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Associated to any divisor in the Chow ring of a simplicial 
tropical fan, we construct a family of polytopal complexes, 
called normal complexes, which we propose as an analogue of 
the well-studied notion of normal polytopes from the setting 
of complete fans. We describe certain closed convex polyhedral 
cones of divisors for which the “volume” of each divisor 
in the cone—that is, the degree of its top power—is equal 
to the volume of the associated normal complexes. For the 
Bergman fan of any matroid with building set, we prove that 
there exists an open family of such cones of divisors with 
nonempty interiors. We view the theory of normal complexes 
developed in this paper as a polytopal model underlying the 
combinatorial Hodge theory pioneered by Adiprasito, Huh, 
and Katz.

© 2023 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://
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1. Introduction

In recent years, a compelling story has been unfolding wherein the main characters 
are special classes of noncomplete toric varieties masquerading as if they were smooth 
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projective varieties. A notable plot point in this story is the work of Adiprasito, Huh, 
and Katz [2], who showed that Chow rings of noncomplete Bergman fans of matroids 
satisfy an analogue of the Kähler package. Their result has had significant impacts in 
combinatorics, solving decades-old log-concavity conjectures of Heron, Rota, and Welsch 
[27,22,29], and it has led to a flurry of activity in “combinatorial Hodge theory” (see 
[8,10,9,1,4,5], for example).

Another combinatorial setting in which an analogue of the Kähler package arises 
is the polytope algebra of McMullen [24]. For simple polytopes, McMullen’s polytope 
algebra is isomorphic to the Chow ring of the corresponding projective toric variety [25], 
so one can view the polytope algebra as a type of polytopal model that underlies the 
algebro-geometric Hodge theory of projective toric varieties. Adiprasito, Huh, and Katz 
remark in [2] that their proof of the Kähler package for general matroids was “inspired 
by” McMullen’s proof of the analogous facts for polytope algebras, and this raises the 
question: Does there exist a polytopal model associated to Bergman fans of matroids that 
underlies the combinatorial Hodge theory developed by Adiprasito, Huh, and Katz?

This paper introduces a new character to this story that we propose as the natural 
building block of a polytopal model for studying Chow rings of simplicial tropical fans—a 
class of fans satisfying a weighted balancing condition and containing all Bergman fans 
of matroids. The new character that we introduce is the normal complex, a polytopal 
complex associated to a noncomplete fan that generalizes the concept of normal polytopes 
associated to complete fans. The main result of this paper is that the degree of the top 
power of certain divisors in the Chow ring of a simplicial tropical fan is equal to the 
volume of the associated normal complex, which is an analogue of a fundamental result 
in toric geometry regarding normal polytopes of complete fans.

We view our result as a means by which one can import volume-theoretic tools and 
insights from polytopal geometry into the study of Chow rings of tropical fans. As an ex-
tension and application of these ideas, we mention that a recent paper of Lauren Nowak, 
Patrick O’Melveny, and the second author [26] develops the theory of mixed volumes of 
normal complexes and proves an analogue of the Alexandrov–Fenchel inequalities in the 
normal complex setting; it turns out that the celebrated log-concavity of characteristic 
polynomials of matroids is then just a special case of these inequalities.

The rest of the introduction gives an overview of the developments of this paper; we 
refer the reader to Section 2 for precise definitions and a comprehensive discussion of 
these ideas.

1.1. Summary of results

Let Σ ⊆ NR be a simplicial tropical fan of dimension d with associated degree function 
degΣ : Ad(Σ) → R, and let ∗ ∈ Inn(NR) be an inner product. Associated to (Σ, ∗)
and any value z ∈ RΣ(1), we introduce a polytopal complex CΣ,∗(z), called the normal 
complex, which is obtained by truncating the cones of Σ with hyperplanes that are 
normal to each ray—where “normality” is determined by ∗—and located a distance from 
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the origin determined by z. The volume of a normal complex, denoted Vol(CΣ,∗(z)), is 
the sum of the volumes of its constituent d-dimensional polytopes.1 There is a closed 
convex polyhedral cone Cub(Σ, ∗) ⊆ RΣ(1) comprised of z-values for which the truncating 
hyperplanes associated to the rays of each cone in Σ intersect within that cone; we call 
these values pseudo-cubical. Our main result can be stated as follows.

Main Result. For each pseudo-cubical value z ∈ Cub(Σ, ∗), we have

degΣ(Dd) = Vol(CΣ,∗(z)),

where D ∈ A1(Σ) is the divisor associated to z under the quotient map RΣ(1) → A1(Σ).

We note that functions on divisors of the form D �→ deg(Dd) arise often in algebraic 
geometry, and they are generally called volume polynomials. The terminology “volume” 
is motivated by the classical fact that, when D is an ample divisor on a complex projec-
tive variety X of dimension d, the quantity deg(Dd) is the volume of X with respect to 
the Kähler metric associated to D. The term “volume” has also been proven apt in other 
ways; for example, in the setting of smooth complete toric varieties, the volume polyno-
mial measures volumes of normal polytopes associated to nef divisors, and more generally, 
for smooth complete varieties that are not necessarily toric, the volume polynomial mea-
sures volumes of Newton–Okounkov bodies. For tropical fans, the (nontrivial) existence 
of a degree map allows us to define volume polynomials in an analogous way, but given 
that the most interesting tropical fans are not complete, none of the previously-studied 
volume-theoretic interpretations for volume polynomials are valid. Thus, the main result 
above may be viewed as a way of putting the “volume” back in “volume polynomials” 
of tropical fans.

1.1.1. The construction of normal complexes
We now outline the construction of normal complexes, which is closely related to and 

inspired by the construction of normal polytopes of complete fans. Let Σ ⊆ NR be a 
simplicial fan of dimension d and for each ray ρ ∈ Σ(1), let uρ ∈ NR be a distinguished 
ray generator. When Σ is rational with respect to a lattice N ⊆ NR, we take uρ ∈ N

to be the primitive integral generator of ρ, but we do not generally assume that Σ is 
rational. Given a divisor D ∈ A1(Σ), we can write D (nonuniquely) as

D =
∑

ρ∈Σ(1)

zρXρ

1 We note that here and throughout the entire paper, volume will always be computed as simplicial 
volume, which is normalized so that a unit simplex has volume one.
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where the sum is over the rays of Σ, each Xρ ∈ A1(Σ) denotes the generator of the Chow 
ring associated to ρ, and the coefficients zρ are real numbers. Each ray ρ and coefficient 
zρ corresponds to a half-space in the dual vector space MR = N∨

R , defined by

{v ∈ MR | 〈v, uρ〉 ≤ zρ} ⊆ MR,

and the normal polyhedron of Σ associated to a choice of z-coefficients, denoted PΣ(z) ⊆
MR, is the intersection of these half-spaces. Different choices of z-coefficients for the 
same divisor D correspond to different translations of PΣ(z).

If Σ is rational and complete, then PΣ(z) is the well-studied normal polytope of D, 
defined up to translation, and a fundamental result in toric geometry asserts that, when 
D is nef, the volume of PΣ(z) is equal to degΣ(Dd). If Σ is not complete, then there are 
two problems with this approach of simply computing the volume of PΣ(z):

(1) the polyhedron PΣ(z) may be unbounded, so its volume may be infinite; and
(2) even when PΣ(z) is bounded, its dimension is generally larger than d, so its volume—

as a polynomial in z—will have degree larger than the volume polynomial.

The construction of normal complexes, which requires the additional choice of an inner 
product ∗ ∈ Inn(NR), remedies both of these issues.

Given an inner product ∗ ∈ Inn(NR), the normal complex of (Σ, ∗) with respect to a 
choice of coefficients z ∈ RΣ(1) can be defined as

CΣ,∗(z) = Σ
⋂
∗ PΣ(z) ⊆ NR,

where the notation 
⋂
∗ means that we take the intersection in NR after using the inner 

product to identify MR with NR.2 As a polytopal complex, CΣ,∗(z) can be thought 
of intuitively as a truncation of the cones of Σ by normal hyperplanes; normality is 
determined by ∗ and the location of the hyperplanes is determined by z. While the 
shape of the normal complex and the volume of each of its constituent polytopes depend 
heavily on ∗ and the choice of z-coefficients for a given divisor D, a truly remarkable 
consequence of the main result above is that, so long as Σ is tropical and z is pseudo-
cubical with respect to (Σ, ∗), the total volume Vol(CΣ,∗(z)) is independent of these 
choices and equal to degΣ(Dd).

1.1.2. Matroids and the pseudo-cubical hypothesis
As was mentioned above, the pseudo-cubical hypothesis is the condition that the 

truncating hyperplanes associated to the rays of each cone in Σ intersect within that 
cone. This condition is rather restrictive, and it is not clear from the outset whether the 

2 Our definition of normal complexes in Section 2 is slightly more technical than the one here, but this 
definition captures the intuitive idea and coincides with the proper definition for many values of z and ∗.
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hypothesis of the main result above is nonvacuous for any interesting classes of tropical 
fans. To address this issue, we prove in Section 7 that, if ΣM,G is the Bergman fan 
of a matroid M with respect to any building set G, there is a nonempty open set in 
Inn(NR) for which the pseudo-cubical cone Cub(ΣM,G , ∗) has nonempty interior. This 
provides a large class of fans—fans that are of interest to both combinatorialists and 
algebraic geometers—for which the volume polynomial and the Chow ring can be studied 
using volume-theoretic tools from polytopal geometry. In particular, this class of Chow 
rings includes all Chow rings of wonderful compactifications associated to hyperplane 
arrangements [14,15], and the main result above sheds new light on the intersection 
theory of fundamental varieties in algebraic geometry, such as the moduli spaces M0,n
of rational stable curves.
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2. Normal complexes and their volumes

In this section, we discuss the precise definitions, notations, motivations, and examples 
required for the development of normal complexes and their volumes. We view this 
section as an extended introduction that includes precise statements for all of the main 
results.

2.1. Pure simplicial fans

Let MR and NR be a dual pair of real vector spaces of dimension n, and denote the 
bilinear pairing by 〈−, −〉. Given a polyhedral fan Σ ⊆ NR, we denote the k-dimensional 
cones of Σ by Σ(k). Let 
 denote the face containment relation among the cones of Σ, 
and for each cone σ ∈ Σ, let σ(k) ⊆ Σ(k) denote the k-dimensional faces of σ. For any 
cone σ (or more generally, for any polyhedron P ), let σ◦ (or P ◦) denote the relative 
interior.

Henceforth, we adopt the convention that a fan Σ ⊆ NR is a marked polyhedral fan, 
meaning that, in addition to specifying the polyhedral cones that comprise Σ, we have 
also chosen a distinguished generating vector uρ ∈ ρ◦ for each ray ρ ∈ Σ(1). If N ⊆ NR
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is a lattice—that is, a free abelian group such that NR = N ⊗Z R—then we say that Σ
is rational with respect to N if each ray intersects the lattice at a nonzero vector. Given 
a fan Σ ⊆ NR that is rational with respect to N , we always take uρ to be the primitive 
integral generator of ρ—that is, uρ is the first nonzero element of N that lies on ρ.

We say that a cone σ is simplicial if dim(σ) = |σ(1)|. Alternatively, simplicial cones are 
characterized by the property that their ray generators are linearly independent. Note 
that the faces of a simplicial cone σ are in bijective correspondence with the subsets of 
σ(1). For every face containment τ 
 σ in a simplicial cone σ, let σ \ τ denote the face of 
σ with rays σ(1) \ τ(1). If σ is rational, then we say that σ is unimodular if the primitive 
integral generators of any cone can be extended to a basis of N . Note that unimodular 
cones are simplicial. We say that a fan Σ is simplicial or unimodular if every cone of Σ
is simplicial or unimodular. Every rational polyhedral fan Σ determines a normal toric 
variety XΣ, and this variety is smooth if and only if Σ is unimodular and has at worst 
finite quotient singularities if and only if Σ is simplicial.

We say that a fan Σ is pure if all of the maximal cones in Σ have the same dimension. 
Henceforth, we assume that all fans are pure and we use the term d-fan to refer to a 
pure fan of dimension d.

2.2. Chow rings

Given a simplicial fan Σ ⊆ NR, the Chow ring of Σ is defined by

A•(Σ) =
R
[
xρ | ρ ∈ Σ(1)

]
I + J

where

I =
〈
xρ1 · · ·xρk

| cone(ρ1, . . . , ρk) /∈ Σ
〉

and J =
〈 ∑

ρ∈Σ(1)

〈v, uρ〉xρ

∣∣∣∣ v ∈ MR

〉
.

If Σ is unimodular, we note that A•(Σ) is the Chow ring (in the usual intersection-
theoretic sense) of the toric variety XΣ ([13,7,11]). As both I and J are homogeneous, the 
Chow ring A•(Σ) is a graded ring, and we denote by Ak(Σ) the subgroup of homogeneous 
elements of degree k. We denote the generators of A•(Σ) by Xρ = [xρ] ∈ A1(Σ), and for 
any σ ∈ Σ(k), we define

Xσ =
∏

ρ∈σ(1)

Xρ ∈ Ak(Σ).

2.3. A guiding light: complete unimodular fans and normal polytopes

Assume that Σ is a unimodular fan that is also complete, meaning that every element 
of NR is in some cone of Σ. This latter condition is equivalent to the condition that 
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the corresponding toric variety XΣ is complete in the algebro-geometric sense. In this 
setting, the algebro-geometric degree map is a linear isomorphism

degΣ : An(Σ) → R

that is uniquely determined by linearity and the property that degΣ(Xσ) = 1 for all 
σ ∈ Σ(n). Using the degree map, the volume polynomial of Σ is defined as the polynomial 
function

VolΣ : A1(Σ) → R

D �→ degΣ(Dn).

By definition, each divisor can be written (nonuniquely) as

D =
∑

ρ∈Σ(1)

zρXρ, (2.1)

and we often use these linear generators to view VolΣ as a homogeneous polynomial 
of degree n in the variables {zρ | ρ ∈ Σ(1)}. Although the definition of the volume 
polynomial given above is purely algebraic, it also has a geometric interpretation, as we 
now describe.

Given a divisor D ∈ A1(Σ), presented as in (2.1), define the normal polytope of Σ
with respect to z by

PΣ(z) =
{
v ∈ MR | 〈v, uρ〉 ≤ zρ for all ρ ∈ Σ(1)

}
⊆ MR.

It follows from the definition of J that different choices of z for the same divisor D
correspond to different translates of the same polytope. Let

Vol : {polytopes in MR} → R≥0

be the volume function that is normalized so that any fundamental simplex associated 
to the lattice M = N∨ ⊆ MR has unit volume. The guiding light for our work stems 
from a fundamental result in toric geometry [12, Theorem 13.4.3], which asserts that, 
given any divisor D =

∑
zρXρ for which the normal fan of PΣ(z) is refined by Σ—these 

correspond to nef divisors—we have

VolΣ(D) = Vol(PΣ(z)). (2.2)

This beautiful result for complete fans is the primary motivation for our developments 
in the noncomplete setting. As such, we find it instructive to work out (2.2) in a concrete 
example.
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Example 2.3. Let N = Z2 and let Σ be the complete fan in NR = R2 depicted below.

ρ1

ρ12ρ2

ρ02

ρ0 ρ01

The Chow ring of Σ is

A•(Σ) = R[x0, x1, x2, x01, x02, x12]
I + J

where I and J are described above. It can be checked from the definitions that

• degΣ(XiXjk) = 1 if i ∈ {j, k};
• degΣ(X2

i ) = degΣ(X2
ij) = −1;

• the degree of any other quadratic monomial in the generators is zero.

Therefore, the volume polynomial is given by the following formula:

VolΣ(z) = 2(z0z01 + z0z02 + z1z01 + z1z12 + z2z02 + z2z12)

− (z2
0 + z2

1 + z2
2 + z2

01 + z2
02 + z2

12).

Using the dot product to identify MR = NR, we can draw the normal polytope 
associated to any specific z-value. If we choose the z-value carefully, then the original 
fan is the normal fan of the polytope PΣ(z); such as in the example depicted below.

ρ1

ρ12ρ2

ρ02

ρ0 ρ01

x
=

z1

x+
y =

z12

y = z2

−
x

=
z 0

2

−
x−

y =
z0 −y = z01
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Computing the simplicial area of this hexagon in terms of the z-coefficients, the reader 
should readily recover the formula for VolΣ(z), given above, verifying Formula (2.2) in 
this example.

In the previous example, we made a specific choice of inner product on NR (the 
standard dot product) in order to identify the vector spaces MR and NR, which allowed 
us to draw the fan Σ and the normal polytope PΣ(z) in the same vector space. While it 
was helpful to choose this inner product in order to draw a picture of PΣ(z), we note that 
this choice was not necessary in order to define PΣ(z) ⊆ MR or Vol(PΣ(z)). As we will 
see in the next subsection, the situation is quite different in the noncomplete setting. 
In particular, when Σ is not complete, the choice of an inner product is an essential 
ingredient in both the construction of normal complexes—which are analogues of normal 
polytopes in the noncomplete setting—and in the definition of their volume. In order to 
discuss these ideas in more detail, we now turn toward a discussion of noncomplete fans 
and their associated normal complexes.

2.4. Noncomplete fans and normal complexes

In this subsection, we introduce an analogue of normal polytopes—which we refer 
to as normal complexes—in the setting of noncomplete simplicial fans. Assume that 
Σ is a (not-necessarily complete) simplicial d-fan in NR, and choose an inner product 
∗ ∈ Inn(NR). Normal complexes will be defined as polytopal complexes in NR that 
depend on (Σ, ∗), as well as on a value z ∈ RΣ(1). Before defining normal complexes, we 
must describe the individual polytopes that comprise these polytopal complexes.

Given a cone σ ∈ Σ, consider the polyhedron

Pσ(z) =
{
v ∈ MR | 〈v, uρ〉 ≤ zρ for all ρ ∈ σ(1)

}
⊆ MR.

The choice of inner product allows us to identify NR with MR via the natural isomor-
phism

NR → MR

u �→ (u′ ∈ NR �→ u ∗ u′ ∈ R),

and using this identification, we define polytopes

Pσ,∗(z) = σ
⋂
∗ Pσ(z),

where the notation 
⋂
∗ means that we are intersecting σ ⊆ NR with Pσ(z) ⊆ MR

after identifying the vector spaces MR and NR via the inner product ∗, as above. More 
explicitly, we have

Pσ,∗(z) = σ ∩
{
v ∈ NR | v ∗ uρ ≤ zρ for all ρ ∈ σ(1)

}
⊆ NR.
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The next example depicts these polytopes for the case of the complete fan of Example 2.3.

Example 2.4. Consider the fan in Example 2.3 and let ∗ be the standard dot product. 
If we choose the z-values carefully—for example, if we use the same z-values that were 
chosen to draw the image in Example 2.3—then the polytopes Pσ,∗(z) (and their faces) 
form a polytopal complex, depicted below, consisting of six quadrilaterals and their 
faces. Furthermore, the support of this polytopal complex is nothing more than the 
normal polytope PΣ(z), viewed as a subset of NR.

If we’re not so careful in how we choose the z-values—for example, if we decrease the 
value of z1—then the polytopes Pσ,∗(z) no longer meet along faces, as we’ve depicted 
below, and their union is no longer equal to the normal polytope.

As the previous example illustrates, if we want to define a polytopal complex using 
the polytopes Pσ,∗(z), then we require an extra compatibility between the inner product 
and the z-values in order to ensure that the polytopes Pσ,∗(z) meet along faces; we now 
introduce such a condition. We say that the value z ∈ RΣ(1) is cubical with respect to 
(Σ, ∗) if, for all σ ∈ Σ, we have

σ◦ ∩
{
v ∈ NR | v ∗ uρ = zρ for all ρ ∈ σ(1)

}

= ∅,

and we say that z ∈ RΣ(1) is pseudo-cubical with respect to (Σ, ∗) if, for all σ ∈ Σ, we 
have
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σ ∩
{
v ∈ NR | v ∗ uρ = zρ for all ρ ∈ σ(1)

}

= ∅.

Note that, because Σ is simplicial, the intersections in these definitions contain at most 
one vector. Below, we have depicted what it means for the intersecting hyperplanes to 
be cubical, pseudo-cubical, and neither in the case of a two-dimensional cone.

In the cubical case of the two-dimensional setting depicted above, notice that the poly-
tope Pσ,∗(z) is combinatorially equivalent to a square. In higher dimensions, we will see 
in Proposition 3.8 that Pσ,∗(z) is always combinatorially equivalent to a cube when z is 
cubical, justifying the terminology.

As we will see in Proposition 3.2, the set of cubical values forms an open convex 
polyhedral cone Cub(Σ, ∗) ⊆ RΣ(1) and the set of pseudo-cubical values forms a closed 
convex polyhedral cone Cub(Σ, ∗) ⊆ RΣ(1) whose interior is Cub(Σ, ∗). In Section 3, we 
also prove that, when z ∈ Cub(Σ, ∗) is pseudo-cubical, the polytopes Pσ,∗(z) do, in fact, 
meet along faces, implying that the collection of these polytopes and their faces forms a 
polytopal complex (Proposition 3.7). For a polyhedron P , let P̂ denote the polyhedral 
complex comprising all faces of P . For any pseudo-cubical z ∈ Cub(Σ, ∗), define the
normal complex of Σ with respect to z and ∗ as the polytopal complex

CΣ,∗(z) =
⋃
σ∈Σ

P̂σ,∗(z). (2.5)

The next example depicts a normal complex in the noncomplete setting.

Example 2.6. Let NR = R3 and let u1, u2, u3 be the standard basis vectors of R3. Set 
u0 = −(u1 + u2 + u3) and, for any subset S ⊆ {0, 1, 2, 3}, define uS =

∑
i∈S ui. Let 

ρS denote the ray spanned by uS and let Σ be the two-dimensional fan depicted in the 
image below (for notational simplicity, we omit set brackets and commas for subsets 
S ⊆ {0, 1, 2, 3}).
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In order to construct normal complexes, we require an inner product—let ∗ be the 
standard dot product on R3. The image below gives one example of a normal complex 
CΣ,∗(z) with respect to one particular cubical value z ∈ Cub(Σ, ∗)—it is comprised of 
nine quadrilaterals and their faces.

Changing the z-values corresponds to sliding the boundary components of the normal 
complex along the corresponding rays of Σ, and the cubical z-values correspond to those 
deformations for which the combinatorial structure of the polytopal complex is constant.

Remark 2.7. As mentioned in the introduction, one could alternatively define the notion 
of a normal complex of (Σ, ∗) with respect to z as

Σ
⋂
∗ PΣ(z) (2.8)

where PΣ(z) is the polyhedron

PΣ(z) =
{
v ∈ MR | 〈v, uρ〉 ≤ zρ for all ρ ∈ Σ(1)

}
⊆ MR.

This alternative definition certainly has advantages; for example, this approach does 
not require the pseudo-cubical condition as part of the definition and yields a polytopal 
complex for any z-value. Moreover, in the setting of complete fans, the support of this 
polytopal complex can always be identified with the normal polytope, so (2.8) is a true 
generalization of normal polytopes to the noncomplete setting.
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To justify why we have opted not to use this alternative approach, first observe that 
definitions (2.5) and (2.8) agree whenever z ∈ Cub(Σ, ∗) and

Pσ,∗(z) ⊆
{
v ∈ NR | v ∗ uρ ≤ zρ for all ρ /∈ σ(1)

}
. (2.9)

While the pseudo-cubical condition can be checked locally cone-by-cone, the extra con-
dition (2.9) is rather cumbersome to work with, requiring an understanding of the global 
geometry of Σ. The reason we have chosen to work with the slightly more technical 
definition (2.5) instead of the more straightforward definition (2.8) is essentially so we 
do not require the extra condition (2.9) as a hypothesis for our results. If we include this 
hypothesis, then our results apply to both definitions, but using the approach in (2.5)
allows us to prove these results for a more general set of z-values.

Remark 2.10. For a given fan Σ ⊆ NR with inner product ∗ ∈ Inn(NR), it can be 
shown that every pseudo-cubical value gives rise to a convex piecewise linear map on Σ, 
where convexity is in the sense of [2, Definition 4.1]. In particular, if Σ is complete and 
unimodular, pseudo-cubical values give rise to nef divisors on the associated toric variety. 
On the other hand, it is not hard to find examples of complete, unimodular fans with a 
fixed inner product that admit nef divisors that cannot be represented by pseudo-cubical 
values. In other words, in the complete, unimodular setting, not every normal polytope 
can be represented as the support of a normal complex, so our results do not strictly 
generalize (2.2). However, the methods in this paper imply that our volume-theoretic 
interpretation of the volume polynomial can be extended to all z-values as long as one 
is willing to work with signed volumes of simplices, and it then follows from a recent 
result of Schneider [28, Proposition 1] that this more general interpretation does, indeed, 
generalize (2.2) for all convex values.

2.5. Volumes of normal complexes

We now discuss how to define volumes of normal complexes. As in the case of complete 
fans, we should normalize volumes of polytopes using dual lattices. However, since each 
polytope Pσ,∗(z) lies in a subspace of NR, some additional care must be taken in order 
to define the appropriate normalization.

For each cone σ ∈ Σ, define the subgroup

Nσ = spanZ(uρ | ρ ∈ σ(1)) ⊆ NR,

and let Mσ denote the dual of Nσ. Using the inner product ∗, we can identify Mσ,R =
Mσ ⊗ R with Nσ,R = Nσ ⊗ R and thus, we can view Mσ as a lattice in Nσ,R. For each 
σ ∈ Σ, let

Volσ :
{
polytopes in Nσ,R

}
→ R≥0
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be the volume function determined by the property that a fundamental simplex of the 
lattice Mσ ⊆ Nσ,R has unit volume, and define the volume of the normal complex CΣ,∗(z)
as the sum of the volumes of the constituent d-dimensional polytopes:

Vol(CΣ,∗(z)) =
∑

σ∈Σ(d)

Volσ(Pσ,∗(z)).

In slightly more generality, suppose that ω : Σ(d) → R>0 is a weight function on the 
maximal cones of Σ. The volume of the normal complex CΣ,∗(z) weighted by ω is defined 
by

Vol(CΣ,∗(z);ω) =
∑

σ∈Σ(d)

ω(σ)Volσ(Pσ,∗(z)). (2.11)

One of our main results regarding normal complexes of general simplicial fans is an 
explicit computation of their volume. In Theorem 4.3, we prove that, for every z ∈
Cub(Σ, ∗) and σ ∈ Σ(k), we have

Volσ(Pσ,∗(z)) = det(Gσ)
∑

f∈L(σ)

k∏
j=1

det(Gσ(f,j),f(j)(z))
det(Gσ(f,j))

(2.12)

where the notation is defined as follows:

• for σ ∈ Σ(k), the set L(σ) is the set of bijections f : {1, . . . , k} → σ(1);
• for f ∈ L(σ) and 1 ≤ j ≤ k, the cone σ(f, j) 
 σ has rays indexed by {f(i) | i ≤ j};
• the matrix Gσ is defined by Gσ = (uρ ∗ uη)ρ,η∈σ(1);
• the matrix Gσ,ρ(z) is obtained by replacing the ρth column of Gσ with zσ =

(zη)η∈σ(1).

As we will see in Section 4, this formula for Volσ(Pσ,∗(z)) follows from a specific trian-
gulation of Pσ,∗(z) that we describe explicitly in Proposition 3.11.

If Σ happens to be a complete unimodular fan, then it is not hard to see from the 
definitions that volumes of normal complexes reduce to volumes of normal polytopes:

Vol(CΣ,∗(z)) = Vol(PΣ(z))

for all z ∈ Cub(Σ, ∗). In particular, Vol(CΣ,∗(z)) is independent of the choice of inner 
product when Σ is complete. When Σ is not complete, however, one should not expect 
volumes of normal complexes to be independent of this choice. The next example illus-
trates how the choice of the inner product ∗ influences the shape of normal complexes 
as well as the computation of their volumes.

Example 2.13. Let Σ be the fan associated to the first quadrant in NR = R2:



A. Nathanson, D. Ross / Advances in Mathematics 420 (2023) 108981 15
ρ1

ρ2

σΣ =

Let z = (z1, z2) = (2, 2) and let ∗ = • be the standard dot product. Then the polytope 
Pσ,•(2, 2) is the 2 × 2 square depicted in the image below.

• • •

• • •

• • •

u1

u2

0

In this image, we have also included a part of the lattice Mσ, along with a fundamental 
simplex. From this picture, we see that Volσ(Pσ,•(2, 2)) = 8.

We could just as well choose a different inner product; for example, let us consider 
the inner product ∗ = � defined by

(a, b) � (c, d) = 4ac + ad + bc + 2bd.

Using the same choice z = (z1, z2) = (2, 2), we have depicted the polytope Pσ,�(2, 2)
below, along with a part of the lattice Mσ and a fundamental simplex.

u1

u2

0•

•

•

•
•

•
•

•
•

•

•

•

By chopping up the fundamental simplex and filling the polytope, we can see that

Volσ(Pσ,�(2, 2)) = 5 
= 8 = Volσ(Pσ,•(2, 2)).
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Since Σ contains just a single 2-dimensional cone, we have Vol(CΣ,∗(z)) = Volσ(Pσ,∗(z))
for any z and ∗, from which we see that the volumes of the normal complexes associated 
to this noncomplete fan Σ depend in a nontrivial way on the choice of inner product.

Example 2.13 illustrates that Vol(CΣ,∗(z)) depends nontrivially on the choice of ∗; 
however, one might be so optimistic as to hope that there is a nice family of noncom-
plete fans that shares a particular type of symmetry for which weighted volumes of 
normal complexes are independent of the choice of inner product. As we will see below, 
independence of ∗ will naturally and directly lead us to the concept of tropical fans.

2.6. Square-free expressions

The expression in the right-hand side of Equation (2.12) also arises in a natural way 
when computing products of divisors in A•(Σ). Suppose that Σ ⊆ NR is a simplicial fan 
and, for all z ∈ RΣ(1), denote

D(z) =
∑

ρ∈Σ(1)

zρXρ.

Given any inner product ∗ ∈ Inn(NR), we prove in Theorem 5.1 that

D(z1) · · ·D(zk) =
∑

σ∈Σ(k)

(
det(Gσ)

∑
f∈L(σ)

k∏
j=1

det(Gσ(f,j),f(j)(zj))
det(Gσ(f,j))

)
Xσ, (2.14)

where all notation is as in (2.12). Equation (2.14) provides a way of expressing any 
product of divisors in A•(Σ) as a linear combination of square-free products of divisors. 
Moreover, we also prove that the coefficients in the right-hand side of (2.14) are positive 
if z1, . . . , zk ∈ Cub(Σ, ∗) and nonnegative if z1, . . . , zk ∈ Cub(Σ, ∗), so this result provides 
a way of computing effective square-free expressions of pseudo-cubical divisors.

2.7. Degree maps, tropical fans, and volume polynomials

From (2.11), (2.12), and (2.14), we see that the weighted volume Vol(CΣ,∗(z); ω) is 
the weighted sum of the coefficients of D(z)d ∈ Ad(Σ), as long as we express D(z)d using 
the square-free formula in (2.14), which depends on ∗ ∈ Inn(NR). Therefore, in order to 
determine whether Vol(CΣ,∗(z); ω) is independent of ∗, it suffices to know whether there 
exists a well-defined linear degree map

degΣ,ω : Ad(Σ) → R (2.15)

such that degΣ,ω(Xσ) = ω(σ) for every σ ∈ Σ(d). In fact, an elementary computation 
[2, Proposition 5.6] shows that such a degree map exists if and one if
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∑
σ∈Σ(k)
τ�σ

ω(σ)uσ\τ ∈ Nτ,R for every τ ∈ Σ(d− 1). (2.16)

The weighted balancing condition in (2.16) is the defining property of a tropical 
fan. More precisely, a tropical d-fan (Σ, ω) is a d-fan Σ along with a weight function 
ω : Σ(d) → R>0 satisfying (2.16). When ω(σ) = 1 for all σ, we say that Σ is balanced, 
and we omit ω from the notation. Given a simplicial tropical fan (Σ, ω), we define the
volume polynomial by

VolΣ,ω : A1(Σ) → R

D �→ degΣ,ω(Dd),

where the tropical degree map degΣ,ω is determined by the property that degΣ,ω(Xσ) =
ω(σ) for every σ ∈ Σ(d).

Our main result (Theorem 6.3) can now be stated precisely. Let (Σ, ω) be a simplicial 
tropical fan in NR and choose an inner product ∗ ∈ Inn(NR). For any D ∈ A1(Σ) and 
z ∈ Cub(Σ, ∗) with D =

∑
zρXρ, we have

VolΣ,ω(D) = Vol(CΣ,∗(z);ω). (2.17)

Remarkably, even though the shape and volume of each polytope in CΣ,∗(z) depends 
nontrivially on the choice of inner product and z-coordinates used to represent D, the 
weighted sum of volumes of these polytopes is independent of these choices.

3. The cubical hypothesis

In this section, we develop a number of preparatory results regarding normal com-
plexes. These results will be especially important when it comes time to compute volumes 
of normal complexes in the next section. Throughout this section, let Σ ⊆ NR denote a 
simplicial d-fan, and let ∗ ∈ Inn(NR) be an inner product.

3.1. Recharacterizing the cubical hypothesis

In this subsection, we introduce a useful characterization of the (pseudo-)cubical hy-
pothesis. Let z ∈ RΣ(1) and for each cone σ ∈ Σ, define wσ to be the unique vector in 
the following intersection

Nσ,R ∩
{
v ∈ NR | v ∗ uρ = zρ for all ρ ∈ σ(1)

}
= {wσ}.

The fact that the intersection contains a single vector follows from the assumption that 
Σ is simplicial. Given a cone σ ∈ Σ, we say that the value z ∈ RΣ(1) is cubical (pseudo-
cubical) with respect to (σ, ∗) if
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wτ ∈ τ◦ (wτ ∈ τ) for all faces τ 
 σ.

Notice that z ∈ RΣ(1) is (pseudo-)cubical with respect to (Σ, ∗) (as defined in the previous 
section) if and only if it is (pseudo-)cubical with respect to (σ, ∗) for each σ ∈ Σ(d). The 
next results provide an alternative characterization of the (pseudo-)cubical hypothesis.

Proposition 3.1. A value z ∈ RΣ(1) is cubical (pseudo-cubical) with respect to (σ, ∗) if 
and only if

uρ ∗ wτ < zρ (uρ ∗ wτ ≤ zρ) for all faces τ 
 σ and rays ρ /∈ τ(1).

Proof. Given a face τ 
 σ and a ray ρ ∈ τ(1), the subspace Nτ\ρ,R divides Nτ,R into 
two half-spaces; let Hτ,ρ denote the closed half-space that contains uρ /∈ Nτ\ρ,R. The 
cone τ has a half-space presentation

τ = Nτ,R ∩
⋂

ρ∈τ(1)

Hτ,ρ =⇒ τ◦ = Nτ,R ∩
⋂

ρ∈τ(1)

H◦
τ,ρ.

We claim that wτ ∈ H◦
τ,ρ if and only if uρ ∗wτ\ρ < zρ. This follows from the following 

three observations.

(1) Since wτ\ρ ∈ Nτ\ρ,R, then wτ ∈ H◦
τ,ρ if and only if wτ − wτ\ρ ∈ H◦

τ,ρ.
(2) For all ρ′ ∈ τ(1) \ {ρ}, the definition of wτ and wτ\ρ implies that

uρ′ ∗ (wτ − wτ\ρ) = uρ′ ∗ wτ − uρ′ ∗ wτ\ρ = zρ′ − zρ′ = 0,

so wτ −wτ\ρ is normal to Nτ\ρ,R. This implies that wτ −wτ\ρ ∈ H◦
τ,ρ if and only if 

uρ ∗ (wτ − wτ\ρ) > 0.
(3) The definition of wτ implies that

uρ ∗ (wτ − wτ\ρ) = uρ ∗ wτ − uρ ∗ wτ\ρ = zρ − uρ ∗ wτ\ρ.

Now to prove the statement in the proposition regarding the cubical hypothesis, notice 
that z is cubical with respect to (σ, ∗) if and only if wτ ∈ τ◦ for all τ 
 σ (by definition), 
which holds if and only if wτ ∈ H◦

τ,ρ for all τ 
 σ and ρ ∈ τ(1) (by the above half-space 
presentation), which holds if and only if uρ ∗wτ\ρ < zρ for all τ 
 σ and ρ ∈ τ(1) (by the 
above argument). This last condition is equivalent to the one given in the proposition. To 
prove the statement in the proposition regarding the pseudo-cubical hypothesis, simply 
remove each ◦ and replace each < and > with ≤ and ≥ in the above arguments. �

As a consequence of the previous proposition, we obtain the following structural result 
concerning (pseudo-)cubical values.
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Proposition 3.2. The set of cubical values Cub(Σ, ∗) ⊆ RΣ(1) is an open convex polyhedral 
cone, the set of pseudo-cubical values Cub(Σ, ∗) ⊆ RΣ(1) is a closed convex polyhedral 
cone, and Cub(Σ, ∗) = Cub(Σ, ∗)◦.

Proof. By elementary linear algebra considerations, it follows from the definition of the 
w-vectors that the coordinates of wτ are homogeneous and linear in z. Thus, by Propo-
sition 3.1, the set of cubical values are characterized by a finite set of strict inequalities 
that are homogeneous and linear in z, and the set of pseudo-cubical values are charac-
terized by weakening the strict inequalities to allow for equality. The result then follows 
from standard results in polyhedral geometry. �
3.2. Structure of normal complexes

In this subsection, we prove various structural properties of normal complexes, in-
cluding that the normal complex CΣ,∗(z) is, in fact, a polytopal complex, and that the 
constituent polytopes are combinatorially equivalent to cubes when z is cubical. We begin 
with the following description of the combinatorial structure of the polytopes Pσ,∗(z).

Proposition 3.3. Suppose that z ∈ Cub(Σ, ∗) and σ ∈ Σ.

(1) The vertices of Pσ,∗(z) are

W = {wτ | τ 
 σ}.

(2) For any pair of disjoint subsets S0, S1 ⊆ σ(1), there is a face FS0,S1 
 Pσ,∗(z) such 
that

FS0,S1 ∩W = {wτ | S0 ⊆ σ(1) \ τ(1), S1 ⊆ τ(1)},

and the faces of Pσ,∗(z) are

{FS0,S1 | S0, S1 ⊆ σ(1), S0 ∩ S1 = ∅}.

We note that, in general, both the vertex and face descriptions in Proposition 3.3 are 
redundant. For example, if wτ lies in a proper face τ ′ ≺ τ , which can happen if z is 
pseudo-cubical but not cubical, it then follows from the definition of the w-vectors that 
wτ ′ = wτ . As we’ll see in Proposition 3.8, there is no redundancy in these descriptions 
when z is cubical.

Proof of Proposition 3.3. Recall that

Pσ,∗(z) = σ ∩
{
v ∈ NR | v ∗ uρ ≤ zρ for all ρ ∈ σ(1)

}
⊆ Nσ,R.
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It follows from this description that Pσ,∗(z) is an intersection of closed half-spaces in 
Nσ,R—two half-spaces indexed by each ρ ∈ σ(1)—where the bounding hyperplanes are

Nσ\ρ,R and {v ∈ Nσ,R | v ∗ uρ = zρ}.

Therefore, for each ρ ∈ σ(1), we obtain two faces

F 0
ρ = Pσ,∗(z) ∩Nσ\ρ,R and F 1

ρ = Pσ,∗(z) ∩ {v ∈ Nσ,R | v ∗ uρ = zρ}.

These faces may not be facets of Pσ,∗(z), but since they are obtained by intersecting 
with the hyperplanes associated to a half-space presentation of Pσ,∗(z), it follows that 
this set of faces contains all facets. In particular, this implies that every face of Pσ,∗(z)
can be obtained as an intersection of some subset of the faces of the form F 0

ρ and F 1
ρ .

We first prove the vertex description by induction on dim(σ). If dim(σ) = 0, then

Pσ,∗(z) = {0} = {wσ},

proving the base case. Now suppose dim(σ) > 0. For each ρ ∈ σ(1), we have

F 0
ρ = Pσ,∗(z) ∩Nσ\ρ,R = Pσ\ρ,∗(z) ∩ {v ∈ Nσ\ρ,R | v · uρ ≤ zρ}, (3.4)

where the second equality follows from the fact that Pσ,∗(z) has one more defining 
inequality than Pσ\ρ,∗(z). By the induction hypothesis, the vertices of Pσ\ρ,∗(z) are 
{wτ | τ 
 σ \ ρ}, and using the pseudo-cubical hypothesis and Proposition 3.1, we see 
that

wτ ∗ uρ ≤ zρ for all τ 
 σ \ ρ.

Thus, Pσ\ρ,∗(z) ⊆ {v ∈ Nσ\ρ,R | v · uρ ≤ zρ}, and it follows from (3.4) that

F 0
ρ = Pσ\ρ,∗(z).

Therefore, the vertices of Pσ,∗(z) that lie in the face F 0
ρ are equal to {wτ | τ 
 σ \ ρ}. 

Applying this same reasoning to all ρ ∈ σ(1), it follows that the vertices of Pσ,∗(z) that 
are contained in at least one face of the form F 0

ρ are equal to {wτ | τ ≺ σ}. It now 
remains to consider the vertices that do not lie in any of the faces of the form F 0

ρ . Noting 
that ⋂

ρ∈σ(1)

F 1
ρ = {wσ},

it follows that there is at most one such vertex, and it is wσ. Thus, we conclude that the 
vertices of Pσ,∗(z) are W = {wτ | τ 
 σ}.
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Next, we justify the face description. Intersecting each face F 0
ρ with the vertices, we 

claim that

F 0
ρ ∩W = {wτ | ρ /∈ τ(1)}. (3.5)

To prove this, first note that wτ ∈ Nσ\ρ,R if ρ /∈ τ(1) (by definition of wτ ), which proves 
that F 0

ρ ∩W ⊇ {wτ | ρ /∈ τ(1)}. For the other inclusion, suppose that wτ ∈ F 0
ρ ∩W and 

consider the cone τ ′ = τ ∩ (σ \ ρ). Since wτ ∈ Nτ,R and wτ ∈ F 0
ρ ⊆ Nσ\ρ,R, it follows 

that wτ ∈ Nτ ′,R ⊆ Nτ,R. By definition of the w-vectors, this implies that

wτ = wτ ′ ∈ {wτ | ρ /∈ τ(1)}.

Similarly, intersecting each face F 1
ρ with the vertices, we claim that

F 1
ρ ∩W = {wτ | ρ ∈ τ(1)}. (3.6)

To prove this, first notice that wτ ∗uρ = zρ if ρ ∈ τ(1) (by definition of wτ ), which proves 
that F 1

ρ ∩W ⊇ {wτ | ρ ∈ τ(1)}. To prove the other inclusion, suppose that wτ ∈ F 1
ρ ∩W

and consider the cone τ ′ 
 σ with rays τ(1) ∪{ρ}. Since wτ ∗uη = zη for every η ∈ τ ′(1), 
it follows from the definition of the w-vectors that

wτ = wτ ′ ∈ {wτ | ρ ∈ τ(1)}.

Now, for each pair of disjoint subsets S0, S1 ⊆ σ(1), define

FS0,S1 =
⋂

ρ∈S0

F 0
ρ ∩

⋂
ρ∈S1

F 1
ρ .

From (3.5) and (3.6), we see that

FS0,S1 ∩W = {wτ | S0 ⊆ σ(1) \ τ(1), S1 ⊆ τ(1)}.

It remains to prove that every face of Pσ,∗(z) is of the form FS0,S1 for some disjoint pair 
S0, S1 ⊆ σ(1), and we accomplish this by induction on dim(σ). If dim(σ) = 0, then the 
only face of Pσ,∗(z) is F∅,∅ = Pσ,∗(z) = {0}. Suppose dim(σ) > 0 and let F 
 Pσ,∗(z) be 
a face. Then F is an intersection of faces of the form F 0

ρ and F 1
ρ . If the intersection does 

not involve F 0
ρ for any ρ, then there is nothing to prove. If the intersection involves F 0

ρ , 
then we can view F as a face of F 0

ρ = Pσ\ρ,∗(z). By induction, we have that

F =
⋂

η∈S0

F 0
η ∩

⋂
η∈S1

F 1
η 
 Pσ\ρ,∗(z)

for some pair of disjoint subsets S0, S1 ⊆ σ(1) \ {ρ}. As a face of Pσ,∗(z), we can then 
write
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F =
⋂

η∈S0∪{ρ}
F 0
η ∩

⋂
η∈S1

F 1
η ,

which, upon observing that S0 ∪ {ρ} and S1 are disjoint, completes the induction step, 
finishing the proof. �

As a first consequence of the combinatorial description of the polytopes Pσ,∗(z) given 
in Proposition 3.3, we have the following important result.

Proposition 3.7. If z ∈ Cub(Σ, ∗), then CΣ,∗(z) is a polytopal complex.

Proof. Recall that

CΣ,∗(z) =
⋃
σ∈Σ

P̂σ,∗(z)

where P̂σ,∗(z) is the polytopal complex consisting of Pσ,∗(z) and its faces. In order to 
prove that a collection of polytopes and their faces form a polytopal complex, it suffices 
to check that the polytopes meet along common faces. Consider two polytopes Pσ1,∗(z)
and Pσ2,∗(z) associated to cones σ1, σ2 ∈ Σ. Let τ = σ1 ∩ σ2 ∈ Σ, and notice that 
Pσ1,∗(z) ∩ Pσ2,∗(z) ⊆ Nτ,R. For i = 1, 2, define Si

0 = σi(1) \ τ(1) ⊆ σi(1) and notice that

Pσi,∗(z) ∩Nτ,R = FSi,∅ 
 Pσi,∗(z).

By Proposition 3.3,

FSi,∅ = conv(wπ | π 
 τ),

from which it follows that

Pσ1,∗(z) ∩ Pσ2,∗(z) = conv(wπ | π 
 τ) 
 Pσi
(z, ∗),

showing that the intersection is a face of both Pσ1,∗(z) and Pσ2,∗(z). �
As mentioned above, the combinatorial description of Pσ,∗(z) in Proposition 3.3 may 

be highly redundant; however, if we restrict to the cubical setting, that redundancy goes 
away. The next result proves this, while also giving a justification for the term “cubical.”

Proposition 3.8. If z ∈ Cub(Σ, ∗) is cubical and σ ∈ Σ(k), then the polytope Pσ,∗(z) is 
combinatorially equivalent to a k-cube.

Proof. We must show that the face lattice of Pσ,∗(z) is isomorphic to the face lattice of 
the unit cube [0, 1]k ⊆ Rk. Notice that the faces [0, 1]k are of the form
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F̃S0,S1 = [0, 1]k ∩ {xρ = 0 | ρ ∈ S0} ∩ {xρ = 1 | ρ ∈ S1}

where S0, S1 ⊆ {1, . . . , k} are disjoint subsets. In particular, there are 2k vertices given 
by

W̃ =
{
w̃τ =

∑
ρ∈τ

eρ | τ ⊆ {1, . . . , k}
}
,

and the face lattice of [0, 1]k is determined by the vertex-face containments:

W̃ ∩ F̃S0,S1 = {w̃τ | S0 ⊆ {1, . . . , k} \ τ, S1 ⊆ τ}.

Comparing the above description with the combinatorial description of Pσ,∗(z) given 
in Proposition 3.3, we see that the two descriptions are equivalent as long as the vertices 
wτ ∈ Pσ,∗(z) are all distinct. By the cubical hypothesis, we know that wτ ∈ τ◦ for all 
τ 
 σ. Along with the observation that τ◦1 ∩ τ◦2 = ∅ for all τ1 
= τ2, we conclude that 
wτ1 
= wτ2 for all τ1 
= τ2, completing the proof. �

3.3. Triangulating normal complexes

Our next aim is to construct a triangulation of the normal complex CΣ,∗(z) for all 
pseudo-cubical values z ∈ Cub(Σ, ∗). To describe the triangulation, we first require 
some additional notation. Let σ ∈ Σ(k), define L(σ) to be the set of labeling bijections 
f : {1, . . . , k} → σ(1). For each f ∈ L(σ) and 0 ≤ j ≤ k, let σ(f, j) 
 σ be the face of σ
with rays indexed by {f(i) | i ≤ j}. Define polytopes

Δ(σ, f) = conv(wσ(f,0), . . . , wσ(f,k)),

where we note that the first vector is just the origins: wσ(f,0) = 0. In the next example, 
we depict how these polytopes fit together in the generic cubical setting.

Example 3.9. Let NR = R3, let u1, u2, u3 be the standard basis vectors and let σ be the 
first octant. Let ∗ be the dot product and set z1 = z2 = z3 = 1. Then Pσ,∗(z) is the unit 
cube in R3 and for any face τ 
 σ, we have wτ =

∑
ρi∈τ(1) ui. Each labeling function 

f ∈ L(σ) determines a simplex, and these simplices (along with their faces) triangulate 
the unit cube as depicted below. Note that the origin is in the lower left-hand corner of 
this image and the vector (1, 1, 1) is in the upper right-hand corner.
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While the previous example illustrated how the polytopes Δ(σ, f) fit together in the 
generic cubical setting, the situation can become much more degenerate in the pseudo-
cubical setting, when some of the vertices of Pσ,∗(z) are allowed to coincide. We give one 
particularly degenerate illustration in the next example.

Example 3.10. Let NR = R3, let u1 = (1, 0, 0), u2 = (1, 1, 0), and u3 = (1, 1, 1), and set 
σ = cone(u1, u2, u3). Let ∗ be the dot product and set z1 = 1, z2 = 2, and z3 = 3. Then 
Pσ,∗(z) = conv(0, u1, u2, u3), which we have depicted below.

It can be checked that, for any face τ 
 σ, we have

wτ =

⎧⎪⎪⎨⎪⎪⎩
u1 τ(1) = {ρ1},
u2 ρ2 ∈ τ(1) and ρ3 /∈ τ(1),
u3 ρ3 ∈ τ(1).

It follows that Δ(σ, f) = Pσ,∗(z) if f(i) = ρi for each i, and for every other labeling 
function, Δ(σ, f) is a proper face of Pσ,∗(z). Even though there is a lot of redundancy in 
this pseudo-cubical setting, the simplices Δ(σ, f) (along with their faces) still triangulate 
Pσ,∗(z).

In each of the previous two examples, we saw that the simplices Δ(σ, f) and their 
faces triangulate the polytope Pσ,∗(z)—we now aim to prove this in general. For each 
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σ ∈ Σ and f ∈ L(σ), let Δ̂(σ, f) denote the polytopal complex consisting of Δ(σ, f) and 
its faces. The next result will be key to computing volumes of normal complexes in the 
next section.

Proposition 3.11. For any z ∈ Cub(Σ, ∗), the collection⋃
σ∈Σ(d)
f∈L(σ)

Δ̂(σ, f)

is a triangulation of CΣ,∗(z). Furthermore, the function

f ∈ L(σ) �→ Δ(σ, f) ∈ {polytopes in Nσ,R}

is injective when restricted to the preimage of d-dimensional polytopes.

Proof. Fix σ ∈ Σ(d) and consider the polytope Pσ,∗(z). We prove that the collection⋃
f∈L(σ)

Δ̂(σ, f) (3.12)

is a triangulation of P̂σ,∗(z). To do so, we argue that (3.12) results from a sequence of 
pulling subdivisions—a procedure that we now recall.

If C is a polytopal complex and v ∈ C is a vertex, then the pulling subdivision of 
C at v, denoted pullvC, is the polytopal complex obtained by replacing every polytope 
P ∈ C that contains v with the collection of pyramids conv(v, F ) for all proper faces 
F ≺ P . For example, the pulling subdivision of a polygon (and its faces) at a vertex is the 
triangulation obtained by connecting that vertex to every other vertex of the polygon. 
A few important properties of pulling subdivisions that can be readily checked from the 
definition are:

(1) The polytopal complexes C and pullvC have the same support;
(2) The vertex v is an apex of pullvC, meaning that v is adjacent to every vertex in 

every polytope of pullvC that contains v;
(3) If v is an apex of C, then pullvC = C;
(4) If w is an apex of C, then it is also an apex of pullvC.

It follows from these properties that sequentially performing a pulling subdivision at 
every vertex of a polytopal complex results in a polytopal complex for which every 
vertex is an apex; in other words, it results in a triangulation.

We now claim that (3.12) is obtained by an iterated sequence of pulling subdivisions 
of P̂σ,∗(z), where we first subdivide at the vertex w{0} = 0, then at the vertices {wτ | τ ∈
σ(1)} (in any order), then at the vertices {wτ | τ ∈ σ(2)} (in any order), and so forth. 
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To prove this, let P̂σ,∗(z)k denote the polytopal complex resulting from the first k steps 
of this process; we claim that

P̂σ,∗(z)k =
⋃

π∈σ(k)
f∈L(π)

P̂ (π, f) (3.13)

where

P (π, f) = conv(wπ(f,0), . . . , wπ(f,k−1), F∅,π(1)),

and the faces F∅,π(1) 
 Pσ,∗(z) are those described in Proposition 3.3. Upon observing 
that P (σ, f) = Δ(σ, f), we see that the triangulation (3.12) is the k = d case of (3.13).

We prove (3.13) by induction on k. For the base case k = 0, it suffices to notice that

Pσ,∗(z) = F∅,∅ = conv(F∅,∅).

To prove the induction step, assume that (3.13) holds for some k. By definition, 
P̂σ,∗(z)k+1 is the pulling subdivision of P̂σ,∗(z)k at {wτ | τ ∈ σ(k)}, so using the induction 
hypothesis, we can compute this in terms of the right-hand side of (3.13). Fix τ ∈ σ(k). 
To compute pullwτ

P̂σ,∗(z)k, we first identify which polytopes P (π, f) in the right-hand 
side of (3.13) contain wτ as a vertex. There are two possibilities: either wτ = wπ(f,i) for 
some π, f , and i, or π = τ , in which case wτ ∈ F∅,π(1). In the first case, wτ is already 
an apex of P̂ (π, f), so pullwτ

P̂ (π, f) = P̂ (π, f). Thus, it remains to compute the pulling 
subdivision in the second case: pullwτ

P̂ (τ, f).
To compute pullwτ

P̂ (τ, f), notice that wτ ∈ F∅,τ(1) and, by Proposition 3.3, every 
face of F∅,τ(1) that does not contain wτ is contained in some face of the form F∅,τ(1)∪{ρ}
for some ρ ∈ σ(1) \ τ(1). It follows that every face of P (τ, f) that does not contain wτ

is contained in some face of the form

conv(wτ(f,0), . . . , wτ(f,k−1), F∅,τ(1)∪{ρ}).

Noting that τ = τ(f, k), it then follows from the definition of the pulling subdivision 
that

pullwτ
P̂ (τ, f) =

⋃
ρ∈σ(1)\τ(1)

ĉonv(wτ(f,0), . . . , wτ(f,k−1), wτ(f,k), F∅,τ(1)∪{ρ}).

Varying over all f ∈ L(τ) and τ ∈ σ(k), it then follows that

P̂σ,∗(z)k+1 =
⋃

π∈σ(k+1)
f∈L(π)

P̂ (π, f),

completing the induction step.
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To prove the final statement in the proposition, the key observation we require is that 
the face F∅,S has dimension at most d − |S|, and whenever dim(F∅,S) = d − |S|, we have

F∅,S ⊆ F∅,{ρ} = F 1
ρ if and only if ρ ∈ S. (3.14)

In other words, if dim(F∅,S) = d − |S|, then F∅,S uniquely determines the set of rays in 
S. Property (3.14) follows from the fact—discussed in the proof of Proposition 3.3—that 
the facets of Pσ,∗(z) are a subset of the faces of the form F 0

ρ and F 1
ρ .

Now suppose that Δ(σ, f) is d-dimensional; we must prove that f is uniquely de-
termined by Δ(σ, f). Using that {wσ(f,1), . . . , wσ(f,d)} are linearly independent and 
contained in F∅,σ(f,1), we see that dim(F∅,σ(f,1)) = d − 1. By (3.14), this implies 
that the face spanned by the nonzero vectors in Δ(σ, f) uniquely determines σ(f, 1), 
and thus determines f(1). Next, suppose we have used Δ(σ, f) to uniquely determine 
f(1), . . . , f(k − 1); we must show that we can then uniquely determine f(k). Using 
that {wσ(f,k), . . . , wσ(f,d)} are linearly independent and contained in F∅,σ(f,k)(1), we 
see that dim(F∅,σ(f,k)(1)) = d − k. By (3.14), this implies that the face spanned by 
{wσ(f,k), . . . , wσ(f,d)} uniquely determines σ(f, k), thereby determining f(k). This com-
pletes the induction step, finishing the proof. �
4. Volume computations

The main result of this section is the derivation of an explicit formula for weighted 
volumes of normal complexes. Throughout this section, let Σ ⊆ NR denote a simplicial 
d-fan, and let ∗ ∈ Inn(NR) be an inner product.

4.1. Normalizing volume

In this subsection, we discuss a preparatory result that allows us to compute nor-
malized volumes using determinants. Let σ ∈ Σ(k) and consider the vector space Nσ,R. 
Notice that any volume function 

{
polytopes in Nσ,R

}
→ R≥0 is uniquely determined by 

its value on the simplex Δσ = conv({0} ∪{uρ | ρ ∈ σ(1)}), and any two volume functions 
differ by a scalar multiple. By restricting the inner product ∗ ∈ Inn(NR), we obtain an 
inner product ∗ ∈ Inn(Nσ,R), and this inner product allows us to define the Euclidean 
(simplicial) volume function

volσ :
{
polytopes in Nσ,R

}
→ R≥0,

which is normalized so that the simplex associated to any orthonormal basis (with respect 
to ∗) has unit volume. A linear algebra exercise shows that the Euclidean volume of the 
simplex Δσ is given by the formula

volσ(Δσ) =
√

det(Gσ) (4.1)
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where Gσ is the Gram matrix

Gσ = (uρ ∗ uη)ρ,η∈σ(1).

In regards to computing volumes of normal complexes, we require the volume function

Volσ :
{
polytopes in Nσ,R

}
→ R≥0,

which is normalized so that the volume of a fundamental simplex of the lattice Mσ ⊆
Nσ,R has unit volume. The next result allows us to compute the volume function Volσ(−)
in terms of the Euclidean volume function volσ(−).

Lemma 4.2. For any polytope P ⊆ Nσ,R, we have

Volσ(P ) =
√

det(Gσ)volσ(P ).

Proof. Let {vη | η ∈ σ} ⊆ Mσ be the dual basis of {uρ | ρ ∈ σ(1)} ⊆ Nσ determined by 
the property that

uρ ∗ vη = δρ,η,

where δρ,η is the Kronecker delta function. Using the identification of Mσ,R and Nσ,R

given by the inner product ∗, write the change of basis transformation as Tσ =
(aρ,η)ρ,η∈σ(1) where

uρ =
∑

η∈σ(1)

aρ,ηvη.

Notice that

Gσ = (uρ ∗ uη)ρ,η∈σ(1) = (aρ,η)ρ,η∈σ(1) = Tσ,

where the second equality follows from replacing each uρ with its expression in terms of 
vη. Define

Δσ = conv({0} ∪ {vη | η ∈ σ}),

so that

Tσ(Δσ) = Δσ.

Using that linear transformations rescale volumes by the absolute value of their deter-
minant, we see that
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Volσ(Δσ) = |det(Tσ)|Volσ(Δσ)

= det(Gσ)Volσ(Δσ)

= det(Gσ).

The second equality follows from the above observation that Gσ = Tσ and the fact that 
Gram determinants are always nonnegative, and the third equality follows from the fact 
that Δσ is a unit simplex in Mσ. Therefore, combining these computations with (4.1), 
we see that

Volσ(Δσ) =
√

det(Gσ)volσ(Δσ),

proving that the scaling factor between these volume functions is 
√

det(Gσ). �
4.2. Volumes of normal complexes

We now present a formula for volumes of normal complexes. Recall that, for any 
pseudo-cubical value z ∈ Cub(Σ, ∗), the volume of the normal complex CΣ,∗(z) weighted 
by ω is defined by

Vol(CΣ,∗(z);ω) =
∑

σ∈Σ(d)

ω(σ)Volσ(Pσ,∗(z)).

The next result computes an explicit formula for these volumes.

Theorem 4.3. For any z ∈ Cub(Σ, ∗) and σ ∈ Σ(k) we have

Volσ(Pσ,∗(z)) = det(Gσ)
∑

f∈L(σ)

k∏
j=1

det(Gσ(f,j),f(j))
det(Gσ(f,j))

where the notation is defined as follows:

• for σ ∈ Σ(k), the set L(σ) is the set of bijections f : {1, . . . , k} → σ(1);
• for f ∈ L(σ) and 1 ≤ j ≤ k, the cone σ(f, j) 
 σ has rays indexed by {f(i) | i ≤ j};
• the matrix Gσ is defined by Gσ = (uρ ∗ uη)ρ,η∈σ(1);
• the matrix Gσ,ρ(z) is obtained by replacing the ρth column of Gσ with zσ = (zη)η∈σ(1).

Proof. By Proposition 3.11, we can write

Volσ(Pσ,∗(z)) =
∑

f∈L(σ)

Volσ(Δ(σ, f)),

where
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Δ(σ, f) = conv
(
wσ(f,0), . . . , wσ(f,k)

)
.

Therefore, it suffices to prove that

Volσ(Δ(σ, f)) = det(Gσ)
k∏

j=1

det(Gσ(f,j),f(j))
det(Gσ(f,j))

.

It follows from Lemma 4.2 that

Volσ(Δ(σ, f)) =
√

det(Gσ)volσ(Δ(σ, f)).

In order to compute the Euclidean volume of Δ(σ, f), we start by writing each wτ as a 
linear combination of the vectors {uρ | ρ ∈ τ(1)}:

wτ =
∑

ρ∈τ(1)

aτ,ρuρ.

Define the matrix

Tf =
(
aσ(f,j),ρ

)
1≤j≤k
ρ∈σ(1)

,

so that Tf (Δσ) = Δ(σ, f), where Δσ = conv({0} ∪ {uρ | ρ ∈ σ(1)}). Then

volσ(Δ(σ, f)) = |det(Tf )|volσ(Δσ)

= |deg(Tf )|
√

det(Gσ),

where the second equality follows from (4.1). By definition, notice that aσ(f,j),ρ = 0 for 
all ρ /∈ σ(f, j)(1). It follows that, up to a sign, det(Tf ) is the product of the entries

{aσ(f,j),f(j) | j = 1, . . . , k}.

All of these entries are nonnegative by the pseudo-cubical assumption, so

|det(Tf )| = |aσ(f,1),f(1) · · · aσ(f,k),f(k)| = aσ(f,1),f(1) · · · aσ(f,k),f(k).

Combining the above observations, we have proved that

Volσ(Δ(σ, f)) = det(Gσ)
k∏

j=1
aσ(f,j),f(j).

It remains to compute each aσ(f,j),f(j).



A. Nathanson, D. Ross / Advances in Mathematics 420 (2023) 108981 31
Recall that wσ(f,j) is defined by j linear equations

wσ(f,j) ∗ uρ = zρ with ρ ∈ σ(f, j)(1)

Writing

wσ(f,j) =
∑

ρ∈σ(f,j)(1)

aσ(f,j),ρuρ,

these linear equations can be encoded in a matrix equation

Gσ(f,j) · (aσ(f,j),ρ)ρ∈σ(f,j)(1) = (zρ)ρ∈σ(f,j)(1).

By Cramer’s rule, it then follows that

aσ(f,j),ρ =
det(Gσ(f,j),ρ(z))

det(Gσ(f,j))
, (4.4)

and we conclude that

Volσ(Δ(σ, f)) = det(Gσ)
k∏

j=1

det(Gσ(f,j),f(j)(z))
det(Gσ(f,j))

,

completing the proof. �
5. Square-free expressions

In this section, we derive a formula for products of divisors in Chow rings of simplicial 
fans as linear combinations of monomials that are square free in the generators and whose 
coefficients are closely related to the volume computations of the previous section.

Let Σ ⊆ NR denote a simplicial d-fan, and for any z ∈ RΣ(1), define

D(z) =
∑

ρ∈Σ(1)

zρXρ ∈ A1(Σ).

Our main result of this section is the following.3

Theorem 5.1. For any inner product ∗ ∈ Inn(NR) and values z1, . . . , zk ∈ RΣ(1), we have

D(z1) · · ·D(zk) =
∑

σ∈Σ(k)

(
det(Gσ)

∑
f∈L(σ)

k∏
j=1

det(Gσ(f,j),f(j)(zj))
det(Gσ(f,j))

)
Xσ ∈ A•(Σ),

3 Theorem 5.1 as written here is stronger than a result that was written in a preliminary draft of this 
paper, and the authors thank Chris Eur for an enlightening conversation that led to this strengthening.
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where all notation is as in Theorem 4.3. Moreover, the coefficients are nonnegative if 
z1, . . . , zk ∈ Cub(Σ, ∗) and positive if z1, . . . , zk ∈ Cub(Σ, ∗).

Proof. We prove the formula by induction on k, the base case being k = 0, in which 
both sides of the equation are 1. Assume that k ≥ 1 and that the result is valid for k−1. 
Then

D(z1) · · ·D(zk) =
∑

τ∈Σ(k−1)

(
det(Gτ )

∑
g∈L(τ)

k−1∏
j=1

det(Gτ(g,j),g(j)(zj))
det(Gτ(g,j))

)
Xτ

∑
ρ∈Σ(1)

zk,ρXρ.

(5.2)
Given τ ∈ Σ(k − 1) and g ∈ L(τ), the definition of the ideal J leads to the following 
system of k − 1 linear equations:

k−1∑
i=1

ug(j) ∗ ug(i)Xg(i) = −
∑

ρ/∈τ(1)

ug(j) ∗ uρXρ.

Solving this system using Cramer’s rule, we have, for all i = 1, . . . , k − 1,

Xg(i) = −1
det(Gτ )

∑
ρ/∈τ(1)

det(Gτ
i← (ug(j) ∗ uρ)j)Xρ,

where the rows and columns in Gτ are ordered by the labeling function g ∈ L(τ), and 

Gτ
i← (ug(j) ∗ uρ)j is the matrix obtained from Gτ by replacing the ith column with 

(ug(j) ∗ uρ)j . It then follows that

Xτ

∑
ρ∈Σ(1)

zk,ρXρ = Xτ

∑
ρ/∈τ

Xρ

(
zk,ρ −

k−1∑
i=1

zk,g(i) det(Gτ
i← (ug(j) ∗ uρ)j)

det(Gτ )

)

=
∑

σ∈Σ(k)
τ≺σ

Xσ

(
zk,ρ −

k−1∑
i=1

zk,g(i) det(Gτ
i← (ug(j) ∗ uσ\τ )j)

det(Gτ )

)

=
∑

σ∈Σ(k)
τ≺σ

Xσ

det(Gσ,σ\τ (zk))
det(Gτ )

, (5.3)

where the final equality follows from expanding the numerator in the final expression 
along the last column. Defining f ∈ L(σ) from g ∈ L(τ) by

f(j) =
{
g(j) if j > k,

σ \ τ if j = k,

and substituting (5.3) into (5.2), we then conclude that
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D(z1) · · ·D(zk) =
∑

σ∈Σ(k)

(
det(Gσ)

∑
f∈L(σ)

k∏
j=1

det(Gσ(f,j),f(j)(zj))
det(Gσ(f,j))

)
Xσ,

completing the induction step.
To prove the positivity statements, it is enough to argue that

det(Gσ,ρ(z))
det(Gσ) (5.4)

is nonnegative when z ∈ Cub(Σ, ∗) and positive when z ∈ Cub(Σ, ∗). This follows from 
the definition of cubical along with the observation, explained in the proof of Theorem 4.3
(see Equation (4.4)), that the quantity in (5.4) is equal to the coefficient of uρ in the 
unique expression of wσ as a linear combination in {uη | η ∈ σ(1)}. �
6. Tropical fans and volume polynomials

In this section, we connect the volume computations of normal complexes to the 
square-free expression of products in Chow rings, leading to a proof of our main result. 
The key preliminary fact we require is the following.

Proposition 6.1. Let Σ be a simplicial d-fan in NR and let ω : Σ(d) → R>0 be a weight 
function. Then (Σ, ω) is a tropical fan if and only if there is a well-defined linear degree 
map

degΣ,ω : Ad(Σ) → R

satisfying degΣ,ω(Xσ) = ω(σ) for every σ ∈ Σ(d).

Proof. In the unimodular setting, this result is a special case of [2, Proposition 5.6], and 
the proof given there generalizes to the simplicial setting. For the reader’s convenience, 
we outline the ideas here.

Define Zd(Σ) to be the vector subspace of R[xρ | ρ ∈ Σ(1)] generated by monomials 
of the form xσ with σ ∈ Σ(d). By Theorem 5.1, every element of Ad(Σ) can be written 
as a linear combination of monomials of the form Xσ with σ ∈ Σ(d), and it follows that

Ad(Σ) = Zd(Σ)
(I + J ) ∩ Zd(Σ) .

Define the linear map

degΣ,ω : Zd(Σ) → R

xσ �→ ω(σ).
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Then degΣ,ω descends to the desired tropical degree map on Ad(Σ) if and only if it 
vanishes on all elements of (I + J ) ∩ Zd(Σ). Some moments reflecting should convince 
the reader that the subspace (I + J ) ∩ Zd(Σ) is generated by polynomials of the form

xτ

∑
σ∈Σ(d)
τ≺σ

〈v, uσ\τ 〉xσ\τ

where τ ∈ Σ(d − 1) and v ∈ (Nτ
R)⊥ ⊆ MR. Thus, the tropical degree map exists if and 

only if, for every τ ∈ Σ(d − 1), we have∑
σ∈Σ(d)
τ≺σ

〈v, ω(σ)uσ\τ 〉 = 0 for all v ∈ (Nτ,R)⊥. (6.2)

Notice that (6.2) is satisfied for all τ ∈ Σ(d − 1) if and only if the tropical balancing 
condition is satisfied:∑

σ∈Σ(d)
τ≺σ

ω(σ)uσ\τ ∈ Nτ,R for all τ ∈ Σ(d− 1). �

We can now prove the main result of this paper. Recall that the volume function for 
a simplicial tropical d-fan (Σ, ω) is defined by

VolΣ,ω : A1(Σ) → R

D �→ degΣ,ω(Dd).

Theorem 6.3. If (Σ, ω) is a simplicial tropical d-fan in NR and ∗ ∈ Inn(NR) is an inner 
product, then for any D =

∑
zρXρ ∈ A1(Σ), we have

VolΣ,ω(D) =
∑

σ∈Σ(d)

ω(σ) det(Gσ)
∑

f∈L(σ)

k∏
j=1

det(Gσ(f,j),f(j)(z))
det(Gσ(f,j))

,

where all notation is as in Theorem 4.3. In particular, if z ∈ Cub(Σ, ∗) is pseudo-cubical, 
then

VolΣ,ω(D) = Vol(CΣ,∗(z);ω).

Proof. We have

VolΣ,ω(D) = degΣ,ω(Dd)

= degΣ,ω

( ∑ (
det(Gσ)

∑ d∏ det(Gσ(f,j),f(j)(z))
det(Gσ(f,j))

)
Xσ

)

σ∈Σ(d) f∈L(σ) j=1
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=
∑

σ∈Σ(d)

ω(σ) det(Gσ)
∑

f∈L(σ)

k∏
j=1

det(Gσ(f,j),f(j)(z))
det(Gσ(f,j))

,

where the first equality is the definition of the volume function, the second is an applica-
tion of Theorem 5.1, and the third is the definition of the tropical degree function. The 
second statement in the theorem is an immediate application of Theorem 4.3. �
7. Example: Bergman fans of matroids

In this final section, we present a rich class of examples of balanced fans arising from 
matroid theory, called Bergman fans. Our main result is that every Bergman fan of a 
matroid with arbitrary building set admits an open set of inner products for which the 
cubical cone is nonempty. Theorem 6.3 then provides a geometric interpretation for the 
volume polynomials of all matroids with respect to arbitrary building sets.

7.1. Matroids, building sets, and Bergman fans

A matroid M = (E, L) consists of a finite set E, called the ground set, and a collection 
of subsets L ⊆ 2E , called flats, which satisfy the following two conditions:

(1) if F1, F2 are flats, then F1 ∩ F2 is a flat, and
(2) if F is a flat, then every element of E \ F is contained in exactly one flat that is 

minimal among the flats that strictly contain F .

For notational simplicity, we assume throughout that all matroids are loopless, meaning 
that the empty set is a flat. Let L∗ denote the proper flats of M—those flats that are 
neither ∅ nor E.

Given a matroid M = (E, L), the set L is partially ordered by set inclusion. Further-
more, given any subset S ⊆ E, it follows from Property (1) that there is a minimal flat 
containing S, called the closure of S and denoted cl(S) ∈ L. Defining the join (∨) of two 
flats to be the closure of their union and the meet (∧) of two flats to be their intersection, 
it follows from the definitions that the flats L form a lattice, called the lattice of flats of 
M.

A subset I ⊆ E is called independent if cl(I1) ⊂ cl(I2) for any I1 ⊂ I2 ⊆ I. The rank
of a subset S ⊆ E, denoted rk(S), is the size of its largest independent subset. The rank 
of M is defined as the rank of E. An alternative characterization of the rank of flats is 
given by lengths of flags. A flag in M is an increasing sequence of flats:

F = (∅ ⊂ F1 ⊂ F2 ⊂ · · · ⊂ F	)

The number of nonempty flats in a flag F is called the length of the flag, denote 
(F). 
It can be checked from the above definitions that every maximal flag of flats contained 
in a flat F has length equal to rk(F ).
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A building set on M is a subset G ⊆ L \ {∅} such that, for any flat F ∈ L \ {∅} and 
max G⊆F = {G1, . . . , Gk}, we have an isomorphism of posets

k∏
i=1

[∅, Gi] ∼= [∅, F ]

(F1, . . . , Fk) �→ F1 ∨ · · · ∨ Fk.

We assume that all building sets contain E and we set G∗ = G ∩ L∗ = G \ {E}. Given a 
building set G, a subset N ⊆ G is called nested if, for any set of pairwise incomparable 
flats G1, . . . , G	 ∈ N with 
 ≥ 2, we have G1 ∨ · · · ∨ G	 /∈ G. Let ΔM,G denote the 
collection of nested sets of M with respect to G, and let Δ∗

M,G denote the collection of 
nested sets that do not contain E. Since subsets of nested sets are nested, both ΔM,G
and Δ∗

M,G naturally have the structure of simplicial complexes. The set L \∅ is a building 
set for any matroid M, which we denote Gmax. With respect to Gmax, it follows from the 
above definitions that a set of flats is nested if and only if it forms a flag.

Consider the free abelian group ZE with basis indexed by E. For each subset S ⊆ E, 
define the vector vS =

∑
e∈S ve ∈ ZE . Set N = ZE/ZvE and for each subset S ⊆ E, 

define uS = [vS ]. The Bergman fan of M with respect to G, denoted ΣM,G, is the fan in 
NR with one cone σN indexed by each nested set N ∈ Δ∗

M,G :

σN = cone(uG | G ∈ N ).

Example 7.1. Consider the rank 3 matroid M on E = {0, 1, 2, 3} with the following lattice 
of flats (set brackets and commas have been omitted for notational simplicity).

0123

01 02 03 123

0 1 2 3

∅

The Bergman fan ΣM,Gmax of M with respect to the maximal building set Gmax is depicted 
in Example 2.6. The other possible building sets arise from removing some subset of the 
decomposable flats {01, 02, 03}, and the Bergman fans with respect to these building 
sets are obtained by removing the corresponding subset of the rays {ρ01, ρ02, ρ03} from 
ΣM,Gmax .
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Bergman fans of matroids with building sets have been studied quite extensively (see, 
for example, [3,18,21,19,20]). The Bergman fan ΣM,G is unimodular [21, Proposition 2]. 
In addition, given any building set G, the fan ΣM,Gmax can be obtained from ΣM,G by 
a sequence of stellar subdivisions [19, Proposition 4.2]. This fact has two important 
consequences that are central to our current discussion.

(1) Since ΣM,Gmax is pure of dimension r = rk(M) − 1 (every maximal flag has length r), 
it follows that ΣM,G is pure of dimension r for any building set G.

(2) Since ΣM,Gmax is balanced (this follows from the second axiom in the definition of ma-
troids, see [23, Proposition 3.10] for a proof), it then follows from [6, Lemma 2.11(b)]
that ΣM,G is also balanced for any building set G.

Thus, our developments of normal complexes of balanced fans apply in the setting of 
matroids and Bergman fans. Let

VolM,G and CM,G,∗(z),

denote the volume polynomial and the normal complex associated to the Bergman fan 
ΣM,G , where ∗ ∈ Inn(NR) is any inner product and z ∈ Cub(ΣM,G , ∗). Theorem 6.3
implies that the volume polynomial is computed by

VolM,G(z) =
∑

σ∈ΣM,G(r)

det(Gσ)
∑

f∈L(σ)

r∏
j=1

det(Gσ(f,j),f(j))
det(Gσ(f,j))

, (7.2)

and that, for any pseudo-cubical value z ∈ Cub(ΣM,G , ∗), we have

VolM,G(z) = Vol(CM,G∗(z)). (7.3)

Bergman fans exhibit a great deal of structure, and this structure was recently ex-
ploited by Adiprasito, Huh, and Katz [2] (for maximal G) and Ardila, Denham, and 
Huh [1] (for arbitrary G) to show that matroid Chow rings A•(M, G) = A•(ΣM,G) satisfy 
the Kähler package, meaning that they behave in many ways similarly to Chow rings 
of smooth, projective varieties. In fact, because matroid Chow rings satisfy Poincaré 
duality—which is just one piece of the Kähler package—it follows that the volume poly-
nomial VolM,G(z) determines the entire Chow ring A•(M, G) [12, Lemma 13.4.7]. In the 
setting of maximal building sets, volume polynomials have been previously studied, and 
there are at least two combinatorial formulas for volume polynomials of matroids with 
respect to Gmax [17,8,16]. Equation (7.2) provides a continuous family of new formulas 
for volume polynomials of matroids with arbitrary building sets, one for each choice of 
inner product.

The initial aim of this work was to introduce volume-theoretic tools into the study of 
volume polynomials of matroids; in other words, to put the “volume” back in “volume 
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polynomials” of matroids. In principle, this is accomplished by Equation (7.3); however, 
it is not obvious that the hypothesis of (7.3) can ever be satisfied. In other words, the 
cubical hypothesis is a rather restrictive constraint on the choice of ∗ and z, and it’s not 
clear that cubical values ever exist. We resolve this issue with the next result.

Proposition 7.4. If M = (E, L) is a matroid and G is a building set, then there exists a 
nonempty open set U ⊆ Inn(NR) such that, for any ∗ ∈ U , we have Cub(ΣM,G , ∗) 
= ∅. 
More specifically, if we label the ground set E = {e0, . . . , en} and let ∗ be the standard 
dot product with respect to the basis ue1, . . . , uen ∈ NR, then there exists a cubical value 
z ∈ Cub(ΣM,G , ∗).

The proof of this proposition requires one important property of nested sets, which is 
that any two incomparable elements of a nested set are disjoint. This property can be 
checked from the definitions above, or a proof can be found in [18, Section 2].

Proof of Proposition 7.4. It follows from the definitions that the existence of a cubical 
value is an open condition on Inn(NR); therefore, the first statement in the proposition 
follows from the second. Label the ground set E = {e0, . . . , en} and let ∗ be the standard 
dot product with respect to the basis ue1 , . . . , uen ∈ NR. By definition, note that

ue0 = −
n∑

i=1
uei .

Choose some m � 0 and for every G ∈ G∗, set

zG =
{
|G| −m−|Gc| if e0 /∈ G

|Gc| −m−|G| if e0 ∈ G.

We claim that z ∈ Cub(ΣM,G , ∗). In order to verify this, we must prove that, for each 
nested set N , we have wN = wσN ∈ σ◦

N .
Fix a nested set N and write

wN =
∑
G∈N

aN ,GuG.

We must prove that aN ,G > 0 for all G ∈ N . The coefficients aN ,G are determined by 
the linear equations

wN ∗ uG = zG for all G ∈ N .

In order to write these linear equations more explicitly, notice that, for G1, G2 ∈ G∗, we 
have
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uG1 ∗ uG2 =

⎧⎪⎪⎨⎪⎪⎩
|G1 ∩G2| if e0 /∈ G1 and e0 /∈ G2;
−|G1 ∩Gc

2| if e0 /∈ G1 and e0 ∈ G2;
|Gc

1 ∩Gc
2| if e0 ∈ G1 and e0 ∈ G2.

We now fix notation that will be useful in the argument. Let N0 ⊆ N be the subset of 
flats containing e0. Since incomparable elements of N are disjoint, N0 is totally ordered; 
let G0 denote the minimal element of N0. For each G ∈ N , let Ĝ be the minimal flat in 
N0 ∪{E} that contains G. Using this notation, the linear equations defining wN become∑
F∈N
F⊂G

|F |aN ,F +|G|
∑
F∈N

G⊆F⊂Ĝ

aN ,F−|G|
∑
F∈N

G0⊆F⊂Ĝ

aN ,F = |G|−m−|Gc| if G /∈ N0 (7.5)

and

|Gc|
∑
F∈N

G0⊆F⊂G

aN ,F +
∑
F∈N
G⊆F

|F c|aN ,F −
∑

F∈N\N0
G⊂F̂

|F |aN ,F = |Gc| −m−|G| if G ∈ N0.

(7.6)
For any G ∈ N , let G+ denote the minimal element of N ∪ {E} strictly containing 

G. Consider some G ∈ N0 with G+ 
= E. If we subtract Equation (7.6) for G+ from 
Equation (7.6) for G, we obtain the equation

(|Gc| − |Gc
+|)

∑
F∈N

G0⊆F⊆G

aN ,F −
∑

F∈N\N0
F̂=G+

|F |aN ,F = |Gc| − |Gc
+| −m−|G| +m−|G+|. (7.7)

Notice that every F ∈ N \ N0 with F̂ = G+ is a subset of a unique H ∈ N \ N0 with 
H+ = G+. Therefore, summing Equation (7.5) for all H ∈ N \ N0 with H+ = G+, we 
obtain the equation∑

F∈N\N0
F̂=G+

|F |aN ,F −
∑

H∈N\N0
H+=G+

|H|
∑
F∈N

G0⊆F⊆G

aN ,F =
∑

H∈N\N0
H+=G+

(|H| −m−|Hc|). (7.8)

Substituting (7.8) into (7.7) and simplifying, it follows that, for any G ∈ N0, we have

∑
F∈N

G0⊆F⊆G

aN ,F =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 −

m−|G|−m−|G+|−
∑

H∈N\N0
H+=G+

m−|Hc|

|Gc|−|(G+)c|−
∑

H∈N\N0
H+=G+

|H| if G+ 
= E

1 − m−|G|

|Gc| if G+ = E,

(7.9)

where the second equation simply follows from (7.6) applied to the unique maximal 
element G ∈ N0 with G+ = E.
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Since N is a nested set, it follows that the denominator in (7.9) is always a positive 
integer; more specifically, this follows from the fact that {G} ∪{H ∈ N \N0 | H+ = G+}
is a collection of pairwise incomparable elements of N that are all subsets of G+, so they 
must be pairwise disjoint subsets of G+, and their union cannot be all of G+ or else 
their join would be equal to G+ ∈ G, contradicting the nested condition. For m � 0, 
notice that the leading term in the quotient in (7.9) is −m−|G|, from which it follows 
that the right-hand side of (7.9) is increasing with respect to G. Thus, taking successive 
differences to solve for each aN ,G, we conclude that aN ,G > 0 for all G ∈ N0 with 
G 
= G0. For G = G0, notice that the right-hand side of (7.9) is positive for m � 0
simply because the quotient is very small, implying that aN ,G0 > 0. Thus, we conclude 
that aN ,G > 0 for all G ∈ N0.

Suppose now that G /∈ N0. Then taking Equation (7.5) for G and subtracting from it 
Equation (7.5) for all H ∈ N with H+ = G, we obtain the equation(
|G|−

∑
H∈N
H+=G

|H|
)( ∑

F∈N
G⊆F⊂Ĝ

aN ,F−
∑
F∈N

G0⊆F⊂Ĝ

aN ,F

)
= |G|−m−|Gc|−

∑
H∈N
H+=G

(
|H|−m−|Hc|).

Simplifying, we may write

∑
F∈N

G⊆F⊂Ĝ

aN ,F =
(
1 +

∑
F∈N

G0⊆F⊂Ĝ

aN ,F

)
−

m−|Gc| −
∑

H∈N
H+=G

m−|Hc|

|G| −
∑

H∈N
H+=G

|H| (7.10)

As in the previous case, the denominator in the second term of the right-hand side of 
Equation (7.10) is positive because N is a nested set. For m � 0, notice that −m−|Gc|

is the leading term of the quotient in Equation (7.10), from which it follows that the 
right-hand side of (7.8) is decreasing with respect to G. Therefore, taking successive 
differences to solve for each aN ,G, we see that aN ,G > 0 for all G /∈ N with G+ 
= Ĝ. In 
the case that G+ = Ĝ, then aN ,G is the only term in the left-hand side of (7.10), and 
the fact that aN ,F > 0 for all F ∈ N0, which is what we already argued above, then 
implies that the right-hand side of (7.10) is positive for m � 0. Thus, we conclude that 
aN ,G > 0 for all G /∈ N0, finishing the proof of the proposition. �
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