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Residual torsion-free nilpotence,
bi-orderability, and two-bridge links

Jonathan Johnson

Abstract. Residual torsion-free nilpotence has proved to be an important property for knot groups
with applications to bi-orderability and ribbon concordance. Mayland proposed a strategy to show
that a two-bridge knot group has a commutator subgroup which is a union of an ascending chain
of para-free groups. This paper proves Mayland’s assertion and expands the result to the subgroups
of two-bridge link groups that correspond to the kernels of maps to Z. We call these kernels the
Alexander subgroups of the links. As a result, we show the bi-orderability of a large family of two-
bridge link groups. This proof makes use of a modified version of a graph-theoretic construction
of Hirasawa and Murasugi in order to understand the structure of the Alexander subgroup for a
two-bridge link group.

1 Introduction

Given an oriented smooth link L in S?, the link group of L, denoted n(L), is the
fundamental group of the complement of L in S*. Also, let A () denote the Alexander
polynomial of L (see [23, Chapter 6] for details).

Let h: (L) — H,(S® - L) be the Hurewicz map, and let ¢ : H;(S* -~ L) —» Z be
the map defined by identifying the oriented meridians of each component of L with
each other. The group 7(L) is canonically an extension of Z by ker(¢ o k) as follows:

1 —— ker(goh) > (L) .z

(L1) hl i
Hi(S*-1)

w
—

We call the subgroup ker(¢ o h) the Alexander subgroup of the oriented link L. When
L is a knot, the Alexander subgroup is the commutator subgroup of 7(L).

A group G is residually torsion-free nilpotent if for every nontrivial element x € G,
there is a normal subgroup N < G such that x ¢ N and G/N is a torsion-free nilpotent
group. The residual torsion-free nilpotence of the Alexander subgroup of a link group
has applications to bi-orderability [13] and ribbon concordance [10]. Several knots are
known to have groups with residually torsion-free nilpotent commutator subgroups
including fibered knots (since free groups are residually torsion-free nilpotent [17] and
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Figure I: The (4,2)-torus link.

the commutator subgroup of a fibered knot group is a finitely generated free group),
twist knots [18], all knots in Reidemeister’s knot table (see [26]) except 813, 925, 935,
938, 941, and 949 [18], and pseudo-alternating links whose Alexander polynomials
have prime power leading coefficients [20]. This paper confirms that many two-
bridge links, including all two-bridge knots, have groups with residually torsion-free
nilpotent Alexander subgroups.

Theorem 1.1 If L is an oriented two-bridge link whose Alexander polynomial has
relatively prime coefficients (collectively, not pairwise), then the Alexander subgroup of
n(L) is residually torsion-free nilpotent.

Remark 1.2 'The condition on the coefficients of the Alexander polynomial cannot
be removed. For example, if L is the (4, 2)-torus link, as shown in Figure 1, then L has
Alexander subgroup isomorphic to

({Si}iez | S =S1,,i€Z),
which is not residually nilpotent. (For details on computing the Alexander subgroup,

see Section 3.) The Alexander polynomial of L is Ay (t) = 2¢ — 2.

It is a well-known fact that Ag(1) = +1 for every knot K [2]. It follows that the
coeflicients of the Alexander polynomial of K are relatively prime, so we have the
following corollary.

Corollary 1.3 The commutator subgroup of a two-bridge knot group is residually
torsion-free nilpotent.

The following conjecture is an analog of a question by Mayland in [18].

Conjecture 1.4 The Alexander subgroup of a link group of an alternating link is
residually torsion-free nilpotent whenever the link’s Alexander polynomial has relatively
prime coefficients.

1.1 Summary of the techniques used

The proof of Theorem 1.1 relies on Baumslag’s work on para-free groups [3, 4]. Let G
be a group. Define y;G := G, and for each positive integer n, define y,,41G := [G, y,G].
A group G is para-free of rank r if:
(1) for some free group F of rank r, G/y,G = F/y,F for each n, and
(2) Gisresidually nilpotent.

Baumslag provides a sufficient condition for a group to be residually torsion-free
nilpotent.
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Proposition 1.5 (Baumslag [4, Proposition 2.1(i)])  Suppose G is a group which is the
union of an ascending chain of subgroups as follows:

Go<G1<Gy<<Gy<<G=JG,.

n=1

Suppose each G, is para-free of the same rank. If for each nonnegative integer n, |G, :

Gu[Gns1> Gui1]| is finite, then G is residually torsion-free nilpotent.
Thus, Theorem 1.1 follows from the following lemma.

Lemma 1.6 Suppose L is an oriented two-bridge link, and let Y be the Alexander
subgroup of L. If the Alexander polynomial of L has relatively prime coefficients, then
Y can be written as a union of an ascending chain of subgroups Yo <Y1 <Y, < - <Y
such that:

(a) each Y, is para-free of the same rank and
(b) |Yne1: Yl Yasr, Yuu1]| is finite for each n.

Let H be a para-free group of rank r. An element h € G is homologically primitive
if the class of h in H/[H, H] 2 Z" can be extended to a basis.

Proposition 1.7 (Baumslag [3, Proposition 3]) Let H be a para-free group of rank r,
and let (x) be an infinite cyclic group generated by x. Let h be an element in H, and let
n be a positive prime integer. If h generates its own centralizer and h is homologically
primitive in H, then the group

H * (x)

h=x"
is para-free of rank r.

Proposition 1.7 can be strengthened to the following statement.

Proposition 1.8  Let H be a para-free group of rank r, and let (x) be an infinite cyclic
group generated by x. Let h be an element in H, and let n be any positive integer. If h is
homologically primitive in H, then

H » (x)

h=x"
is para-free of rank r.

Proof Let H be a para-free group of rank r, and let /& be an element in H which is
homologically primitive. Suppose an element g € H commutes with 4, and consider,
(g, h), the subgroup of H generated by g and h. A theorem of Baumslag [4, Theorem
4.2] states that any two-generator subgroup of a para-free group is free. Since g and
h commute, (g, h) cannot be a rank-2 free group, so (g, h) is an infinite cyclic group.
Since h is homologically primitive, it must be a generator of (g, 1), so g = h' for some
integer I. Therefore, h generates its own centralizer.
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4 ]. Johnson

Letn = p;---px be the prime decomposition of n. Let (x1), . . ., {xx ) be infinite cyclic
groups. Define Gy = H and x¢ = h. Then, for j=1,..., k, define
Hx (x) % x;)

= — — — 70
N (x5 xl", x; 1xfz,...,xj_llxj’)

j :

where N means the normal closure of the indicated elements. Thus,

(12) Gj=Gja * (x;)

xj_lzxj

for each j. We can substitute xf‘ forx;_yfori=1,...,jsothat

J
J

GjzH * (%),
h

=X

where nj = pi---p;.

Since h is homologically primitive in H, the class of h in H’, the abelianization of
H, extends to a basis B of H' = Z". After adjoining a root of /i to obtain G, H embeds
into G, the abelianization of G;.

The elements in B remain linearly independent in G;. Removing the class of &
from B and replacing it with the class of x; produces a basis of G/. Therefore, x; is
homologically primitive in G;.

Since Gy = H is para-free of rank r, inductively, each Gj is para-free of rank r by
(1.2) and Proposition 1.7. Thus,

GrxH = (X)

h=x"
is para-free of rank r. [ ]

Mayland [19] proposes a strategy that uses the Reidemeister-Schreier rewriting
process to describe the commutator subgroup of a two-bridge knot group as the union
of an ascending chain of subgroups satisfying the conditions of Lemma 1.6. The first
term Y is a free group, and ideally, for each n > 1, Y, is isomorphic to Y,_; after
adjoining roots of homologically primitive elements, in the manner of Proposition
1.8, a finite number of times. Mayland attempts to show that, for a given two-bridge
knot, each Y, is obtained by adjoining roots to Y;,_; using a recursive argument.
However, it is not at all obvious that Mayland’s recursive argument is valid. While
it is straightforward to verify Mayland’s argument on a case-by-case basis, proving his
recursive argument works in general is quite difficult. Furthermore, there are errors
in Mayland’s argument that the elements, whose roots are adjoined, are homologically
primitive. Unfortunately, Mayland never published a proof of his assertion. In a later
paper by Mayland and Murasugi [20], it is stated that Mayland plans to present a proof
using a different strategy. This paper has not appeared.

Here, we use a slightly different approach. In this paper, we use a graph-theoretic
construction similar to one used by Hirasawa and Murasugi [11] to relate the Alexan-
der subgroups of more complicated two-bridge link groups to those of simpler two-
bridge link groups. Then, it is proved inductively that the Alexander subgroups of all
two-bridge links can be described by adjoining roots to a free group, and we show that
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Residual torsion-free nilpotence, bi-orderability, 2-bridge links 5

when two-bridge links have Alexander polynomials with relatively prime coeflicients,
their Alexander subgroups satisfy Lemma 1.6 via Mayland’s strategy.

1.2 Application to bi-orderability

Residually torsion-free nilpotence is useful for determining when a link group is bi-
orderable, i.e., admits a total order invariant under both left and right multiplication
[7,25,30]. Let L be a smooth link in S. The link group 7(L) is an extension of () (an
infinite cyclic group generated by t) by the Alexander subgroup Y. Let Y** denote the
abelianization of Y, and let L, be the linear map induced on Q ® Y** by conjugating
Y by t. The following result is shown by Linnell, Rhemtulla, and Rolfsen [13] and is
stated more explicitly by Chiswell, Glass, and Wilson [6].

Theorem 1.9 (Chiswell-Glass-Wilson [6, Theorem B]) Suppose Y is residually
torsion-free nilpotent. If the dimension of Q ® Y™ is finite and all the eigenvalues of
Ly are real and positive, then m(L) is bi-orderable.

The Alexander polynomial of L, Ar(t), is a scalar multiple of the characteristic
polynomial of L;, and the dimension of Q ® Y is the degree of AL (t) (for details,
see [27, Chapter VIII]), which implies the following corollary.

Corollary1.10 Let L bealink in S°. If the Alexander subgroup of L is residually torsion-
free nilpotent and A (t) has all real positive roots, then (L) is bi-orderable.

Remark 1.11 Linnell, Rhemtulla, and Rolfsen actually show that a weaker condition
on the Alexander polynomial is sufficient for bi-orderability. However, since two
bridge links are alternating, the coeflicients of their Alexander polynomials alternate
sign [8], so the signs of the even degree terms are all opposite to the signs of the odd
degree terms. It follows that the Alexander polynomials of two-bridge links cannot
have negative roots. Therefore, for a two-bridge link, having an Alexander polynomial
which is “special” in the sense of Linnell, Rhemtulla, and Rolfsen [13] is equivalent to
the Alexander polynomial having all real and positive roots.

By combining Theorem 1.1 with Corollary 1.10, we have the following result.

Theorem 1.12  Let L be an oriented two-bridge link with Alexander polynomial Ar(t).
If all the roots of Ar(t) are real and positive and the coefficients of Ay (t) are relatively
prime, then the link group of L is bi-orderable. In particular, if K is a two-bridge knot
and all the roots of Ak (t) are real and positive, then the knot group of K is bi-orderable.

Remark 1.13 Theorem 1.12 is not true if either condition on the Alexander polyno-
mial is removed. The link group of the (4, 2)-torus link has presentation

(7l 7y xy?).
Since x and y do not commute but x commutes with y?, the (4,2)-torus link does
not have bi-orderable link group [24, Lemma 1.1]. As stated in Remark 1.2, the (4,2)-
torus link, oriented as in Figure 1, has Alexander polynomial 2¢ — 2, which has only
one real positive root but does not have relatively prime coefficients. If we reverse
the orientation of one of the components, the Alexander polynomial is > — £ + £ — 1,
which has relatively prime coefficients, but no real roots.

https://doi.org/10.4153/50008414X2300007X Published online by Cambridge University Press



6 ]. Johnson

J)

Figure 2: Schubert’s projection of L(8/3).

1.3 A family of bi-orderable two-bridge links

Every oriented two-bridge link is the closure of rational tangle. Thus, by Conway’s
correspondence, we can associate a two-bridge link to a rational fraction p/q with p >
0 (see [5, Chapter 12] for details). Let L(p/q) denote the two-bridge link represented
by p/q. Choose an orientation of L(p/q) so that the two overstrands of Schubert’s
projection of L(p/q) are oriented away from each other, as shown in Figure 2. This
correspondence satisfies the following properties:

(1) L(p/q) and L(p’/q") are equivalent as unoriented links if and only if:
(a) p=p'and
(b) g =g’ (modp) or gq' =1 (mod p).
(2) L(p/q) and L(p’/q’) are equivalent as oriented links if and only if:
(a) p=p'and
(b) g =g’ (mod2p) or qq’ =1 (mod2p).
(3) L(p/q) is a knot if and only if p is odd.
(4) L(p/q) and L(-p/q) are mirrors.
(5) If L(p/q) is a link, L(p/(g £ p)) is the oriented link obtained by reversing the
orientation of one of the components of L(p/q).

When g is odd, there are nonzero integers ki,...,k, such that p/(p-q) =
[2ki,...,2k,]. Here, [2ki, ..., 2k, ] denotes the continued fraction expansion

1
[2k1,...,2kn] =2k1+ 1
2k2 + —2k3+,,,+1¢
2kp
The integers 2k;, ..., 2k, correspond to the number of twist in the rational tangle

p/q (see Figure 3). See [23, Chapter 9] for details on fraction expansions and rational
tangles. When n is even, L(p/q) is a knot with genus n/2. When n is odd, L(p/q) is a
two-component link with genus (n —1)/2.

Every oriented two-bridge link is associated to a fraction p/q with g odd and |p/q| >
1. When L(p/q) isalink, p is always even and g is always odd. Suppose L(p/q) is a knot
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Figure 3: Rational tangle form of a two-bridge knot (top) and link (bottom).

with g even. Let g’ be the inverse g modulo 2p. Since g is even, ¢’ is odd, and L(p/q) is
equivalent to L(p/q"). Furthermore, since L(p/q) is equivalent to L(p/(q + 2pk)) for
all integers k, g can be chosen such that —p < g < p so |p/gq| > 1. Therefore, we adopt
the convention that p > |g| > 0 and q is odd.

Chiswell, Glass, and Wilson showed that groups that admit presentations with
two generators and one relator satisfying certain conditions have residually torsion-
free nilpotent commutator subgroups [6]. Clay, Desmarais, and Naylor used this to
show that twist knots (knots represented by [2, 2k ] with k > 0) have bi-orderable knot
groups in [7]. In [30], Yamada used the same idea to extend this to the family of two-
bridge links represented by [2,2, ..., 2,2k], where k > 0. Using the following result of
Lyubich and Murasugi, this paper extends this family further.

Theorem 1.14 (Lyubich-Murasugi [16, Theorem 2])  Let p/q be a fraction of co-prime
integers p and q with q + 0, and let L be the two-bridge link L(p/q). If for some positive
integer n, p/q = [2ki,...,2k,] with k; > 0 for each i =1,...,n, then all the roots of
Ap(t) are real and positive.

Combining this theorem with Corollary 1.3 implies the following.
Corollary 1.15 Let p/q be a fraction of co-prime integers p and q with q 0, and
p/(p—q) =[2ki,...,2k, | withk; >0 foreachi=1,...,n.

If the coefficients of the Alexander polynomial of L(p/q) are relatively prime, then
the link group of L(p/q) is bi-orderable. In particular, when L(p/q) is a knot, the knot
group of L(p/q) is bi-orderable.

Theorem 1.14 does not characterize all two-bridge links with Alexander polynomial
that have all real and positive roots.

Example 116 Let K = L(81/49). 81/(81 - 49) = [2,2,-8,-2],
Ag(t) = 4t* =208 + 332 - 20t + 4 = (t - 2)*(2t - 1)%,

which has two real roots of multiplicity 2. Thus, the knot group of K is bi-orderable.
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1.4 Genus one two-bridge links

Suppose L is an oriented genus-one two-bridge link L(p/q). When L is a genus-
one knot, p/(p — q) = [2k1, 2k, ] for some nonzero integers k; and k;. The Alexander
polynomial of L is

AL(t) = klkztz - (2k1k2 + 1)t + klkz.

When kik, > 0, Ar(t) has two positive real roots, so 7(L) is bi-orderable by Theorem
1.12. When kjk, <0, Ap(t) has no real roots. In this case, since degA; =2, an
obstruction by Clay, Desmarais, and Naylor [7, Theorem 3.3] implies that 77(L) is not
bi-orderable.

Proposition 117 Suppose L is the two-bridge knot L(p/q) with p/(p-q) =
[2k1, 2k, ]. The knot group m(L) is bi-orderable if and only if kik, > 0.

When L is a genus-one two-component link, p/(p — q) = [2k;, 2k,, 2k;] for some
nonzero integers k;, k,, and k3. The Alexander polynomial of L(p/q) is

AL(t) = k1k2k3t3 — (3k1k2k3 + k1 + k3)t2 + (3k1k2k3 + kl + k3)t - k1k2k3
= (t — 1)(k1k2k3t2 — (2k1k2k3 + k1 + k3)t + k1k2k3).

The discriminant, D, of the second factor is
D= 4k1k2k3(k1 + k3) + (k1 + k3)2,

so D > 0if kiky ks (ki + k3) > 0. It follows that Ay () has three real positive roots when
k1k2k3(k1 + k3) >0.

Let A = kikaks and B = 3kikyks + ki + k3. The coefficients of Ap are relatively
prime precisely when gcd(A, B) =1, and ged(A, B) =1 if and only if ged(ky, k3) =1
and ged(ky, ki + k3) = 1.

Therefore, Theorem 1.12 implies the following result.

Proposition 1.18 ~ Suppose L is the two-component two-bridge link L(p/q) with p/(p —
q) = [2k1,2k2,2k3:|. Ifng(kl, k3) =1, ng(kz, k1 + k3) =1, and k1k2k3(k1 + k3) >0,
then (L) is bi-orderable.

1.5 Application to ribbon concordance

The residual torsion-free nilpotence of the commutator subgroup of a knot group has
an application to ribbon concordance as well. Given two knots K, and K; in 3, A
ribbon concordance from K, to K, is a smoothly embedded annulus C in [0,1] x S*
such that C has boundary — ({0} x Ky) U {1} x K; and C has only index 0 and 1 critical
points. K; is said to be ribbon concordant to Ky, denoted K; > K, if there is a ribbon
concordance from Kj to Kp. The relation > is clearly reflexive and transitive. Gordon
[10] conjectures that > is a partial order on knots in S°.
Gordon gives conditions under which > behaves antisymmetrically.

Theorem 1.19 (Gordon [10])  If K¢ > K; and K; > K¢ and the commutator subgroup of
n(Ko) is transfinitely nilpotent, then Ky and K, are ambient isotopic.
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Remark 1.20 Transfinite nilpotence follows from residual torsion-free nilpotence
(see [10] for a definition of transfinitely nilpotent).

Here, we state the following corollary.

Corollary 1.21 If Ky > Ko and Ky > Ky and Ky is a two-bridge knot, then K, and K;
are ambient isotopic.

Remark1.22 Since this article’s initial posting, Agol showed that Gordon’s conjecture
is true [1] subsuming Corollary 1.21.

1.6 Outline

The rest of this paper is devoted to the proof of Lemma 1.6. In Section 2, we illustrate
the proof of Lemma 1.6 by verifying the lemma for the two-bridge knot L(17/13).
Section 3 investigates the properties of a presentation for the Alexander subgroup Y
obtained by the Reidemeister-Schreier rewriting procedure. The proof of Lemma 1.6
is completed in Section 3.4. In Section 4, we define the cycle graph of a two-bridge
link. Cycle graphs are used to prove a key lemma in Section 5.

The Appendix covers some background material on presentation matrices of
modules over a principal ideal domain (PID).

2 An example

In this section, we use the two-bridge knot K := L(17/13) to provide an example of the
proof of Lemma 1.6. Using the Schubert normal form [29], we obtain a presentation
of n(K):

n(K) ={a,b|avb™v7"),
where
v=>batba b tabtaba ba b ab a.

Denote the Alexander subgroup of n(K) by Y. Using the Reidemeister-Schreier
rewriting process, we obtain the following presentation of Y (see Section 3 for details):

Y 2 ({Sk}kez | {Rk}kez)-

Here, Sy := a*ba~*""! and the relators Ry are defined as follows:

R_y = SpSoS 71871808087 1s718 71,8 58718718 58,8715,
Ro = 818155"85"8151857 85" S5 S_15_155" 515151551857,
Ry = 858,8718718,8,87 187187180805, 187180805118, Y,
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10 ]. Johnson

Define a sequence of groups {Y, } 2, as follows:

YO = <S,1, SO | @),
1,1 = (S—Za S—ls SO) Sl | R—1>R0>)
Y2 :=(S-3,5-2,5-1, S0, 81, S2 | R-2, R_1, Rg, Ry),

Define Al, gz, \71, and 172 as follows:

A, = 82872,
A\Z = Sl:

1) T o-102 o202 o2
Vi=80855,°85:8,7%
V, = 852

Let H, be the group obtained by adjoining a square root of \71‘1 to Yy as follows:

Similarly, let H, be the group obtained by adjoining a square root of # \72’1 to Hj as
follows:

H2 = H] * <Sl)
1 V=87

Thus, H; has the following group presentation:
H2 = <S,1, SO: Sl) 3] | tf\/}l =1 h = 812‘72>
= (S-S0, Su | ($TV2)* Vi =1,)
2 (S-1,S0, S1 | Ro).

Define Al, /L, \v/l, and 172 as follows:

A/l = SEZS:Z)
A/Z = S*Z)

(22) 17 20-2¢2¢0-3
Vi=845218687,
V, = S22,

Let H; be the group obtained by adjoining a square root of \71‘1 to Hy:

Let H, be the group obtained by adjoining a square root of ¢, X72’1 to H:

H4 = H3 * (S_z).

V=82,
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Therefore, Hy is isomorphic to Y;:

IIZ

(S 2)8 1> SO)Slg t2 | RO, ‘71{% = 1, tz = 832‘72>
(S 2 521,80, S1 | R-1, Ro)

112

IIZ

In conclusion, Y; is Yj after adjoining roots four times, and since R,,4; is R,, with all
the subscripts changed by +1, Y, is Y, after adjoining roots four times. Thus, for each
n, Y, embeds into Y;,.;. Therefore, Y is the union of an ascending chain of subgroups
as follows:

Yo<Yi<<Y={]Y,.

By Proposition 1.5, if each Y, is para-free of the same rank, then Y is residually
torsion-free nilpotent. Yj is clearly para-free of rank 2 since it is a rank-2 free group.
We need to verify that each time we adjoin a root of an element, that element is
homologically primitive. Then, by Proposition 1.8, we can conclude that each Y, is
also para-free of rank 2.

Claim For each n > 0, if Y,, is para-free of rank 2, then so is Y.

Proof Letnbea nonnegative integer, and suppose Y, is para-free of rank 2. In an
abuse of notation, let Al, Az, Vl, and Vz be as defined in (2 1) except with the subscripts
of each §; increased by n. Similarly, let Al, Az, Vl, and Vz be as defined in (2.2) except
with the subscripts of each S; decreased by n. Also, let H;, H,, Hs, and Hy4 be the
groups obtained by adjoining square roots of V; %, V5, V;}, and t,V; ! to Y,, as
before.

Let Y denote the abelianization of Y,,, and let B, be the quotient of Y2 obtained
by killing the class of \A/l’l in Y2, Since Y, is para-free of rank 2, Y2* = Z @ Z. Thus,

Vi
B 27® —
1289

for some integer C.

Now, we view Y2 as a Z-module and use addition as the group operation. Y?° is
generated by S’ , 1, S",,...,S,, where S/ denotes the class of S; in Y. Using this
generating set, Y2° has a (2n) x (2n + 2) presentation matrix:

4 -9 4

Throughout this paper, missing entries in matrices are zeros. See the Appendix for
definition and background on presentation matrices. The class of V™! in Y is
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12 J. Johnson

-48;,_; +58;,. Thus, By has the following (2n +1) x (2n +2) presentation matrix,
which we will also call Bi:

4 -9 4
4 -9 4
B1 = . .,

By Lemma A.l, the integer C is the greatest common divisor of the determinants of
every (2n +1) x (2n + 1) minor of B;. By deleting the last column, we get a square
minor of B; with determinant —4%"*1, However, by deleting the first column, we see
B; has a minor with odd determinant. (Modulo 2, the matrix obtained from B; by
deleting the first column is the identity matrix.) Thus, C = 1.

Therefore, B, is a rank-1 free abelian group. It follows that Vilis homologically
primitive in Y,,, and H; is para-free of rank 2 by Proposition 1.8.

Let B, be the quotient of H® obtained by killing the class of \72’1 in H®, the
abelianization of H;. Hi® is generated by 8", |, S’ ,,...,S., t|, where t| is the class of
t;in H®. H® hasa (21 + 1) x (2n + 3) presentation matrix:

4 -9 4

The class of £, V5" in H® is 28/, + t/. Thus, B, has the following (27 + 2) x (21 + 3)
presentation matrix:

4 -9 4
4 -9 4
B, = 4 -9 4
4 -5 2
2 1

Using the 1 in the bottom-right corner, we apply a row and a column operation.
Then, we kill the last row and column to get the following presentation matrix:

4 -9 4

112

B,

Thus, B; is a rank-1 free abelian group, by an argument similar to the one used for
By. It follows that ¢, V; ! is homologically primitive in H;, and H, is para-free of rank
2 by Proposition 1.8.
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Similarly, \71‘1 and t, \72‘1 are homologically primitive in H, and Hj, respectively.
Therefore, Hy = Y, is para-free of rank 2. ]

For any group G, if H is G with an nth root adjoined, then
H|G=2Z|nZ,

so |H: G[H, H]| = |H : G| = n. Thus, since for each n, Y,,,; is Y,, with square roots
adjoined four times, |Y,11 : Y[ Yoe1, Yai1]| = 16.

Since Y, is para-free of rank 2, each Y, is para-free of rank 2 by induction.
Therefore, Y is residually torsion-free nilpotent by Proposition 1.5.

3 A group presentation of the Alexander subgroup

In this section, we give a group presentation of the Alexander subgroup of an arbitrary
two-bridge link group using the Reidemeister-Schreier rewriting process. From this
presentation of the Alexander subgroup, we can describe the subgroup as the union
of an ascending chain of subgroups which satisfy conditions (a) and (b) of Lemma 1.6
when the Alexander polynomial of the link has relatively prime coefficients.

3.1 A presentation from Reidemeister-Schreier

Consider the two-bridge link L := L(p/q) where 1< |g| < p with g odd. For each
integer i, define

(3.1) )
Proposition 3.1 (Schubert [29])  Given the two-bridge link L(p/q),
m(L(p/q)) = (a, blw),

where a and b are classes of meridians of L(p/q) and w = a®b® ... a*»-2p%»-1,

Let Y be the Alexander subgroup of L. A group presentation for Y can be obtained
using the Reidemeister-Schreier rewriting procedure, developed by Reidemeister [26]
and Schreier [28]. The Reidemeister-Schreier rewriting procedure is described in
detail in Section 2.3 of the text by Karrass, Magnus, and Solitar [12]. The application
of this procedure to the situation at hand is discussed below.

Under the map ¢ o h: m(L) - n(L)/Y = Z from (1.1), a and b are both sent to 1 or
both sent to —1. Consider A := {a*} 1z as a set of coset representatives for 7(L)/Y.
Given an element x in 7(L), let X be the coset representative of x in A. For each x €
{a,b} and k € Z, define

y(a¥, x) = a*x(akx)™.

S1,.52

Note that y(a*,a) =1 and y(a*,b) = a*ba=*"!. Given a word u = xJ'x}
x; €{a,b} ands; € {1, -1} for all §, define

-x; with

t(u) = y(f, 1)y (B2, %2) -y (s X)) ™
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14 J. Johnson

where

Sl s;=-1

i

t; = { xp'-x]t) (possibly trivial), s; =1,

For each integer k, define
Sk = y(ak, b)
and define
8= {Sk}kez -

Since, for all k, y(a*, a) =1, for each word u, 7(u) is a product S, Sx,+-Sk, . For each
integer k, define

Ry := (afwa™").
Define
Zé;}) gj, wheni>O0,
(3.2) 0; = Z];li gj, wheni<O,
0, when i =0,
for each integer i.

Proposition 3.2 Suppose Ry = t(w) = SZIS;’; . S;’"", where each i; is an integer and
each nj is +1. Then:

(@) n=p.

(b) nj =&y, foreach j=1,...,p.

(c) ij=o0yjifnj=1landij=0yj1ifnj=—1foreach j=1,...,p.

(d) For every integer k, Ry = ST ST, ... S

h+k“iy+k " ip+k’

Proof Since y(a¥, a) istrivial, the S;-generators in Ry come from the b-generators in
w. For (), notice that the length of the word R, is the number of times b and b™" appear
in w, which is equal to p. By definition, 7 is equal to the exponent of the corresponding
bor b !in w, which is &, -1 showing (b). Since a = b modulo Y, then for any word u
inaand b, u = a® where s is the sum of the exponents of the a’s and b’s in u. Thus, both
(c) and (d) follow by a straightforward computation. [ |

Proposition 3.3 (Karrass—Magnus-Solitar [12, Theorem 2.9])
Y 2 ({Sk}tkez | {Ri}kez)-
3.2 Group presentation properties

This group presentation of Y has a few notable properties which will be of use.

Given a word W in 8, let [W] denote the class of W in the free abelian group
generated by 8. For each integer k, define S, := [ Sk ]. Denote the maximal and minimal
subscripts of S appearing in the word Ry by M and m, respectively, so that

’ ’ ’ ’
[Ro] = aMSM + aM_lsM_l R o am“SmH + amSm

for some integers a,, ..., dy.
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Proposition 3.4 Suppose L is a two-bridge link, and suppose Y is the Alexander
subgroup of L with presentation as defined in Section 3.1.

(a) For each integer n,

_ / / I I
[R"] - aMSM+n + aM—lsM—lJrn R am+1sm+l+n + ansm+n'

(b) Let g be the genus of L. When L is a knot, M — m = 2g, and when Lis a link, M — m =
2¢+1
(c) Forallj=m,..., M,

o B Amsismes
! Qeij-M> fM-g<j<M,

where
_ 28 4 ... 8 4...
Ap(t) =a b+ +agtf+-+a,
when L is a knot, and
Ap(t) = ggtzg“ +o kg 8T+ a8+ +a,
when L is a link. In particular, forall j=0,..., M — m,
aM_j = am+j.

Proof Part (a) follows from Proposition 3.2(d).
Foreachi=1,...,2p, denote by w; the word obtained from the first i generators
of the relation w. Also, define

1, ifs=1,
0(s):= { 0, ifs=-1L
We compute the Alexander polynomial by performing Fox calculus on w with respect

to b (see [9, Section 3]):

ow 0 0 0
— — b b81 b€1 & b€3 bszy—s Ep—2 | bSZp—l
b ¢ (ab( )+ bt (ab( ))+ e (ab( )) )

M 1M

a €2i-1
WZi—l%(b )

= 2 &2i-1WE(i)»

Il
—

where
f(l) =2i— 6(821'_1).

Foreachi=1,...,2p,w;=a%. Lett=4a = b. Up to multiplication by powers of ¢,

p
(33) AL(t) = ¢ (a_w) = 3 epia 0,
ob/ 5

where ¢’ : Z[n(L)] — Z[t] is the map induced by ¢ o h.
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16 ]. Johnson

By Proposition 3.2,

k = el 83 e 821)71
oy tkT oy tk Topp)tk
SO

I

Ri] = &S, + &S] +et €25 1S
[ k] 1 gf(l)+k 3 D'f(z)+k 217 1 D'f(P)+k

(3.4) P ,
=2 €215, +k-
i1

The degree of Ay is 2¢ when L is a knot and 2¢ + 1 when L is a link [8, 21, 22]. Thus,
parts (b) and (c) follow from (3.3) and (3.4). [ |

3.3 An ascending chain of subgroups

With the group presentation from Proposition 3.3, we can describe Y as an ascending
chain of subgroups.
Define Yj to be the free group

(35) YO = (Smr Sm+l>---)SM—l|®):
and define Y, to be the group with presentation
(3‘6) Yn = <Sm—n) Sm—n+1> EERE) SM+n—1 | R—n) e Rn—l)

for each positive integer #.

Yu41 is Y, with two extra generators, S;,—n—1 and Spr4,, and two extra relators,
R_,_1 and R,,. It turns out that all of the appearances of Sy, in R, are contained in
nested repeating patterns of words. Similarly, all of the appearances of S,,_,—1 in R_,,_;
are contained in nested repeating patterns of words. Given an explicit two-bridge link,
one can find these patterns easily, as we did in Section 2 for L(17/13), yet showing that
these patterns exist for an arbitrary two-bridge link is much more complicated.

Once it is established that these patterns exist, however, it follows that for each
nonnegative integer n, Y, is Y, after adjoining roots a finite number of times. This
implies that each Y, embeds into Y,,,;. Since Y is the direct limit of the sequence of
Y,’s, Y is the union of the ascending chain of Y,,’s. When the coefficients of Ay, are
relatively prime, the elements whose roots are adjoining are homologically primitive.

The following lemma explicitly describes the relator R, as nested patterns of
repeating words. For simplicity of notation, let § = 1.

Lemma 3.5 For each integer n, there exist a positive integer N, sequences of words in

S,
Ao, Ay,..., Ay,
Viveos Vi,
and
Wi,..., Wy,
and a sequence of positive integers ny, . .., ny such that all of the following hold:
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(MI) Agisa cyclic permutation of R,.
(M2) Ay =S5,
(M3) Foreachi=1,...,N,
W\i_lA\i—lw\i = z@: V.
(M4) Foreachi=1,...,N, V; and W; are contained in the subgroup generated by the
set
{Sm+na Sm+n+1a cee SM+n—1}-

(M5) For each i=1,...,N, there is some | with m <1< M and integers by,...,by
(which depend on i) such that

M
[Ai] = Z bjS;‘+n = bls;+n + bl+IS;+n+1 toeet bMS?vnn
j=1

with |b1+j| = |bM—j|-

Also, there are sequences

AO)AI)--‘)AN)

Vis.. s Vi,
and

Wi,..., Wy
such that:
(ml) AXO is a cyclic permutation of R,,.
(m2) Ay=55. ..

(m3) Foreachi=1,...,N,
WA Wi = ATV,

(m4) Foreachi=1,...,N, V; and W; are contained in the subgroup generated by the
set

{Sm+n+la e SM+n71> SM+n}-

(m5) Foreachi=1,...,N, there is some I' with m <1’ < M, and integers by, ..., by
(which depend on i) such that
l/
[Ai] = z bjS;‘+n = bms:n+n Tt bl’S;’+n
j=m

with |bm+]’| = |bl'—j|~

Remark 3.6 Y is obtained from Yj by adding 2N roots. In order of increasing index,
each A ; is added as the n;th root of some element, then each g,- is added as an n;th
root. The conditions (M5) and (m5) are used to show that the elements whose roots
are added are homologically primitive.
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Lemma 3.5 is proved in Section 5.7.

Proposition 3.7 The Alexander subgroup Y of any oriented two-bridge link is a union
of an ascending chain of subgroups

Yo<Yi<Yy<<Y;<<|JY,2Y,

where Y, is obtained from Y, by adjoining a finite number of roots.

Proof Define the sequence Yp, Y3, Y2, ... asin (3.5) and (3.6). Consider Y, for some
nonnegative integer n:

Yn = (Sm—na cees SM+n—1 | R_n, “on ,Rn_1>
and
Yo = <Sm—n—1a e SM+n ‘ R ... )Rn>-

By Lemma 3.5, there are an integer N, sequences of words

Ag,.... A,
Virooos Vi,
and
Wi,..., Wy,
and a sequence of integers
Ny, ..., NN

satisfying (M1)-(M4).
Let (¢;) be an infinite cyclic group generated by ¢; foreach i = 1,..., N. Also, let t,
be the identity element of Y,,.

Define
(3.7) Ho = Yy,
and for each i = 1,..., N, recursively define
(3.8) Hi=Hj, ~*_ (t:),
hi=t}i
where
(3.9) /l’;i = W\i_lti—lw\i{};l-

We know that ﬁi is an element of H;_; since XA/, and W, only use generators in
{Sm+n>--->Spm+n-1} by Lemma 3.5(M4).
We can write the following presentation for Hy:

(3.10) Hy 2 (Smens- o> SMants tis oo s N | Ry ooy Ry, {RTHE MY ).
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Foreachi=1,...,N, ﬁi‘lt:”' =1,s0 by (3.9),
(3.11) 1= LWt VW

Now, we find a new presentation of Hy by altering the one in (3.10). Since by Lemma

3.5(M2), A N is Sg/l +n» We can add the generator Sy, and identify it with tl‘z, by adding

the relation t;\,lz:\\ ~- By backward substitution using Lemma 3.5(M3) and (3.11),
tig = W\zgiz"?zw\,_l =Ai,

foreachi = N, ..., 1 Thus, each of the relations h;lt?" in (3.10) is equivalent to ti’lAi
fori=0,...,N -1 In particular, since f; is trivial, Ao = 1. After these alterations, Hy
has the following presentation:

HN = (Sm—na~- -)SM+n) byoosIN | R—n;- . .,Rn_l,Ao, t;lAl,.. oy t;\]lAN>.

We can now use the relations #; 11&1, . t;}g ~ to eliminate the generators f1,.. ., tn.
Since Ay is a cyclic permutation of R, by Lemma 3.5(M1), A, can be replaced by R,
producing the following presentation:

Hy 2 <Sm—ns~--sSM+n | R_,,. ..,Rn>.

Likewise, by Lemma 3.5, there are sequences of words

Ag,..., Ay,
Vis .oy Vi,
and
Wi ..., Wy
satistying (ml)-(m4).
Foreachi=1,...,N, define
(3.12) Hiyn=Hina . *tni (ti)s

i

where
hi = W/i_lti—l\"ﬁ‘vfi_l,
Hyy 2 (Sm_n,. ey SMansty .oy EN | R_n,...,Rn,{hi_lt?i}f\;).

We can identify ty with KN which is §? by Lemma 3.5(m2). By backward

m-n—1
substitution using (m1)-(m3) of Lemma 3.5,

HZN = (Sm—n—l’ e SM+rl7 tl) e tN | R—n) oo )Rn—liAO’ t]_IAla e t]_\IlAN>
(3.13) = (Smon-ts-->Smen | R(ns1ys - - Ru)

= In+l1-

Consider Y, and Y, for a nonnegative integer n. For each i =0,...,2N -1, H;
embeds into H;,, since H;4; is a free product of H; and Z amalgamated along infinite
cyclic subgroups. Let ¢; : H; - Hj; be the embedding which maps Sy — Sy and t; —
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ty for all k. The composition f, = @an_1 © - 0 @¢ is an embedding of Y, into Y4,
which maps S; — Sy for all k.
Thus, we have the following sequence of embeddings:

Vot wy By L Sy I
The Alexander subgroup Y is the direct limit of this sequence. Since each f, is an
embedding, Y is a union of an ascending chain of subgroups as desired. |

3.4 Proof of Lemma 1.6

We now turn our attention to proving Lemma 1.6. First, we state a more precise and
detailed version of Lemma 1.6.

Lemma 3.8 Suppose that Y is the Alexander subgroup of a two-bridge link whose
Alexander polynomial has relatively prime coefficients so that Y is an ascending chain of
subgroups

Yo<Yi<Y,<<Y=]JY,

n=1
as defined in (3.5) and (3.6). For each n :
(a) Y, is para-free of the rank M — m and
(b) |Yus1 ¢ Yu[ Yos1s Yos]| = Q;, where a, is the leading coefficient of the Alexander
polynomial of L.

Proof First, we show (a). Yy is a para-free of rank M — m since it is a rank M — m
free group. Suppose that for some n > 0, Y,, is para-free of rank M — m. By Lemma
3.5, there is are integer N, sequences of words

Ag,..., Ay,

Vi, Vi,
and

Wi,..., Wy,
and a sequence of integers

ny,..., NN,

satisfying (M1)-(M4).
Define Hy, ..., Hoy as in (3.7), (3.8), and (3.12), so Hyy = Y,,41 as in (3.13).
Suppose Hy._; is para-free of rank M — m for some k such that 0 < k < N, so Hi® | =
ZM=m Define

Bi= —— Hit z MMl g z ,
(hic)[Hik-1, Hi1] CZ
where

ﬁk = W\k‘ltk,IWk \7,(_1
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and C is an integer. If B~ ZM~""1, then hy is homologically primitive in Hy_;, and
inductively, by Proposition 1.8, each Hy is para-free of rank M — m.
By Proposition 3.4, H®® = Y2® has a 2 x (2n + M — m) presentation matrix:

am Am+1 apm-1 am

Am Am+1 0 AM-1  AM

Hy_, is Hy with the n; root of ﬁj added for each j=1,...,k — 1. Thus, B is H" after
killing the classes [hjflt;”] for each j=1,...,k -1 and killing the class [h;']. B is
generated by S}, ..., S} 1t ty_p» Where t} is the class [¢;]. Using these

generators, B has the following (21 + k) x (2n + k + M — m — 1) presentation matrix:

Am Am+1  ° AM-1 AMm
Am  Am+l AaM—l am
0 Vvl] m
0 [V2] -1 n
0 [ 3] 0 -1 ns
0 «——[Via]—— 0 0 -1 ne,
0 [Vk] 0 0 -1

Applying the row operations row; + n;,;row;,; — row; for each row j=2n+k -
1,...,2n + 1 results in the matrix

Am Am+1  ° 4AM-1 aAMm
Am Am+1 am-1 am
0 [Ul] 0
0 [Uz] -1 0 ,
0 [U3] 0o -1 0
0 <——[Uk,1] 0 0 -1 0
0 [Uk] 0 0 -1

where

(U] = [Vi] + ([ Vin] + mja ([Visa] + - + mia([Via] + mia[Vi)--).

Eliminating the last k — 1 rows and columns results in the (21 +1) x (2n+ M — m)
presentation matrix D:

am Am+1 am-1 am
am Am+1 am-1 am
D — ., . N
am Am+1 am-1  4am
Cm Cm+1 CM-1
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where

! ! !
[U1] = cmSpan + Cm1Spmansr + 7 + EM1Sp4n1-

By Lemma 3.5(M5), for some [ with m < I < M, there are integers by, ..., by such
that

M
(3.14) [Ak] =D b8},
j=1

and|bl+j| = |bM_]|
Claim1 Foreachj=m,...,M -1,

] ap whenm < j <1,
= aj— (T, n)bj, whenl<j<M-1.

From the row operations,

(U] = [Vi] + m([Va] + ma([Va] + -+ meea([Viea] + mea [Vi])+))

= [Vi] + m[Va] + myny [ V- (Hns) Vk1]+(ﬁns)[\7k]
Sli1)o

We use the convention that any empty product H? 1(x) is 1. By Lemma 3.5(M3),
V= A;""Wj‘lAj_le, so [Vj] = [A] 1] - n][ ;] Thus,

Therefore, since A is a cyclic permutation of R, by Lemma 3.5(Ml),

(3.15) (U] = ( [1 ns)

The statement of the claim follows from Proposition 3.4(a), (3.14), and (3.15).

By Lemma A.1, C is the ged of all the (21 + 1) x (21 + 1) minors of D. Suppose a
prime d divides C, so d divides the determinant of every (2n +1) x (2n + 1) minor of
D. The determinant of the minor of D given by the first 21 + 1 columns is a2'*!, so d
divides a,,.
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Claim 2 'There is some (2n +1) x (2n + 1) minor of D whose determinant is not
divisible by d.

By Proposition 3.4(c), the integers a,, . . . , ap are the coeflicients of the Alexander
polynomial. Since the coefficients of Ap(t) are relatively prime, there is some coef-
ficient that d does not divide. Let m + i be the minimal index such that d does not
divide a,,.;. We prove this claim in two cases.

Case 1. Suppose at least one of the following holds:

e m+i<l,
o d divides some n, with s < k, or
» ddivides b forall j=1,...,1.

Then, either m + i < | or d must divide ([T~ ng)bjforall j=1,...,m+ i. By Claim
1, d divides c; when j < m + i and d does not divide ¢y,

Let E be the (2n +1) x (2n + 1) minor of D consisting of the #n + 1 consecutive
columns starting with the first column which with a,,.; (or ¢;+; if n = 0) at the top.
Thus, working modulo d, we have the following minor:

Amsi * * * *
0 Am+i * * *
0 T
0 0 0 Ame  *

0 0 0 0 Cn+i

Since d does not divide a,; or ¢,,4;, d cannot divide det(E).
Case 2. Suppose all of the following hold:

o I<m+i,
o d does not divide any n; with s < k, and
» there is some j < m + i such that d does not divide b;.

Let F; be the (2n+1) x 2n minor given by the 2n consecutive columns with the

coefficient ap;_;. By Proposition 3.4(c), ap+j = ay—jforall j=0,...,M -~ m,soM — i
is the maximal index such that d divides ay,_;. Thus, modulo d, F; has the following
form:
an—; 0 0 0
* am-i 0 0
F = * * a A,:I_i 0
* * * aM—I
* * * *

We need to find a column in D with the first 2n entries divisible by d and the last entry
not divisible by d.

https://doi.org/10.4153/50008414X2300007X Published online by Cambridge University Press



24 J. Johnson

Let I + i’ be the minimal index such that d does not divide b;,;;,so [ + i’ < m + i.
Since d does not divide b;.;» and b;, ;s = bp_;7, d does not divide bp—;-. By Lemma

~

3.5(M4), for all j, the coefficient of S}, , in [ V;] is zero, so by (3.15),

k
am :bMHI’lS.

s=1
Since a,, = apr and d divides a,,, d must also divide by;. Therefore, d divides b;, so
i">0and M -i' <M -1.
Since M — i’ < M -1, there is some column F, which ends with cp_;-. Every other
entry in F, is 0 or a; for some j> M - i’. Since [ +i' <m +iand m < I,

0<l-m<i-i,
so M — i < M —i’. Thus, by Claim 1, d does not divide cp;_;/, and forall j > M - i’,d
divides a;.
Combine F; and F, to geta (2n +1) x (21 + 1) minor F of D. Working modulo d,
we have the minor:

am-—i 0 0 0 0
* ap—i 0 0 0
P * * aj\,'[,i 0 0
* * * e Ay 0
* * * * CM—i’

Since d does not divide a;_; or cpr_ir, d cannot divide det(F).

In conclusion, there are no primes which divide every determinant of (2n +1) x
(2n +1) submatrices of D, so C = 1. Thus, B = ZM~™71, and Hy is para-free of rank
M — m. By induction, Hy is para-free of rank M — m.

By a similar induction argument, Hy, ..., Hyy are also para-free of rank M — m.
Therefore, Y,41 = Hyy is para-free of rank M — m, so by induction Y, is para-free of
rank M — m for each nonnegative integer n.

For (b), consider the group Y,.1/Y,[Yns1, Yui1], which is an abelian group with
the following presentation:

Yn+1
Yn [Yn+1) Yn+1]

By Proposition 3.4,

2 (Spn-rs > Shaan [ [Renaals s [Ruds Sy S )-

! 4 4 14
[R)] = AeShyj+ g Syaj ot B 1Syt 8S
After eliminating the generators S),_,,, ..., Sy, ,_1» we have that
Yn+1 / / / ’
——— 2 (S} S a,Sv-n-1>8,5 ,
Yn[Yn“,YHH] ( m-n-1>YM+n |_g M-n-1>Zg m+n)
)
Z Z
Yiod/Ya[Viet, Yari]| = |— & — | = 2.
n+1/ n[ n+l1 n+1] QgZ QgZ Yo
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Figure 4: The incremental path T

4 Cycle graphs

Explicitly, Lemma 3.5 is about nested patterns of repeating words in the relator R,.
However, this pattern is inherited from patterns in the sequences of ¢;’s and o;’s
defined in (3.1) and (3.2). In the spirit of Hirasawa and Murasugi [11], graphs are used
in order to gain intuition about how the sequences of ¢;’s and o;’s behave; however,
the construction here slightly differs from the one Hirasawa and Murasugi used.

4.1 Incremental paths and cycles

A graded directed graph is a connected directed graph I with map gr: V(T') — Z called
the grading. Here, V(T') denotes the set of vertices of I'. Two graded directed graphs
[ and I are isomorphic if there is a directed graph isomorphism f : T — I'" such that
for every vertex P in T, gr(f(P)) = gr(P). I and I” are called relatively isomorphic if
there is a directed graph isomorphism f : I — I'" and an integer k such that for every
vertex Pin T, gr(f(P)) = gr(P) + k.

An incremental path is a graded directed path graph I' where the gradings of
adjacent vertices differ by +1. Similarly, an incremental cycle is a graded directed
cycle graph T where the gradings of adjacent vertices differ by +1. An edge (P, P")
in an incremental path or cycle is positive if gr(P’) — gr(P) = +1 and negative if
gr(P") —gr(P) = -1

Example 4.1 Let T be a directed graph with five vertices Pj,...,Ps, and edges
(P1,P,),...,(Py, Ps). Define a grading on the vertices as follows:

gr(P) =0,gr(Py) =1,gr(Ps) =2,gr(Py) =1,gr(Ps) = 2.
I is an incremental path (see Figure 4).

Let I and I be two incremental paths in which the grading of the last vertex in T
is equal to the grading of the first vertex in I". Define the concatenation of T and I”,
denoted T * I”, to be the graded directed graph obtained by identifying the last vertex
in T with the first vertex in I (see Figure 5).

If the gradings of the first and last vertices in I' are the same, I is called closable and
the closure of T, cl(T), is defined to be the incremental cycle obtained by identifying
the first and last vertices in T

4.2 Cycle graphs of co-prime pairs

Ultimately, Lemma 3.5 is a statement about the sequences of ¢;’s and o;’s for co-
prime pairs of integers. As computed in Proposition 3.2, the ith S-generator in Ry
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r’ T’

Figure 5: The concatenation of T and I’

O ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -
Po Ps P Pig Pay Pao Psg Pio Pis Psa Peo Fo

Figure 6: T(33,23).

is determined by the values of 03;_; and 0,;. Here, we construct a graph to analyze the
sequences of ¢;’s and o;’s.

We call a pair of integers (p, q) a relevant co-prime pair if p and g are co-prime,
q is odd, and p > |q| > 0. Define the sequences ¢; and o; as in (3.1) and (3.2) for each
integer i. Define the incremental path T'(p, q) as follows: The vertex set of I'(p, ) is
{Po, ..., Py}, and the edge set of T'(p, q) is

E(F(P’ q)) = {(P0> Pl)’ (PI)PZ)a e (PZp—l’ Pzp)}-

The grading of each vertex is defined by gr(P;) = 0. T(p, q) is always closable, and the
cycle graph of p and q, T(p, q), is defined to be cl(T(p, q)). When studying T(p, q),
it is convenient to think of its vertices {P,, ..., P2p_1} being indexed by elements of
Z/(2pZ). See Figure 6 for example.

Proposition 4.2 Let (p,q) be a relevant co-prime pair. The cycle graphs T(p,q) and
T(p,—q) are relatively isomorphic.

Proof Let {¢;};ez be the sequence of signs of (p, q) defined in (3.1). For each integer
i, define

which is the sequence of signs of (p, —q). Let ¢’ be the unique integer such that 0 <
q' <2pand q’q = p-1modulo 2p,so q'q = p — 1+ 2pk for some integer k.
We claim that the following equivalence holds:

(41) & = £i+q’~
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Consider the following computation:

{_—qu={ ?qJ, igmodp =0,

—[%J -1, igmodp #0,

|
—_

{(i+pq’)qJ:{iq;q’qj:[iq+p—pl+2ka:{iq—lJ+2k+l
:{[%J+2k, igmod p =0,

[%J +2k+1, igmodp % 0.

We get the following equivalences modulo 2:

_[%J = [%J + 2k, (mod?2)
_l%qJ—lz[%qJ+l+2k. (mod?2)

Thus,
(i+q')qJ

(-3 = (-t

For each integer i = 0,...,2p, define
i-1
Gi = Z Eis
=0
which are the gradings of the vertices of T (p, —q). By (4.1),

Ci = Oi+q’ — Og’
for every positive integer i. Since the o;’s are the gradings of the vertices of T(p,q), it
follows that '(p, q) and T'(p, —q) are relatively isomorphic. ]
4.3 Structure of cycle graphs

Given an incremental cycle T, a positive(negative) k-segment is a set of k consecutive
positive(negative) edges in I' which are followed and preceded by negative(positive)
edges (see Figure 7a). For each relevant co-prime integer pair (p,q), T(p,q) is the
closure of the concatenation of segments of alternating sign as follows:

T(p,q) =cl(Ag * Ay # % Apy).

As a convention, let Ao denote the segment in T(p, q) containing the edge (Py, P}).
Propositions 4.3 and 4.4 are analogs of the properties proved in Section 6 of
Hirasawa and Murasugi’s paper [11].

Proposition 4.3 Let (p, q) be a relevant co-prime pair with q > 0. Denote the vertices
of T(p,q) by Py, ..., Prp_y as defined in Section 4.2, and let

f(p,q) = Cl(AO * Ap ke % An—l),
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AA

(a) A negative 3-segment (b) A 2-block of length 4

Figure 7: Examples of a segment and a block.

where Ao, . .., A, are segments. Also, let k and & be integers such that p = kq + & and

0<é<g:

(a) The number of segments n in T(p, q) is equal to 2q.

(b) P; is at the beginning of a segment precisely when igmod p < q.

(c) P; is at the beginning of a k-segment precisely when & < igmod p < g, and P; is at
the beginning of a (k + 1)-segment precisely when iqgmod p < &.

(d) Ay is a positive (k + 1)-segment.

(e) The number of (k +1)-segments in T(p, q) is 2€ .

Proof For (a), the number of segments in T(p, q) corresponds to the number of

distinct floored quotients [%J there are when i =0,...,2p — 1. Since p > g, these

quotients range from 0 to 2q — 1 without skipping, so there are exactly 2q segments.
A segment begins precisely when

(i-1q, iq
l - JHPJ

which happens when (igmod p) < g, proving (b).
For (c), suppose P; is the beginning of a k-segment. k is the smallest positive integer

>

such that
iq (i+k)g
—_ ¢ -,
lpJ I > J
S0
(igmod p) + (k-1)g < p
and

(igmod p) + kq > p.

When ¢ < (igmod p) < g, k = k. Likewise, when (igmod p) < &, k =k + 1.

Since P; is the beginning of a segment, igmod p < g, so exactly one of either
¢ < (igmod p) < q or (igmod p) < & is true. This determines precisely when - and
(k +1)-segments occur.

For part (d), it follows from (c) that Ag is a (k + 1)-segment. Since & is positive,
Ay is a positive segment.

Part (e) immediately follows from (c). [

When g=1, ¢; =1 for 0<i<pand ¢ =-1for p<i<2p. Thus, T(p,q) is the
concatenation of two r-segments. When g > 1, T(p, q) has more interesting structure.
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A k-block of length 1in T (p, q) is a sequence of I consecutive k-segments that is not
preceded or followed by a k-segment (see Figure 7b). A k-block of length 1 is called an
isolated block.

Proposition 4.4  Let (p, q) be a relevant co-prime pair with q > 1, and let Py, . .., Pyp_y
be the vertices of T(p, q) as defined in Section 4.2. Let k, & ', and &' be integers such

that
(4.2) p=rq+&with0<&<gq
and
(4.3) g=r'E+E witho< & <&

(a) All of the k-blocks in T(p, q) have length r' or k" - 1.
(b) If Pj is the start of a k-block, then when
q-¢ < jqmodp <gq,
the r-blocks have length k' and when
q-§<jqmodp <q-¢,

the k-blocks have length k' — 1. B
(c) If " > 2, then all the (x +1)-blocks in T(p, q) are isolated.
(d) If&’ =1, then all the -blocks in T(p, q) are isolated.

Proof Similar to the proof of Proposition 4.3, this proposition is just a matter of
determining when k-blocks and (x + 1)-blocks appear in T'(p, q).
Suppose P; is the beginning of a (x + 1)-segment. The next segment begins at P;
where j =i+ k + 1, and by (4.2),
jqmod p = ((i + Kk +1)q) mod p
= (ig + kg + g) mod p
= (ig+p—-&+q)modp
= ((igmod p) + g — &) mod p.

Since P; is the beginning of a (x + 1)-segment, (igmod p) < & by Proposition 4.3(c),

$0
(4.4) q-&<(igmodp)+g-E<qg<p.
Thus,

(4.5) jqmod p = (igmod p) +q - &.

For (a) and (b), suppose a x-block starts at vertex P;. The length of the x-block
starting at P; is the smallest positive integer n, such that Py, is the start of a (x +1)-
block where s(k) = j + kx, so n is the smallest positive integer such that

0 <s(n)gmod pé < &.
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By (4.2),
s(k)gmod p = (j + kx)qmod p
= (jq + kkq) mod p
= (jq + kp - k&) mod p
= ((jgmod p) - k&) mod p.
By (4.4) and (4.5), since P; is the beginning of a x-segment,
q-§&<jgmodp < q.
We compute the length 7 for each of the two cases g — £ < (jgmod p) < g — & and
q-¢& < (jgmodp) <q.

Suppose that
(4.6) q-¢ <jgmodp < q.
By (4.3),
((jgmod p) - k'§ = ((jqmod p) — g + &’
and
0<((jgmodp) -q+§ <&,
)
0<s(xk')gmodp < & <&
Thus, n < k.
Suppose k < k' — 1. By (4.3) and (4.6),
§<((jamodp) -q+& +¢§
= ((jgmodp) - k'E+§
= ((jgmod p) - (" -1)¢,
)
¢ < ((jgmodp) ~k& < q.
Thus,

E<s(k)gmodp < g,

so n > Kk'. Therefore, n = ’.

Suppose
q-§<(jqmodp) <q-¢.
By (4.3),
((jgmod p) - (" -1)& = ((jqmodp) —q+ & +§
and

0<¢& < ((jqmodp) —gq+& + &<,
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$0
0<s(k"—1)gmodp < &.

Thus, n < k' - 1.
Suppose k < ' — 2. By (4.3) and (4.6),

§<((jamodp) —q+& +2¢
= ((jgmod p) - (" - 2)¢,
SO
§<((jgmodp) —k&<q.
Thus,
E<s(k)gmodp < q,

so n > k' — 1. Therefore, n = k' — 1. Thus, all of the x-blocks have length " or k" - 1.
For (c), suppose that k’ > 2. By (4.3),

q-§=(' -1+,
and since k' > 2,
§<i+l<q-§
so by (4.4),
§<(igmodp) +q-§<gq.
Thus, by (4.5),
§ < jqmodp <gq.

By Proposition 4.3(c), P; must be the beginning of a x-segment, so (x + 1)-segments
cannot occur consecutively. Therefore, (x + 1)-blocks are isolated.
Statement (d) follows immediately from (a). ]

4.4 Reducing cycle graphs

Let (p, q) be a relevant co-prime pair with g > 1. Let &, &, &', and &’ be defined as in
Proposition 4.4, and decomposition I'( p, q) into segments Ay, ..., Az as follows:

(4.7) T(p,q) =cl(Ag * = * Aygr)-

Again, A, is the segment containing the edge (P, P;). By Proposition 4.3(e), 2¢
of the segments in (4.7) are (k +1)-segments. Let jo,..., j,z; be the indices in
ascending order of the ( +1)-segments in (4.7). Define a reduction of T(p, q),
denoted R(T)(p, q), to be the following graded directed cycle graph with 2¢ vertices
Qo> - - -» Q¢ with edge set

{(QO) Ql)) (Qla QZ)) e (Q25—2’ Qfol)) (QZ{*]) QO)}
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() The resulting graph R(I")(33, 23) is isomorphic to T'(10, 3).

Figure 8: Reducing T'(33,23).

Define gr(Qo) = 0. For each i = 1,...,2& — 1, define gr(Q;) := gr(Q;_1) + 1 when A,
is a positive segment, and gr(Q;) := gr(Qi—;) —1 when Aj, is a negative segment.
Essentially, R(T)(p,q) is T(p,q) with the k-segments removed and the (x +1)-
segments replaced with edges according to the sign of the segment. For example, see
Figure 8.

Lemma 4.5 Let (p, q) be a relevant co-prime pair with q > 1 and & > 1. Define p* to
be &, and define q* as follows:

" when k' is even,

. fl,
1 = { & — & when k' isodd,

(a) p* is always positive and q* is always odd.
(b) R(T)(p, q) is isomorphic to T(p*, q*).

Proof For (a), clearly, p* = & is positive. Also, notice that g is odd and
§=q-r'E

If 5" is even, then g* = &' is odd. If &’ is 0dd, then &’ and & must have opposite parities,
soq* =& - Eisodd.
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Py Py

Figure 9: The (k + 1)-segments of T'(17, 5). The indices of the segments are jo = 0, j1 = 2, j» = 5,
and j3 = 7. The indices of the vertices at the beginning of each (x + 1)-segmentare lo = 0,1, = 7,
lz = 17, and 13 =24.

For (b), consider T(p, q). By definition, R(T)(p, q) has 2¢ edges and 2¢ vertices.

Let {Qo, ..., Qu¢_1} be the vertex set of R(T)(p,q), and let {P,.. > P |} be the

vertex set of T'(p*, q*). Since R(T)(p, q) and T(p*, q*) are cycle graphs with the same
number of vertices, there is an ungraded directed graph isomorphism between them
mapping Q; — P;}. Since gr(Qy) and gr(P; ) are both 0 by definition, it only remains
to show that

gr(Qin) — gr(Qi) = gr(Py,) — gr(P;)

foreachi=0,...,26-1.
Fori=0,...,2¢ -1, define

&i = gr(Qi) - gr(Qi)
and
= (-DVEL
Ifg* = &, then
gr(Piy) - ge(Py) = i
andif g* = & — , then

" " He) ;
er(Piy) - gr(Pf) = (- = ()

Lt [; be the index of the vertex in T(p, q) at the beginning of A j; (see Figure 9).
By definition of R(T)(p, q), & is positive precisely when A}, is a positive segment.
Thus, &;41 = &; when A, and Aj, | are separated by an even number of x-segments,

and €;,; = —¢; when A, and A, are separated by an odd number of x-segments. The

desired result will follow from three claims.

Claim1 Whenever 0 < (i&’mod ) < &=,

Ni+1 = Ni»
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and whenever (i§’ mod &) > £ - &,

Ni+1 = —Hi.

When 0 < (i& mod &) < & - &, there are integers s and ¢ with

il =s&+tand0<t<&-E,

s0
sE<(i+1)E =sé+t+E < (s+1)E
Thus,
M = (1) = 77i.
When (i¢ mod &) > & — &, there are integers s and ¢ with
i =sE+tandE-E <t<§,
50
(+D)E<(i+1)E =sE+t+E < (s+1)E+E < (s+2)&
Thus,

Nis1 = (1) = 1.

Claim 2 'The segments A j, and A, are separated by a x-block of length £’ when
E-E<(ligmodp) <&

and a k-block of length k’ — 1 (possibly zero) when
0< (l;qmodp) < &-¢&.

By Proposition 4.4(b), every x-block begins at a vertex P; where

q-§<(lqmodp) <q.

The length of the block is " when

(4.8) q-¢ <(lgmodp) < q,
and the length is " — 1 when
(4.9) g-¢<(lgmodp)<q-¢&.

The vertex at the end of the segment A, is the same as the vertex at the beginning
the segment A .1, so Aj ;1 begins at the vertex with index I” := [; + k + 1. By Propo-
sition 4.3(b),

0<ligmodp+g-E<qg<p,
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s0
I'gqmod p = (I; + k + 1)gmod p
= (ligmod p + g — &) mod p
=ligmodp +q-¢.
By (4.8), Aj, and A, are separated by a x-block of length " when
q-¢ <(I'qmodp) <g,
$O
E-E < (ligmodp) < &.
By (4.9), Aj, and A;,,, are separated by a k-block of length £’ — 1 when
q-§<(l'qmodp) <q-¢&,
$O
0< (l;qmodp) < é-¢&.
Claim3 Foreachi=0,...,2{-1,
ligmod p = i¢ mod €.

Pj, and Py, are separated by a (k +1)-segment and a k-block. Therefore, when the
length of the k-block is &/,

Ln=L+(k+1)+rKk,
$0
lisigmod p = (l;q + kq + q + k'kq) mod p
= (l;qgmod p + & — &) mod p.
The last equality follows from (4.2) and (4.3). By Claim 2,
0<ligmodp+& -E<E <p.
Therefore,
(4.10) lisigmod p = l;qmod p + & - &.
When the length of the x-block is " - 1,
La=L+(k+1)+ (K -Dr=1+1+r'k,
$0
lisigmod p = (I;q + q + k'kq) mod p
= (l;qgmod p + &) mod p.
By Claim 2,
0<& <ligmodp+¢& <&<p.
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Therefore,
(4.11) lisigmod p = l;qmod p + &'.
If either (4.10) or (4.11) holds,
lisigmod p = (l;gmod p + &) mod &,
so since [y = 0,
ligmod p = i& mod &

foreach i =0,...,2& - 1 by induction. This completes the proof of the claim.
Suppose «' is even. When A;,; and A; are separated by a x-block of length £’ — 1,
Ajis1 and A; have the same sign, so

gir1 = &
By the three claims,
0< (i modé) < £~ &,
)
Mi+1 = 1.

When A;y; and A; are separated by a x-block of length ', A;y; and A; have
opposite signs, so

€it1 = —&j.
By the three claims,
(i&modé)>¢-¢&,
s0
Miv1 = —1Ni.
Since &g = 179 =1, forevery i = 0,...,2& -1,
€i = 1i>

sowhen g* = &,

gr(Ply) —er(Pf) =ni =& = gr(Qin) — gr(Qi).

Suppose £’ is odd. When A;,; and A; are separated by a x-block of length &/, then
€i+1 = €. When A, and A; are separated by a k-block of length " — 1, then g;,1 = —e;.

Thus, by the claims, ¢;4; = & when 7,4 = —7;, and &;4; = —¢; when 7,41 = 7.
Again, g = 9 = 1. Therefore, for every i = 0,...,2{ -1,

& = (1)1
so when g* = & - &, then
gr(Pry) —er(P) = (_1)i’7i =& = gr(Qis1) — gr(Qi).
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(@) An incremental path I

(b)) ET,2,3,+1)

Figure 10: Expanding an incremental path.

Example 4.6 Consider the co-prime pair (33,23). R(T)(33,23) is isomorphic to
I'(10,3) (see Figure 8).

4.5 Expanding cycle graphs

We can also reverse the reduction process. Let I be an incremental path with vertices
Py,..., P, indexed such that (P;, P;;;) isan edge in I for each i =0,...,n—1. Lets
and b be positive integers, and let e = 1. Define E(T, s, b, e) to be the incremental
path graph constructed as follows:

(1) Create an (s +1)-segment, A;, for each edge (P;, P;y;1) in I'. Choose A; to be
positive or negative according to the sign of the edge (P;, P;41).

(2) Between each pair A; and Aj4q, for i =0,...,n -2, add an s-block of length b or
b — 1. The length of the s-block is odd if the edges A; and A;,; have the same sign,
and the length is even if A; and A;4; have opposite signs. Also, the first s-segment
in the block has sign opposite of the sign of A;.

(3) Add another s-block to the beginning of A, oflength b or b — 1 depending on the
signs of A and e following the same convention as the previous step. Also, the
first s-segment in the block has sign opposite of e.

(4) Finally, set the grading of the first vertex Qo as follows:

gr(Py) +s, when e and (Py, P;) are both positive,
(412)  gr(Qo) =1 gr(Py) —s, when eand (P, P;) are both negative,
gr(Py), when e and (P, P;) have opposite sign.

For example, see Figure 10.
We begin by investigating the gradings of the vertices in E(T, s, b, ¢).

Lemma 4.7 Let Qg be the vertex at the beginning of E(T,s,b,e). For i=1,..., n,
let Q; be the vertex at the end of (s+1)-segment A;_ as in the definition of E.
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Foreachi=1,...,n:
(a) If the signs of A;_ and e are the same, then

gr(Q;) — gr(Qo) = gr(P:) — gr(Po).
(b) If Ai_, is positive and e is negative, then

gr(Qi) — gr(Qo) = gr(Pi) — gr(Po) +s.
(c) If Ay is negative and e is positive, then

2r(Qi) - gr(Qo) = gr(Pi) — gr(Po) = .

Proof Let I be the subgraph of E(T,s, b, ¢) starting at Qy and ending at Q;. I” is
the concatenation of sum number of (s +1)- and s-segments. Let D* and D~ be the
number of positive or, respectively, negative (s + 1)-segments in I". Likewise, let d*
and d~ be the number of positive or, respectively, negative s-segments in . Note that
D* and D™ are also the number of positive and negative edges separating Py and P; in
I, so

D* - D™ =gr(P;) - gr(P).

Suppose A;_; and e have the same sign, then the number of positive segments in
I is equal to the number of negative segments, so

D" +d" =D +d .
Thus,
er(Q;) —gr(Qo) =D*(s+1) =D (s+1)+d*s—ds
=(D*+d")s- (D" +d )s+ D" - D"
=D*-D~
= gr(P;) - gr(Po).

Suppose A;_; is positive and e is negative, then the total number of positive
segments in I is one more than the total number of negative segments, so

er(Q;) - gr(Qo)=D"(s+1) =D (s+1)+d's—ds
=(D*+d")s- (D" +d )s+ D" - D"
=s+D"-D"
=gr(P;) —gr(Py) +s.

Suppose A;_; is negative and e is positive, then the total number of positive
segments in I is one less than the total number of negative segments, so

er(Q;) —gr(Qo) =D*(s+1)-D (s+1)+d*s—ds
=(D*+d*)s- (D" +d )s+ D" - D"
=-s+D*-D"
=gr(P;) - gr(Po) —s. u

From this, we can show that concatenation behaves well under expansion.
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Lemma 4.8 Suppose T and I are incremental paths where the last vertex in T has the
same grading as the first vertex in I'. Let e’ be the sign of the last edge in T. For any
positive integers s and b and any sign e = £1,

E(T +T',s,b,e) 2 E(T,s,b,e) » E(T",s,b,¢’).

Proof The conclusion will be true by definition of the expansion procedure as long as
E(T,s,b,e) and E(T",s,b, ') can be concatenated. Thus, our goal is to show that the
last vertex in E(T, s, b, ¢) has the same grading as the first vertex in E(T’, s, b, e’). This
can be done by computing the gradings of E(T * I, s, b, ¢) for many cases depending
on the signs of e, the last edge in T, and the first edge in I.

For example, suppose ¢, the last edge in T, and the first edge in I” are all positive.
Let Py and P, be the first and last vertices of T. Let P; be the first vertex in I’ so
er(P,) = gr(P}). Let Qo and Q, be the first and last vertices of E(T, s, b, e). Finally,
let Q) be the first vertex in E(T”, s, b, e’).

By (4.12),
gr(Qq) = gr(Py) +s =gr(P,) +s.
By Lemma 4.7,
gr(Qn) = gr(Py) — gr(Po) + gr(Qo)
=gr(Qqp) —s—gr(Py) +gr(Py) +s
= gr(Qp)-
The proofs of all the other cases are similar. [ ]

Let I be a closable incremental path, and let e be the sign of the last edge in I'. For
any two positive integers s and b, define

E(T,s,b) == E(T,s,b,e).

When T is closable, E(T, s, b) is also closable.
Suppose I is a closable incremental path such that c1(T') = cI(T"). By construction,

(4.13) cl(E(T,s,b)) = cl(E(T’,s,b))

for all positive integers s and b.
For an incremental cycle T', define

E(T,s,b) := cl(E(T,s, b)),

where T is any incremental path such that cl(T) = T. By (4.13), E(T,s,b) is well
defined.
Reduction and expansion are naturally opposite operations.

Proposition 4.9  Suppose (p, q) is a relevant co-prime pair with q > 1. Define k and &’
as in (4.2) and (4.3):

E(R(T)(p>q),5-£") 2T(p,q).
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Proof By Proposition 4.3, T(p, q) is the concatenation of x-segments and (k +1)-
segments. The reduction R replaces (k + 1)-segments with single edges of the same
sign. The expansion E transforms all the edges back into (x + 1)-segments.

By Proposition 4.4(a), the (x +1)-segments of T'(p, q) are separated by x-blocks
of length ' or ' — 1 (possibly zero). The blocks in T(p, q) have even length precisely
when the preceding and following ( + 1)-segments have opposite sign.

R removes these k-blocks, and E restores them. The signs of consecutive edges in
R(T(p,q)) correspond to the signs of the preceding and following (% +1)-segments
in T(p, q), so the length of each x-block after the expansion will be the same as it was
before the reduction.

It remains to check that gradings are preserved. Consider the edge in R(T(p,q))
corresponding to Ag in T(p, q) as labeled in (4.7). Label the vertices at the beginning
and end of this edge Py and Py, respectively.

By the definition of R, the grading of P, is equal to the grading of the vertex at the
beginning of Ay.

Consider Ay, the (k +1)-segment resulting from expansion of the edge after P,.
Let Qg be the grading at the end of the Aj as in Lemma 4.7, and let Q] be the vertex
at the beginning of A{.

Now, we show that gr(Py) = gr(Qy). The edge after P, is always positive since it
corresponds to Ag. Thus,

(4.14) gr(Py) = gr(Po) -1
and
(4.15) gr(Qy) —gr(Q)) =k + 1.

When the edge before P is also positive,

gr(Qy) — gr(Po) = gr(Qq) — gr(Q1) +gr(Q1) — 2r(Qo) +r(Qo) — gr(Po)
= (k1) + (2r(Py) — gr(Py)) + (gr(Po) + k) — gr(Po)
=gr(P) - gr(P) -1
- 0.

The second equality follows from (4.15), Lemma 4.7, and (4.12). The last equality
follows from (4.14). Similarly, when the edge before P, is negative,

gr(Qp) — gr(Po) = gr(Qq) — gr(Qu) +gr(Q1) —gr(Qo) +gr(Qo) — gr(Po)

= (—r—=1) + (gr(Pr) — gr(Po) + k) + gr(Po) — gr(Po)
= 0. [

Given an arbitrary relevant co-prime pair (p*,q") and integers s and b, the
expansion E(T(p*,q*),s,b) may not be T(p,q) for any co-prime (p,q) with q
odd. Consider the pair (5, 3). Suppose E(T(5,3),2,3) = T(p, q) for some pair (p, q).
Define &, £, &, and & for (p, q) as in (4.2) and (4.3). Since the sizes of the segments
of E(T(5,3),2,3) are either 2 or 3 and the blocks have length 3 or 2, x must be 2,
and #’ must be 3. By Proposition 4.9, T(5,3) = R(T)(p, q). By Lemma 4.5, ¢* = 3 is
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equal to & or &' — & Since &' - & cannot be positive, & = 3. Also, by Proposition 4.5,
pmodgq = & =5. Thus, g = 3(5) + 3 =18, which is not odd.

5 Proof of Lemma 3.5

In this section, we reinterpret Lemma 3.5 as a set of properties of the cycle graph
T(p, q). These properties will hold for simple relevant co-prime pairs ( p, q) with g = 1
or (pmod gq) = 1. Then, it is shown that these conditions hold for any relevant co-prime
pair of integers p and g with p positive and g odd by a strong induction argument
using the relative isomorphism between T'(p, q) and T(p, —q) and the reduction from

T(pq) to R(T)(p q)-
5.1 Making words from graphs

Given an incremental path T, a word p(T) in 8 can be defined as follows: Let
{P1,...,P,} be the vertices of T indexed so that the edge (P;, P;,;) is in I. For
i=2,...,m1ets; = gr(P;) — gr(P;_;) and let N; = gr(Q;) + 6(s;) where 6(1) =1and
0(-1) = 0. Define

SN.SN. SN, ifn>2and gr(Py) is even,
(5.1) p(T) =1 SN,SN,~SN,» ifn>landgr(P)isodd,
1, otherwise,

where k =n -1, if n = gr(P,) modulo 2, and k = #, if n # gr(P;) modulo 2. Given a
two-bridge link L(p/q), by Proposition 3.2, p(T'(p, q)) is the word R,.

Lemma 5.1 Given incremental paths T and T’ such that the last vertex of T has the
same grading as the first vertex of T,

p(I* 1) = p(D)p(I").

Proof Let{P,...,P,}and {P[,..., P, } be the vertex sets for incremental paths T
and I/, respectively. Also, define N,, ..., N, ands,, ..., s, for I as in the definition of
p. Similarly, define N3, ..., N/, ands), ..., s, forI'.LetT" = T % I/, which has length
n+n' -1, and define NY,...,N/, ,  and s),...,s", ., ; for I as the analogous
integers are defined for I and I".

This result is just a matter of computing p(T = I") for each case of (5.1) for ['and I
For example, suppose gr(P;) and n are even, n > 2, and n’ > 1. Then, since # is even,

gr(P)) = gr(P,) = (gr(P) + n—-1) = gr(Py) +1, (mod 2)
so since gr(Py) is even, gr(P/) is odd. Thus,
(1) = 55,5555,

and

p(I') = SX,SN, SN

where k = n’ when n’ is even and k = n’ — 1 when n’ is odd.

https://doi.org/10.4153/50008414X2300007X Published online by Cambridge University Press



5.2

42

Figure 1I: Closable graphs I and I'" with isomorphic closures with the subgraphs Y (dashed)
and Q (dotted) shown.

Foreachi=1,...,n+n' -1,
m _ | er(P;), whenl<i<mn,
el )_{ gr(Pi,—nH)’ whenn<i<n+n -1

Thus, when 2<i<mn, s{ =s;, and N’ =N;, and when n+1<i<n+n'-1, s/ =
Si—n+1> and N7 = N;_,,. Therefore,

p(T+T') = 3, 85,3, S5 Svt S, = p(D)p(I").
The proofs of all the other cases are similar. [ ]

Lemma 5.2  Given two closable incremental paths T and T’ such that c1(T) is isomor-
phic to cl(I”), then p(T) and p(T") are cyclic permutations of each other.

Proof Since I' and I' have isomorphic closures, they must have the same number
of vertices. Let {Py,...,P,} and {P{,..., P, } be the vertices in order of T and I,
respectively. Let {Q, ..., Q,_1} be the vertex set of cI(T') chosen such that gr(Q;) =
gr(P;) for i =0,...,n—1. Likewise, let {Qg,...,Q/_;} be the vertex set of cl(T")
chosen such that gr(Q}) = gr(P}) fori=0,...,n-1.

Since cl(T) z cl(T"), there is a directed graph isomorphism from f:cl(T) 2
cl(T"), which preserves gradings. Let k be the index of the vertex in cI(T') such that
f(Qx) = Qq. If k = 0, then f maps Q; to Q; for each i =0,...,n — 1. It follows that
gr(P;) = gr(P]) foreachi=0,...,ns0 p(T) = p(I').

Suppose k # 0. Let Y be the subgraph of T induced by Py, ..., Pk, and let Q be
the subgraph of T induced by Py, ..., P,. Since f(Qo) = Q,_, and f(Qx) = Qg, the
subgraph of I' induced by P, _, ..., P, must be isomorphic to Y, and the subgraph of
I'" induced by Py, ..., P;_, must be isomorphicto Q. Thus, T =Y + QandI' 2 Q * Y
(see Figure 11 for example). Therefore, p(T') = p(Y)p(Q) and p(I") = p(Q)p(Y).

|

Summits and bottoms in cycle graphs

Let (p, q) be a relevant co-prime pair, and define M and m for L(p/q) as in Section 3.
Our goal is to prove Lemma 3.5. By Proposition 3.2(d), it is sufficient to show Lemma
3.5 for the relator Ro. Thus, we are interested in the appearances of S, and S&, in
the word Ry. When M is odd, the ith S-generator of Ry is SJBVI precisely when o,; =
M +1, and when M is even, the ith S-generator of Ry is va[ when 0,;_; = M + 1. Thus,
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Figure 12: A symmetric incremental cycle. The first and last vertices are identified. ¢ is the
unique order-reversing bijection defined by ¢(P1) = Pj.

appearances of S9; in Ry correspond to the indices when ¢; is maximal. Similarly, the
ith S-generator of R is S,‘; precisely when 0,;_; = m when m is odd or 03; = m when
m is even. Thus, appearances S in R, correspond to the indices when o; is minimal.

A vertex, P, in a graded graph T is called a summit if gr(P) > gr(Q) for any vertex
Q in T. Similarly, P is called a bottom if gr(P) < gr(Q) for any vertex Q in I. For
each relevant co-prime pair (p, q), the grading of a summit of I'(p, q) is always M +1
and the grading of a bottom of T'(p, q) is always m. Furthermore, the appearances of
Su in Ry correspond precisely to the summits in I'(p, q), and the appearances of S,,
correspond to bottoms.

5.3 Symmetric incremental paths and cycles

It is useful to know when an incremental cycle is relatively isomorphic to itself after

rotating 180° and reversing its edges. More precisely, we call an incremental cycle T

symmetric if there is a bijection ¢ : V(I') = V(T') such that:

(1) (P,Q) is an edge of T if and only if (¢(Q), #(P)) is an edge of I for any two
vertices Pand Qin I and

(2) for some integer k, gr(P) + gr(¢(P)) = k for every vertex Pin I

An incremental path T is called symmetric if cI(T') is symmetric (see Figure 12). The
symmetry of incremental paths and cycles plays an important role in investigating
properties (M5) and (m5) of Lemma 3.5.

5.4 Reinterpretation of Lemma 3.5

Here, we reinterpret Lemma 3.5 in terms of incremental paths and cycles. Given a
closable incremental path I' and a positive integer n, define I'" to be the concatenation
of n copies of . We call a relevant co-prime pair (p, q) an pre-RTFEN pair if for some
incremental path I whose closure is isomorphic to f( D> q), there are a positive integer
N, sequences of subgraphs of T,

To,....Ins

Yi,..., YN,
and

Qn...,Q0n,
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M+1 - ’/X -
M - -

Figure 13: 'The graph Tiop.

'y IS

(@) To =T°(33,23) with Y1 and Q; in gray

Iy T

(b) I'y with Y5 and Q; in gray

Figure 14: (33,23) is a pre-RTEN pair.

and a sequence of positive integers
nys..., NN

such that the following conditions are satisfied:
(R1) T, =T.
(R2) Ty is isomorphic to the graph I}, defined in Figure 13.
(R3) Foreachi=1,...,N,
Fioi2Y; * Fl"’ * Q).

(R4) Foreachi=1,...,N, nosummits of cI(T) appear in Y; or Q;.

(R5) Foreachi=0,...,N,T;is symmetric, and when i > 1, I; contains no bottoms
of cI(T).

For example, Figure 14 demonstrates that (33,23) is a pre-RTFN pair.

Lemma 5.3 (p,q) is a pre-RTFN pair if and only if (p, —q) is a pre-RTFN pair.

Proof By Proposition 4.2, T'(p, q) and I'(p, —q) have relatively isomorphic closures,

so the conclusion of the lemma follows immediately. [ |

Lemma 5.4 Suppose (p, q) is a relevant co-prime pair. If (p, q) is a pre-RTEN pair,
then L(p/q) satisfies Lemma 3.5.

Proof By Proposition 3.2(d), it is sufficient to show that Lemma 3.5 holds for Ry. Let
(p> q) be a pre-RTEN pair. Then, we have a graph I' whose closure is isomorphic to
T'(p, q) satisfying (R1)-(R5).
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Foreachi=0,...,N, define
A i =p(Ly),
and when i > 0, define
Vi = p(Q:)p(Y:) and W; = p(Yy).

Proof of (M1) and (M2) By (R1), cl(T,) is isomorphic to T(p, q). Therefore, by
Lemma 5.2, Ay = p(T) is a cyclic permutation of p(T(p, g)) which is R. ]

By (R2),
Ay = p(Ty) = S3,.
Proof of (M3) Suppose i is an integer with 1 < i < N. By (R3),
i 2 Y T+ Q.

Therefore,
Aiy = p(Tic)
=p(Yi + T} x Q)
=p(Yi)p(Li)" p(2:)
= p(Yi)p(T)" p(Qi)p(Yi)p(Yi) ™!
= WA VW,
SO

W\i_lgi—lw\i = 2:1' V. u
Proof of (M4) For each vertex P in I'(p,q), m < P < M +1. Thus, since for each
i=1,...,N, W; and V; are subgraphs of I'(p, q), p(W;) and p(V;) are contained in
the subgroup generated by {S,,, ..., Sy }. Since no summits of ' appear in Y; or Q;,
Sjsw cannot appear in V; or W;. [ |

Proof of (M5) Suppose i is an integer with 0 < i < N. The maximum grading of a
vertex in I'; is M + 1. Let  be the minimum grading of a vertex in I';. For some integer
coefficients by, by ..., by,

[p(T:)] = b1S] + by1S)y + -+ buShy-
Our goal is to show that for each j = 0,..., M -, |b;,j| = [ba—jl. ]

The vertices of cI(T;) can be classified into four types according to Figure 15. Define
V() (1) to be the number vertices in cI(T;) of type (++) with grading n.

Suppose n =1,..., M. When n is even, S, always has exponent -1 in p(I;), and
S;,! appears precisely when there is negative edge followed by a vertex in cI(T;) with
grading #, so

(5.2) bn| = v(——)(n) +v(—1)(n).
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/ O\

7N

Type (++) Type (+-) Type (—+) Type (—-)

Figure 15: The four vertex types.

Similarly, when # is odd, S, always has exponent 1in p(T;), and S,, appears precisely
when there is a vertex in cl(T;) with grading » followed by a positive edge, so

(5.3) [bul = vy (n+1) + vy (n+1).

Since I; is symmetric by (R5), there is an order-reversing bijection ¢ of the vertex
set of cI(T;) such that gr(P) +gr(¢(P)) =1+ M +1 for each vertex P in cI(T;).
Furthermore, P and ¢(P) have types rotated 180° with arrows reversed (see Figure 16).
As a consequence,

vieoy(n) =vy(I+ M +1-n),
(5.4) v(_+)(n):v(+_)(l+M+1—n),
V(1) = vy (I + M +1-n),
V(Jr,)(}’l) = V(,Jr)(l +M+1-n).
Each positive edge connects a vertex of type (*+) to a vertex of type (+x). Likewise,

each negative edge connects a vertex of type (*—) to a vertex of type (—*) (see Figure

17). Thus,
(55) Ve (1) + vy (n) = v (n+1) + vy (n+1),
v(__)(n) + v(+_)(n) = V(__)(T’l - 1) + v(_+)(n - 1).

The incremental path I; is closable, and the gradings of adjacent vertices in I'; differ
by +1. It follows that every time I'; passes from below to above some grading level at a
vertex, I'; must pass from above to below the same grading level at some other vertex.
Thus, in each grading #,

(5.6) v(++)(n) = V(__)(I’l).

Now, we show that [b; j| = [ba_j|. Let jbe an integer such that 0 < j < M — I. When
I+ jand M — j are both even,

br4jl = vy (L +7) +va) (T + )
=veoy(M=j+1) + vy (M—j+1)
= V() (M= j) +v(1)(M - j)
= [ba-jl

by (5.2), (5.4), and (5.5).
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Vertex type /
of P /' /" \ \

++) +-) (——)

U

Z/fegc(ext)pe // \/ / \.

++H = ) (-

Figure 16: The effect of ¢ on vertex type.

Type (+5) Type (+-)
[ ) [ )

/ N\

[ ) [ )
Type (+4) Type (+)

Figure 17: Vertex types of adjacent vertices.

When [ + jand M — j are odd,

brejl = vy (I +j+1) + vy (L+j+1)
= V() (M = j) + vy (M = j)
=V (M= j+1) + vy (M- j+1)
= [ba-jl

by (5.3)-(5.5).
When [ + jis even and M — j is odd,

brajl = vy (L+j) +vieny (T + )
=voy(M=j+1) + vy (M- j+1)
=V (M= j+1) +vi ) (M=-j+1)
= [bam-jl

by (5.2), (5.4), (5.6), and (5.3).
When / + jis odd and M — j is even,

brejl = vy (T +j+1) + vy (L+ j+1)
= V() (M = j) + vy (M = j)
= V() (M = j) + vy (M = j)
= [bam-jl

by (5.3), (5.4), (5.6), and (5.2).
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When i > 1, no bottoms appear in I';, so [ > m.

Proof of (ml)-(m5) Since Iy = I' is symmetric, there is an order-reversing bijection
¢ on the vertices of cI(T') such that

gr(P) + gr(¢(P)) =m+ M +1

for each vertex P in cl(T'). Thus, ¢ induces a map on the subgraphs of cl(T").
Foreachi=0,...,N, define

A;=p($(Tn-i)),

and when i > 0, define

Vi = p(6(Yn-1))p(#(Qn-1)) and W; := p($(Qn-1)).
(m1)-(mb5) follow from proofs similar to the those used for (M1)-(M5). ]

5.5 Using reductions for induction

Suppose (p,q) is a relevant co-prime pair with g >1 and with (pmodg) # 1. By
Lemma 4.5, R(T)(p, q) is isomorphic to T'(p*, q*) for some relevant co-prime pair
(p*,q*) defined as in Lemma 4.5. Along with Lemma 5.3, T(p, g) can be simplified
through a sequence of reductions and relative isomorphisms to T'(pg, go) such that

go=1or (pmodq) =1
Example 5.5

_ _ I — _
T(119,43) 5 T(33,-23) "2 T(33,23) = T(10,3).

The goal now is to show that when (p*, q*) is a pre-RTFN pair, (p,q) is also a
pre-RTFEN pair.

5.6 Leading and trailing vertices

Call a vertexin T(p, q) at the end of a (k + 1)-segment a leading vertex, and a vertex at
the beginning of a (k + 1)-segment a frailing vertex (see Figure 18). Let P be a leading
vertexin T(p, q),and let Ay be the ( + 1)-segment of T(p, q) immediately preceding
P. Define f; (P) to be the vertex at the end of the edge in R(T)(p, q) corresponding to
Ar. Let P be a trailing vertex in T(p, q), and let At be the (k +1)-segment of T(p, q)
immediately following P. Define fr(P) to be the vertex at the beginning of the edge in
R(T)(p, q) corresponding to A 7. When the path from a leading vertex P, to a trailing
vertex Pg is a k-block, f1(P4) = fr(Pp).

f1 is a bijection from the leading vertices of T'(p, q) to the vertex set of R(T)(p, q),
and fr is a bijection from the trailing vertices of T'( p, q) to the vertex set of R(T ) (p, q).
Let P* be a vertex in R(T)(p, q). Since f;!(P*) and f7!(P*) are separated by a x-
block of length «’ or £’ — 1, the gradings of f;*(P*) and f;'(P*) are either the same
of differ by +k.

Any vertex in T(p, q) at the end of a positive (or negative) segment is called a peak
(resp. valley). There is a relationship between the gradings of the vertices in T(p, q)

and R(f)(p, q).
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Py Pp pP*

Figure 18: Py is a leading vertex of T'(13,11), and Pp is a trailing vertex of I'(13,11) (left).
fL(PA) = fT(PB) =P*in R(F)(13, 11) (r1ght)

Proposition 5.6  Let P and Q be leading vertices of T(p, q).
(1) If P and Q are both peaks or both valleys, then

gr(f1(P)) - er(f1(Q)) = gr(P) - gr(Q).
(2) If Pis a valley and Q is a peak, then
gr(fu(P)) - er(f1(Q)) = gr(P) - 2r(Q) - &.
(3) IfPis a peak and Q is a valley, then
gr(fe(P)) - &r(f1(Q)) = gr(P) - 2r(Q) + .

Proof This follows from Lemma 4.7. Let I'* be the unique path subgraph of
R(T)(p, q) beginning with f; (P) and ending f; (Q). Let e be the sign of the edge in
R(T)(p, q) preceding f;(P). Let T be E(T*, k, &', ¢). Finally, let Q, be the first vertex
inT.

The vertices P and Q are at the end of (x + 1)-segments, which we will denote as
Ap and Aq, respectively. The first vertex in I'* is f;(P). Also, e and Ap will always
have the same sign. Therefore,

gr(P) - gr(Qo) = 0.
Thus,
gr(P) - gr(Q) = (gr(P) — gr(Qo)) - (er(Q) — r(Qo))
= gr(Qo) - er(Q).
Also, the first vertex Py in T'* is f1(P), so
(5.8) gr(Po) - er(fL(Q)) = gr(f(P)) - er(f.(Q)).
The signs of e are determined by whether P is a peak or a valley:

1, Pisapeak,
e =
-1, Pisavalley.

(5.7)

Also, Aq is positive when Q is a peak and negative when Q is a valley. The desired
result follows from Lemma 4.7, (5.7), and (5.8). ]

Corollary 5.7  Given a leading vertex P of T(p, q), P is a summit of T(p, q) if and only
if fL(P) is a summit of R(T)(p, q).
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Proof Suppose a leading vertex P of T(p,q) is a summit. Consider a vertex in
R(T)(p, q) whichis f1(Q) for some leading vertex Q of ['(p, q). Since P is a summit,
gr(P) — gr(Q) > 0. Since P is a peak, by Proposition 5.6, either

gr(fL(P)) - er(f1(Q)) = gr(P) —r(Q) 20

gr(fe(P)) - gr(fL(Q)) = gr(P) - gr(Q) + £ 2 0.

Thus, f; (P) is a summit of R(T)(p, q).

Conversely, suppose for some leading vertex P of T(p, q) that f; (P) is a summit of
R(T)(p,q). Let Q be a summit of T(p, q), so gr(P) — gr(Q) < 0. Since Q is a peak, by
Proposition 5.6,

gr(P) - gr(Q) 2 gr(fo(P)) - er(f.(Q)) 2 0.
The last inequality is true since f (P) is a summit. Thus, gr(P) = gr(Q), so since Q is
a summit of ['(p, q), P is also. [
5.7 Proof of Lemma 3.5

We now have everything we need to show that every relevant co-prime pair (p, q) with
p positive and g odd is a pre-RTFEN pair. For each relevant co-prime pair, we need to
find a positive integer N, sequences of subgraphs of T'(p, q)

Lo,....IN,

Yi,..., Yn,
and

Q.. Qn,
and integers

ni,..., NN,

satisfying (R1)-(R5). We prove this using a strong induction starting with the base
cases below.

Let I be an incremental path, and let P, P’ be vertices in I'. Define w(T, P, P), the
unique path in cl(T') from P’ to P.

Lemma 5.8 Let (p, q) be a relevant co-prime pair with p and q positive and q odd. If
q=1lor (pmodgq) =1, then (p, q) is a pre-RTFN pair.

Proof TI(p,q)has2p +1vertices Py ...,P,.
When q = 1, the grading are

i, 0<i<p,
2p—i, p<i<2p.

gr(P;) = {

See Figure 19a.
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R U
. 9
0 Ty
(@) T'(3,1) (left) only has one (b)T'(7, 3) (right) has two summits both in one 2-block of
summit. The solid arrows indi- length 2. The solid arrows indicate I'y and I'; (in I'y).

cate [';.

Figure 19: Cycle graphs with g = 1and (pmodgq) = 1.

Make the following choices of subgraphs and integers:

e LetN =1

o Let T =T(p,q).

e Let T = Typp.

o Letn; =1.

Let Yl = w(F(p,q),PO,Pp_l).
o Let Q] = Cl)(r(P, q)’PP+1’P2P)'

It is clear that (R1) and (R2) are satisfied.
Ty =T(p,q) = w(T(p>q)> Po> Ps) * w(T(p,q), Prc> Pis2) * w(F(P>q),P~+2,P2p)

=Y * w(T(p>q), Prs Prsz) * O
= Yl * rl * Ql.

Thus, (R3) is satisfied.
The grading of a summit of T'(p,1) is p. Since the maximum grading of a vertices
in Yj or Q; is p — 1, Y; or Q; contain no summits of I'(p, 1), so (R4) is satisfied.
Consider the map ¢ : T'(p,1) - I'(p,1) defined by
P —i> O < l < >
¢(Pi) =1 . P
Psp i, p<i<2p,
When0<i<p,

gr(Py) +gr(¢p(Pi)) =i+p—i=p.
When p < i <2p,
gr(P;) +gr(¢(Pi)) =2p—i+2p-(3p—i)=p,

so Iy is symmetric.

Since T 2 Liop, its closure has two vertices: one graded p —1 and one graded p.
Consider the map ¢ : cl(I7) — cl(I}), which exchanges the two vertices. For each
vertex P in cl(I}),

gr(P) +gr(¢(P))=p+p-1=2p-1,
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so I is symmetric. Also, the minimum grading of a vertex in I'(p,1) is 0, and the
minimum grading of a vertex in I is p. Therefore, no bottoms of T'(p,1) are in I}.
Thus, (R5) is satisfied.

When pmod g =1, define x and " as in (4.2) and (4.3). Since pmodq =1, &’ = g,
which is odd. By Proposition 4.3(a) and (e), T(p, q) has two (k +1)-segments, and
has 2q — 2 k-segments. By Proposition 4.4(a), the x-segments must be contained in
two x-blocks of length g — 1. It follows that I'(p, q) is the concatenation of a positive
(k +1)-segment, a k-block of length g — 1, a negative (x + 1)-segment, followed by
another k-block of length g — 1 (see Figure 19b).

Explicitly, the gradings are

0, i=0<i<k+],
jr+2-1, (.]._1)/‘6+1£i£jn+1and
j=2,4,...,9-1,
i jk, ji;lgié(jl+l)ﬁ+land
gr(P;) = ‘ j=2.0q-1
p+r+1-1i, pLi<p+r+l,
i—p-(j-Dr-1, 1.)+(]'_1)l‘6+1SiSp+j/<;+1and
j=2,...,9-1,
j 1<i< i+1 1
pt(j+Drs1—i, PTINT <i<p+(j+1)k+1land
j=2,...,9-1L

When « = 1, make the following choices:

e Let N =1

e LetTp = T(p,q).

e Let T = [iop.

o Letn; = (qg+1)/2.

o LetY; = w(T(p,q), Po, P1).

e Let Oy = w(T(p,q)s Prian;» Pap)-

When & > 1, make the following choices:

e Let N =2.

« LetTy = T(p, q).

e LetIi = w(F(p, Q), P, P1+2n)-

o Letl, = r[op-

o Letn; = (q+1)/2.

o Letn, =1.

o LetY; = w(T(p,q), Po, P1).

e Let O, = w(F(p, Q)> P1+2/1n1>P2p)'
e LetY, = w(r(p, Q),Plapn)-

o Let Q) = w(F(p, q))PH+2)P2H+1)'

Again, it is clear that (R1) and (R2) are satisfied.
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When k =1,
Lo =T(p,q) = w(T(p,q), Po, Pr) * w(T(p,q), Pr> Prazn,) * @(T(P>q)> Prezny> Pap)
=Yy + I+ Q.
When x > 1,
l—‘0 = F(P, q) = w(r(P; q)) PO) Pl) * w(r(P, q)) Pl) P1+2/-cn1) * w(r(P, q)) P1+2Kn1)P2p)
= Yl * 1"1"1 * Ql
and

rl = w(r(p) q)7 Pl! P1+2I€)

= W(F(P, Q), Pl) PK,) * w(r(p) q)) PR) PK,+2) * w(r(Pa Q)) PK,+2) P2)<,+l)
Yz * rz * Qz.
Thus, (R3) is satisfied.

The grading of a summit of I'(p,1) is x + 1. The maximum grading of a vertex in
Y; is 1, and the maximum grading of a vertex in Y;, 4, or Q, is k. Thus, Y3, Y3, 4, or
Q, contains no summits of T'(p, q), so (R4) is satisfied.

Consider the map ¢ : T(p, q) = I'(p, q) defined by

i <i<
By = i D=IERES
2p+rtl-i> K +1<i<2p.

When0<i<k+1,
gr(P) +gr(p(P))=i+r+1-i=r+1L
When p<i<p+r+1,
pL2p+r+1-i<p+r+1
Thus,
gr(P;) +gr(¢(P;))=p+r+1-i+p+r+1-2p+r+1-i)=r+1
Letje{2,4,...,g-1}.
When (j-1)k+1<i<jr+1,
2p+K+1-(jr+1)<2p+Kr+1-i<2p+Kr+1-((j-1K+1).
Since p = gk + 1, we can substitute 2p = p + g~ + 1 on each side to obtain
p+(q+1-j)r+1<2p+Kk+1-i<p+(g+2—-j)r+1
Let ] = g +1- j. Thus,
pHilk+1<2p+r+1-i<p+(l+1)Kk+1.
Therefore,
gr(P;) +gr(p(P;)) =jr+2—i+p+(I+)r+1-(2p+Kr+1-1i)
=(j+DK+2-p
=gk+1-p+r+1

=Kk+1
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When je+1<i< (j+1)r+1,
2p+Kk+1-((j+Dr+1) <2p+Kr+1-i<2p+K+1-(jr+1).
We substitute 2p = p + gk + 1 on each side to obtain
p+(q-j)r+1<2p+K+1-i<p+(qg—j+1r+1
Thus,
p+(I-Drk+1<2p+Kr+1-i<p+Ir+1L
Therefore,
ar(P) +gr(p(Py)) =i—jr+2p+r+1-i—-p-(I-1)k-1
=—(j+DE+p+K+kK
=—(q+D)E+p+K+K
=p-gKk+K
=k+1
When p + jk +1<i < p+(j+1)k +1, there is some integer ¢ such that
(j-Dr+1<c<jr+1
and P; = ¢(P,). Since ¢? is the identity map,
gr(Py) + gr(¢(Pi)) = gr(¢(Pe)) + gr(Pe) =k +1.
When p+ (j—1)k+1<i < p+ jk +1, there is some integer ¢ such that
jr+l<ce<(j+)r+1
and P; = ¢(P,). Similar to the previous case,
gr(Py) + gr(p(Pi)) = gr(p(Pe)) + gr(Pe) = r +1.

Therefore, Iy is symmetric.

The choices of I and I; are relatively isomorphic to either I'(k,1) or Iio, which are
symmetric. Therefore, I} and I, are symmetric.

When (pmod q) = 1, the minimum grading of a vertex in T'(p, q) is 0. The min-
imum grading for a vertex in I} is 1. The minimum grading for a vertex in I is k.
Therefore, no bottoms of I'( p, q) are contained in I3 or ;. Thus, (R5) is satisfied.

In conclusion, T'(p, q) is a pre-RTEN pair when g =1 or (pmodq) = 1. |

Let (p, q) be arelevant co-prime pair with ¢ > 1and (pmod q) > 1, and let (p*, g*)
be the co-prime pair defined by Lemma 4.5. Suppose (p*, q*) is a pre-RTFN pair, so
there are a positive integer N* and subgraphs

Ty,eeon Do

Y, L YR
and

Qf L., Q)
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and integers
Ny, My

satisfying (R1)-(R5).

To show that (p, q) is a pre-RTEN pair, we need to define N, the subgraphs {T; } Y,
{Y;}¥,, and {Q;}¥, and the integers {n;}} for (p, q). This choice depends on how
expansion affects the nested repeating pattern of summits in T(p*, ¢*).

Define  and ' as in (4.2) and (4.3), so T(p, q) = E(T(p*,q*), s, ") by Proposi-
tion 4.9. Suppose I'* is a proper subgraph of T'(p*, q*), so I'* naturally embeds into
T(p*,q*). Let e* be the sign of the edge immediately preceding I'* in T(p*, q*). For
simplicity of notation, we define

E(T*) = E(T* kK, "),
and when I'* is closable, define
E(T*) = E(T*, k, k).

Notice that E(T*) and E(T*) are not always the same.

Ideally, when i = 0,..., N*, we want to define I; to be E(T}) and set n; equal to
n;. Then, we examine the structure of E(Ty.). The hope is that since the expansion
operation is compatible with concatenation (see Lemma 4.8), we can leverage the pre-
RTEN pair properties of the I'/, Y/, and Q] sequences to prove that I';, Y;, and Q;
also satisfy the pre-RTFEN properties. This turns out to be more subtle than one might
first expect.

Foralli=1,...,N"%,

L2 Y« (1) £
by (R3) for (p*,q*). By Lemma 4.8,
(5.9) E(T7,) = EQY) = E((T)™) = E(Q)),

However, if I; is E(I}), then I} is E(T)", and E(T;)" may not be equal to
E((T})"). We show that they can be made equal by adding or removing x edges.
See Figure 20.

Consider i € {1,..., N*}. Define T; := E((T})" ). Let I} be I; with the  edges in
T(p,q) preceding the first vertex of E((T})" ) added. Let I7 be I; with the first &
vertices with their incident edges removed.

Lemma5.9 Oneof I}, T}, or I is isomorphic to E(T} )" .

Proof Consider (T)" as a subgraph of T(p*, q*). For all but the first T in (T} )™,
E(T}) 2 E(T}), so

Ty = E(TF) » (E(TF))% L
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NN

(a) The graph R(T) (26, 11) = T'(4, 3) with (1"’1“)2 in black and Y7 and Q7 in gray.

(b) The graph I'(26,11) = E(I'(4,3)) with E((FT)Z) in black and E(Y7) and
E(QY) in gray.

(c) The graph I'g = I'(26, 11) with 1"% = E(l"’l‘)2 inblack and Y| and Q, in gray.

Figure 20: Expanding T'(4,3) to T(26,11).
Let e be the sign of the first edge in I'/, and define

N E(Tf,k,k',+1), (eoisland k' iseven) or (eo is-1and x’is odd)
short” E(Tf,k,k',-1), (eoisland ' isodd) or (e is -1 and ' is even)

and

{E(Fi*, k,k',=1), (egisland k' iseven) or (eg is -1 and £’ is odd),
long ‘=

E(T}, K, k', +1), (egisland &’ is odd) or (eg is-1and ' is even).

Notice that Tjong is a k-segment concatenated with Igpor¢. Each of E(I“i*) and E(T}") is
isomorphic to Iong OF Tghort-

When E(T}) is isomorphic to E(T}), I is isomorphic to E(T} )" .

When E(Ff ) is isomorphic to Ishore and E(I}) is isomorphic to Tgng, I s

1

isomorphic to E(T})". i
When E(T}) is isomorphic to Ijong and E(I}) is isomorphic to Lghore, I} is
isomorphic to E(T})" . m

Now, we analyze the structure of E(I'y. ). In particular, we want to know where
the summits T(p, q) are located. By Corollary 5.7, the leading summits of T(p, q)
correspond to the summits of T(p*, g*). Now, we consider the nonleading summits
inT(p,q). Let d be &’ or ' — 1 whichever is even.
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Let Lop and I, be defined for (p, q) and (p*, g*), respectively, as shown in Figure
13. By (R2), T is isomorphic to Ty,,. By definition, E(T,,) is the concatenation of
a k-block of even length, a positive (k + 1)-segment, another x-block of even length,
and a negative (k + 1)-segment. It follows that every summit in T(p*, q*) corresponds
to d/2 + 1 summits in '(p, q).

We are ready to define N, {T; }{', {Y; }¥, {Q;}5 and {n;}. Let T be an incremental
path with vertex set {Vj,..., V,}, and let Y be a connected subgraph of I' with
vertices V;, ..., Viik. Define Left(T, Y) to be w(T, Vo, V;), and define Right(T,Y) to
be w(T, Vik, Vi).

Foreach i = 1,...,N*, exactly one of the subgraphs I;, I}, or I'7 is isomorphic to
E(T;)" by Lemma 5.9. Call this subgraph T}. For each i = 0, ..., N*, we make the
following choices.

e LetT; = E(T}).

o Letn; = nj.

o Let Yi = Left(Fi_l, F,’)

o Let Q,’ = Right(Fi_l, FII)

Note that since I';_; is E(T}",), I/ is a subgraph of T;_; by (5.9).

Let {Qo; ..., Qn} be the vertex set of I'y«. Since Iy« = E(Tx« ),

n=2(k+dr+1).

Suppose k' =1,s0 n =2(k +1).
e Let N=N*+1.
o LetTy = rtop-
o Letny=d/2+1
o Let YN = CU(FN*—I) QO) QH)
o Let QN = w(FN*—ly QK+2’ Qn)

Suppose k = 1.
e Let N=N*"+1
o Let Ty = Liop.
o Letny=d/2+1.
o Let Yy = w(rN*—l’ Qa> Qd+1)-
e Let Qpn = (U(FN*fb Qu-15 Qn)
Suppose k' >1and x > 1.
o Let N=N*+2.
o Let I'y_; be a positive x-segment followed by a negative x-segment.
o Let Ty = Tyop.
o Letny_1=d/2+1
e Letny=1.
o Let YNfl = w(rN*—b Qdm Qdﬁ+1)'
e LetQpn_1 = w(rN*—ls Qadr+3 Qn)
o Let Yy = a)(rN*—ls Qak+1> Qdﬁ+ﬁ)'
o Let Qn = w(Tn+—15 Qarrrs2> Qrsznsl)-
Lemma 5.10 The integers {n;}\, and the subgraphs {T;}N,, {Y;}N,, and {Q;}N,
satisfy (R1)-(R4).
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Proof Since Iy = T(p*,q*),

Lo 2 E(T(p*,q")) 2T(p,q),

so (R1) is satisfied.

By definition, I'y = Top, so (R2) is satisfied.

When N* < i < N, (R3) and (R4) are satisfied by proofs similar to those in Lemma
5.8.

Suppose i € {1,...,N*}:

r,'_l = Left(Fi_l, I‘,’) * Fl' * Right(Fi_l, Fl')
> Y; * E(Fi*)"? * Q)
=Y T Q.

The~refore, (R3) is satisfied.
E((T;)") is I} possibly with x edges added to or removed from the beginning.
Also,

Y T % Qo Ty 2 E(TE,) 2 E(Y?) « E((TF)™) » E(QF).

It follows that Q; is E(Q7) and Y; is E(Y;") with possibly x edges added to or removed
from the end (see Figure 20).

Since no summits of I'(p*, q*) are in Y/, there are no summits of I'(p, q) in E(Y;).
It follows that if Y; is equal to E(Y;) oris E(Y;") with edges removed, then Y; contains
no summits of ['(p, q).

Consider the case when Y; is E(Y;") with a x-segment added. Let P be the vertex at
the end of E(Y;). If the segment added is negative, then the gradings of the vertices
added to E(Y;") are less than gr(P), so they cannot be summits.

If the segment added is positive, then P is at the end of either a x-segment or a
(k +1)-segment. In either case, the maximum grading of a vertex in E(Y;") is at least
gr(P) + k. Since none of the vertices of E(Y;") are summits of I'(p, q), the grading
of a summit of T'(p, q) must be bigger than gr(P) + «. Since only x edges are being
added, the gradings of the vertices added to E(Y;) are no bigger than gr(P) + &, so
they cannot be summits of T'(p, q). Thus, there are no summits in Y;.

Since no summits are in Q}, there are no summits E (QF) 2 Q;. Therefore, (R4) is
satisfied. ]

Lemma 5.11 The subgraphs {T;}Y satisfy (R5).

Proof First, we show that I; has no bottoms foreachi =1,...,N.Since N* > 1, T =
E(Iy"). Since I} has no bottoms, I} does not have bottoms. When1<i < N,

i 2 YT+ Qy

so I; is a subgraph of I;. Therefore, I; has no bottoms.

Suppose 0 < i < N. Here, we show that I'; is symmetric. When i > N*, I} is either
the concatenation of a positive x-segment and a negative x-segment or Ty, In both
cases, I'; can be shown to be symmetric by an argument similar to those used in the
proof of Lemma 5.8.
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P

VAAAVNVALAVIN

(P)
p*

0" (P")

Figure 2I: 'The incremental cycles cI(T;) (top) and cI(T}) (bottom) are shown. P is a leading
vertex, and fi (P) is denoted P*. ¢(P) is a trailing vertex, and ¢* (P*) = fr(¢(P)).

Suppose 0 < i < N*. In this case, I; = E(I}). Our goal is to show that since I’} is
symmetric, I; is also symmetric.

Since I} is symmetric, there are an order-reversing bijection ¢* on the set of
vertices of cl(T}") and an integer k* such that for each P* in cI(T}),

(5.10) gr(P") + gr(¢7(P7)) = k.

Let V, and Vr be the sets of leading and trailing vertices of cI(T;), respectively, and
let V* be the vertex set of cI(I'}"). Define ¢ to be the unique order-reversing bijection
on the vertices of cI(T;) such that the following diagram commutes:

v, ey,

| * |

v 2y

In particular, ¢ maps leading vertices bijectively to trailing vertices (see Figure 21).
Let P be a leading summit of I;, and let P§ = fi(Ps) in I},

Let k = gr(Ps) + gr(¢(Ps)), and let P be an arbitrary vertex in I;. The goal is to
show that gr(P) + gr(¢(P)) = k, which is done in four cases.

Case 1. Suppose P is a leading vertex and P* := f;(P) has the same vertex type
as P, either a peak (type (—+)) or valley (type (+-)). Recall from Figure 16 how the
automorphism ¢* affects vertex type. If P* is of type (—+), then ¢*(P*) is of type
(+-),andif P* isof type (+-), then ¢* (P*) is of type (—+). Therefore, either f;'(P*)
and f'(P*) are both peaks and f;'(¢*(P*)) and f;'(¢*(P*)) are both valleys or
fi'(P*) and f;'(P*) are both valleys and f;*(¢*(P*)) and f;'(¢*(P*)) are both
peaks. In either case,

(5.11) gr(f'(¢7(P7))) = er(fr' (¢*(P¥))).
Thus,
gr(P) + gr(¢(P)) - k = gr(P) - gr(Ps) + gr(¢(P)) - gr(¢(Ps))
= gr(f7'(P*) - (' (PY))
Fa(¢(f1(P) - (e (7 ()
= g (' (P*)) - gr(f ' (PY))
+ar(fr (9" (P))) - er(f7' (6" (P§))).
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Summits are of type (—+), so by (5.11),

gr(fr (97 (P))) —er(fr' (¢7(PS))) = gr(fr (97 (P7))) —er(fi (¢" (PS))).

By Proposition 5.6 and (5.10),

gr(P) +gr(¢(P)) —k = gr(f ' (P*)) - er(f1 ' (P5))
+er(fi (¢ (P))) - gr(fi (¢"(P5)))
=gr(P") - gr(Ps) + gr(¢™(P7)) — gr(¢™ (Ps))
=gr(P7) + gr(¢7(P7)) - (ar(Ps) + er(¢”(Ps)))
=k*-k*=0.

Therefore,

ar(P) + gr($(P)) = k.

Case 2. Suppose P is a leading peak and P* := f (P) has type (++). In this case,
fi1(P*) and f;'(¢*(P*)) are both peaks and f;'(P*) and f;'(¢*(P*)) are both
valleys. Thus,

g (f (¢ (P))) = ex(fr' (¢ (P))) + s,

and

gr(P) + gr(¢(P)) — k = gr(P) — gr(Ps) + gr(¢(P)) - gr(¢(Ps))

= gr(fy(P*)) —er(fr' (P5))
+er(p(fr (P))) - er(p(f (P5)))

= gr(fp'(P)) - er(f ' (P5))
+er(fr' (7 (P))) - er(fr'(¢*(F)))

= gr(fp'(P)) - er(fy ' (P5))
+er(fr (97 (P))) - er(f' (97 (PS)))

= gr(P") —gr(Pg) +gr(¢™(P")) — gr(¢”(Ps))

=0.

Case 3. Suppose P is a leading valley and P* := f; (P) has type (—-). In this case,
f71(P*) and f;'(¢*(P*)) are both peaks and f;'(P*) and f;'(¢*(P*)) are both
valleys. Thus,

g (f (¢ (P))) = ex(fr' (¢ (P))) - s,
and
gr(P) +gr(¢(P)) — k = gr(P) — gr(Ps) + gr(¢(P)) - gr(¢(Ps))
= gr(fp'(P)) - er(f ' (P5))
+er(p(fr (P))) - ex(p(f ' (P5)))
= gr(fp'(P)) - er(fy ' (P5))
+er(fr' (97 (P))) - er(fr' (¢ (P5)))
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P’ Q

(@) B(P")

Figure 22: In solid black, the subgraphs w(cl(T;), P’, P) (left) and w(cl(T;), ¢(P), ¢(P"))
(right) are shown. The dashed gray arrows are other edges in cI(I;). The case shown is when
P’ is a peak.

=er(fi'(P) - gr(fi ' (F5))
+er(f (97 (P)) - er(fi (¢ (P5)))

— ar(P*) - gr(PS) + gr(¢" (P)) - ex(9" (PY))

=0.

Case 4. Suppose P is not a leading vertex. Let P’ be the leading vertex in cl(T;) such
that the length of the path w(cI(T;), P/, P) is minimal. It follows that w(cl(T;), P/, P)
is isomorphic to a subgraph of a k-block as in Figure 22. In particular, there are no
leading vertices between P’ and P in cl(I};); therefore, there are no trailing vertices
between ¢(P) and ¢(P’) in cl(T;), so w(cl(T;), $(P), (P")) is also isomorphic to a
subgraph of a x-block.

Let Q be the closest vertex (in the forward direction) to P with grading gr(Q) =
gr(P"). When P’ is a peak, Q is a peak. Likewise, when P’ is a valley, Q is a valley.
Define d be the distance (going forward) from P’ to Q. Since P is in a k-block which
starts at P’, Q and P lie on the same segment, so

_ | d,  when Qisapeak,
gr(Q) —gr(P) = { —d, when Q is a valley;

also, ¢(Q) and ¢(P) lie on the same segment, so

—-d, h i k,
er(9(Q)) - er(9(P)) = { 2 e O el

If P and Q are peaks, then
gr(P) =gr(Q) —d = gr(P') -d
and

gr(¢(P)) = gr(¢(Q)) +d = gr(¢(P')) +d.
If P" and Q are valleys, then

gr(P) =gr(Q) +d=gr(P') +d
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and

gr(¢(P)) = gr(¢(Q)) —d = gr(¢(P")) - d.

In both cases,

gr(P) + gr(¢(P)) = gr(P’) + gr(¢(P)) = k.
Therefore, for every vertex P in cl(T;), gr(P) + gr(¢(P)) = k, so I; is symmetric. ®

Proof of Lemma 3.5 By Lemma 5.4, it is sufficient to show that every relevant co-
prime pair is a pre-RTFN pair.

Let (p, q) be arelevant co-prime pair. If g = 1 or (p mod q) = 1 with g positive, then
(p,q) is a pre-RTFN pair by Lemma 5.8. If g = -1, then (p, q) is a pre-RTFN pair by
Lemma 5.3.

Suppose |g| # 1and (pmod q) > 1, and assume every relevant co-prime pair (p’, q’)
with |¢’| < |q| is a pre-RTFN pair. When q is positive, define the relevant co-prime pair
(p*,q*)asin Lemma4.5. Since |q*| < ||, (p*, q*) isa pre-RTFN pair. By Lemmas 5.10
and 5.11, (p, q) is also pre-RTFN pair. When q is negative, the pair (p, —q) is a pre-
RTEN pair by the above argument. Thus, (p, g) is a pre-RTEN pair by Lemma 5.3.

By strong induction, every relevant co-prime pair (p, ) with p positive and g odd
is a pre-RTFN pair. [ ]

A Background on presentation matrices

Let R be a PID. Suppose X is an R-module with presentation

(X1, > Xn|S15 oo Sm)-

For each i,
n
$i= 010>
=i
where each r; ; is in R. The matrix of r; ; coefficients
Ly o Tin

rm,l rm,n

is called a presentation matrix of X. Suppose A is a presentation matrix of X. Perform-
ing row and column operations on A will always produce another presentation matrix
of X.

Using row and column operations, any matrix over a PID can be put in the form

d
d '
where each d; is nonzero and d; divides d;,; foreach i =1, ..., k — 1. This is called the

Smith normal form of a matrix.
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When A is the presentation matrix of X and d, ..., di are the diagonal entries of
the Smith normal form of A,
R R
Al X2R"*eo——o-0—.
(&) diR diR

The d; which are not units are the invariant factors of X.
The following lemma plays a key role in showing that elements in a para-free group
are homologically primitive.

Lemma A.1 Suppose X is an R-module with an m x n presentation matrix A of full
rank. If the greatest common divisor of every m x m minor of A is a unit, then X is a free
R-module. Otherwise, the greatest common divisor of every m x m minor of A is equal
to the product of the invariant factors of X up to multiplication by a unit.

Proof Let Bbe the Smith normal form of A. Since A has full row rank, B has no extra
rows of zeros, so B has the following form:

di

B= 0

dm

For any m x n matrix with entries in R, the greatest common divisor of its m x
m minors is invariant under row and column operations up to multiplication by a
unit. Therefore, up to a unit, the greatest common divisor of the m x m minors of A is
[17, d;. When []}%, d; is a unit, each d; is a unit, so by (A.1), X is a free R-module. If
[T, d; is not a unit, it is the product of the invariant factors of X up to multiplication
by a unit. [ ]
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