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1. Introduction

In recent years, a compelling story has been unfolding wherein the main characters

are special classes of noncomplete toric varieties masquerading as if they were smooth
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projective varieties. A notable plot point in this story is the work of Adiprasito, Huh,
and Katz [2], who showed that Chow rings of noncomplete Bergman fans of matroids
satisfy an analogue of the Kéahler package. Their result has had significant impacts in
combinatorics, solving decades-old log-concavity conjectures of Heron, Rota, and Welsch
[27,22,29], and it has led to a flurry of activity in “combinatorial Hodge theory” (see
[8,10,9,1,4,5], for example).

Another combinatorial setting in which an analogue of the Ké&hler package arises
is the polytope algebra of McMullen [24]. For simple polytopes, McMullen’s polytope
algebra is isomorphic to the Chow ring of the corresponding projective toric variety [25],
so one can view the polytope algebra as a type of polytopal model that underlies the
algebro-geometric Hodge theory of projective toric varieties. Adiprasito, Huh, and Katz
remark in [2] that their proof of the Kéhler package for general matroids was “inspired
by” McMullen’s proof of the analogous facts for polytope algebras, and this raises the
question: Does there exist a polytopal model associated to Bergman fans of matroids that
underlies the combinatorial Hodge theory developed by Adiprasito, Huh, and Katz?

This paper introduces a new character to this story that we propose as the natural
building block of a polytopal model for studying Chow rings of simplicial tropical fans—a
class of fans satisfying a weighted balancing condition and containing all Bergman fans
of matroids. The new character that we introduce is the normal complez, a polytopal
complex associated to a noncomplete fan that generalizes the concept of normal polytopes
associated to complete fans. The main result of this paper is that the degree of the top
power of certain divisors in the Chow ring of a simplicial tropical fan is equal to the
volume of the associated normal complex, which is an analogue of a fundamental result
in toric geometry regarding normal polytopes of complete fans.

We view our result as a means by which one can import volume-theoretic tools and
insights from polytopal geometry into the study of Chow rings of tropical fans. As an ex-
tension and application of these ideas, we mention that a recent paper of Lauren Nowak,
Patrick O’Melveny, and the second author [26] develops the theory of mixed volumes of
normal complexes and proves an analogue of the Alexandrov—Fenchel inequalities in the
normal complex setting; it turns out that the celebrated log-concavity of characteristic
polynomials of matroids is then just a special case of these inequalities.

The rest of the introduction gives an overview of the developments of this paper; we
refer the reader to Section 2 for precise definitions and a comprehensive discussion of
these ideas.

1.1. Summary of results

Let 3 C Ng be a simplicial tropical fan of dimension d with associated degree function
degs. : AYX) — R, and let * € Inn(Ng) be an inner product. Associated to (X, *)
and any value z € R¥) | we introduce a polytopal complex Cs «(z), called the normal
complex, which is obtained by truncating the cones of ¥ with hyperplanes that are
normal to each ray—where “normality” is determined by *—and located a distance from
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the origin determined by z. The volume of a normal complex, denoted Vol(Cs .(z)), is
the sum of the volumes of its constituent d-dimensional polytopes.! There is a closed
convex polyhedral cone Cub(X, x) C R comprised of z-values for which the truncating
hyperplanes associated to the rays of each cone in ¥ intersect within that cone; we call
these values pseudo-cubical. Our main result can be stated as follows.

Main Result. For each pseudo-cubical value z € Cub(X, *), we have

degs(D?) = Vol(Cx . (2)),
where D € AY(X) is the divisor associated to z under the quotient map R¥1) — A1(%).

We note that functions on divisors of the form D ~ deg(D?) arise often in algebraic
geometry, and they are generally called volume polynomials. The terminology “volume”
is motivated by the classical fact that, when D is an ample divisor on a complex projec-
tive variety X' of dimension d, the quantity deg(D?) is the volume of X’ with respect to
the Kéahler metric associated to D. The term “volume” has also been proven apt in other
ways; for example, in the setting of smooth complete toric varieties, the volume polyno-
mial measures volumes of normal polytopes associated to nef divisors, and more generally,
for smooth complete varieties that are not necessarily toric, the volume polynomial mea-
sures volumes of Newton—Okounkov bodies. For tropical fans, the (nontrivial) existence
of a degree map allows us to define volume polynomials in an analogous way, but given
that the most interesting tropical fans are not complete, none of the previously-studied
volume-theoretic interpretations for volume polynomials are valid. Thus, the main result
above may be viewed as a way of putting the “volume” back in “volume polynomials”
of tropical fans.

1.1.1. The construction of normal complexes

We now outline the construction of normal complexes, which is closely related to and
inspired by the construction of normal polytopes of complete fans. Let ¥ C Nr be a
simplicial fan of dimension d and for each ray p € ¥(1), let u, € Ng be a distinguished
ray generator. When ¥ is rational with respect to a lattice N C N, we take u, € N
to be the primitive integral generator of p, but we do not generally assume that ¥ is
rational. Given a divisor D € A(X), we can write D (nonuniquely) as

D= > zX,

peX(1)

1 We note that here and throughout the entire paper, volume will always be computed as simplicial
volume, which is normalized so that a unit simplex has volume one.
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where the sum is over the rays of 3, each X, € A!(X) denotes the generator of the Chow
ring associated to p, and the coeflicients z, are real numbers. Each ray p and coefficient
z, corresponds to a half-space in the dual vector space Mg = Ny, defined by

{ve Mg | (v,up) <z} S Mg,

and the normal polyhedron of ¥ associated to a choice of z-coefficients, denoted Ps(z) C
Mg, is the intersection of these half-spaces. Different choices of z-coeflicients for the
same divisor D correspond to different translations of Ps(z).

If ¥ is rational and complete, then Ps(z) is the well-studied normal polytope of D,
defined up to translation, and a fundamental result in toric geometry asserts that, when
D is nef, the volume of Px(z) is equal to degs(D?). If ¥ is not complete, then there are
two problems with this approach of simply computing the volume of Ps(z):

(1) the polyhedron Ps(z) may be unbounded, so its volume may be infinite; and
(2) even when Ps(z) is bounded, its dimension is generally larger than d, so its volume—
as a polynomial in z—will have degree larger than the volume polynomial.

The construction of normal complexes, which requires the additional choice of an inner
product * € Inn(Ng), remedies both of these issues.

Given an inner product * € Inn(Ng), the normal complex of (X, *) with respect to a
choice of coefficients z € R¥(M) can be defined as

Cs.(2) = X [¥] Ps(2) C Ng,

where the notation (¥ means that we take the intersection in Ng after using the inner
product to identify Mg with Ng.? As a polytopal complex, Cx .(z) can be thought
of intuitively as a truncation of the cones of ¥ by normal hyperplanes; normality is
determined by * and the location of the hyperplanes is determined by z. While the
shape of the normal complex and the volume of each of its constituent polytopes depend
heavily on * and the choice of z-coefficients for a given divisor D, a truly remarkable
consequence of the main result above is that, so long as ¥ is tropical and z is pseudo-
cubical with respect to (X, %), the total volume Vol(Cx .(z)) is independent of these
choices and equal to degy,(D?).

1.1.2. Matroids and the pseudo-cubical hypothesis

As was mentioned above, the pseudo-cubical hypothesis is the condition that the
truncating hyperplanes associated to the rays of each cone in ¥ intersect within that
cone. This condition is rather restrictive, and it is not clear from the outset whether the

2 Qur definition of normal complexes in Section 2 is slightly more technical than the one here, but this
definition captures the intuitive idea and coincides with the proper definition for many values of z and *.
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hypothesis of the main result above is nonvacuous for any interesting classes of tropical
fans. To address this issue, we prove in Section 7 that, if ¥y g is the Bergman fan
of a matroid M with respect to any building set G, there is a nonempty open set in
Inn(Ng) for which the pseudo-cubical cone Cub(¥Xm g, *) has nonempty interior. This
provides a large class of fans—fans that are of interest to both combinatorialists and
algebraic geometers—for which the volume polynomial and the Chow ring can be studied
using volume-theoretic tools from polytopal geometry. In particular, this class of Chow
rings includes all Chow rings of wonderful compactifications associated to hyperplane
arrangements [14,15], and the main result above sheds new light on the intersection
theory of fundamental varieties in algebraic geometry, such as the moduli spaces Mo,
of rational stable curves.
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2. Normal complexes and their volumes

In this section, we discuss the precise definitions, notations, motivations, and examples
required for the development of normal complexes and their volumes. We view this
section as an extended introduction that includes precise statements for all of the main
results.

2.1. Pure simplicial fans

Let Mg and Nr be a dual pair of real vector spaces of dimension n, and denote the
bilinear pairing by (—, —). Given a polyhedral fan ¥ C Ng, we denote the k-dimensional
cones of ¥ by ¥(k). Let < denote the face containment relation among the cones of ¥,
and for each cone o € ¥, let o(k) C X(k) denote the k-dimensional faces of o. For any
cone o (or more generally, for any polyhedron P), let ¢° (or P°) denote the relative
interior.

Henceforth, we adopt the convention that a fan ¥ C Ny is a marked polyhedral fan,
meaning that, in addition to specifying the polyhedral cones that comprise 3, we have
also chosen a distinguished generating vector u, € p° for each ray p € 3(1). If N C Ny
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is a lattice—that is, a free abelian group such that Ng = N ®z R—then we say that X
is rational with respect to N if each ray intersects the lattice at a nonzero vector. Given
a fan ¥ C Ng that is rational with respect to IV, we always take u, to be the primitive
integral generator of p—that is, u, is the first nonzero element of N that lies on p.

We say that a cone o is simplicial if dim(o) = |o(1)|. Alternatively, simplicial cones are
characterized by the property that their ray generators are linearly independent. Note
that the faces of a simplicial cone ¢ are in bijective correspondence with the subsets of
o(1). For every face containment 7 < ¢ in a simplicial cone o, let o\ 7 denote the face of
o with rays o(1)\ 7(1). If o is rational, then we say that ¢ is unimodular if the primitive
integral generators of any cone can be extended to a basis of V. Note that unimodular
cones are simplicial. We say that a fan ¥ is simplicial or unimodular if every cone of
is simplicial or unimodular. Every rational polyhedral fan ¥ determines a normal toric
variety X, and this variety is smooth if and only if ¥ is unimodular and has at worst
finite quotient singularities if and only if ¥ is simplicial.

We say that a fan ¥ is pure if all of the maximal cones in 3 have the same dimension.
Henceforth, we assume that all fans are pure and we use the term d-fan to refer to a
pure fan of dimension d.

2.2. Chow rings

Given a simplicial fan ¥ C Ng, the Chow ring of ¥ is defined by

R[z, | p € D(1)]

AN(Z) = I+J

where

T =(zy, -~ x,, | cone(p,...,pr) ¢ X) and j:< Z (v,up)x, ’UEMR>.

pEX(1)

If ¥ is unimodular, we note that A®(X) is the Chow ring (in the usual intersection-
theoretic sense) of the toric variety X ([13,7,11]). As both Z and J are homogeneous, the
Chow ring A®*(X) is a graded ring, and we denote by A*(¥) the subgroup of homogeneous
elements of degree k. We denote the generators of A*(X) by X, = [z,] € A}(¥), and for
any o € X(k), we define

X, =[] X,€4*®).
pEa(l)

2.3. A guiding light: complete unimodular fans and normal polytopes

Assume that ¥ is a unimodular fan that is also complete, meaning that every element
of Ng is in some cone of Y. This latter condition is equivalent to the condition that
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the corresponding toric variety Xy is complete in the algebro-geometric sense. In this
setting, the algebro-geometric degree map is a linear isomorphism

degy, : A"(X) = R

that is uniquely determined by linearity and the property that degs,(X,) = 1 for all
o € X(n). Using the degree map, the volume polynomial of ¥ is defined as the polynomial
function

Voly : AY(Z) = R
D +— degs(D™).

By definition, each divisor can be written (nonuniquely) as

D= Y z,X, (2.1)

peEX(1)

and we often use these linear generators to view Voly as a homogeneous polynomial
of degree n in the variables {2z, | p € ¥(1)}. Although the definition of the volume
polynomial given above is purely algebraic, it also has a geometric interpretation, as we
now describe.

Given a divisor D € A'(X), presented as in (2.1), define the normal polytope of ¥
with respect to z by

Ps(z) = {ve Mg | (v,u,) <z, forall pe (1)} C Mg.

It follows from the definition of J that different choices of z for the same divisor D
correspond to different translates of the same polytope. Let

Vol : {polytopes in Mg} — R>g

be the volume function that is normalized so that any fundamental simplex associated
to the lattice M = NV C Mg has unit volume. The guiding light for our work stems
from a fundamental result in toric geometry [12, Theorem 13.4.3], which asserts that,
given any divisor D = )" 2,X, for which the normal fan of Ps(z) is refined by X—these
correspond to nef divisors—we have

Volg (D) = Vol(Ps(z)). (2.2)
This beautiful result for complete fans is the primary motivation for our developments

in the noncomplete setting. As such, we find it instructive to work out (2.2) in a concrete
example.
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Example 2.3. Let N = Z? and let ¥ be the complete fan in Ng = R? depicted below.
P2 P12
P02 4!
Po po1
The Chow ring of 3 is
R{zo, 71, T2, To1, To2, T12]
A*(X) =
(%) +J

where Z and J are described above. It can be checked from the definitions that

o degy(XiXjr) =1ifi € {j, k};

. degZ(XiQ) = degE(Xin) =-1
o the degree of any other quadratic monomial in the generators is zero.

Therefore, the volume polynomial is given by the following formula:
Vols;(2) = 2(20201 + 20202 + 21201 + 21212 + 22202 + 22212)
— (2§ + 2] + 25 + 25, + 2800 + 21)-

Using the dot product to identify Mr = Ng, we can draw the normal polytope
associated to any specific z-value. If we choose the z-value carefully, then the original

fan is the normal fan of the polytope Psx(z); such as in the example depicted below.

Y=z
2
X
<
A
S P2 A P12 \_ Y
|
8
| P02 P1
8
I
\% £0 Po1 S
N
<
A
K —Y=zo1
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Computing the simplicial area of this hexagon in terms of the z-coefficients, the reader
should readily recover the formula for Vols(z), given above, verifying Formula (2.2) in
this example.

In the previous example, we made a specific choice of inner product on Ny (the
standard dot product) in order to identify the vector spaces Mg and Ng, which allowed
us to draw the fan ¥ and the normal polytope Ps(z) in the same vector space. While it
was helpful to choose this inner product in order to draw a picture of Ps(2), we note that
this choice was not necessary in order to define Ps(z) C Mg or Vol(Px(z)). As we will
see in the next subsection, the situation is quite different in the noncomplete setting.
In particular, when ¥ is not complete, the choice of an inner product is an essential
ingredient in both the construction of normal complexes—which are analogues of normal
polytopes in the noncomplete setting—and in the definition of their volume. In order to
discuss these ideas in more detail, we now turn toward a discussion of noncomplete fans
and their associated normal complexes.

2.4. Noncomplete fans and normal complezes

In this subsection, we introduce an analogue of normal polytopes—which we refer
to as normal complexes—in the setting of noncomplete simplicial fans. Assume that
Y is a (not-necessarily complete) simplicial d-fan in Ny, and choose an inner product
* € Inn(Ngr). Normal complexes will be defined as polytopal complexes in Ng that
depend on (X, *), as well as on a value z € R>() . Before defining normal complexes, we
must describe the individual polytopes that comprise these polytopal complexes.

Given a cone ¢ € X, consider the polyhedron

Py(z) ={ve Mg | (v,u,) <z, forall peo(l)} C Mg.

The choice of inner product allows us to identify Ng with Mg via the natural isomor-
phism

NR%MR

urs (u' € Ng — uxu' €R),
and using this identification, we define polytopes
Py(z) = o [A Py (2),

where the notation m means that we are intersecting o C Ng with P,(z) C Mg
after identifying the vector spaces Mg and Ng via the inner product *, as above. More
explicitly, we have

P,.(z)=cn{veNr|vku, <z, forall peo(l)} C Ng.
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The next example depicts these polytopes for the case of the complete fan of Example 2.3.

Example 2.4. Consider the fan in Example 2.3 and let * be the standard dot product.
If we choose the z-values carefully—for example, if we use the same z-values that were
chosen to draw the image in Example 2.3—then the polytopes P, .(z) (and their faces)
form a polytopal complex, depicted below, consisting of six quadrilaterals and their
faces. Furthermore, the support of this polytopal complex is nothing more than the
normal polytope Ps(z), viewed as a subset of Ng.

If we’re not so careful in how we choose the z-values—for example, if we decrease the
value of z;—then the polytopes P, .(z) no longer meet along faces, as we’ve depicted
below, and their union is no longer equal to the normal polytope.

As the previous example illustrates, if we want to define a polytopal complex using
the polytopes P, .(z), then we require an extra compatibility between the inner product
and the z-values in order to ensure that the polytopes P, .(z) meet along faces; we now
introduce such a condition. We say that the value z € R*() is cubical with respect to
(3, %) if, for all 0 € X, we have

o°N{veNg |vku,=z,forall peo(l)} #0,

and we say that z € R*() is pseudo-cubical with respect to (3, %) if, for all ¢ € X, we
have
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oN{veNr|vku,=z,forall peo(l)} #0.

Note that, because X is simplicial, the intersections in these definitions contain at most
one vector. Below, we have depicted what it means for the intersecting hyperplanes to
be cubical, pseudo-cubical, and neither in the case of a two-dimensional cone.

P2 P2 P2

P1 P1 P1
cubical pseudo-cubical not pseudo-cubical

In the cubical case of the two-dimensional setting depicted above, notice that the poly-
tope P, .(z) is combinatorially equivalent to a square. In higher dimensions, we will see
in Proposition 3.8 that P, .(z) is always combinatorially equivalent to a cube when z is
cubical, justifying the terminology.

As we will see in Proposition 3.2, the set of cubical values forms an open convex
polyhedral cone Cub(X, ) € R¥(1) and the set of pseudo-cubical values forms a closed
convex polyhedral cone Cub(X, ) € R¥(M) whose interior is Cub(X, *). In Section 3, we
also prove that, when z € Cub(X, #) is pseudo-cubical, the polytopes P, .(z) do, in fact,
meet along faces, implying that the collection of these polytopes and their faces forms a
polytopal complex (Proposition 3.7). For a polyhedron P, let P denote the polyhedral
complex comprising all faces of P. For any pseudo-cubical z € Cub(X, %), define the
normal complex of 3 with respect to z and * as the polytopal complex

Csa(2) = | Pos(2). (2.5)

The next example depicts a normal complex in the noncomplete setting.

Example 2.6. Let Ng = R? and let u1,us, us be the standard basis vectors of R?. Set
up = —(u1 + uz + u3) and, for any subset S C {0,1,2,3}, define ug = ;. qu;. Let
ps denote the ray spanned by ug and let ¥ be the two-dimensional fan depicted in the

image below (for notational simplicity, we omit set brackets and commas for subsets
S C{0,1,2,3}).
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P123

Po3

Po

Po1

In order to construct normal complexes, we require an inner product—Ilet % be the
standard dot product on R3. The image below gives one example of a normal complex
C . (z) with respect to one particular cubical value z € Cub(X, *)—it is comprised of
nine quadrilaterals and their faces.

Changing the z-values corresponds to sliding the boundary components of the normal
complex along the corresponding rays of ¥, and the cubical z-values correspond to those
deformations for which the combinatorial structure of the polytopal complex is constant.

Remark 2.7. As mentioned in the introduction, one could alternatively define the notion
of a normal complex of (3, ) with respect to z as

S () P (2) (2.8)
where Px(z) is the polyhedron
Ps(z) = {ve Mg | (v,u,) <z, forall pe %(1)} C Mg.

This alternative definition certainly has advantages; for example, this approach does
not require the pseudo-cubical condition as part of the definition and yields a polytopal
complex for any z-value. Moreover, in the setting of complete fans, the support of this
polytopal complex can always be identified with the normal polytope, so (2.8) is a true
generalization of normal polytopes to the noncomplete setting.
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To justify why we have opted not to use this alternative approach, first observe that
definitions (2.5) and (2.8) agree whenever z € Cub(3, x) and

P, (z) C{veNr |v*u, <z, forall p¢o(l)}. (2.9)

While the pseudo-cubical condition can be checked locally cone-by-cone, the extra con-
dition (2.9) is rather cumbersome to work with, requiring an understanding of the global
geometry of ¥. The reason we have chosen to work with the slightly more technical
definition (2.5) instead of the more straightforward definition (2.8) is essentially so we
do not require the extra condition (2.9) as a hypothesis for our results. If we include this
hypothesis, then our results apply to both definitions, but using the approach in (2.5)
allows us to prove these results for a more general set of z-values.

Remark 2.10. For a given fan ¥ C Nr with inner product * € Inn(Ng), it can be
shown that every pseudo-cubical value gives rise to a conver piecewise linear map on X,
where convexity is in the sense of [2, Definition 4.1]. In particular, if ¥ is complete and
unimodular, pseudo-cubical values give rise to nef divisors on the associated toric variety.
On the other hand, it is not hard to find examples of complete, unimodular fans with a
fixed inner product that admit nef divisors that cannot be represented by pseudo-cubical
values. In other words, in the complete, unimodular setting, not every normal polytope
can be represented as the support of a normal complex, so our results do not strictly
generalize (2.2). However, the methods in this paper imply that our volume-theoretic
interpretation of the volume polynomial can be extended to all z-values as long as one
is willing to work with signed volumes of simplices, and it then follows from a recent
result of Schneider [28, Proposition 1] that this more general interpretation does, indeed,
generalize (2.2) for all convex values.

2.5. Volumes of normal complexes

We now discuss how to define volumes of normal complexes. As in the case of complete
fans, we should normalize volumes of polytopes using dual lattices. However, since each
polytope P, .(z) lies in a subspace of N, some additional care must be taken in order
to define the appropriate normalization.

For each cone o € %, define the subgroup

Ny = SpanZ(up | pE J(l)) C Mg,
and let M, denote the dual of IV,. Using the inner product *, we can identify M, g =
M, ® R with N,g = N, ® R and thus, we can view M, as a lattice in N, r. For each

o€, let

Vol,, : {polytopes in NU,R} — R>g
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be the volume function determined by the property that a fundamental simplex of the
lattice M, C N, has unit volume, and define the volume of the normal complex Cy.«(2)
as the sum of the volumes of the constituent d-dimensional polytopes:

Vol(Csu(2)) = Y Volg(Po(2)).

oex(d)

In slightly more generality, suppose that w : ¥(d) — Rsq is a weight function on the
maximal cones of . The volume of the normal complex Cf, ,(z) weighted by w is defined
by

Vol(Csu(2);w) = > w(0)Voly(Pr(2)). (2.11)

ocex(d)

One of our main results regarding normal complexes of general simplicial fans is an
explicit computation of their volume. In Theorem 4.3, we prove that, for every z €
Cub(%, %) and o € X(k), we have

Voly (Ppa(2)) = det(Gy) 3 H det(@ det ® () (2.12)

feL(o) j=1 U(f]))

where the notation is defined as follows:

for o € X(k), the set L(o) is the set of bijections f: {1,...,k} — o(1);
for f € L(o) and 1 < j < k, the cone o(f,j) < o has rays indexed by {f(7) | < j};
o the matrix G, is defined by G, = (u, * up)p neo(1);

o the matrix G, ,(2) is obtained by replacing the pth column of G, with z, =

(277)7760(1)-

As we will see in Section 4, this formula for Vol, (P, .(2)) follows from a specific trian-
gulation of P, .(z) that we describe explicitly in Proposition 3.11.

If > happens to be a complete unimodular fan, then it is not hard to see from the
definitions that volumes of normal complexes reduce to volumes of normal polytopes:

Vol(Cs (z)) = Vol(Px(z))

for all z € Cub(%, *). In particular, Vol(Cyx .(2)) is independent of the choice of inner
product when ¥ is complete. When ¥ is not complete, however, one should not expect
volumes of normal complexes to be independent of this choice. The next example illus-
trates how the choice of the inner product * influences the shape of normal complexes
as well as the computation of their volumes.

Example 2.13. Let ¥ be the fan associated to the first quadrant in Ng = R2:
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P2

P1

Let z = (21,22) = (2,2) and let * =+ be the standard dot product. Then the polytope
P,.(2,2) is the 2 x 2 square depicted in the image below.

U2 @ ° )

In this image, we have also included a part of the lattice M,, along with a fundamental
simplex. From this picture, we see that Vol,(P,.(2,2)) = 8.

We could just as well choose a different inner product; for example, let us consider
the inner product * = x defined by

(a,b) * (c,d) = 4ac + ad + be + 2bd.

Using the same choice z = (z1,22) = (2,2), we have depicted the polytope Py .(2,2)
below, along with a part of the lattice M, and a fundamental simplex.

U9 ¢

By chopping up the fundamental simplex and filling the polytope, we can see that

Vol (P, (2,2)) =5 # 8 = Vo, (P,.(2,2)).
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Since ¥ contains just a single 2-dimensional cone, we have Vol(Cyx .(z)) = Vol (P, .(2))
for any z and *, from which we see that the volumes of the normal complexes associated
to this noncomplete fan ¥ depend in a nontrivial way on the choice of inner product.

Example 2.13 illustrates that Vol(Cs .(z)) depends nontrivially on the choice of *;
however, one might be so optimistic as to hope that there is a nice family of noncom-
plete fans that shares a particular type of symmetry for which weighted volumes of
normal complexes are independent of the choice of inner product. As we will see below,
independence of * will naturally and directly lead us to the concept of tropical fans.

2.6. Square-free expressions

The expression in the right-hand side of Equation (2.12) also arises in a natural way
when computing products of divisors in A®*(X). Suppose that ¥ C N is a simplicial fan
and, for all z € R¥M)| denote

D(z) = Z 2pXp.

peEX(1)

Given any inner product * € Inn(Ng), we prove in Theorem 5.1 that

D(z1)--D(z) = Y (det ) > Hdetdet f(J))( )))XU, (2.14)

oes(k) feL(o) j=1

where all notation is as in (2.12). Equation (2.14) provides a way of expressing any
product of divisors in A*(X) as a linear combination of square-free products of divisors.
Moreover, we also prove that the coefficients in the right-hand side of (2.14) are positive
if z1,...,2; € Cub(X, *) and nonnegative if z1, . .., z; € Cub(X, ), so this result provides
a way of computing effective square-free expressions of pseudo-cubical divisors.

2.7. Degree maps, tropical fans, and volume polynomials

From (2.11), (2.12), and (2.14), we see that the weighted volume Vol(Cy .(z);w) is
the weighted sum of the coefficients of D(2)? € A%(%), as long as we express D(z)? using
the square-free formula in (2.14), which depends on * € Inn(/Ng). Therefore, in order to
determine whether Vol(Cy . (2);w) is independent of *, it suffices to know whether there
exists a well-defined linear degree map

degy,, : AY(Z) = R (2.15)

such that degy, ,(X,) = w(o) for every o € X(d). In fact, an elementary computation
[2, Proposition 5.6] shows that such a degree map exists if and one if
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Z w(o)ug\; € Nyg  forevery 7€ 3(d—1). (2.16)
oes(k)

=0
The weighted balancing condition in (2.16) is the defining property of a tropical
fan. More precisely, a tropical d-fan (X, w) is a d-fan ¥ along with a weight function
w : X(d) — Ry satisfying (2.16). When w(o) = 1 for all o, we say that ¥ is balanced,
and we omit w from the notation. Given a simplicial tropical fan (X,w), we define the

volume polynomial by

Volg,, : AY(Z) = R
D~ degE,w(Dd)a

where the tropical degree map degy, ,, is determined by the property that degy, ,(X,) =
w(o) for every o € X(d).

Our main result (Theorem 6.3) can now be stated precisely. Let (X, w) be a simplicial
tropical fan in Ng and choose an inner product * € Inn(Ng). For any D € A'(X) and
z € Cub(%, %) with D =" 2,X,, we have

Vols, (D) = Vol(Cs . (2); w). (2.17)

Remarkably, even though the shape and volume of each polytope in Cs .(z) depends
nontrivially on the choice of inner product and z-coordinates used to represent D, the
weighted sum of volumes of these polytopes is independent of these choices.

3. The cubical hypothesis

In this section, we develop a number of preparatory results regarding normal com-
plexes. These results will be especially important when it comes time to compute volumes
of normal complexes in the next section. Throughout this section, let ¥ C Ng denote a
simplicial d-fan, and let * € Inn(Ng) be an inner product.

3.1. Recharacterizing the cubical hypothesis

In this subsection, we introduce a useful characterization of the (pseudo-)cubical hy-
pothesis. Let z € R¥1) and for each cone o € %, define w, to be the unique vector in
the following intersection

Nyr N {U € Nr |v*u, =2z, forall pe 0(1)} ={w,}.

The fact that the intersection contains a single vector follows from the assumption that
¥ is simplicial. Given a cone o € X, we say that the value z € R¥() is cubical (pseudo-
cubical) with respect to (o, *) if
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wr €7° (w; €7) forall faces 7 <o.

Notice that z € R*(1) is (pseudo-)cubical with respect to (2, *) (as defined in the previous
section) if and only if it is (pseudo-)cubical with respect to (o, x) for each o € X(d). The
next results provide an alternative characterization of the (pseudo-)cubical hypothesis.

Proposition 3.1. A value z € R¥Y s cubical (pseudo-cubical) with respect to (o, ) if
and only if

up ¥ wr < 2, (up*wr <2z,) forall faces T =<0 andrays p¢T(1).

Proof. Given a face 7 <X o and a ray p € 7(1), the subspace N\, r divides N. g into
two half-spaces; let H, , denote the closed half-space that contains u, ¢ Nr\,Rr- The
cone 7 has a half-space presentation

r=N,gn (| Hrp = 7°=Ngn ()| H,
peT(1) peT(1)

We claim that w, € H? , if and only if u, *w;, < z,. This follows from the following
three observations.

ince wn\, € N\, R, then w, € if and only if w, —w,, € .
1) Si \» € No\pr, th H2,, if and only if \» € H2,
(2) For all p" € 7(1) \ {p}, the definition of w, and w;,, implies that

(S (wr — wT\p) = Uy k Wr — Uy k Wr\p = 2 — 2 = 0,

SO Wy — Wr\, is normal to N\, r. This implies that w, —wn\, € H7 , if and only if
up * (Wr —wr\,) > 0.
(3) The definition of w, implies that

Up * (Wr — Wr\p) = Up % Wr — Up ¥ W\, = Zp — Up * Wi\ p-

Now to prove the statement in the proposition regarding the cubical hypothesis, notice
that z is cubical with respect to (o, *) if and only if w, € 7° for all 7 < o (by definition),
which holds if and only if w, € H? , for all 7 < o and p € 7(1) (by the above half-space
presentation), which holds if and only if u, *w, < z, for all 7 < 0 and p € 7(1) (by the
above argument). This last condition is equivalent to the one given in the proposition. To
prove the statement in the proposition regarding the pseudo-cubical hypothesis, simply
remove each o and replace each < and > with < and > in the above arguments. O

As a consequence of the previous proposition, we obtain the following structural result
concerning (pseudo-)cubical values.
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Proposition 3.2. The set of cubical values Cub(XZ, ) C R>M s an open convex polyhedral
cone, the set of pseudo-cubical values Cub(X, x) C R>D) s a closed convex polyhedral
cone, and Cub(X, x) = Cub(3, %)°.

Proof. By elementary linear algebra considerations, it follows from the definition of the
w-vectors that the coordinates of w, are homogeneous and linear in z. Thus, by Propo-
sition 3.1, the set of cubical values are characterized by a finite set of strict inequalities
that are homogeneous and linear in z, and the set of pseudo-cubical values are charac-
terized by weakening the strict inequalities to allow for equality. The result then follows
from standard results in polyhedral geometry. O

3.2. Structure of normal complexes

In this subsection, we prove various structural properties of normal complexes, in-
cluding that the normal complex Cy .(z) is, in fact, a polytopal complex, and that the
constituent polytopes are combinatorially equivalent to cubes when z is cubical. We begin
with the following description of the combinatorial structure of the polytopes Py .(2).
Proposition 3.3. Suppose that z € Cub(Z, %) and o € X.
(1) The vertices of P, .(z) are

W ={w; |7 <0}

(2) For any pair of disjoint subsets Sy, S1 C 0(1), there is a face Fs, 5, < Py .(2) such
that

Fsys, "W = {wT | So C U(l) \T(l)v 51 C€ T(l)}’
and the faces of Py .(z) are
{FSO,S1 | So, 51 Co(l), SonS; =0}

We note that, in general, both the vertex and face descriptions in Proposition 3.3 are
redundant. For example, if w, lies in a proper face 7/ < 7, which can happen if z is
pseudo-cubical but not cubical, it then follows from the definition of the w-vectors that
wy = wr. As we’ll see in Proposition 3.8, there is no redundancy in these descriptions
when z is cubical.

Proof of Proposition 3.3. Recall that

Pri(z)=0n{veNg|vku, <z, forall peo(l)} C N, g.
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It follows from this description that P, .(z) is an intersection of closed half-spaces in
N,y r—two half-spaces indexed by each p € o(1)—where the bounding hyperplanes are

Noypr and {v € Nor |v*u, =2}
Therefore, for each p € o(1), we obtain two faces

Fl? = Py 4«(2) N Ny, r  and Fp1 =P, (z)N{veN,r | v*u,=2,}.
These faces may not be facets of P, .(z), but since they are obtained by intersecting
with the hyperplanes associated to a half-space presentation of P, .(z), it follows that
this set of faces contains all facets. In particular, this implies that every face of P, .(z)
can be obtained as an intersection of some subset of the faces of the form Fp0 and Fpl.
We first prove the vertex description by induction on dim(c). If dim(o) = 0, then

Pox(2) = {0} = {w,},
proving the base case. Now suppose dim(o) > 0. For each p € o(1), we have

Fg =P «(2) N Novp R = Po\ps(2) N {v € No\pr | V- 1y, < 2,1, (3.4)
where the second equality follows from the fact that P, .(z) has one more defining
inequality than P,\,.(z). By the induction hypothesis, the vertices of P\, .(z) are
{w; | 7 2 o\ p}, and using the pseudo-cubical hypothesis and Proposition 3.1, we see
that

wrku, <z, forall 7=0\p.
Thus, Py ,+(2) € {v € No\pr | v-u, < 2,}, and it follows from (3.4) that
F) = P\, .(2).

Therefore, the vertices of P, .(z) that lie in the face F) are equal to {w, | 7 < o\ p}.
Applying this same reasoning to all p € o(1), it follows that the vertices of P, .(z) that
are contained in at least one face of the form Fj are equal to {w, | 7 < o}. It now
remains to consider the vertices that do not lie in any of the faces of the form Fl? . Noting
that

m Fp1 = {we},

pEa(l)

it follows that there is at most one such vertex, and it is w,. Thus, we conclude that the
vertices of P, .(z) are W = {w, | 7 < o}.
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Next, we justify the face description. Intersecting each face F po with the vertices, we
claim that

FJOW = {w, [p¢ (1)} (3.5)

To prove this, first note that w, € N,\,r if p ¢ 7(1) (by definition of w;), which proves
that F) NW 2 {w- | p ¢ 7(1)}. For the other inclusion, suppose that w, € F) N W and
consider the cone 7/ = 7N (o \ p). Since w, € N, g and w, € Fp0 C No\pr, it follows
that w, € N g € N, r. By definition of the w-vectors, this implies that

wr =wr € {w, | p ¢ T(1)}
Similarly, intersecting each face F/ [} with the vertices, we claim that
1 _
F,nW ={w, |per(l)} (3.6)

To prove this, first notice that w, *u, = 2, if p € 7(1) (by definition of w, ), which proves
that F)NW 2 {w, | p € 7(1)}. To prove the other inclusion, suppose that w, € Fy NW
and consider the cone 7" < o with rays 7(1) U{p}. Since w; *u, = 2, for every n € 7/(1),
it follows from the definition of the w-vectors that

wr =wy € {w, | pe (1)}

Now, for each pair of disjoint subsets Sy, S1 C o (1), define

Fsys,= [ Fin () F,.
pPESo pESL

From (3.5) and (3.6), we see that
Fs, 5, "W ={w; | So Co(1)\7(1), S1 C7(1)}.

It remains to prove that every face of P, .(z) is of the form Fg, g, for some disjoint pair
So,51 C o(1), and we accomplish this by induction on dim(c). If dim(o) = 0, then the
only face of P, .(2) is Fp g = Py .(2) = {0}. Suppose dim(c) > 0 and let F' < P, ,(z) be
a face. Then F is an intersection of faces of the form Fg and F| pl. If the intersection does
not involve F po for any p, then there is nothing to prove. If the intersection involves Fg,
then we can view F' as a face of Fg = P,\,,«(2). By induction, we have that

0 1
F= () F)n (] Fy 2 Pryu(2)
n€So neS1

for some pair of disjoint subsets Sp,S1 C o(1) \ {p}. As a face of P, .(z), we can then
write
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F= () FE)n () FL

neSoU{p} n€S

which, upon observing that Sy U {p} and S; are disjoint, completes the induction step,
finishing the proof. O

As a first consequence of the combinatorial description of the polytopes P, .(z) given
in Proposition 3.3, we have the following important result.

Proposition 3.7. If z € Cub(X, %), then Cx .(2) is a polytopal comple.

Proof. Recall that

Cs.(2) = | Prn(2)
cED

where 130*(2) is the polytopal complex consisting of P, .(z) and its faces. In order to
prove that a collection of polytopes and their faces form a polytopal complex, it suffices
to check that the polytopes meet along common faces. Consider two polytopes Py, .(z)
and P,, .(z) associated to cones 01,02 € X. Let 7 = 01 Noy € X, and notice that
Py, +(2) N Py, «(2) € Ny g. For i = 1,2, define S§ = 0;(1) \ 7(1) C 0;(1) and notice that
Pdi,*(z) N N‘F,R = FSi:@ = Pdi,*(z)'
By Proposition 3.3,
Fg, g = conv(w, | ™ < 7),
from which it follows that
P, «(2) N Py, «(2) = conv(wy | 7 <X 7) <X Py, (2, %),

showing that the intersection is a face of both Py, .(2) and P,, .(z). O

As mentioned above, the combinatorial description of Py (%) in Proposition 3.3 may
be highly redundant; however, if we restrict to the cubical setting, that redundancy goes

away. The next result proves this, while also giving a justification for the term “cubical.”

Proposition 3.8. If z € Cub(X, ) is cubical and o € X(k), then the polytope P, .(z) is
combinatorially equivalent to a k-cube.

Proof. We must show that the face lattice of P, ,(z) is isomorphic to the face lattice of
the unit cube [0, 1]* C R*. Notice that the faces [0, 1]¥ are of the form
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Fso,s, = 10,1*N{z, =0|p€So} n{z, =1]p€ S}

where Sy, 81 C {1,...,k} are disjoint subsets. In particular, there are 2% vertices given
by

and the face lattice of [0, 1]* is determined by the vertex-face containments:

Wﬂﬁso,sl :{’LTI7—|S()Q{1,...,]C}\T, SlgT}'

Comparing the above description with the combinatorial description of P, ,(z) given
in Proposition 3.3, we see that the two descriptions are equivalent as long as the vertices
wr € P, .(z) are all distinct. By the cubical hypothesis, we know that w, € 7° for all
7 =< 0. Along with the observation that 7 N7y = 0 for all 71 # 72, we conclude that
Wy, # Wy, for all 7 # 79, completing the proof. O

3.3. Triangulating normal complexes

Our next aim is to construct a triangulation of the normal complex Cy ,(z) for all
pseudo-cubical values z € Cub(X, ). To describe the triangulation, we first require
some additional notation. Let o € ¥(k), define L(o) to be the set of labeling bijections
f:{1,...,k} = o(1). For each f € L(o) and 0 < j <k, let o(f,j) < o be the face of ¢
with rays indexed by {f(7) | ¢ < j}. Define polytopes

Ao, f) = conv(We(,0)s - - s Wa(f,k)),

where we note that the first vector is just the origins: wy(s,0) = 0. In the next example,
we depict how these polytopes fit together in the generic cubical setting.

Example 3.9. Let Ngr = R?, let u;, us, us be the standard basis vectors and let o be the
first octant. Let * be the dot product and set z; = z9 = z3 = 1. Then P, .(2) is the unit
cube in R? and for any face 7 < o, we have w, = > pier(1) Ui Each labeling function
f € L(o) determines a simplex, and these simplices (along with their faces) triangulate
the unit cube as depicted below. Note that the origin is in the lower left-hand corner of
this image and the vector (1,1,1) is in the upper right-hand corner.
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While the previous example illustrated how the polytopes A(o, f) fit together in the
generic cubical setting, the situation can become much more degenerate in the pseudo-
cubical setting, when some of the vertices of P, .(z) are allowed to coincide. We give one
particularly degenerate illustration in the next example.

Example 3.10. Let Ng = R3, let u; = (1,0,0), ups = (1,1,0), and uz = (1,1,1), and set
o = cone(uy, us,usz). Let * be the dot product and set z; = 1, 20 = 2, and z3 = 3. Then
P, .(z) = conv(0, u1, us, uz), which we have depicted below.

It can be checked that, for any face 7 < o, we have

(51 T(l) = {P1}7
Wr = § U2 pP2 € 7'(1) and p3 ¢ T(l)a
uz  p3 € 7(1).

It follows that A(o, f) = P,.(2) if f(i) = p; for each i, and for every other labeling
function, A(o, f) is a proper face of P, .(z). Even though there is a lot of redundancy in
this pseudo-cubical setting, the simplices A(o, f) (along with their faces) still triangulate
P, . (z).

In each of the previous two examples, we saw that the simplices A(o, f) and their
faces triangulate the polytope P, .(z)—we now aim to prove this in general. For each
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ceXYand f € Lo), let 3(0, f) denote the polytopal complex consisting of A(g, f) and
its faces. The next result will be key to computing volumes of normal complexes in the
next section.

Proposition 3.11. For any z € Cub(X, *), the collection

U 2@
ocex(d)
feL(o)

is a triangulation of Cx; .(z). Furthermore, the function
f € L(o) = A(o, f) € {polytopes in N,r}
is injective when restricted to the preimage of d-dimensional polytopes.

Proof. Fix o € 3(d) and consider the polytope P, .(z). We prove that the collection

U A@.h (3.12)

feL(o)

is a triangulation of 130*(2) To do so, we argue that (3.12) results from a sequence of
pulling subdivisions—a procedure that we now recall.

If C is a polytopal complex and v € C is a vertex, then the pulling subdivision of
C at v, denoted pull,C, is the polytopal complex obtained by replacing every polytope
P € C that contains v with the collection of pyramids conv(v, F') for all proper faces
F < P. For example, the pulling subdivision of a polygon (and its faces) at a vertex is the
triangulation obtained by connecting that vertex to every other vertex of the polygon.
A few important properties of pulling subdivisions that can be readily checked from the
definition are:

(1) The polytopal complexes C' and pull,C' have the same support;

(2) The vertex v is an apezx of pull,C, meaning that v is adjacent to every vertex in
every polytope of pull,C that contains v;

(3) If v is an apex of C, then pull,C = C;

(4) If w is an apex of C, then it is also an apex of pull,C.

It follows from these properties that sequentially performing a pulling subdivision at
every vertex of a polytopal complex results in a polytopal complex for which every
vertex is an apex; in other words, it results in a triangulation.

We now claim that (3.12) is obtained by an iterated sequence of pulling subdivisions
of 130,*(,2), where we first subdivide at the vertex wyo, = 0, then at the vertices {w, | 7 €
o(1)} (in any order), then at the vertices {w, | 7 € 0(2)} (in any order), and so forth.



26 A. Nathanson, D. Ross / Advances in Mathematics 420 (2023) 108981

To prove this, let ﬁg*(z) , denote the polytopal complex resulting from the first k steps
of this process; we claim that

U P (3.13)
weo(k)
feL(m)

where

P(’/Ta f) = Conv(wﬂ(f,O)a s 7w7r(f,k—1)7 F@,ﬂ(l))a

and the faces Fy »(1) = P, «(2) are those described in Proposition 3.3. Upon observing
that P(o, f) = A(o, f), we see that the triangulation (3.12) is the k = d case of (3.13).
We prove (3.13) by induction on k. For the base case k = 0, it suffices to notice that

P, .(z) = Fpy = conv(Fpp).

To prove the induction step, assume that (3.13) holds for some k. By definition,
P, «(#2)k+1 1s the pulling subdivision of P(7 «(2)k at {w; | T € o(k)}, so using the induction
hypOtheblb, we can compute this in terms of the right-hand side of (3.13). Fix 7 € o(k).
To compute pull,, ﬁo*(z) k, we first identify which polytopes P(m, f) in the right-hand
side of (3.13) contain w; as a vertex. There are two possibilities: either w; = wx(y,; for
some 7, f, and 4, or m = 7, in which case wr € Fp r1)- In the first case, w, is already
an apex of P(r, f), so pull,, P(r, f) = P(x, f). Thus, it remains to compute the pulling
subdivision in the second case: pull,,_ P(r, f).

To compute pull,, (7' ), notlce that w, € Fy 1) and, by Proposition 3.3, every
face of Fp ;1) that does not contain w, is contained in some face of the form Fy - (1yu(,}
for some p € o(1) \ 7(1). It follows that every face of P(7, f) that does not contain w,
is contained in some face of the form

COHV(wT(f,O)a sy Wr(fk—1) F@,T(l)u{p})'

Noting that 7 = 7(f, k), it then follows from the definition of the pulling subdivision
that

pUIleﬁ(Ta f) = U C/Oﬁ<w7'(f70)7 co Wr(f,k=1) Wr(f,k)s F@,‘r(l)U{p})‘
pEa(\7(1)

Varying over all f € L(7) and 7 € o(k), it then follows that

Pr(n= | P.f)
neo(k+1)
feL(r)

completing the induction step.



A. Nathanson, D. Ross / Advances in Mathematics 420 (2023) 108981 27

To prove the final statement in the proposition, the key observation we require is that
the face Fjy ¢ has dimension at most d — |S|, and whenever dim(Fp g) = d — |S|, we have

Fys C Fy oy =F, ifandonlyif peS. (3.14)

In other words, if dim(Fp ) = d — |S|, then Fj g uniquely determines the set of rays in
S. Property (3.14) follows from the fact—discussed in the proof of Proposition 3.3—that
the facets of P, .(z) are a subset of the faces of the form Fp0 and Fpl.

Now suppose that A(o, f) is d-dimensional; we must prove that f is uniquely de-
termined by A(o, f). Using that {w,(s1),...,Ws(f,q)} are linearly independent and
contained in Fj , (1), we see that dim(Fp 1)) = d — 1. By (3.14), this implies
that the face spanned by the nonzero vectors in A(o, f) uniquely determines o(f, 1),
and thus determines f(1). Next, suppose we have used A(o, f) to uniquely determine
f@),.... f(k —1); we must show that we can then uniquely determine f(k). Using
that {we(f k), Wo(s,a)} are linearly independent and contained in Fy 5(f k)1, We
see that dim(Fy 5(fk)1)) = d — k. By (3.14), this implies that the face spanned by
{Wo(f,k), -+ Wo(f,q)} uniquely determines o(f, k), thereby determining f(k). This com-
pletes the induction step, finishing the proof. O

4. Volume computations

The main result of this section is the derivation of an explicit formula for weighted
volumes of normal complexes. Throughout this section, let ¥ C Ng denote a simplicial
d-fan, and let * € Inn(Ng) be an inner product.

4.1. Normalizing volume

In this subsection, we discuss a preparatory result that allows us to compute nor-
malized volumes using determinants. Let ¢ € ¥(k) and consider the vector space N, r.
Notice that any volume function {polytopes in NU’R} — R>g is uniquely determined by
its value on the simplex A, = conv({0} U{u, | p € 0(1)}), and any two volume functions
differ by a scalar multiple. By restricting the inner product * € Inn(/Ng), we obtain an
inner product * € Inn(N, ), and this inner product allows us to define the Euclidean
(simplicial) volume function

vol, : {polytopes in NJ,R} — R>o,
which is normalized so that the simplex associated to any orthonormal basis (with respect

to *) has unit volume. A linear algebra exercise shows that the Euclidean volume of the
simplex A, is given by the formula

vol, (A,) = v/det(Gy) (4.1)
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where G, is the Gram matrix
Go = (up * Un) ppeo(1)-
In regards to computing volumes of normal complexes, we require the volume function
Vol, : {polytopes in N(,,R} — R>o,
which is normalized so that the volume of a fundamental simplex of the lattice M, C
N, r has unit volume. The next result allows us to compute the volume function Vol,(—)
in terms of the Euclidean volume function vol, (—).
Lemma 4.2. For any polytope P C N, r, we have
Vol, (P) = y/det(G4)voly(P).

Proof. Let {v, |n € o} C M, be the dual basis of {u, | p € 0(1)} € N, determined by
the property that

Up * Uy = Opyg,

where d,,, is the Kronecker delta function. Using the identification of M, g and N, r
given by the inner product *, write the change of basis transformation as T, =

(@p,n)pmeo(r) Where

Up = E Qp,nUn-

neo(l)
Notice that
Go = (up * up) p ety = (apm)pneo) = To,

where the second equality follows from replacing each u, with its expression in terms of
vy. Define

A7 = conv({0} U {v, | 1 € o)),
so that
T, (A%) = A,.

Using that linear transformations rescale volumes by the absolute value of their deter-
minant, we see that
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Vol (A,) = | det(T,)[Vol, (A7)
= det(G,)Vol, (A7)
= det(Gy).

The second equality follows from the above observation that G, = T, and the fact that
Gram determinants are always nonnegative, and the third equality follows from the fact
that A7 is a unit simplex in M,. Therefore, combining these computations with (4.1),
we see that

Vol, (Ay) = v/det(Gy)vols (Ay),
proving that the scaling factor between these volume functions is y/det(G,). O
4.2. Volumes of normal complezes

We now present a formula for volumes of normal complexes. Recall that, for any
pseudo-cubical value z € Cub(3, *), the volume of the normal complex Cs; .(z) weighted
by w is defined by

Vol(Csu(2)iw) = > w(0)Voly(Pr,(2)).

oceX(d)
The next result computes an explicit formula for these volumes.

Theorem 4.3. For any z € Cub(3, ) and o € (k) we have

det(G, )
Vol (Py . (2)) = det(Go) > HW

feL(o)j=1 U(fv]))

where the notation is defined as follows:

for o € X(k), the set L(o) is the set of bijections f : {1,...,k} = o(1);
for f € L(o) and 1 < j <k, the cone o(f,j) <X o has rays indexed by {f(i) | i < j};
the matriz G4 is defined by Go = (up * Up) pneo(1);

e the matriz G, ,(z) is obtained by replacing the pth column of G, with 2, = (2y)neo(1)-
Proof. By Proposition 3.11, we can write

Vol ( = Y Vol,(A(o, f)),

f€EL(0o)

where
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Ao, f) = conv(u}c,(ﬁo)7 .. ,wg(fyk)).

Therefore, it suffices to prove that

det(
Vol, (Ao, f)) = det(G H edet—f”f“)).

U(f»]))
It follows from Lemma 4.2 that
Vol (A(o, f)) = v/det(Gy)vol, (A(a, f)).

In order to compute the Euclidean volume of A(o, f), we start by writing each w, as a
linear combination of the vectors {u, | p € 7(1)}:

= E Qr pUp.

peT(1)

Define the matrix

Tt = (ao(f.5).p) 1<i<k »
pEa(l)

so that T¢(Ay) = A(o, f), where A, = conv({0} U{u, | p € 6(1)}). Then

vol,(A(o, f)) = | det(Ty)|vol, (As)
= | deg(Ty)[v/ det(Gy),

where the second equality follows from (4.1). By definition, notice that a, (s ;) , = 0 for
all p ¢ o(f,7)(1). It follows that, up to a sign, det(7) is the product of the entries

{aorg)p) 1 =10k}

All of these entries are nonnegative by the pseudo-cubical assumption, so

| det(Tr)| = lao(s,1),7(1) " Qo(f k), 10| = Co(r,0),00) Qo (1,k), 1 (R)-

Combining the above observations, we have proved that

VOIU(A( det Haa(f]) fG)-

It remains to compute each Qo (f,5),f(5)-
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Recall that wg,(y ;) is defined by j linear equations

Wo(y4) *Up =z, With p€o(f,7)(1)

Writing

wa(f:.]) = Z ag—(f’j)’pu/”

p€a(f,5)(1)

these linear equations can be encoded in a matrix equation

Go(1.9) " (@o(s.5).0)0e0(1.5)1) = (2p)pea(s.i)(1)-

By Cramer’s rule, it then follows that

tois s = SUGe ) (2)
o (f.9).p det(Go(y,5))

and we conclude that

det(Go(s.5),r()(2))
det(Go(y.5))

k
Vol, (A(o, f)) = det(Gy) H

completing the proof. O
5. Square-free expressions

In this section, we derive a formula for products of divisors in Chow rings of simplicial
fans as linear combinations of monomials that are square free in the generators and whose
coeflicients are closely related to the volume computations of the previous section.

Let ¥ C Ng denote a simplicial d-fan, and for any z € R*(1)| define

Z 2,X, € AND).

peEX(1)

Our main result of this section is the following.®

Theorem 5.1. For any inner product x € Inn(NR) and values z1, ...,z € R>M | we have

D(z1)-D(z) = Y (det ) Hdetdo(fa)f(a)( )))XgeA.(E),

o€ (k) FeL(o) j=1 et(Go(r.5)

3 Theorem 5.1 as written here is stronger than a result that was written in a preliminary draft of this
paper, and the authors thank Chris Eur for an enlightening conversation that led to this strengthening.
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where all notation is as in Theorem 4.3. Moreover, the coefficients are monnegative if
21, .., 2k € Cub(X, %) and positive if z1, ...,z € Cub(X, *).

Proof. We prove the formula by induction on k, the base case being k£ = 0, in which
both sides of the equation are 1. Assume that k > 1 and that the result is valid for k£ — 1.
Then

D(z1)---D(z) = Y. (det 3y Hdetdez(“ ) )X 3 a,X

TeS(k-1) geL(r) j=1 Grig) pEx(1)

(5.2)
Given 7 € ¥(k — 1) and g € L(7), the definition of the ideal J leads to the following
system of k — 1 linear equations:

k—1
Zug(y) * Ug(i) Xg(i) = — Z Ug(j) * upX
i=1 pgr(1)
Solving this system using Cramer’s rule, we have, foralli=1,... .k —1,

Z det(G- L (ug(s) * up)j) X,

Kot = det(G ) =

where the rows and columns in G, are ordered by the labeling function g € L(7), and
G- ¢ (ug(j) * up); is the matrix obtained from G- by replacing the ith column with
(ug(j) * up)j- It then follows that

1

XY X=X 30X, (s ZWdet(@'rHugm*up)j))

S0 p — det(G)
k—1
Zhg(i) de6(Gr & (Ug(h) % Ug)5)
= > Xol(mp—D
oex(k) ( i=1 det(G-) )
T<0
det(Ga o\T (Zk))
- Z XU,—7 (53)
oes(k) det(G)
T<0

where the final equality follows from expanding the numerator in the final expression
along the last column. Defining f € L(o) from g € L(7) by

L Je(G) >k,
f(])_{U\T if j =k,

and substituting (5.3) into (5.2), we then conclude that
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D(z1)-+D(zk) = Y (det »y Hdetdo—(fﬂfg)( )))X<77

oex(k) feL(o) j=1 et U(fj))

completing the induction step.
To prove the positivity statements, it is enough to argue that

det(Go,p(2))

det(Gy) (54)

is nonnegative when z € Cub(X, *) and positive when z € Cub(X, *). This follows from
the definition of cubical along with the observation, explained in the proof of Theorem 4.3
(see Equation (4.4)), that the quantity in (5.4) is equal to the coefficient of u, in the
unique expression of w, as a linear combination in {u, |n € o(1)}. O

6. Tropical fans and volume polynomials

In this section, we connect the volume computations of normal complexes to the
square-free expression of products in Chow rings, leading to a proof of our main result.
The key preliminary fact we require is the following.

Proposition 6.1. Let X be a simplicial d-fan in Ng and let w : 3(d) — Rsq be a weight
function. Then (X,w) is a tropical fan if and only if there is a well-defined linear degree
map

degy, : AYX) = R
satisfying degsy, ,(X,) = w(o) for every o € £(d).

Proof. In the unimodular setting, this result is a special case of [2, Proposition 5.6], and
the proof given there generalizes to the simplicial setting. For the reader’s convenience,
we outline the ideas here.

Define Z4(X) to be the vector subspace of Rz, | p € £(1)] generated by monomials
of the form z, with o € ¥(d). By Theorem 5.1, every element of A%(¥) can be written
as a linear combination of monomials of the form X, with o € 3(d), and it follows that

Z4(%)
T+7)N 243

AY(®) =
Define the linear map

degy,, : Z4(Z) = R

Ty — w(o).
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Then degy, ,, descends to the desired tropical degree map on AY(X) if and only if it
vanishes on all elements of (Z 4+ J) N Z4(X). Some moments reflecting should convince
the reader that the subspace (Z + J) N Z%(X) is generated by polynomials of the form

Tr Z <U> ua\‘r>xa\‘r

ocex(d)
T<0

where 7 € ¥(d — 1) and v € (Ng)* C Mg. Thus, the tropical degree map exists if and
only if, for every 7 € X(d — 1), we have

> (ww(o)ug,) =0 forall ve (N.g)". (6.2)

oeX(d)
T<0

Notice that (6.2) is satisfied for all 7 € X(d — 1) if and only if the tropical balancing
condition is satisfied:

Z w(o)ug\, € Nor forall 7e€X(d-1). O

oceX(d)
T<0

We can now prove the main result of this paper. Recall that the volume function for
a simplicial tropical d-fan (X, w) is defined by
Volg,, : AY(Z) = R
D — degy, . (DY).

Theorem 6.3. If (3,w) is a simplicial tropical d-fan in Nr and x € Inn(NR) is an inner
product, then for any D =3 2,X, € AY(X), we have

Volgw(D) = > w(o)det(Gy) > H detdeg(f .50 (2 ))7

s€2(d) feL(o) j=1 Gotr)

where all notation is as in Theorem 4.3. In particular, if z € Cub(X, %) is pseudo-cubical,
then

Voly, (D) = Vol(Cs. . (2); w).
Proof. We have

Vols (D) = degsy, ,(D?)

= degy; , ( > (det ) > H detdez(fﬂ) ) )))XJ>

€x(d) FeL(o) =1 (Gor.))
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det(Go(r).r()(2))
:Z det ZHedet(f )

cex(d) feL(o) j=1 ”(f]))

where the first equality is the definition of the volume function, the second is an applica-
tion of Theorem 5.1, and the third is the definition of the tropical degree function. The
second statement in the theorem is an immediate application of Theorem 4.3. O

7. Example: Bergman fans of matroids

In this final section, we present a rich class of examples of balanced fans arising from
matroid theory, called Bergman fans. Our main result is that every Bergman fan of a
matroid with arbitrary building set admits an open set of inner products for which the
cubical cone is nonempty. Theorem 6.3 then provides a geometric interpretation for the
volume polynomials of all matroids with respect to arbitrary building sets.

7.1. Matroids, building sets, and Bergman fans

A matroid M = (E, £) consists of a finite set E, called the ground set, and a collection
of subsets £ C 2¥, called flats, which satisfy the following two conditions:

(1) if Fy, Fy are flats, then Fy N F is a flat, and
(2) if F is a flat, then every element of F \ F is contained in exactly one flat that is
minimal among the flats that strictly contain F'.

For notational simplicity, we assume throughout that all matroids are loopless, meaning
that the empty set is a flat. Let £* denote the proper flats of M—those flats that are
neither () nor E.

Given a matroid M = (E, L), the set £ is partially ordered by set inclusion. Further-
more, given any subset S C FE, it follows from Property (1) that there is a minimal flat
containing S, called the closure of S and denoted cl(S) € L. Defining the join (V) of two
flats to be the closure of their union and the meet (A) of two flats to be their intersection,
it follows from the definitions that the flats £ form a lattice, called the lattice of flats of
M.

A subset I C FE is called independent if cl(1;) C cl(l2) for any I; C Is C I. The rank
of a subset S C E, denoted rk(S), is the size of its largest independent subset. The rank
of M is defined as the rank of E. An alternative characterization of the rank of flats is
given by lengths of flags. A flag in M is an increasing sequence of flats:

:(QCF1CF2C"'CFZ)

The number of nonempty flats in a flag F is called the length of the flag, denote ¢(F).
It can be checked from the above definitions that every maximal flag of flats contained
in a flat F has length equal to rk(F).
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A building set on M is a subset G C £\ {0} such that, for any flat ' € £\ {0} and
max Gcp = {G1,..., Gy}, we have an isomorphism of posets

k

[110.c.0 = [0, F)

i=1

(Fl,...,Fk)f—)Fl\/”'\/Fk.

We assume that all building sets contain E and we set G* =GN L* = G\ {E}. Given a
building set G, a subset A/ C G is called nested if, for any set of pairwise incomparable
flats G1,...,G¢ € N with ¢ > 2, we have G1 V --- V G¢ ¢ G. Let Ay g denote the
collection of nested sets of M with respect to G, and let Ay ; denote the collection of
nested sets that do not contain E. Since subsets of nested sets are nested, both Ap g
and Ay, 5 naturally have the structure of simplicial complexes. The set £\ is a building
set for any matroid M, which we denote Gy ax. With respect to Gy, it follows from the
above definitions that a set of flats is nested if and only if it forms a flag.

Consider the free abelian group Z¥ with basis indexed by E. For each subset S C E,
define the vector vg = Y cqve € ZF. Set N = Z¥ /Zvg and for each subset S C E,
define ug = [vg]. The Bergman fan of M with respect to G, denoted X g, is the fan in
Ngr with one cone o indexed by each nested set N € A*M,g:

on = cone(ug | G € N).

Example 7.1. Consider the rank 3 matroid M on E' = {0, 1, 2, 3} with the following lattice
of flats (set brackets and commas have been omitted for notational simplicity).

0123

The Bergman fan ¥y g, of M with respect to the maximal building set Gpax is depicted
in Example 2.6. The other possible building sets arise from removing some subset of the
decomposable flats {01,02,03}, and the Bergman fans with respect to these building
sets are obtained by removing the corresponding subset of the rays {po1, po2, pos} from

XM, G -
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Bergman fans of matroids with building sets have been studied quite extensively (see,
for example, [3,18,21,19,20]). The Bergman fan Xy g is unimodular [21, Proposition 2].
In addition, given any building set G, the fan mg,.. can be obtained from ¥y g by
a sequence of stellar subdivisions [19, Proposition 4.2]. This fact has two important
consequences that are central to our current discussion.

(1) Since ¥m.g,,.. is pure of dimension r = rk(M) —1 (every maximal flag has length r),
it follows that ¥u g is pure of dimension r for any building set G.

(2) Since Xm,g,,., is balanced (this follows from the second axiom in the definition of ma-
troids, see [23, Proposition 3.10] for a proof), it then follows from [6, Lemma 2.11(b)]
that X g is also balanced for any building set G.

Thus, our developments of normal complexes of balanced fans apply in the setting of
matroids and Bergman fans. Let

Volug and Cmgs(2),

denote the volume polynomial and the normal complex associated to the Bergman fan
Ym,g, where * € Inn(Ng) is any inner product and z € Cub(Xm,g,*). Theorem 6.3
implies that the volume polynomial is computed by

det(G )
Volwg(2)= Y. det(Go) Y. Hdet—“)“”, (7.2)

o €S g(r) fe(o (Gor)
and that, for any pseudo-cubical value z € Cub(Xm g, *), we have
Vol g(2) = Vol(Ci,g.(2)). (7.3)

Bergman fans exhibit a great deal of structure, and this structure was recently ex-
ploited by Adiprasito, Huh, and Katz [2] (for maximal G) and Ardila, Denham, and
Huh [1] (for arbitrary G) to show that matroid Chow rings A*(M,G) = A®*(Xm,¢g) satisty
the Kéhler package, meaning that they behave in many ways similarly to Chow rings
of smooth, projective varieties. In fact, because matroid Chow rings satisfy Poincaré
duality—which is just one piece of the Kéahler package—it follows that the volume poly-
nomial Voly g(z) determines the entire Chow ring A*(M,G) [12, Lemma 13.4.7]. In the
setting of maximal building sets, volume polynomials have been previously studied, and
there are at least two combinatorial formulas for volume polynomials of matroids with
respect to0 Gmax [17,8,16]. Equation (7.2) provides a continuous family of new formulas
for volume polynomials of matroids with arbitrary building sets, one for each choice of
inner product.

The initial aim of this work was to introduce volume-theoretic tools into the study of
volume polynomials of matroids; in other words, to put the “volume” back in “volume
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polynomials” of matroids. In principle, this is accomplished by Equation (7.3); however,
it is not obvious that the hypothesis of (7.3) can ever be satisfied. In other words, the
cubical hypothesis is a rather restrictive constraint on the choice of * and z, and it’s not
clear that cubical values ever exist. We resolve this issue with the next result.

Proposition 7.4. If M = (E, L) is a matroid and G is a building set, then there exists a
nonempty open set U C Inn(Ng) such that, for any x € U, we have Cub(Xwm g, *) # 0.
More specifically, if we label the ground set E = {ey,...,e,} and let x be the standard
dot product with respect to the basis ue,, ..., ue, € NRr, then there exists a cubical value
z € Cub(Zm,g, *).

The proof of this proposition requires one important property of nested sets, which is
that any two incomparable elements of a nested set are disjoint. This property can be
checked from the definitions above, or a proof can be found in [18, Section 2].

Proof of Proposition 7.4. It follows from the definitions that the existence of a cubical
value is an open condition on Inn(Ng); therefore, the first statement in the proposition
follows from the second. Label the ground set E = {ey,...,e,} and let % be the standard
dot product with respect to the basis u.,, ..., ue, € Nr. By definition, note that

n
Ugy = — E U, -
i=1

Choose some m > 0 and for every G € G*, set

IGI=mTIE e ¢ G
|G¢| —m~ICl if ey € G.

We claim that z € Cub(Xm,g,*). In order to verify this, we must prove that, for each
nested set NV, we have wy = w,,, € 03
Fix a nested set N and write

WN = Z CL/\[7GUG.
GeN

We must prove that ap,e¢ > 0 for all G € N. The coefficients ay ¢ are determined by
the linear equations

wy xug =2 forall GeN.

In order to write these linear equations more explicitly, notice that, for G1,Go € G*, we
have
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|G1 N Gy if eg ¢ Gy and eg ¢ Go;
ug, *ug, = { —|G1 NGS| ifeg ¢ Gy and eg € Go;
‘GiﬂGa if eg € Gy and ey € Gs.

We now fix notation that will be useful in the argument. Let Ny C N be the subset of
flats containing eq. Since incomparable elements of A are disjoint, N is totally ordered;
let Gy denote the minimal element of Njy. For each G € N, let G be the minimal flat in
MyU{FE} that contains G. Using this notation, the linear equations defining wxs become

S | Flaxvr+IGl > anr—IGl Y anr=|Gl-m 1T i G ¢Ny (75)

FeN FeN _ FeN _
FCG GCFCG GoCFCG
and

Gl ST awr+ Y Flaxr — Y |Flayr = |G -m 1€ if G e

FeN FeN FeN\No
GoCFCG GCF GCP

(7.6)

For any G € N, let G denote the minimal element of N'U {FE} strictly containing

G. Consider some G € Ny with G4 # E. If we subtract Equation (7.6) for G4 from
Equation (7.6) for G, we obtain the equation

(GI=1G65) D>, awvr— D [Flaxr =169 =G| = m™ 9 4m™1% L (7.7)

FeN
GoCFCG =G,

Notice that every F € N\ Ny with F = G is a subset of a unique H € N\ N with
H, = G4. Therefore, summing Equation (7.5) for all H € N'\ Ny with H, = G4, we
obtain the equation

Yo AFlaxve— > H Y axvre= Y, (H-m " (18

FEN\N() HEN\NO FeN HEN\NO
F=G, H, =G, GoCFCG H, =G,

Substituting (7.8) into (7.7) and simplifying, it follows that, for any G € Ny, we have

OB Tl D) VNV
1— _ =G ifGy #E
Z an.F = [Ge[—[(G+) I*ZI}IJQA:/\GNO [H| + F (7_9)
FeN —-1G| A .
GoCFCG 1—%—(.' lfG+:E,

where the second equation simply follows from (7.6) applied to the unique maximal
element G € Ny with GL = E.
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Since NV is a nested set, it follows that the denominator in (7.9) is always a positive
integer; more specifically, this follows from the fact that {G}U{H € N\Ny | Hy = G}
is a collection of pairwise incomparable elements of A/ that are all subsets of Gy, so they
must be pairwise disjoint subsets of G, and their union cannot be all of G or else
their join would be equal to G4 € G, contradicting the nested condition. For m > 0,
notice that the leading term in the quotient in (7.9) is —m~I¢!, from which it follows
that the right-hand side of (7.9) is increasing with respect to G. Thus, taking successive
differences to solve for each apr ¢, we conclude that an ¢ > 0 for all G € Ny with
G # Gy. For G = Gy, notice that the right-hand side of (7.9) is positive for m > 0
simply because the quotient is very small, implying that anr,g, > 0. Thus, we conclude
that ay ¢ > 0 for all G € Np.

Suppose now that G ¢ Np. Then taking Equation (7.5) for G and subtracting from it
Equation (7.5) for all H € A with H,; = G, we obtain the equation

(6= > H)( > ave— > anwr) =IGl-m = S (H-m ),

HeN FeN _ FeN _ HeN
Hy=G GCFcG GoCFC@ Hy=G

Simplifying, we may write

m=1E Z S pen mo1H

E aN.F = (1 + E a/\/,p) — (7.10)
ek pekr Gl =2 pren, ]
GCFCG GoCFCG

As in the previous case, the denominator in the second term of the right-hand side of
Equation (7.10) is positive because A is a nested set. For m >> 0, notice that —m 167l
is the leading term of the quotient in Equation (7.10), from which it follows that the
right-hand side of (7.8) is decreasing with respect to G. Therefore, taking successive
differences to solve for each an ¢, we see that an ¢ > 0 for all G ¢ N with G # G.In
the case that G = @, then an ¢ is the only term in the left-hand side of (7.10), and
the fact that ay p > 0 for all ' € Ny, which is what we already argued above, then
implies that the right-hand side of (7.10) is positive for m > 0. Thus, we conclude that
an,c > 0 for all G ¢ Ny, finishing the proof of the proposition. 0O
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