.When q is positive, define the relevant co-prime pair(p∗ , q∗) as in Lemma4.5. Since ∣q∗∣ < ∣q∣, (p∗ , q∗) is a pre-RTFNpair. By Lemmas 5.10
and 5.11, (p, q) is also pre-RTFN pair. When q is negative, the pair (p,−q) is a pre-
RTFN pair by the above argument. Thus, (p, q) is a pre-RTFN pair by Lemma 5.3.

By strong induction, every relevant co-prime pair (p, q) with p positive and q odd
is a pre-RTFN pair. ∎

A Background on presentation matrices

Let R be a PID. Suppose X is an R-module with presentation

⟨x1 , . . . , xn ∣s1 , . . . , sm⟩.
For each i,

s i = n∑
j=1

r i , jx j ,

where each r i , j is in R. The matrix of r i , j coefficients

⎛⎜⎝
r1,1 ⋯ r1,n⋮ ⋮
rm ,1 ⋯ rm ,n

⎞⎟⎠
is called a presentation matrix of X. Suppose A is a presentation matrix of X. Perform-
ing row and column operations onAwill always produce another presentationmatrix
of X.

Using row and column operations, any matrix over a PID can be put in the form

⎛⎜⎜⎜⎜⎝

d1

⋱ 0
dk

0 0

⎞⎟⎟⎟⎟⎠
,

where each d i is nonzero and d i divides d i+1 for each i = 1, . . . , k − 1.This is called the
Smith normal form of a matrix.
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When A is the presentation matrix of X and d1 , . . . , dk are the diagonal entries of
the Smith normal form of A,

X ≅ Rn−k ⊕ R

d1R
⊕⋯⊕ R

dkR
.(A.1)

The d i which are not units are the invariant factors of X.
The following lemma plays a key role in showing that elements in a para-free group

are homologically primitive.

Lemma A.1 Suppose X is an R-module with an m × n presentation matrix A of full
rank. If the greatest common divisor of every m ×mminor of A is a unit, then X is a free
R-module. Otherwise, the greatest common divisor of every m ×m minor of A is equal
to the product of the invariant factors of X up to multiplication by a unit.

Proof Let B be the Smith normal form ofA. SinceA has full row rank, B has no extra
rows of zeros, so B has the following form:

B =
⎛⎜⎜⎝

d1

⋱ 0
dm

⎞⎟⎟⎠ .

For any m × n matrix with entries in R, the greatest common divisor of its m ×
m minors is invariant under row and column operations up to multiplication by a
unit.Therefore, up to a unit, the greatest common divisor of them ×mminors of A is

∏m
i=1 d i . When∏m

i=1 d i is a unit, each d i is a unit, so by (A.1), X is a free R-module. If

∏m
i=1 d i is not a unit, it is the product of the invariant factors of X up to multiplication

by a unit. ∎
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