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ABSTRACT

Classical computing plays a critical role in the advancement of
quantum frontiers in the NISQ era. In this spirit, this work uses
classical simulation to bootstrap Variational Quantum Algorithms
(VQASs). VQAs rely upon the iterative optimization of a parameter-
ized unitary circuit (ansatz) with respect to an objective function.
Since quantum machines are noisy and expensive resources, it is
imperative to classically choose the VQA ansatz initial parameters
to be as close to optimal as possible to improve VQA accuracy and
accelerate their convergence on today’s devices.

This work tackles the problem of finding a good ansatz ini-
tialization, by proposing CAFQA, a Clifford Ansatz For Quantum
Accuracy. The CAFQA ansatz is a hardware-efficient circuit built
with only Clifford gates. In this ansatz, the parameters for the tun-
able gates are chosen by searching efficiently through the Clifford
parameter space via classical simulation. The resulting initial states
always equal or outperform traditional classical initialization (e.g.,
Hartree-Fock), and enable high-accuracy VQA estimations. CAFQA
is well-suited to classical computation because: a) Clifford-only
quantum circuits can be exactly simulated classically in polynomial
time, and b) the discrete Clifford space is searched efficiently via
Bayesian Optimization.

For the Variational Quantum Eigensolver (VQE) task of molec-
ular ground state energy estimation (up to 18 qubits), CAFQA’s
Clifford Ansatz achieves a mean accuracy of nearly 99% and recov-
ers as much as 99.99% of the molecular correlation energy that is
lost in Hartree-Fock initialization. CAFQA achieves mean accuracy
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improvements of 6.4x and 56.8x, over the state-of-the-art, on differ-
ent metrics. The scalability of the approach allows for preliminary
ground state energy estimation of the challenging chromium dimer
(Cr2) molecule. With CAFQA’s high-accuracy initialization, the
convergence of VQAs is shown to accelerate by 2.5x, even for small
molecules.

Furthermore, preliminary exploration of allowing a limited num-
ber of non-Clifford (T) gates in the CAFQA framework, shows that
as much as 99.9% of the correlation energy can be recovered at
bond lengths for which Clifford-only CAFQA accuracy is relatively
limited, while remaining classically simulable.
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1 INTRODUCTION

Quantum Computing in the NISQ era: Quantum computing (QC)
is a revolutionary computational model to solve certain classically
intractable problems and is projected to give QCs a significant
advantage in cryptography [65], chemistry [36], optimization [47]
and machine learning [8]. In the ongoing Noisy Intermediate-Scale
Quantum (NISQ) era, we expect to work with quantum machines
which comprise hundreds to thousands of imperfect qubits [57].
On the one hand, NISQ era machines will be unable to execute
large-scale quantum algorithms like Shor Factoring [65] and Grover
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Figure 1: Advancing the NISQ frontiers with error mitigation,
and classical support (eg., CAFQA).

Search [30], which would require error correction comprised of
millions of qubits to create fault-tolerant quantum systems [52].
On the other hand, a variety of error mitigation techniques [7,
10, 15, 17, 24, 41, 61, 66, 69, 72, 78] have been proposed that have
improved execution fidelity on today’s quantum devices. However,
the resulting fidelity is still insufficient for most real-world use
cases.

Advancing NISQ with classical support: There has been a
recent impetus toward classical computing support to boost NISQ
applications / devices to the realm of real-world applicability. These
include compiler level optimizations [48, 49, 58, 71], improved
classical optimizers [39], circuit cutting with classical compensa-
tion [20, 70, 80] etc. We are still in the early days of exploring this
synergistic quantum-classical paradigm. There is tremendous po-
tential for sophisticated application-specific classical bootstrapping
to advance the NISQ frontiers, and CAFQA is one such approach.
An illustration of advancing the NISQ frontiers towards real-world
applicability is shown in Fig.1.

Variational Quantum Algorithms: Variational quantum algo-
rithms (VQAs) are expected to be a good match for NISQ machines.
This class of algorithms has a wide range of applications, such as
the estimation of electronic energy of molecules [55], MAXCUT
approximation [47]. The quantum circuit for a VQA is parameter-
ized by a list of angles which are optimized by a classical optimizer
over many iterations towards a specific target objective which is
representative of the VQA problem. VQAs are more suitable for
today’s quantum devices because these algorithms adapt to the char-
acteristics and noise profile of the quantum machine on [44, 55].
Unfortunately, VQA accuracy obtained on today’s NISQ machines,
even with error mitigation, is often considerably far from the strin-
gent accuracy requirements in fields such as molecular chemistry,
especially as we scale to larger problem sizes [36, 58, 78].

Aiding VQAs in the NISQ Era: For NISQ VQAs to progress to-
wards real-world applicability, it is imperative to classically choose
a VQA’s parameterized circuit (ansatz) wisely and its initial param-
eters to be as close to optimal as possible, prior to quantum explo-
ration. This would improve accuracy and accelerate convergence
of the algorithm on the noisy quantum device [43, 79]. Suitable
ansatz circuits for today’s devices, referred to as “hardware effi-
cient ansatz” [36], are often application-agnostic and can especially
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Figure 2: Figure illustrates the VQA(E) state space explored
by different techniques. Hartree-Fock (HF), only explores the
yellow computational basis (i.e., classical bits) space. CAFQA
goes further by exploring the Clifford space (blue) for higher
accuracy. Both of these are classically simulable. Classical
exploration can be extended to incorporate a few T gates
(orange). The rest of the state space is shown in green - this
space cannot be efficiently simulated classically and requires
quantum exploration. By searching efficiently through the
classically simulable Clifford space, CAFQA provides a good
VQA ansatz initialization for quantum exploration.

benefit from a wise choice of initial parameters, but these can be
difficult to estimate classically.

Classical simulation support for VQAs with Cliffords: This
work helps to initialize the VQA ansatz using classical simulation.
In general, classical simulation of quantum tasks is not a scalable
solution, primarily only suited to trivial quantum problems, and
is, in fact, the motivation for quantum machines. An exception to
the above is the classical simulation of the Clifford space. Circuits
made up of only Clifford operations can be exactly simulated in
polynomial time [27]. Clifford operations do not provide a universal
set of quantum gates - hence, the stabilizer states produced by
Clifford-only circuits are limited in how effectively they can explore
the quantum space of a given problem such as those targeted by
VQAs. However, exploring the Clifford space of the VQA problem
through ideal classical simulation can potentially find good noise-
free initial states, which is particularly beneficial in the NISQ era.
Note: in addition to Clifford gates, it is possible for a small number
of T gates to also be efficiently classically simulated [12]. While
we primarily focus on the Clifford space in this work, we show
preliminary results for beyond-Clifford exploration in Section 8.

CAFQA: This work tackles the challenge of finding initial ansatz
parameters by proposing CAFQA, a Clifford Ansatz For Quantum
Accuracy. The CAFQA Clifford Ansatz is a hardware-efficient pa-
rameterizable circuit that is parameterized with only Clifford gates.
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In this ansatz, the initial parameters for the tunable gates are chosen
by searching efficiently through the Clifford parameter space via
classical simulation, thereby producing a suitable stabilizer state.
The proposed approach is attractive for multiple reasons: @ the
Clifford-initialized ansatz produces stabilizer states that perform
equal to or better than the traditional classical approach of finding
a suitable computational basis state (e.g., Hartree-Fock [32]) be-
cause (i) it can explore a larger state space and (ii) the stabilizer can
have direct chemical relevance in some molecular systems; @ the
Clifford-only quantum circuits can be perfectly simulated in poly-
nomial (quadratic or even linear) time on classical computers [27];
© the produced initial states are obtained ideally, since classical
simulation is noise-free; (d) the discrete Clifford space is searched
efficiently via Bayesian Optimization using a random forest surro-
gate model and a greedy acquisition function; € while the Clifford
space is significantly smaller compared to the entire quantum space,
the stabilizer states produced from the optimal Clifford parame-
ters are able to achieve solutions of high accuracy even prior to
execution/exploration on a quantum device; and finally (P the se-
lected ansatz can then be tuned over the entire parameter space on
a quantum device, allowing for accelerated accurate convergence
on NISQ devices (and beyond). Fig.2 provides a break down of the
VQA parameter space and CAFQA’s scope.

Key CAFQA results:

(D For the VQE task of ground state energy estimations of molec-
ular systems up to 18 qubits, CAFQA’s Clifford Ansatz is observed
to achieve a mean accuracy of near 99% and is able to recover up to
99.99% of the molecular correlation energy lost in state-of-the-art
Hartree-Fock initialization. CAFQA achieves mean accuracy im-
provements over the state-of-the-art of 6.4x when averaged over
all bond lengths and 56.8x at highest bond lengths (maximum of
3.4°10°x).

(2 Quantum exploration post CAFQA initialization can lead to
faster and highly accurate VQA convergence, even on reasonably
noisy quantum machines — we show 2.5x faster convergence com-
pared to HF for a small molecule. Greater benefits can be expected
for larger problem sizes, which can be usefully evaluated when
NISQ machines improve.

(3 The scalability of the approach allows for accurate ansatz
initialization for ground state energy estimation of the challenging
Chromium dimer (often considered a benchmark for variational
quantum advantage) with greater than Hartree-Fock accuracy.

(@ Preliminary exploration of allowing a very limited number
of non-Clifford (T) gates in the CAFQA framework shows that
as much as 99.9% of the correlation energy can be recovered at
bond lengths for which Clifford-only CAFQA accuracy is relatively
limited, while remaining classically simulable

Key CAFQA insights:

(D CAFQA uses classical simulation to explore the Clifford space
of a VQA problem and produces high accuracy VQA ansatz initial-
ization, considerably outperforming the state-of-the-art.

(2 CAFQA’s benefits are especially significant because it is clas-
sically simulable, it searches the search space efficiently, and its
evaluations are ideal.
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(3 CAFQA highlights the potential for quantum inspired classical
techniques as well as a synergistic quantum-classical paradigm, to
boost NISQ-era quantum computing (with focus on VQA) towards
real world applicability.

2 BACKGROUND AND MOTIVATION

2.1 VQAs in the NISQ Era

VQE: While CAFQA is suited widely across variational algorithms
(eg., QAOA [22]), in this paper we primarily focus on the Variational
Quantum Eigensolver (VQE) [55]. VQE is used to estimate an upper
bound on the ground state energy of a Hamiltonian. Here, a Hamil-
tonian is a mathematical representation of some problem from, say,
optimization or molecular chemistry, and is a linear combination of
multiple Pauli terms. For example, a 4-qubit Hamiltonian could be
[H =0.1%XYXY+0.5+«IZZI]. VQE tries to find suitable parameters
for an appropriately chosen parameterized circuit (ansatz) such that
the expectation value of the target Hamiltonian is minimized. At
a high level, VQE can be conceptualized as a repetitive “classical
guess” + “quantum check” algorithm [25]. The check stage involves
the preparation of a quantum state corresponding to the guess.
This preparation stage is done in polynomial time on a quantum
computer, but would incur exponential cost in general on a classical
computer. This contrast gives rise to a potential quantum speedup
for VQE [26]. In chemistry, VQE is a critical step in computing
the energy properties of molecules and materials. While conven-
tional computational chemistry provides methods to approximate
such properties, they can lack sufficient accuracy in molecular sys-
tems due to an inadequate treatment of the correlations between
constituent electrons. These interactions require computation that
scales exponentially in the size of the system [73, 81].

NISQ era accuracy: Estimating the VQE global optimum with
high accuracy has proven challenging in the NISQ era even with
sophisticated optimizers, a well-chosen ansatz, and error mitiga-
tion [7, 10, 15, 58, 61, 69, 73, 78]. As an example, ground state energy
estimation of molecules (the energy required to break a molecule
into its sub-atomic components), a key use case for VQE, requires
energy estimates with an estimation error of less than 1.6 x 1073
Hartree, or what is known as “chemical accuracy" [56], for applica-
bility in understanding chemical reactions and their rates. Unfor-
tunately, for instance, previous work on the estimation of ground
state energy of BeHj on a superconducting transmon machine re-
sulted in an error greater than 10~! Hartree, which is roughly 100x
worse than the required accuracy [36]. Considering the significant
disparity between NISQ VQA accuracy and real world requirements,
it is imperative to aid VQA to the best extent possible.

2.2 VQA Ansatz and its Initialization

Ansatz: An ansatz is a parameterized circuit which is used to ex-
plore the quantum Hilbert space of the target VQA Hamiltonian,
to find its ground state energy. An ansatz with parameterized gate
rotation angles is shown in Fig. 3. Many ansatz structures are suit-
able for VQAs. In the context of VQE for molecular chemistry, the
Unitary Coupled Cluster Single-Double (UCCSD) ansatz is consid-
ered the gold standard [26, 60]. Unfortunately, the UCCSD ansatz is
generally of considerable circuit depth, making it less suitable for
today’s NISQ machines, except for very small molecules such as Hj.
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Figure 3: A Clifford Ansatz, a circuit with only Clifford gates.
In this example, all fixed components are CXs and the tunable
rotational gate angles are multiples of /2.

More suitable to the NISQ-era are hardware-efficient ansatz like
the SU2 [1] which are low depth parameterized circuits (but have
Hilbert space coverage limitations [34, 73]). Fundamentally, this
ansatz is constructed by repeating blocks of parameterized single-
qubit rotation gates and ladders of entangling gates [73] (Fig.3).
CAFQA builds atop a traditional hardware efficient ansatz [36].
Suitability to other ansatz structures is discussed in Section 8.
Optimization surface: While a good choice of classical opti-
mizer improves VQA convergence [39], VQAs can: a) have complex
optimization surfaces and b) suffer from a barren plateau problem.
The optimization contour worsens as the noise and complexity of
the problem increases in relation to the increase in the depth of
the circuit, the number of parameters and the spread of the en-
tanglement [39]. The barren plateau is the phenomenon in which
the gradients of the VQE parameters vanish exponentially. While
barren plateaus can become a critical issue for a variety of rea-
sons [13, 42, 43, 54, 75], in the context of this work, they can become
significant in the presence of noise [79] and with poor (random)
ansatz initialization [43]. Thus, well-chosen initialization of the
ansatz can help avoid barren plateaus and effects of noise, and
therefore enable fast accurate convergence on the VQA problem.
Hartree-Fock initialization: A popular and simple approach
to construct a fair initial state for quantum systems is derived from
Hartree-Fock (HF) theory [32]. Although such approximation /
optimization problems are generically hard, HF usually rapidly con-
verges to good solutions, especially for closed-shell molecules at
equilibrium geometries [2]. HF yields an initial state that has no
entanglement between the electrons (i.e., simply a bitstring of 0s
and 1s on the circuit’s qubits). HF assumes that each electron’s
motion can be described as a stand-alone particle function, inde-
pendent of the instantaneous motion of other electrons. In doing
so, HF neglects the correlation between electrons, which is where
classical computing is limited in solving such molecular chem-
istry problems. Therefore, although HF has reasonable accuracy for
many molecules, it is generally insufficient to make highly accurate
quantitative predictions [3]. Thus, its usefulness as a suitable initial-
ization on today’s very noisy quantum devices is limited - there is
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too much ground left for the quantum device to cover, which is chal-
lenging considering the complex noisy optimization surface and
barren plateaus as described earlier. Therefore, initialization with
greater accuracy, especially for strongly correlated systems and/or
away from equilibrium geometry, necessitates quantum states that
go beyond HF.

2.3 Clifford Circuits

Classical simulation of quantum problems usually requires expo-
nential resources (otherwise, the need for quantum computers is
obviated). Even with high-performance supercomputers, simulation
is restricted to under 100 qubits [9, 16, 35, 46, 73].

However, not all simulations are non-scalable. The Gottesman-
Knill theorem states that “Any quantum computer performing only:
a) Clifford group gates, b) measurements of Pauli group operators, and
c) Clifford group operations conditioned on classical bits, which may
be the results of earlier measurements, can be perfectly simulated in
polynomial time on a probabilistic classical computer” [27].

While the Clifford group operations and Pauli group measure-
ments do not provide a universal set of quantum gates, there are
quantum domains that have applications focused on the Clifford-
space including quantum networks [77], error correction codes [59],
teleportation [28] and error mitigation [15, 67].

CAFQA explores the benefits of Clifford-only circuits as an ansatz
for variational algorithms. An example is shown in Fig.3. Extending
beyond Cliffords is discussed in Section 8.

3 CAFQA PROPOSAL

Fig.4 provides an illustrative overview of how CAFQA complements
traditional VQA tuning. CAFQA is illustrated in the red box and is
discussed below.

(D CAFQA begins with a parameterized circuit in which all fixed
gates are Clifford. This is usually the case with hardware-efficient
ansatz, as described in Section 2.2. Focusing on a hardware-efficient
ansatz is justified considering that other ansatz options are generally
less suitable to noisy execution on today’s NISQ devices. However,
extensions are discussed in Section 8.

(2 Given this parameterized circuit, CAFQA performs a discrete
search over the tunable circuit parameters. The tunable search
space is limited to angles which make the tunable gates Clifford.
Extensions discussed in Section 8.

® Since both the fixed gates as well as the tunable gates are
Clifford, the resulting circuit in each iteration of the tuning process
can be simulated classically, even as the size of the circuits grow
(as discussed in Section 2.3).

(@ Simulating the ansatz circuits corresponding to the Hamilton-
ian and measuring the expectation produces the objective function
value for the iterative tuning process.

(® For molecular chemistry, if any electron and spin preservation
constraints have to be imposed on the problem they can can be
added to the Hamiltonian [63] or directly to the objective function
- CAFQA uses the latter. More in Section 7.1.

(® Since simulations are performed classically, they are free of
noise, thus having the potential to eliminate a considerable portion
of the noise impact that variational tuning on the real quantum
device could suffer, i.e., noise-induced barren plateaus [79] etc.
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Figure 4: The red box on the left shows the CAFQA framework. CAFQA performs ansatz parameter tuning inspired by traditional
VQA. But CAFQA’s tuning is suitable for classical compute since it restricts the search space to the Clifford space alone (in
an ansatz that has its fixed components to also be Clifford, often the case with a hardware-efficient ansatz). The search space
is discrete and is searched with Bayesian Optimization. Although the search space is limited, its evaluation is classically
efficient and noise-free. On the other hand, traditional quantum variational tuning, while scalable and suited to the entire
quantum space, is extremely noisy in the NISQ era. Once CAFQA finds a suitable Clifford initialization, traditional VQA tuning
is performed (blue box / right), leading to faster and more accurate convergence.

@ Also worth noting is that only one-shot simulation is required
for each Pauli term, since the expectation value produced by each
term is strictly +1, -1, or 0 for stabilizer states (i.e., for Clifford
circuits) [51].

The search is continued until the convergence of the minimum
value obtained or for a specific tuning budget.

(©) The resulting circuit, with Clifford parameters corresponding
to the minimum objective function value observed, is the Clifford
ansatz and is then ready for traditional VQA optimization.

Subsequent VQA tuning on the quantum device is noisy but
is able to explore the entire quantum space allowed by the ansatz.
The initial state produced by CAFQA can enable faster and more
accurate convergence of traditional VQA.

4 QUALITATIVE ANALYSIS

4.1 CAFQA Benefits on a Microbenchmark

In Fig.5 we use a 2-qubit ‘XX’ Hamiltonian system and a 2-qubit
hardware-efficient ansatz with only one tuning parameter to show
the benefits of CAFQA. The Y-axis shows the estimated expecta-
tion values of the Hamiltonian while the X-axis sweeps the tuning
parameter:

(@D The green line represents tuning the one ansatz parameter on
an ideal noise-free quantum device. Sweeping through all rotations
produces an expectation value mimima = -1.0.

(@ Next, the same tuning is performed on two noisy quantum
devices, IBMQ Casablanca and Manhattan (simulated with noise
models). These are shown with the purple and blue lines. Clearly,
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Figure 5: Comparison of different methods of ansatz tun-
ing for a 2qubit XX Hamiltonian employing an ansatz with
only one tunable rotation angle parameter. Although the
search space for CAFQA is limited, it is able to achieve the
global minimum (equaling the ideal machine). Furthermore,
CAFQA outperforms the noisy machines, which are limited
by noise although they can explore the entire tuning space.
On the other hand, the HF method of initialization is unable
to recover the expectation value at all since the XX Hamil-
tonian does not have an uncorrelated component.

the noisy devices are able to sweep through the entire parameter
space, but the effect of noise limits the minimum obtained, achieving
only -0.7 / -0.85. Note that this microbenchmark is too simplistic to
suffer from barren plateaus, etc., but it is expected that the deviation
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from the ideal / exact minimum will increase with more complex
problems and increasing noise.

(3 Next, the dashed line shows the expectation value produced by
HF initialization. In this example, HF is unable to produce any useful
result since the chosen Hamiltonian does not have any diagonal
Pauli terms suitable for HF. This can be thought to represent pure
electron correlation energy in the context of molecular chemistry
(as described in Section 2.2).

(@ Finally, CAFQA is shown with orange ‘X’s. Note that there
are only 4 unique discrete points in the Clifford space for the one
tunable parameter. Even so, CAFQA is able to produce the expec-
tation value global minimum (= -1.0) via one of those 4 Clifford
points. Not only does the Clifford minimum match the minimum of
the entire tuning space, but also the ability to simulate the Clifford
space ideally without noise produces more accurate estimations
than the noisy devices.

4.2 High Accuracy CAFQA Stabilizer States

In Fig.6 we break down the expectation value returned by the
Clifford Ansatz in comparison to Hartree-Fock and ideal / exact
minimum from noise free simulation. This is shown for the ground-
state energy estimation of the LiH molecule, represented by a 4
qubit Hamiltonian system, at a bond length of 4.8A. The Y-axis
shows the expectation value of each Pauli term and the X-axis lists
the Pauli terms in the Hamiltonian.

(D In the figure, the resulting expectation value of each Pauli term
for the Hartree-Fock (HF) initialization is shown in blue. Since HF is
a ‘classical’ computational basis state (i.e., a bitstring), and therefore
Clifford, as noted in Section 3, all the HF Pauli term expectation
values are +1/ -1/ 0. Further, since HF is ‘classical’, all non-diagonal
Pauli terms (i.e., any terms apart from the tensor products of I and Z)
have an expectation value of zero. Only calculating the expectation
values for the diagonal terms leads to HF ignoring the correlation
energy, which is known to cause serious errors for some larger
molecules (described in Section 2.2).

(@ The expectation value of each Pauli term for the Clifford
ansatz produced by CAFQA is shown in red. Again, note that all
expectation values are +1/-1/ 0. Moreover, note that for the Clifford
ansatz, there are multiple non-diagonal Pauli terms which produce
an expectation of +1/ -1. The non-zero expectation on non-diagonal
terms is indicative of CAFQA producing a non-computational basis
state, albeit a Clifford one. By doing so, it is able to capture some
of the correlation energy that is contributed by the non-diagonal
Pauli terms. This is important because it is qualitatively indicative
of the potential for high(er) estimation accuracy through CAFQA
as the complexity of the problem scales.

(3 The expectation value of each Pauli term for the exact min-
imum from ideal noise-free simulation is shown in green. Ideal
noise-free simulation is possible since LiH is a very small mole-
cule. While expectation values range from -1 to 1, it is evident that
the expectation values are close to those produced by the Clifford
Ansatz, both for diagonal terms and the non-diagonal terms. This
is a clear indicator of the effectiveness of CAFQA for ground-state
energy estimation for the LiH molecule (at the chosen bond length).
This is confirmed later in Section 7.1.2 which shows that CAFQA
is able to achieve high accuracy in the range of 1072 Hartree for
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LiH. This trend is also observed across other molecules and bond
lengths, leading to high accuracy overall.

5 DISCRETE SEARCH OVER THE CLIFFORD
SPACE

To efficiently search through the discrete Clifford parameter space,
CAFQA requires a sample-efficient search technique to find the
performant ansatz parameters as quickly as possible. Bayesian op-
timization is one such technique that actively and intelligently
queries the most informative samples at each round to reduce the
number of samples required [23]. Due to this merit, Bayesian op-
timization has been successfully applied to different domains in
computer systems optimization such as compiler tuning [50], re-
source allocation [53], and configuration optimization [6, 18, 19, 62].
Bayesian optimization iteratively alternates between intelligent
sampling and model updates. As such, it includes two components:
a surrogate model and an acquisition function. The surrogate model
tries to learn the unknown underlying function that maps the search
parameters to the problem objective (e.g., ground-state energy). The
acquisition function is the search strategy that selects the next sam-
ple to query to update the surrogate model.

CAFQA searches through the Clifford space with Bayesian opti-
mization to identify optimal Clifford gates for the tunable circuit
parameters. Each tunable parameter is able to take one of four rota-
tional angles as was shown in Fig.3. This creates a discrete search
space complexity of O(4*P37™MS) that scales exponentially in the
number of parameters, although it is considerably smaller than the
entire quantum tuning space. While Bayesian Optimization effi-
ciency can degrade with increased number of search parameters (or
dimensionality) [40], it is still observed to be effective in searching
through the Clifford space since each parameter chooses only from
four different rotational angles.

Since the Clifford parameter space is discrete, CAFQA chooses
the random forest as the surrogate model as it is flexible enough to
model the discrete space and scales well [50]. CAFQA uses a greedy
acquisition function [18, 50] to select samples with the lowest en-
ergy estimates predicted from the surrogate model. Empirically, the
combination of the random forest surrogate model and the greedy
acquisition function gives highly accurate results, as illustrated in
Section 7. Details on the implementation of the search algorithm
can be found in [50]. Here, we limit ourselves to an illustrative
example.

Fig.7 shows the discrete search employed by CAFQA to produce
a Clifford Ansatz for H2O ground state energy estimation at a bond
length of 4A. The first 1,000 iterations are a warm-up period, which
involves randomly sampling and mapping the search space, a key
component to BO. The search algorithm then uses these random
samples to efficiently search the parameter space. In the figure,
note that as soon as the random sampling is complete, the search
algorithm begins to find better expectation values compared to ran-
dom. A potentially global minimum is found after an additional 600
search iterations. Notably, in this use case, the identified minimum
is well within the chemical accuracy requirements. Although 2000
iterations are shown here, the search can be constrained by a tuning
budget or by the saturation of the obtained minimum.
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Figure 6: LiH ground state energy at bond length of 4.8A (3x equilibrium ). Expectation value of each Pauli term, as obtained
from different methods, is shown. The Pauli terms along the X-axis are arranged as: i) Computational basis terms, ii) Non
computational basis terms selected by CAFQA, and iii) remaining terms which are beyond the Clifford reach (sorted by Exact
expectation value). While HF is only able to obtain non zero expectations (of +/- 1) for diagonal Pauli (computational basis) terms,
the Clifford Ansatz enables expectations of +/- 1 for non-diagonal Pauli terms as well. Further, the similarity in expectation
value between the Clifford Ansatz and the exact (i.e., ideal) LiH tuning is evident.
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Figure 7: H20 ground state energy estimation via CAFQA’s
Clifford ansatz discrete search at bond length of 4A (4x equi-
librium). The first 1000 iterations are a warm up period. Be-
yond this, the search can achieve estimations within the
chemical accuracy target in an additional 600 iterations. In
this instance, post-CAFQA variational tuning on a quantum

machine is not required.

Table 1: VQA applications and their characteristics.

App #Qu. Bond Len. | Bond Len. Mol Orbitals
(Eqbm.) (Range) Total / Used

H, 2 0.74 A 037-296A | 2/2

LiH 4 1.6 A 0.8-48A 4/3

H,O | 12 1A 05-40A 717

Hg 10 09 A 045-3.6A | 6/6

N, 12 1.09 A 0.55-436A | 10/7

Cro 34 1.68 A 1.25-35A | 36/18

NaH | 12 1.9A 095-7.6A | 10/7

H-S1 | 18 - - -

BeH, | 12 132 A 0.66-528A | 7/7
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6 METHODOLOGY

Ground state energy estimation of molecules: We use VQE to
estimate the ground state energy of the following molecules: Ha,
LiH, H50, Hg, Cra, N2, NaH, H2-S1 and BeH;. Hamiltonians are
constructed in the STO-3G basis with parity mapping and Z2 sym-
metry / two qubit reduction. Hamiltonians are constructed for spin
corresponding to the singlet (0 unpaired electrons in the orbitals)
electronic state, which usually has the lowest energy near equilib-
rium geometries (more on this in Section 7.1.4). We provide detailed
evaluations for the first five and only mean accuracy results for
the other three. H2-S1_STO-3G_singlet (H2-S1) is obtained from
Contextual Subspace VQE [37]. Details about these molecules and
their representative Hamiltonians are provided in Table 1.

Hp is known to be a prototypical strongly correlated molecule,
thus widening the gap between ideal results and classical methods.
Also notable is the Chromium Dimer (Cry), which has long been a
benchmark molecule for evaluating the performance of different
computational methods due to its unusual bonding properties in
its ground and excited states [21, 76]. Cr is especially challenging
to simulate, requiring a system of as many as 72 qubits; therefore,
we are unable to compare against its exact estimates. Furthermore,
we freeze the lower 18 (out of Cry’s 36 orbitals) to reduce the sys-
tem to 34 qubits, to ease the burden of iterative tuning given our
reasonable yet limited computational resources - but this is not a
strict limitation. Freezing lower orbitals is least detrimental to bond
dissociation energy estimations - electrons closer to the nucleus
are tightly attached and have high ionization energies [4].

For all Hamiltonians above, we use a hardware-efficient SU2
parameterized circuit [1] with one layer of linear entanglement as
ansatz. An example of this for 10 qubits is shown in Fig.3. Different
initialization comparisons are performed on this circuit.

Evaluation Comparisons: We compare the following -

(D CAFQA: Our proposed approach, which uses a Clifford-only
ansatz, and potentially produces the best possible stabilizer initial
state for the target Hamiltonian.
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() Exact: The exact energy estimations computed classically (but
possible only for small problem sizes).

(® Hartree-Fock (HF): HF is the best computational basis state for
the target Hamiltonian under specified electron and spin preserva-
tion constraints.

Evaluation Metrics: We evaluate CAFQA across four metrics
detailed below:

@ Ground State Energy: Potential energy as a function of nu-
clear coordinates, as estimated by different techniques, expressed
in Hartree units.

@ Energy estimation accuracy: Absolute energy difference be-
tween energy estimates from different techniques and exact es-
timates, expressed in Hartree units. Chemical accuracy region is
shown in orange.

(® Recovered correlation energy: Percentage of the difference be-
tween the Exact energy and the Hartree-Fock limit that is recovered
by CAFQA.

@ Relative accuracy: Relative energy estimation accuracy be-
tween CAFQA and state-of-the-art HF (only Fig.13).

Infrastructure: The CAFQA framework is implemented in
Python. Hartree-Fock estimations are performed via Psi4 [74] while
CAFQA evaluations are performed using Qiskit [5]. Qiskit inter-
faces with the PySCF library [68] in the process of constructing
Hamiltonians from molecular specifications. The discrete search
to find the optimal Clifford gates is performed through Bayesian
Optimization via the HyperMapper [50] framework. Classical com-
putations are predominantly carried out on the Google Compute
Cloud.

7 EVALUATION
7.1 Detailed Molecular Analysis

In Figures 8-11 we show ground state energy estimation through
VQE for 4 molecules, over different bond lengths. Each figure shows
different evaluation metrics for the target molecule molecule: the
top subfigure shows the absolute ground state energy (in Hartree),
the middle subfigure shows the error in energy estimation, and
the bottom subfigure shows the correlation energy recovered by
CAFQA over HF. We compare CAFQA in green against exact evalu-
ations in orange; and Hartree-Fock initialization (HF) in blue. More
details on these molecules, metrics and comparisons are discussed
in Section 6.

7.1.1  Hy. First, we look at Hz shown in Fig.8 (a)-(c). In Fig.8 (a) and
(b), we see that the HF steadily deviates away from exact energies
as bond lengths increase. This is not surprising, as HF is known to
work best at / near equilibrium geometry, as discussed in Section
2.2. CAFQA matches HF at low bond lengths but achieves lower
energy estimates at higher bond lengths, thus being closer to exact
estimates.

Fig.8 (a) also shows CAFQA energy estimates for the H} cation.
The cation is in a higher energy state than its neutral counterpart;
this is intuitive, as Hy does not naturally ionize. For a given molecu-
lar system, the Fock (i.e., energy) space represented by the problem
Hamiltonian combines the energy spaces of the molecular forms
with all possible numbers of electrons and all electron-spin com-
binations [63]. Thus, when solving for the ground-state energy of
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HJ cation is also shown.
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higher-energy cations and anions, some explicit enforcement of
electron preservation constraints on VQE is often required (whereas
this is usually not required for the lowest-energy neutral molecule).
For HJ, this means that only electronic energies corresponding to
a one electron system should be considered for VQE. With CAFQA,
we impose electron count constraints through the search objective
function. Thus, CAFQA ensures that any required constraints are
maintained, along the lines of prior work [63].

Fig.8 (b) shows that CAFQA’s error is always less than 107!
Hartree, and is able to achieve estimates near chemical accuracy.
On the other hand, as the bond lengths increase, the HF error is
107! Hartree and greater. Thus, the benefits of CAFQA are clearly
evident. Finally, Fig.8 (c) shows that CAFQA is able to recover up
to 99.7% of the correlation energy as bond lengths increase.

Overall, CAFQA achieves more accurate energy estimates than
HF’s best computational basis state and is able to incorporate the ex-
pectation of non-diagonal Pauli terms (as discussed in Section 4.2).
It produces a non-computational basis state which is uncommon
in other classical approaches - an example of this was illustrated
earlier for LiH in Fig.6. Furthermore, the stabilizer state produced
appears intuitively suited to a molecule such as Hy. The oppos-
ing attractive and repulsive forces of similar strengths acting on
the electrons (especially at higher bond lengths) can result in op-
timal configurations bearing resemblance to stabilizers. Further
examination at a molecular level is beyond our current scope.

7.1.2  LiH. Next, we examine LiH shown in Fig.9 (a)-(c). In Fig.9 (a)
and (b), we see that HF deviates considerably from the exact value
at medium-high bond lengths, but is closer to the exact value at
low bond lengths. As before, CAFQA is closest to exact, especially
accurate at low and high bond lengths, but always achieves equal
or more accurate energy estimates compared to HF. Fig.9 (b) shows
that CAFQA’s estimation error is usually in the 107! to 1072 Hartree
range, with higher accuracy at high bond lengths. Finally, Fig.9 (c)
shows that CAFQA is able to recover up to 93% of the correlation
energy at medium-high bond lengths. As before, improving beyond
HF, CAFQA is able to produce a non-computational basis state as
its ansatz initialization state.

7.1.3  H20. Next, we look at H2O shown in Fig.10 (a)-(c). The first
aspect to be noted is that the HF Psi4 estimations do not converge at
high bond lengths, so we extrapolate the expected trend as shown in
Fig.10 (a). In Fig.10 (a) and (b), we see that HF steadily deviates away
from the exact at higher bond lengths. CAFQA matches HF at lower
bond lengths but achieves considerably better energy estimates
compared to HF at medium / higher bond lengths.

It is interesting to observe the kink in the energy estimation near
abond length of 1.5 A. This appears to match the prior observation
that this is caused by the energy crossing of the lowest singlet
(0 unpaired electrons) and triplet (2 unpaired electrons) electronic
states for the HoO molecule [63]. Accordingly, the singlet and triplet
states from CAFQA are plotted in pink and yellow, respectively.

Next, Fig.10 (b) shows that CAFQA is able to impressively achieve
chemical accuracy at higher bond lengths while HF has high error in
the range of 107! Hartree. At lower bond lengths, CAFQA achieves
error rates of around 1072 Hartree. Finally, Fig.10 (c) shows that
CAFQA is able to recover up to 99.998% of the correlation energy
over HF as the bond lengths increase.

23

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

_7.60] =®= CAFQA LiH Energy
=@= HF
== Exact
—7.65
o
o
£ -7.70
©
z
>
2-7.75
[
C
w
—7.80
—7.85
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Bond length (A)
(a) LiH Energy
== HF LiH Accuracy
=@= CAFQA
1071
o
o
€
©
<
2102
w
0 1 2 3 4 5
Bond length (A)
(b) LiH Accuracy
LiH Correlation Energy Recovered
80
S
@ 60
[
>
(=}
3
« 40
>
<
[
C
“ 20
0
1.0 15 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Bond length (A)

(c) LiH Correlation Energy

Figure 9: Dissociation curves for LiH. Evaluation of CAFQA
in terms of ground state energy, energy estimation error
and correlation energy recovered. Comparisons to Exact /
Chemical Accuracy and Hartree-Fock are shown.



ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

= CAFQA (s)
~73.50 CAFQA (t)
m@m= CAFQA
~73.75 =@= Exact

—73.25 ‘ H20 Energy == HF

—74.00 -

4
N
N
&
\

Energy (Hartree)
\

-74.50

-74.75

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Bond length (A)

(a) H,0 Energy

100 m@= HF H20 Accur.
=@= CAFQA

Error (Hartree)

104

107°

0 1 2 3 4 5
Bond length (A)

(b) H,0 Accuracy

1001420 Correlation Energy Re
80

60

40

Energy Recovered (%)

20

0.5 1.0 1.5 2.0 2.5 3.0 35 4.0
Bond length (A)

(c) H,O Correlation Energy

Figure 10: Dissociation curves for H,0. Evaluation of CAFQA
in terms of ground state energy, energy estimation error
and correlation energy recovered. Comparisons to Exact /
Chemical Accuracy and Hartree-Fock are shown. CAFQA (s)
and (t) refer to energies corresponding to singlet and triplet
states.

24

Ravi, et al.
_18 =@= HF H6 Energy
©| == CAFQA
_p.0]| =®= Exact
?:3 2.2
£
224
3
526
f
w
-2.8
-3.0
-3.2
0.5 1.0 1.5 2.0 2.5 3.0 3.5
Bond length (A)
(a) Hg Energy
10°
=@= HF H6 Accuracy
=@= CAFQA
== HF opt. . == ==0=0
CAFQA opt.
107! &
3 /
v
£
©
<
5 1072
e
1073
00 05 10 15 20 25 30 35 40
Bond length (A)
(b) Hg Accuracy
1001 H6 Correlation Energy Recovered
__ 80
9
el
(9]
5 60
3 =@= CAFQA
o CAFQA opt. =0=0=0=0-0
>, 40
<
[
c
w
20
0| O=PuP==g”

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Bond length (A)

(c) Hg Correlation Energy

Figure 11: Dissociation curves for Hy. Evaluation of CAFQA
in terms of ground state energy, energy estimation error
and correlation energy recovered. Comparisons to Exact /
Chemical Accuracy and Hartree-Fock are shown. CAFQA
opt. refers to best estimates over multiple spin-optimized
Hamiltonians.



CAFQA: A Classical Simulation Bootstrap for Variational Quantum Algorithms

Cr2 Energy

=== Hartree-Fock
=@== CAFQA

Energy_dimer - 2+E_atom (Hartree)

-0.05

Bond length (A)

Figure 12: Ground state energy for Cr; with lower 18 out of
36 orbitals frozen. CAFQA’s estimates are limited by com-
putational time / resources, thus Clifford estimates can be
suboptimal. Comparison to HF is shown.

7.14  Hg. Next, we look at Hg shown in Fig.11 (a)-(c). In Fig.11 (a)
and (b) we show two versions of HF and CAFQA. The traditional
HF and CAFQA results correspond to Hamiltonians generated for
orbitals optimized for the singlet electronic state as mentioned in
Section 6. On the other hand, the optimized results (labeled ‘opt.’)
are produced by generating unique Hamiltonians for different spins
and with orbitals optimized accordingly. Then, the HF and CAFQA
results corresponding to the lowest estimates across all Hamilto-
nians are selected for every bond length. It is evident that ‘opt.
results produce better energy estimates compared to those obtained
from the singlet-optimized Hamiltonian at higher bond lengths.
This shows that optimizing the Hamiltonian to the best extent / as
widely as possible can considerably improve VQE estimation, at the
cost of increased compute. The HF techniques and CAFQA are far
from exact while CAFQA opt. is near exact at high bond lengths.
Deviations from the exact value are not surprising, as Hg has high
correlation energy.

Fig.11 (b) shows that CAFQA errors are in the 10~1 Hartree
range (except at high bond lengths when CAFQA opt. achieves the
chemical accuracy range), thus clearly requiring quantum explo-
ration on a quantum device post-ansatz selection. Finally, Fig.11 (c)
shows that CAFQA is able to recover up to 50% of the correlation
energy over HF as the bond lengths increase, while CAFQA opt.
can achieve near 100% at high bond lengths. CAFQA is again able to
produce a non-computational basis state as its ansatz initialization
state, although it is evident that exploration of only the Clifford
space limits accuracy.

7.1.5 Cry. In Fig.12 we evaluate CAFQA on Cr; for ground state
energy estimation. For Crz, we are unable to generate exact evalua-
tions, since the size of the system is too large (discussed in Section 6).
We compare CAFQA to HF. It is evident from the figure that CAFQA
consistently achieves better initial energy estimates compared to
HF across all bond lengths. In addition, CAFQA has resemblance to
experimental estimates [76], although there are some limitations to
the comparison due to the orbital freezing that we utilize (discussed
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Figure 13: CAFQA accuracy compared to state-of-the-art
Hartree-Fock. ‘Average’: Relative error reduction averaged
over all bond lengths for each molecule. ‘Maximum’: Maxi-
mum error reduction for each molecule, usually at the great-
est bond length.

in Section 6), as well as a lack of sufficient molecular specifications.
We note that very recent work [38] (subsequent to CAFQA) showed
high accuracy computational prediction of the Cry potential energy
curve, consistent with experimental data. Comparisons to this work
are worth pursuing.

Due to the size of the problem, we are limited by resources in
running the Bayesian Optimization search extensively at each bond
length. Limited search means that CAFQA at some bond lengths can
produce sub-optimal estimates. Our current estimates are obtained
over a 1-week period but these estimations can improve with more
memory / compute, more execution time, better search strategies,
efficient parallelization, limited exploration of non-Cliffords — more
in Section 8. We reemphasize that CAFQA is only a first step in VQA
tasks, with the primary goal of producing an ansatz initial state
well suited to further quantum exploration on a quantum device.

7.2 Relative Accuracy Compared to SOTA

Fig.13 shows the accuracy achieved by CAFQA in all applications
(except Crz) - 8 VQE molecular chemistry ground state estimation
tasks, relative to the state-of-the-art Hartree-Fock approach. Two
sets of results are shown: ‘Average’ and ‘Maximum’. For ‘Average’,
the relative error reduction of CAFQA compared to HF is aver-
aged across all the evaluated bond lengths (for each molecule). For
‘Maximum’, the highest error reduction of CAFQA compared to
HF is presented, which is usually at the greatest bond length, since
Hartree-Fock steadily deteriorates away from equilibrium.

It is evident that the CAFQA is able to achieve significant average
relative accuracy improvements over all applications, with a mean
of 6.4x (highest of 25x). Furthermore, the maximum improvements
are very substantial, with a mean of 56.8x (highest of 3.4*10°x). The
lowest benefits are obtained for Hg, which, as explained in Section
6, has a significant correlation energy component which cannot be
entirely recovered by only exploring the Clifford space. It is clearly
evident that high VQA initialization accuracy can be achieved by
CAFQA compared to state-of-the art.

7.3 Post-CAFQA VQA Exploration

Although today’s NISQ machines are often too noisy to improve on
CAFQA’s estimates, it is expected that NISQ machines in the near
future will be able to do so. In this case, the CAFQA initialization will
allow for more focused tuning on the machine, resulting in lower
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of reduced variational tuning on NISQ devices.

potential for detrimental impact from noise and barren plateaus,
thereby leading to faster and more accurate convergence.

This is illustrated in Fig.14 which shows post-CAFQA VQE tun-
ing for LiH ground state energy estimation. Evaluation is shown
for tuning beginning from HF initialization and CAFQA initializa-
tion, respectively. Furthermore, two sets of results are shown, one
on ideal noise-free simulation and the other on noisy simulation
modeled on real machine characteristics. In both sets of results it is
evident that CAFQA-initialized exploration converges roughly 2.5x
faster than HF-initialization, clearly indicative of the benefits from
better initialization.

It can be observed that the ideal simulation produces near ex-
act results, improving over the initialization. Furthermore, the en-
ergy estimate produced by noisy simulation (error roughly = 1072
Hartree) is on par with the estimate obtained directly from CAFQA
initialization itself. While we do not expect the latter trend to hold
for more complex Hamiltonians and as machine noise reduces,
CAFQA initialization will continue to be useful for fast and accu-
rate convergence. Greater benefits can be expected for larger prob-
lem sizes, which can be realistically evaluated as NISQ machines
improve. Reduced execution on the actual quantum device is also
beneficial from the monetary standpoint. Prior work discusses high
execution costs of variational algorithms on the quantum cloud,
consuming thousands of dollars to execute problems of reasonably
small sizes [31].
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7.4 Discrete Search

Fig.15 shows the number of iterations consumed by CAFQA’s dis-
crete search to converge to a minimum energy estimate. It is evident
that the number of iterations increases with the size of the problem
because the number of tuning parameters increases. The number of
iterations across all applications is very reasonable considering the
benefits of reduced variational tuning on noisy quantum devices.
The current run time of CAFQA varies roughly from a few minutes
(Hz) to a week (Crz). The execution time can be reduced via in-
creased compute / memory resources, improved search algorithm,
parallel search, etc.

8 DISCUSSION

Simulation beyond Cliffords: Prior work has shown that efficient
classical simulation can be extended beyond Clifford-only circuits
to constrained Clifford+T circuits wherein T refers to the single-
qubit 45-degree phase shift [11, 12]. Optimally designing a CAFQA
ansatz with a mix of Clifford gates and minimal T gates is worth
exploring. We perform preliminary exploration of allowing a few
T gates within the CAFQA framework. Note that the simulation
complexity grows exponentially with the number of T gates, so the
number and location of the T gates require careful analysis. Our
current exploration only studies the insertion of T gates at prior
Clifford gate positions in the ansatz and only attempts the addition
of under 10 T gates. But it is already evident that this direction is
promising — Fig.16 shows that the addition of just up to 1 T gate for
Ho and up to 4 T gates for LiH significantly improves initialization
accuracy, while remaining classically simulable. CAFQA+kT (k<=1/
k<=4)is able to recover as much as 99.9% of the correlation energy at
bond lengths for which Clifford-only CAFQA accuracy is relatively
limited.

Beyond a hardware-efficient ansatz: A hardware-efficient
ansatz can be limited in its capabilities because it is application-
agnostic. Thus, expanding beyond this ansatz can be beneficial if
efficiently suited to the CAFQA approach. Expanding the ansatz
search to Clifford plus limited non-Clifford gates (discussed above)
is a first step in this direction - potentially allowing for a dynami-
cally evolving ansatz structure similar to ADAPT-VQE [29].

Optimization: The discrete search via Bayesian Optimization
employed by CAFQA is able to produce high accuracy results and
in a reasonable number of iterations and runtime. Although this
is clearly efficient for the target problem space (our largest is a
34-qubit system), the search could face scalability challenges on
significantly larger problems. This is especially important since the
Clifford search space (stabilizer state space) scales exponentially in
the number of tunable parameters (qubits) [33]. Thus, optimizing
the search strategy at the algorithmic as well as implementation
levels can reap benefits.

Related Work: [56] proposes initializing ansatz parameters
such that subsections of the ansatz do not form a ‘2-design’. [45]
proposes a perturbative expansion of the cost function from HF ini-
tialization. This can produce an initialization state very close to the
HF, but potentially performs better. FLIP [64] proposes initializa-
tion with the help of machine learning. MetaVQE [14] encodes the
Hamiltonian parameters in the first layers of the quantum circuit.
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Figure 16: CAFQA + KT dissociation curves, for Hy and LiH.
The addition of just up to 1 T gate for H> and up to 4 T gates
for LiH is seen to significantly improve initialization, while
remaining classically simulable.

9 CONCLUSION

Advancing NISQ frontiers to real world applicability requires con-
certed effort on multiple fronts, with support from sophisticated er-
ror mitigation, classical computing, and more. In this spirit, CAFQA
proposes application-specific classical simulation bootstrapping for
VQAs. CAFQA tackles the problem of finding initial VQA parame-
ters by proposing a “Clifford Ansatz" — an ansatz that is a hardware
efficient circuit built with only Clifford gates. In this ansatz, the
initial parameters for the tunable gates are chosen by searching
efficiently through the Clifford parameter space via classical simu-
lation, and thereby producing a suitable high accuracy initial state
that outperforms state-of-the-art approaches. Furthermore, there
is considerable potential to extend these findings beyond Cliffords
and to other circuit structures.

CAFQA is a promising example of quantum-inspired classical
techniques as a supporting methodology for VQAs in the NISQ
era and beyond. It also highlights the potential for a synergistic
quantum-classical paradigm to boost NISQ-era quantum computing
towards real world applicability.
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