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Figure 1: Advancing the NISQ frontiers with error mitigation,

and classical support (eg., CAFQA).

Search [30], which would require error correction comprised of
millions of qubits to create fault-tolerant quantum systems [52].
On the other hand, a variety of error mitigation techniques [7,
10, 15, 17, 24, 41, 61, 66, 69, 72, 78] have been proposed that have
improved execution fidelity on today’s quantum devices. However,
the resulting fidelity is still insufficient for most real-world use
cases.

Advancing NISQ with classical support: There has been a
recent impetus toward classical computing support to boost NISQ
applications / devices to the realm of real-world applicability. These
include compiler level optimizations [48, 49, 58, 71], improved
classical optimizers [39], circuit cutting with classical compensa-
tion [20, 70, 80] etc. We are still in the early days of exploring this
synergistic quantum-classical paradigm. There is tremendous po-
tential for sophisticated application-specific classical bootstrapping
to advance the NISQ frontiers, and CAFQA is one such approach.
An illustration of advancing the NISQ frontiers towards real-world
applicability is shown in Fig.1.

Variational Quantum Algorithms: Variational quantum algo-
rithms (VQAs) are expected to be a good match for NISQ machines.
This class of algorithms has a wide range of applications, such as
the estimation of electronic energy of molecules [55], MAXCUT
approximation [47]. The quantum circuit for a VQA is parameter-
ized by a list of angles which are optimized by a classical optimizer
over many iterations towards a specific target objective which is
representative of the VQA problem. VQAs are more suitable for
today’s quantum devices because these algorithms adapt to the char-
acteristics and noise profile of the quantum machine on [44, 55].
Unfortunately, VQA accuracy obtained on today’s NISQ machines,
even with error mitigation, is often considerably far from the strin-
gent accuracy requirements in fields such as molecular chemistry,
especially as we scale to larger problem sizes [36, 58, 78].

Aiding VQAs in the NISQ Era: For NISQ VQAs to progress to-
wards real-world applicability, it is imperative to classically choose
a VQA’s parameterized circuit (ansatz) wisely and its initial param-
eters to be as close to optimal as possible, prior to quantum explo-
ration. This would improve accuracy and accelerate convergence
of the algorithm on the noisy quantum device [43, 79]. Suitable
ansatz circuits for today’s devices, referred to as “hardware effi-
cient ansatzž [36], are often application-agnostic and can especially
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Figure 2: Figure illustrates the VQA(E) state space explored

by different techniques. Hartree-Fock (HF), only explores the

yellow computational basis (i.e., classical bits) space. CAFQA

goes further by exploring the Clifford space (blue) for higher

accuracy. Both of these are classically simulable. Classical

exploration can be extended to incorporate a few T gates

(orange). The rest of the state space is shown in green - this

space cannot be efficiently simulated classically and requires

quantum exploration. By searching efficiently through the

classically simulable Clifford space, CAFQA provides a good

VQA ansatz initialization for quantum exploration.

benefit from a wise choice of initial parameters, but these can be
difficult to estimate classically.

Classical simulation support for VQAs with Cliffords: This
work helps to initialize the VQA ansatz using classical simulation.
In general, classical simulation of quantum tasks is not a scalable
solution, primarily only suited to trivial quantum problems, and
is, in fact, the motivation for quantum machines. An exception to
the above is the classical simulation of the Clifford space. Circuits
made up of only Clifford operations can be exactly simulated in
polynomial time [27]. Clifford operations do not provide a universal
set of quantum gates - hence, the stabilizer states produced by
Clifford-only circuits are limited in how effectively they can explore
the quantum space of a given problem such as those targeted by
VQAs. However, exploring the Clifford space of the VQA problem
through ideal classical simulation can potentially find good noise-
free initial states, which is particularly beneficial in the NISQ era.
Note: in addition to Clifford gates, it is possible for a small number
of T gates to also be efficiently classically simulated [12]. While
we primarily focus on the Clifford space in this work, we show
preliminary results for beyond-Clifford exploration in Section 8.

CAFQA: This work tackles the challenge of finding initial ansatz
parameters by proposing CAFQA, a Clifford Ansatz For Quantum
Accuracy. The CAFQA Clifford Ansatz is a hardware-efficient pa-
rameterizable circuit that is parameterized with only Clifford gates.
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In this ansatz, the initial parameters for the tunable gates are chosen
by searching efficiently through the Clifford parameter space via
classical simulation, thereby producing a suitable stabilizer state.
The proposed approach is attractive for multiple reasons: a the
Clifford-initialized ansatz produces stabilizer states that perform
equal to or better than the traditional classical approach of finding
a suitable computational basis state (e.g., Hartree-Fock [32]) be-
cause (i) it can explore a larger state space and (ii) the stabilizer can
have direct chemical relevance in some molecular systems; b the
Clifford-only quantum circuits can be perfectly simulated in poly-
nomial (quadratic or even linear) time on classical computers [27];
c the produced initial states are obtained ideally, since classical
simulation is noise-free; d the discrete Clifford space is searched
efficiently via Bayesian Optimization using a random forest surro-
gate model and a greedy acquisition function; e while the Clifford
space is significantly smaller compared to the entire quantum space,
the stabilizer states produced from the optimal Clifford parame-
ters are able to achieve solutions of high accuracy even prior to
execution/exploration on a quantum device; and finally f the se-
lected ansatz can then be tuned over the entire parameter space on
a quantum device, allowing for accelerated accurate convergence
on NISQ devices (and beyond). Fig.2 provides a break down of the
VQA parameter space and CAFQA’s scope.

Key CAFQA results:

1 For the VQE task of ground state energy estimations of molec-
ular systems up to 18 qubits, CAFQA’s Clifford Ansatz is observed
to achieve a mean accuracy of near 99% and is able to recover up to
99.99% of the molecular correlation energy lost in state-of-the-art
Hartree-Fock initialization. CAFQA achieves mean accuracy im-
provements over the state-of-the-art of 6.4x when averaged over
all bond lengths and 56.8x at highest bond lengths (maximum of
3.4*105x).

2 Quantum exploration post CAFQA initialization can lead to
faster and highly accurate VQA convergence, even on reasonably
noisy quantum machines Ð we show 2.5x faster convergence com-
pared to HF for a small molecule. Greater benefits can be expected
for larger problem sizes, which can be usefully evaluated when
NISQ machines improve.

3 The scalability of the approach allows for accurate ansatz
initialization for ground state energy estimation of the challenging
Chromium dimer (often considered a benchmark for variational
quantum advantage) with greater than Hartree-Fock accuracy.

4 Preliminary exploration of allowing a very limited number
of non-Clifford (T) gates in the CAFQA framework shows that
as much as 99.9% of the correlation energy can be recovered at
bond lengths for which Clifford-only CAFQA accuracy is relatively
limited, while remaining classically simulable

Key CAFQA insights:

1 CAFQA uses classical simulation to explore the Clifford space
of a VQA problem and produces high accuracy VQA ansatz initial-
ization, considerably outperforming the state-of-the-art.

2 CAFQA’s benefits are especially significant because it is clas-
sically simulable, it searches the search space efficiently, and its
evaluations are ideal.

3 CAFQAhighlights the potential for quantum inspired classical
techniques as well as a synergistic quantum-classical paradigm, to
boost NISQ-era quantum computing (with focus on VQA) towards
real world applicability.

2 BACKGROUND AND MOTIVATION

2.1 VQAs in the NISQ Era

VQE: While CAFQA is suited widely across variational algorithms
(eg., QAOA [22]), in this paper we primarily focus on the Variational
Quantum Eigensolver (VQE) [55]. VQE is used to estimate an upper
bound on the ground state energy of a Hamiltonian. Here, a Hamil-
tonian is a mathematical representation of some problem from, say,
optimization or molecular chemistry, and is a linear combination of
multiple Pauli terms. For example, a 4-qubit Hamiltonian could be
[𝐻 = 0.1∗𝑋𝑌𝑋𝑌 +0.5∗𝐼𝑍𝑍𝐼 ]. VQE tries to find suitable parameters
for an appropriately chosen parameterized circuit (ansatz) such that
the expectation value of the target Hamiltonian is minimized. At
a high level, VQE can be conceptualized as a repetitive “classical
guessž + “quantum checkž algorithm [25]. The check stage involves
the preparation of a quantum state corresponding to the guess.
This preparation stage is done in polynomial time on a quantum
computer, but would incur exponential cost in general on a classical
computer. This contrast gives rise to a potential quantum speedup
for VQE [26]. In chemistry, VQE is a critical step in computing
the energy properties of molecules and materials. While conven-
tional computational chemistry provides methods to approximate
such properties, they can lack sufficient accuracy in molecular sys-
tems due to an inadequate treatment of the correlations between
constituent electrons. These interactions require computation that
scales exponentially in the size of the system [73, 81].

NISQ era accuracy: Estimating the VQE global optimum with
high accuracy has proven challenging in the NISQ era even with
sophisticated optimizers, a well-chosen ansatz, and error mitiga-
tion [7, 10, 15, 58, 61, 69, 73, 78]. As an example, ground state energy
estimation of molecules (the energy required to break a molecule
into its sub-atomic components), a key use case for VQE, requires
energy estimates with an estimation error of less than 1.6 × 10

−3

Hartree, or what is known as “chemical accuracy" [56], for applica-
bility in understanding chemical reactions and their rates. Unfor-
tunately, for instance, previous work on the estimation of ground
state energy of BeH2 on a superconducting transmon machine re-
sulted in an error greater than 10−1 Hartree, which is roughly 100x
worse than the required accuracy [36]. Considering the significant
disparity between NISQ VQA accuracy and real world requirements,
it is imperative to aid VQA to the best extent possible.

2.2 VQA Ansatz and its Initialization

Ansatz: An ansatz is a parameterized circuit which is used to ex-
plore the quantum Hilbert space of the target VQA Hamiltonian,
to find its ground state energy. An ansatz with parameterized gate
rotation angles is shown in Fig. 3. Many ansatz structures are suit-
able for VQAs. In the context of VQE for molecular chemistry, the
Unitary Coupled Cluster Single-Double (UCCSD) ansatz is consid-
ered the gold standard [26, 60]. Unfortunately, the UCCSD ansatz is
generally of considerable circuit depth, making it less suitable for
today’s NISQ machines, except for very small molecules such as H2.
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θ[i]={0, π/2, π , 3π/2}

Figure 3: A Clifford Ansatz, a circuit with only Clifford gates.

In this example, all fixed components areCXs and the tunable

rotational gate angles are multiples of 𝜋/2.

More suitable to the NISQ-era are hardware-efficient ansatz like
the SU2 [1] which are low depth parameterized circuits (but have
Hilbert space coverage limitations [34, 73]). Fundamentally, this
ansatz is constructed by repeating blocks of parameterized single-
qubit rotation gates and ladders of entangling gates [73] (Fig.3).
CAFQA builds atop a traditional hardware efficient ansatz [36].
Suitability to other ansatz structures is discussed in Section 8.

Optimization surface: While a good choice of classical opti-
mizer improves VQA convergence [39], VQAs can: a) have complex
optimization surfaces and b) suffer from a barren plateau problem.
The optimization contour worsens as the noise and complexity of
the problem increases in relation to the increase in the depth of
the circuit, the number of parameters and the spread of the en-
tanglement [39]. The barren plateau is the phenomenon in which
the gradients of the VQE parameters vanish exponentially. While
barren plateaus can become a critical issue for a variety of rea-
sons [13, 42, 43, 54, 75], in the context of this work, they can become
significant in the presence of noise [79] and with poor (random)
ansatz initialization [43]. Thus, well-chosen initialization of the
ansatz can help avoid barren plateaus and effects of noise, and
therefore enable fast accurate convergence on the VQA problem.

Hartree-Fock initialization: A popular and simple approach
to construct a fair initial state for quantum systems is derived from
Hartree-Fock (HF) theory [32]. Although such approximation /
optimization problems are generically hard, HF usually rapidly con-
verges to good solutions, especially for closed-shell molecules at
equilibrium geometries [2]. HF yields an initial state that has no
entanglement between the electrons (i.e., simply a bitstring of 0s
and 1s on the circuit’s qubits). HF assumes that each electron’s
motion can be described as a stand-alone particle function, inde-
pendent of the instantaneous motion of other electrons. In doing
so, HF neglects the correlation between electrons, which is where
classical computing is limited in solving such molecular chem-
istry problems. Therefore, although HF has reasonable accuracy for
many molecules, it is generally insufficient to make highly accurate
quantitative predictions [3]. Thus, its usefulness as a suitable initial-
ization on today’s very noisy quantum devices is limited - there is

too much ground left for the quantum device to cover, which is chal-
lenging considering the complex noisy optimization surface and
barren plateaus as described earlier. Therefore, initialization with
greater accuracy, especially for strongly correlated systems and/or
away from equilibrium geometry, necessitates quantum states that
go beyond HF.

2.3 Clifford Circuits

Classical simulation of quantum problems usually requires expo-
nential resources (otherwise, the need for quantum computers is
obviated). Evenwith high-performance supercomputers, simulation
is restricted to under 100 qubits [9, 16, 35, 46, 73].

However, not all simulations are non-scalable. The Gottesman-
Knill theorem states that łAny quantum computer performing only:

a) Clifford group gates, b) measurements of Pauli group operators, and

c) Clifford group operations conditioned on classical bits, which may

be the results of earlier measurements, can be perfectly simulated in

polynomial time on a probabilistic classical computer" [27].
While the Clifford group operations and Pauli group measure-

ments do not provide a universal set of quantum gates, there are
quantum domains that have applications focused on the Clifford-
space including quantum networks [77], error correction codes [59],
teleportation [28] and error mitigation [15, 67].

CAFQA explores the benefits of Clifford-only circuits as an ansatz
for variational algorithms. An example is shown in Fig.3. Extending
beyond Cliffords is discussed in Section 8.

3 CAFQA PROPOSAL

Fig.4 provides an illustrative overview of how CAFQA complements
traditional VQA tuning. CAFQA is illustrated in the red box and is
discussed below.

1 CAFQA begins with a parameterized circuit in which all fixed
gates are Clifford. This is usually the case with hardware-efficient
ansatz, as described in Section 2.2. Focusing on a hardware-efficient
ansatz is justified considering that other ansatz options are generally
less suitable to noisy execution on today’s NISQ devices. However,
extensions are discussed in Section 8.

2 Given this parameterized circuit, CAFQA performs a discrete
search over the tunable circuit parameters. The tunable search
space is limited to angles which make the tunable gates Clifford.
Extensions discussed in Section 8.

3 Since both the fixed gates as well as the tunable gates are
Clifford, the resulting circuit in each iteration of the tuning process
can be simulated classically, even as the size of the circuits grow
(as discussed in Section 2.3).

4 Simulating the ansatz circuits corresponding to the Hamilton-
ian and measuring the expectation produces the objective function
value for the iterative tuning process.

5 For molecular chemistry, if any electron and spin preservation
constraints have to be imposed on the problem they can can be
added to the Hamiltonian [63] or directly to the objective function
- CAFQA uses the latter. More in Section 7.1.

6 Since simulations are performed classically, they are free of
noise, thus having the potential to eliminate a considerable portion
of the noise impact that variational tuning on the real quantum
device could suffer, i.e., noise-induced barren plateaus [79] etc.
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from the ideal / exact minimum will increase with more complex
problems and increasing noise.

3 Next, the dashed line shows the expectation value produced by
HF initialization. In this example, HF is unable to produce any useful
result since the chosen Hamiltonian does not have any diagonal
Pauli terms suitable for HF. This can be thought to represent pure
electron correlation energy in the context of molecular chemistry
(as described in Section 2.2).

4 Finally, CAFQA is shown with orange ‘X’s. Note that there
are only 4 unique discrete points in the Clifford space for the one
tunable parameter. Even so, CAFQA is able to produce the expec-
tation value global minimum (= -1.0) via one of those 4 Clifford
points. Not only does the Clifford minimum match the minimum of
the entire tuning space, but also the ability to simulate the Clifford
space ideally without noise produces more accurate estimations
than the noisy devices.

4.2 High Accuracy CAFQA Stabilizer States

In Fig.6 we break down the expectation value returned by the
Clifford Ansatz in comparison to Hartree-Fock and ideal / exact
minimum from noise free simulation. This is shown for the ground-
state energy estimation of the LiH molecule, represented by a 4
qubit Hamiltonian system, at a bond length of 4.8Å. The Y-axis
shows the expectation value of each Pauli term and the X-axis lists
the Pauli terms in the Hamiltonian.

1 In the figure, the resulting expectation value of each Pauli term
for the Hartree-Fock (HF) initialization is shown in blue. Since HF is
a ‘classical’ computational basis state (i.e., a bitstring), and therefore
Clifford, as noted in Section 3, all the HF Pauli term expectation
values are +1 / -1 / 0. Further, since HF is ‘classical’, all non-diagonal
Pauli terms (i.e., any terms apart from the tensor products of I and Z)
have an expectation value of zero. Only calculating the expectation
values for the diagonal terms leads to HF ignoring the correlation
energy, which is known to cause serious errors for some larger
molecules (described in Section 2.2).

2 The expectation value of each Pauli term for the Clifford
ansatz produced by CAFQA is shown in red. Again, note that all
expectation values are +1 / -1 / 0. Moreover, note that for the Clifford
ansatz, there are multiple non-diagonal Pauli terms which produce
an expectation of +1 / -1. The non-zero expectation on non-diagonal
terms is indicative of CAFQA producing a non-computational basis
state, albeit a Clifford one. By doing so, it is able to capture some
of the correlation energy that is contributed by the non-diagonal
Pauli terms. This is important because it is qualitatively indicative
of the potential for high(er) estimation accuracy through CAFQA
as the complexity of the problem scales.

3 The expectation value of each Pauli term for the exact min-
imum from ideal noise-free simulation is shown in green. Ideal
noise-free simulation is possible since LiH is a very small mole-
cule. While expectation values range from -1 to 1, it is evident that
the expectation values are close to those produced by the Clifford
Ansatz, both for diagonal terms and the non-diagonal terms. This
is a clear indicator of the effectiveness of CAFQA for ground-state
energy estimation for the LiH molecule (at the chosen bond length).
This is confirmed later in Section 7.1.2 which shows that CAFQA
is able to achieve high accuracy in the range of 10−2 Hartree for

LiH. This trend is also observed across other molecules and bond
lengths, leading to high accuracy overall.

5 DISCRETE SEARCH OVER THE CLIFFORD
SPACE

To efficiently search through the discrete Clifford parameter space,
CAFQA requires a sample-efficient search technique to find the
performant ansatz parameters as quickly as possible. Bayesian op-
timization is one such technique that actively and intelligently
queries the most informative samples at each round to reduce the
number of samples required [23]. Due to this merit, Bayesian op-
timization has been successfully applied to different domains in
computer systems optimization such as compiler tuning [50], re-
source allocation [53], and configuration optimization [6, 18, 19, 62].
Bayesian optimization iteratively alternates between intelligent
sampling and model updates. As such, it includes two components:
a surrogate model and an acquisition function. The surrogate model
tries to learn the unknown underlying function that maps the search
parameters to the problem objective (e.g., ground-state energy). The
acquisition function is the search strategy that selects the next sam-
ple to query to update the surrogate model.

CAFQA searches through the Clifford space with Bayesian opti-
mization to identify optimal Clifford gates for the tunable circuit
parameters. Each tunable parameter is able to take one of four rota-
tional angles as was shown in Fig.3. This creates a discrete search
space complexity of 𝑂 (4#𝑝𝑎𝑟𝑎𝑚𝑠 ) that scales exponentially in the
number of parameters, although it is considerably smaller than the
entire quantum tuning space. While Bayesian Optimization effi-
ciency can degrade with increased number of search parameters (or
dimensionality) [40], it is still observed to be effective in searching
through the Clifford space since each parameter chooses only from
four different rotational angles.

Since the Clifford parameter space is discrete, CAFQA chooses
the random forest as the surrogate model as it is flexible enough to
model the discrete space and scales well [50]. CAFQA uses a greedy
acquisition function [18, 50] to select samples with the lowest en-
ergy estimates predicted from the surrogate model. Empirically, the
combination of the random forest surrogate model and the greedy
acquisition function gives highly accurate results, as illustrated in
Section 7. Details on the implementation of the search algorithm
can be found in [50]. Here, we limit ourselves to an illustrative
example.

Fig.7 shows the discrete search employed by CAFQA to produce
a Clifford Ansatz for H2O ground state energy estimation at a bond
length of 4Å. The first 1,000 iterations are a warm-up period, which
involves randomly sampling and mapping the search space, a key
component to BO. The search algorithm then uses these random
samples to efficiently search the parameter space. In the figure,
note that as soon as the random sampling is complete, the search
algorithm begins to find better expectation values compared to ran-
dom. A potentially global minimum is found after an additional 600
search iterations. Notably, in this use case, the identified minimum
is well within the chemical accuracy requirements. Although 2000
iterations are shown here, the search can be constrained by a tuning
budget or by the saturation of the obtained minimum.
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