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We present a direct bijection between reduced pipe dreams and reduced bumpless

pipe dreams (BPDs) by interpreting reduced compatible sequences on BPDs and show

that this is the unique bijection preserving bijective realizations of Monk’s formula,

establishing its canonical nature.

1 Introduction

The complete flag variety

Fln = {{0} = V0 � V1 � · · · � Vn−1 � Vn = Cn | dim(Vi) = i for i = 0, . . . , n
}

is a smooth projective manifold, that is, central in the study of Schubert’s enumerative

calculus, which is also known as Hilbert’s fifteenth problem. The flag variety admits a

stratification via Schubert cells {Xπ | π ∈ Sn} indexed by permutations. The correspond-

ing Schubert classes form a basis of the cohomology ring of the flag variety, with the

following presentation:

H∗(Fl(n);Z) � Z[x1, . . . , xn]/I,
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2 Y. Gao and D. Huang

where the ideal I is generated by symmetric polynomials in x1, . . . , xn with no constant

terms. A combinatorial rule to compute structure constants with respect to the Schubert

classes remains one of the biggest open problems in Schubert calculus and algebraic

combinatorics.

Schubert polynomials, {Sπ |π ∈ Sn}, defined by Lascoux and Schützenberger [14],

are polynomial representatives of the Schubert classes {[Xπ ] | π ∈ Sn} of the flag variety.

They can be defined via the divided difference operators as follows:

Sπ :=
⎧⎨
⎩

xn−1
1 xn−2

2 · · · xn−1 if w = n n−1 · · · 1,

∂iSπsi
if �(π) < �(πsi),

where si is the simple transposition (i i+1), which acts on polynomials by swapping the

variables xi and xi+1, and

∂if := f − sif

xi − xi+1
.

Schubert polynomials and their various generalizations are the central objects

of interest in Schubert calculus and algebraic combinatorics and possess very rich com-

binatorial structures. The Schubert polynomials Sπ expand positively into monomials.

Notable combinatorial models for this result involve compatible sequences by Billey–

Jockusch–Stanley [3], which are equivalent to pipe dreams (PDs), also called RC-graphs,

by Bergeron and Billey [1].

Theorem 1.1 ([1, 3]). For a permutation π , Sπ = �
D∈PD(π) wt(D).

We will introduce the necessary notations in Section 2.

Relatively recently, Lam–Lee–Shimozono [13] introduced bumpless pipe dreams

(BPDs), in the context of back stable Schubert calculus, that provide another monomial

expansion of the Schubert polynomials.

Theorem 1.2 ([13]). For a permutation π , Sπ = �
D∈BPD(π) wt(D).

Theorems 1.1 and 1.2 guarantee that there exists a weight-preserving bijection

between PDs and BPDs of a fixed permutation. We remark here that PDs and BPDs

both have combinatorial and geometric significance beyond Theorems 1.1 and 1.2. For
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The Canonical Bijection between PDs and BPDs 3

example, PDs encode Gröbner geometry of matrix Schubert varieties via antidiagonal

degenerations [12], and similar results for BPDs have been explored recently in [9].

Furthermore, both PDs and BPDs give rise to different lattice models for double

Grothendieck polynomials [4, 5]. For our current purposes, we do not consider the

equivariant or K-theoretic generalizations of Schubert polynomials.

The following question has been of interest since the discovery of BPDs.

Question 1.3. Can we explicitly describe a “natural” weight-preserving bijection

between PD(π) and BPD(π) for any permutation π?

The goal of this paper is to answer the above question affirmatively, by providing

such a bijection ϕ (Definition 3.3). The word “natural” in Question 1.3 can be made

precise, in the sense that we will show in Theorem 4.5 that our bijection ϕ preserves

bijective realizations of Monk’s formula, established on pipe dreams in [15], and on

BPDs in [7]. A little bit of history regarding the bijective proof of Monk’s formula on

pipe dreams seems necessary when this subject is discussed. In this paper, we attribute

the main proof to Little [15], where most of the hard work is done. A detailed description

of the Little bumping algorithm appears first in [2], which deals with a special case. In

his lecture notes [10], Knutson attributes this proof to Buch. Regardless, a complete

description of the algorithm that proves Monk’s rule bijectively on pipe dreams is

documented in Section 4.1.

One notable consequence of Theorem 4.5 is that it unifies all previous attempts

to define bijections between PDs and BPDs via any choices of Monk’s rules. Specifically,

the 2nd author mentioned a family of bijections [7] between PDs and BPDs defined

using (co)transition formulas that are special cases of Monk’s rule. Each bijection in

this family depends on a choice α for each permutation π upon which the (co)transition

is performed. By Theorem 4.5, we now know that this family of bijections is in fact one

single bijection (Definition 3.3).

For the organization of this paper, we first introduce background knowledge in

Section 2. Then we describe the bijection in Section 3. Finally, we show that the bijection

preserves Monk’s rule in Section 4, which is divided into many subsections due to the

technicality the proof of our main theorem, Theorem 4.5.

2 Preliminaries

Let S∞ be the infinite symmetric group that consists of bijections from Z>0 to itself with

all but finitely many fixed points. Namely, S∞ = �
n≥1 Sn. The group S∞ is generated by

the simple transpositions si := (i i+1), for i ∈ Z>0. For a < b, let ta,b be the transposition
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4 Y. Gao and D. Huang

(a b). Let �(w) be the standard Coxeter length of w, and let Red(w) be the set of reduced

words of w.

The Bruhat order on S∞ is the transitive closure of the binary relation w < wta,b

if �(w) < �(wta,b). The cover relation in the Bruhat order is given by x � y if x = yta,b for

some a < b and �(x) = �(y) − 1. Also, let DesL(π) := {i ∈ Z>0 | siπ � π} be the set of (left)

descents of π .

The stability property of the Schubert polynomials allows us to work with

permutations π ∈ S∞, instead of each symmetric group Sn separately. Recall that the

stability property states that for any m < n, π ∈ Sm, we have Sπ = Sι(π), where

ι : Sm �→ Sn is the natural embedding.

2.1 Pipe dreams and compatible sequences

Definition 2.1 (Pipe dream, RC-graph [1]). For a permutation π ∈ S∞, a (reduced) pipe

dream (PD) D of π is a tiling of the square grid Z>0 × Z>0 using two kinds of tiles, the

cross-tile and the elbow-tile , with finitely many -tiles, forming pipes that travel

from the north border to the west border, such that for i ∈ Z>0, the pipe starting at

column i, which is labeled as pipe i, ends at row π(i), and no two pipes cross twice.

We typically draw a pipe dream in a staircase shape of size n if π ∈ Sn. Let

PD(π) be the set of PDs of π , and for D ∈ PD(π), let cross(D) denote the coordinates of

its -tiles. Then the weight of D is defined as

wt(D) :=
	

(i,j)∈cross(D)

xi.

Given a pipe dream D, we let perm(D) denote the permutation given by D.

Definition 2.2 (Compatible sequence [3]). For a permutation π ∈ S∞ with �(π) = �, a

pair of integer sequences


a = (a1, . . . , a�), r = (r1, . . . , r�)

�
is a (reduced) compatible

sequence of π if

1. a = (a1, . . . , a�) is a reduced word of π ;

2. r1 ≤ · · · ≤ r� is weakly increasing;

3. rj ≤ aj for j = 1, . . . , �;

4. rj < rj+1 if aj < aj+1.

There is a straightforward bijection between pipe dreams of π and compatible

sequences of π , which we describe here.
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The Canonical Bijection between PDs and BPDs 5

Fig. 1. Examples of PDs and their corresponding compatible sequences.

We label the square grids with matrix notation and give a total order to the

square grids, by going from top to bottom, and within each row, right to left. To be

precise, (i, j) < (i	, j	) if i < i	 or i = i	, j > j	. For D ∈ PD(π) with �(π) = �, order its

-tiles cross(D) in this way as (r1, j1) < · · · < (r�, j�). Then its corresponding compatible

sequence is


a = (a1, . . . , a�), r = (r1, . . . , r�)

�
where ak = rk + jk − 1. Note that each

-tile at coordinate (i, j) corresponds to the simple transposition si+j−1. See [1] for

further details on this bijection.

Example 2.3. Figure 1 shows two PDs of π = 21543 of weight x2
1x2x3 and their

corresponding compatible sequences.

As the bijection between PDs and compatible sequences is quite straight-

forward, we will abuse notation, and from now on, consider them to be the same

combinatorial objects for simplicity.

For D ∈ PD(π) with compatible sequence (a, r), its 1st -tile corresponding to

the order on the square grid will play an important role later on, which has coordinate

(r1, a1 − r1 + 1). We denote by ∇D the PD obtained from D by turning this 1st -tile into

a -tile and write pop(D) = (a1, r1). We have that ∇D ∈ PD(sa1
π), where a1 ∈ DesL(π) so

that �(sa1
π) = �(π) − 1.

2.2 Bumpless Pipe dream

Definition 2.4 (Bumpless pipe dream [13]). For a permutation π ∈ S∞, a (reduced)

bumpless pipe dream (BPD) D of π is a tiling of the square grid Z>0 × Z>0 using the

following six tiles:

with finitely many -tiles, forming pipes labeled by Z>0 such that pipe i travels from

(∞, i) to (π(i), ∞) in the NE direction and that no two pipes cross twice. Among the tiles,
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6 Y. Gao and D. Huang

Fig. 2. Column moves.

Fig. 3. The final step of deleting a marked -tile.

“ ” is pronounced “are” and “ ” is pronounced “jay”. The name “bumpless” comes from

the fact that the tile “ ” where two pipes “bump” is forbidden.

We typically draw a BPD in a square grid of size n × n if π ∈ Sn. Let BPD(π)

denote the set of BPDs of π , and for D ∈ BPD(π), let cross(D) denote the coordinates of

its -tiles and blank(D) denote the coordinates of its -tiles. Then the weight of D is

defined as

wt(D) :=
	

(i,j)∈blank(D)

xi.

3 Description of the Bijection

We start with the following operation on BPDs, which is defined in the rectification

process described in [8]. These moves are generalizations of the backwards direction of

the insertion process described in [13, Section 5]. We recall the definition of droop and

undroop moves on BPDs as in [13, Section 5]. A droop is a local move that swaps this

-tile of pipe p at position (a, b) with a strictly southeast blank tile at position (a+ i, b+
j). Let R be the rectangle with NW corner (a, b) and SE corner (a + i, b + j). After the

droop, p travels along row a + i and column b + j, (a, b) becomes blank and (a + i, b + j)

becomes a -tile. The droop is only allowed if every tile in row a and column b of R

contains p, R contains only one -tile at (a, b), and after the droop, we obtain a valid

BPD. An undroop at a -tile is the reverse of this operation.
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The Canonical Bijection between PDs and BPDs 7

Definition 3.1. Given D ∈ BPD(π) with �(π) > 0, the following process produces

another BPD ∇D ∈ BPD(π 	) where �(π 	) = �(π) − 1. Suppose D is an n × n grid. Let r

be the smallest row index such that the row r of D contains -tiles. To initialize, mark

the rightmost -tile in row r with a label “×”.

1. If the marked -tile is not the rightmost -tile in a contiguous block of

-tiles in its row, move the label “×” to the rightmost -tile of this block.

Assume the marked tile has coordinate (x, y) and the pipe going through

(x, y + 1) is p.

2. If p �= y+1, suppose the -tile of p in column y+1 has coordinate (x	, y+1) for

some x	 > x. Call the rectangle with NW corner (x, y) and SE corner (x	, y + 1)

the column move rectangle U. We modify the tiles in U as follows.

a. For each pipe q intersecting p at some (z, y +1) where x < z < x	 and (z, y)

is an -tile, let (z	, y) be the -tile of q in column y. Ignoring the presence

of p, droop q at (z, y) within U, so that (z, y + 1) becomes an -tile and

(z	, y + 1) becomes a -tile.

b. Undroop pipe p at (x	, y + 1) into (x, y), and move the mark to (x	, y + 1).

Go back to step (1) and repeat. The column moves are illustrated in Figure 2.

3. If p = y + 1, the pipes y and y + 1 must intersect at some (x	, y + 1) for some

x	 > x. Replace this -tile with a -tile, undroop the -turn of this tile into

(x, y) and adjust the pipes between row x and x	 so that their “kinks shift

right”, in a same fashion as described in Step (2) above. In this case, call the

rectangle with NW corner (x, y) and SE corner (n, y + 1) the column move

rectangle. These moves are shown in Figure 3. We are done after this step.

Let a be the column index of the left column of the last column move rectangle as

in Step (3). The final BPD is of the permutation saπ . Denote the result by ∇D ∈ BPD(saπ),

and write pop(D) = (a, r). Let the footprints of D be the set of coordinates that are SE

corners of the column move rectangles except for the southernmost one.

Note that each step above is invertible. Specifically, given D	 and a pair (a, r), we

can uniquely recover D, if it exists, such that ∇D = D	 and pop(D) = (a, r), by inverting

the above steps: start with crossing the pipe a and pipe a + 1 where the pipe a + 1 first

turns right (if pipe a and a + 1 already cross in D	, then we know that such D does not

exist) and creating a -tile in some row r	; then keep doing backward-direction column

moves and sliding the -tile to the left until the -tile reaches row r. If this -tile

cannot land exactly on row r, we also conclude that such D does not exist.
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8 Y. Gao and D. Huang

Fig. 4. An example of obtaining ∇D with the step number labeled on the arrows.

Fig. 5. An example for the bijection ϕ with π = 21543, where the values of pops are shown on the

arrows.

Example 3.2. Figure 4 demonstrates how Definition 3.1 works for a certain BPD D ∈
BPD(π) step by step, where ∇D ∈ BPD(saπ) is obtained in the end, with π = 2153746,

a = 4, pop(D) = (4, 1).

Repeatedly applying the procedure in Definition 3.1, we obtain the following

map, which is the main object of study of this paper.

Definition 3.3 (The bijection). Given D ∈ BPD(π) with �(π) = �, let

ϕ(D) = 

a = (a1, . . . , a�), r = (r1, . . . , r�)

�
,

where pop(∇i−1D) = (ai, ri) for i = 1, . . . , �.

Example 3.4. Figures 5 and 6 demonstrate two examples of the bijection ϕ in Definition

3.3 for π = 21543, whose Schubert polynomial Sπ is not multiplicity-free in the

monomial expansion (see [6]). Both examples have weight x2
1x2x3.
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The Canonical Bijection between PDs and BPDs 9

Fig. 6. Another example for the bijection ϕ with π = 21543, where the values of pops are shown

on the arrows.

Lemma 3.5. For D ∈ BPD(π), ϕ(D) is a compatible sequence of π .

Proof. We check the conditions of compatible sequences for ϕ(D) as in Definition 2.2.

Condition (1) follows from ∇D ∈ BPD(saπ) if pop(D) = (a, r). Condition (2) is evident from

construction, as we are removing -tiles from top to bottom. Note that if pop(D) = (a, r),

with D ∈ BPD(π), there are no -tiles in the 1st r − 1 rows of D, meaning that π(i) = i

for i = 1, . . . , r − 1, and consequently a ≥ r. Thus, condition (3) follows. For condition (4),

we assume the opposite that rj ≥ rj+1, that is, rj = rj+1 and aj < aj+1. Since aj < aj+1,

by [8, Lemma 3.5], the footprints of ∇j−1D are strictly to the S/W/SW direction of the

footprints of ∇jD. However, the starting point of the footprints of ∇j−1D is directly east

of the footprints of ∇jD as we start in the same row rj = rj+1. Contradiction. �

Theorem 3.6. The map ϕ in Definition 3.3 is a weight-preserving bijection between

BPD(π) and PD(π), that is, compatible sequences of π .

Proof. By Lemma 3.5, we have a well-defined map ϕ from BPD(π) to PD(π). Immediate

from the construction (Definition 3.3), ϕ is weight-preserving. Since each step ∇ is

invertible if a preimage exists, the map ϕ is injective. As both PDs and BPDs enumerate

monomials in the Schubert polynomial Sπ , ϕ is a bijection. �

4 Preserving Monk’s Rule

In this section, we demonstrate why the map ϕ in Definition 3.3 is “canonical”, by

showing that it preserves Monk’s rule.
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10 Y. Gao and D. Huang

Theorem 4.1 (Monk’s rule [16]). Let π be a permutation and α be a positive integer:

xαSπ +
�
s<α

πts,α�π

Sπts,α
=

�
l>α

πtα,l�π

Sπtα,l
. (1)

This version of Monk’s rule is derived from the Monk’s rule that expands the

product of a linear Schubert polynomial with a general Schubert polynomial. In the

cases when the summation on the right-hand of Equation (1) is a single Schubert

polynomial, the formula specializes to the transition formula of Schubert polynomials,

which is an important inductive formula for Schubert polynomials. In the case when the

summation on the left-hand side is empty, the formula specializes to the cotransition

formula [11]. In [2], a bijective proof of the transition formula is given using PDs,

which can be easily extended to a proof of Monk’s rule in its general form. The 2nd

author gives a bijective proof of Monk’s rule with BPDs in [7], which also generalizes

to the equivariant version. It is also remarked in [7] that using either the transition

or the cotransition formula, one can construct bijections inductively of PDs and BPDs.

As a corollary of our result, these inductive bijections agree. We review both weight-

preserving bijections for Equation (1) on PDs and BPDs in Sections 4.1 and 4.2.

4.1 Monk’s rule on PDs

We present the following maps:⎧⎪⎪⎨
⎪⎪⎩

xα� : PD(π) → �
l>α

πtα,l�π
PD(πtα,l)

ms,β : PD(πts,β) → �
l>β

πtβ,l�π

PD(πtβ,l), s < β, πts,β � π

such that xα� and ms,βs for β = α together form a weight-preserving bijection from the

left-hand side to the right-hand side of Equation (1). To be precise on the weight, xα�
multiplies the weight by xα while ms,β preserves the weight. Readers are referred to [2]

for further details and how these maps can be inverted.

Definition 4.2 (xα�, ms,β on PDs). Given D ∈ PD(π), the following procedure produces

xα�D.

1. Find the leftmost -tile on row α of D and replace it by .

2. If the newly added -tile creates a double crossing with another -tile at

coordinate (i, j), replace the -tile at (i, j) with , find the smallest j	 > j

such that (i, j	) is a -tile, and replace it by . Repeat this step.
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The Canonical Bijection between PDs and BPDs 11

Fig. 7. Basic monk moves at the circled coordinates.

Analogously, given π , D ∈ PD(πts,β) such that πts,β � π , the following procedure

produces ms,β(D) ∈ PD(πtβ,l) for some l > β where πtβ,l � π .

1. Locate the -tile between pipe π−1(s) and π−1(β) in D at coordinate (i, j).

Make it into a -tile. Find the smallest j	 > j such that (i, j	) is a -tile, and

replace it by .

2. Exactly the same as step (2) above.

See Figure 9 for an example.

4.2 Monk’s rule on BPDs

We present the analogous maps⎧⎪⎪⎨
⎪⎪⎩

xα� : BPD(π) → �
l>α

πtα,l�π
BPD(πtα,l)

ms,β : BPD(πts,β) → �
l>β

πtβ,l�π

BPD(πtβ,l), s < β, πts,β � π

for BPDs. For details including illustrated examples, see [7]. First, we recall from [7] that

an almost BPD of π is defined by relaxing the condition of BPDs by allowing a single

-tile in the grid.

Definition 4.3 (Basic Monk moves on (almost) BPDs). We define two basic Monk moves,

min-droop and cross-bump-swap, on (almost) BPDs. See Figure 7.

min-droop: Let (a, b) be the position of an -turn of a pipe p. Note that the tile at (a, b)

could be a -tile or -tile. Let x > 0 be the smallest number where (a + x, b) is not a

-tile, and y > 0 be the smallest number where (a, b + y) is not a -tile. A min-droop at

(a, b) droops p into (a + x, b + y).

cross-bump-swap: Suppose (a, b) is a -tile of pipes p and q, and p and q also have a

crossing at (a	, b	). Then a cross-bump-swap move at (a, b) swaps the two tiles at (a, b)

and (a	, b	).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad083/7146961 by U

niversity of M
innesota - Tw

in C
ities user on 20 July 2023



12 Y. Gao and D. Huang

Fig. 8. The base case for the second commutative diagram of (*).

Furthermore, we consider the initial move that replaces a -tile with a -tile

when computing ms,β , and the final move that replaces a -tile with a -tile also as

special basic Monk moves.

By the stability property of Schubert polynomials, we may embed π into a larger

symmetric group as necessary so that a min-droop is always possible.

Definition 4.4 (xα�, ms,β on BPDs). Given D ∈ BPD(π), the following procedure

produces xα � D.

1. Let (α, j) be the easternmost -tile in row α, initialize (x, y) := (α, j).

2. Perform a min-droop at (x, y). Let (z, w) be the SE corner of this min-droop.

a. If after the min-droop, (z, w) is a -tile, update (x, y) as the position of

-tile of pipe π(α) in row z, and repeat this step.

b. If after this min-droop, (z, w) is a -tile, let q be the pipe of the -turn in

this tile.

i. If π(α) and q have already intersected at (z	, w	), perform a

cross-bump-swap move at (z, w). Update (x, y) := (z	, w	), and repeat

Step (2).

ii. If π(α) and q have not intersected before, replace the -tile with a

-tile and stop.

To define ms,β(D), replace Step (1) with

(1’) Initialize (x, y) to be the position of the -tile of π(s) and π(β). Replace this

-tile with a -tile.
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The Canonical Bijection between PDs and BPDs 13

4.3 The main theorem and the proof

The following is the main theorem of the paper.

Theorem 4.5. For any π ∈ S∞, the bijection ϕ : BPD(π) → PD(π) preserves Monk’s rule,

that is, ϕ intertwines with xα�, ms,βs. Specifically, the following diagrams commute:

(*)

where α ∈ Z>0 is arbitrary and πts,β � π with s < β.

The main difficulty of Theorem 4.5 is that the operator ∇ does not commute

with either xα� or ms,β , on either PDs or BPDs. Therefore, Theorem 4.5 is only true in

a “global” sense. The proof relies on technical lemmas on PDs (Lemma 4.6) and BPDs

(Lemma 4.7), which discuss how much the operator ∇ commutes with xα�s and ms,βs

respectively on PDs and BPDs.

Lemma 4.6. Let π ∈ S∞. The following statements are true.

1. Suppose D ∈ PD(πts,β), where s < β and πts,β � π . Let pop(D) = (i, r).

a. If (s, β) �= (π−1(i + 1), π−1(i)), let ρ := perm(ms,β(∇D)). Then

pop(ms,β(D)) =
⎧⎨
⎩

(i + 1, r) if i ∈ DesL(ρ)

(i, r) otherwise
.

Furthermore,

∇(ms,β(D)) =
⎧⎨
⎩

mρ−1(i+2),ρ−1(i+1)(ms,β(∇D)) if i, i + 1 ∈ DesL(ρ)

ms,β(∇D) otherwise
.

b. If (s, β) = (π−1(i + 1), π−1(i)), then pop(ms,β(D)) = (i + 1, r). Furthermore,

let ρ := perm(∇(D)). Then,

∇(ms,β(D)) =
⎧⎨
⎩

mρ−1(i+2),ρ−1(i+1)(∇D) if i + 1 ∈ DesL(ρ)

∇D otherwise
.

2. Suppose D ∈ PD(π) and pop(D) = (i, r).
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14 Y. Gao and D. Huang

(a) If α ≥ r, let ρ := perm(xα�(∇D)). Then

pop(xα�D) =
⎧⎨
⎩

(i + 1, r) if i ∈ DesL(ρ)

(i, r) otherwise
.

Furthermore,

∇(xα�D) =
⎧⎨
⎩

mρ−1(i+2),ρ−1(i+1)(xα�(∇D)) if i, i + 1 ∈ DesL(ρ)

xα�(∇D) otherwise
.

(b) If α < r, then pop(xα � D) = (α, α), and ∇(xα�D) = D.

Lemma 4.7. After replacing PDs by BPDs, the statements in Lemma 4.6 hold.

The proof of Lemma 4.6 is given in Section 4.4 and the proof of Lemma 4.7 is

given in Section 4.5. We finish the main proof here assuming that both lemmas are

already taken care of.

Proof of Theorem 4.5. This theorem is a direct consequence of the induction principle

and the fact that ∇ and xα�, ms,β interact in the exact same way on PDs (Lemma 4.6)

and BPDs (Lemma 4.7).

To be precise, we proceed by induction on �(π). The base case is �(π) = 0, that

is, π = id. Take B ∈ BPD(π), which has no crossings. Its corresponding PD D := ϕ(B)

also has no crossings. By the definition of xα�, xα�B has a crossing between pipe α

and α + 1 at coordinate (α + 1, α + 1) and the insertion creates a -tile on row α, while

xα�D has a single crossing at coordinate (α, 1). By Definition 3.1, pop(xα�B) = (α, α)

that gives us ϕ(xα�B) = xα�D. For the 2nd commutative diagram in (*), in order for

πts,β � π , we must have s = β − 1. Any B ∈ BPD(πts,β) must have a crossing between

pipe β − 1 and β at coordinate (β, β) and a -tile at coordinate (k, k) for some k < β.

The operation ms,β uncrosses the -tile between pipe β − 1 and β and inserts a -tile

between pipe β and β + 1 at coordinate (β + 1, β + 1), keeping the position of the -tile.

Thus, we see that pop(B) = (β − 1, k) and pop(ms,β(B)) = (β, k), meaning that ϕ(B) has

a single -tile at coordinate (k, β − k) and ϕ(ms,β(B)) has a single -tile at coordinate

(k, β − k + 1) so evidently ms,β(ϕ(B)) = ϕ(ms,β(B)) as desired. See Figure 8.

Now assume that we have established the commutative property of the above

diagrams for permutations π 	 with �(π 	) < �. Now fix π with �(π) = � so that �(πts,β) =
� + 1. We first argue about the 2nd commutative diagram in (*). Take B ∈ BPD(πts,β),

and let D = ϕ(B) ∈ PD(πts,β). Since D and B are in bijection, let pop(B) = pop(D) = (i, r).
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The Canonical Bijection between PDs and BPDs 15

Fig. 9. An example for basic Monk steps for ms,β on some D ∈ PD(πts,β) where π = 21786534,

(s, β) = (2, 5). The tiles that are going to be modified immediately are circled, and the complete

Monk footprints are shaded. Notice that area above pipe 6 is growing toward the SE direction.

Our goal is to show that the BPD ms,β(B) and the PD ms,β(D) are in bijection via ϕ.

By Definition 3.3 of ϕ, it suffices to show that pop(ms,β(B)) = pop(ms,β(D)) and that

∇(ms,β(B)) and ∇(ms,β(D)) are in bijection via ϕ.

Case (1)(a) of Lemmas 4.6 and 4.7: (s, β) �= (π−1(i + 1), π−1(i)). By induction hypothesis

where �(perm(∇D)) = �(perm(∇B)) = �(πts,β) − 1 = �, as ∇B and ∇D are in bijection,

ms,β(∇B) and ms,β(∇D) must be in bijection. Therefore, we can let ρ := perm(ms,β(∇B)) =
perm(ms,β(∇D)). We further divide into subcases based on whether i ∈ DesL(ρ) and

i + 1 ∈ DesL(ρ), as indicated by Lemmas 4.6 and 4.7.

If i /∈ DesL(ρ), by Lemmas 4.6 and 4.7, pop(ms,β(D)) = (i, r) = pop(ms,β(B)).

Furthermore, as ms,β(∇D) and ms,β(∇B) are in bijection via ϕ, ∇(ms,β(D)) = ms,β(∇D)

and ∇(ms,β(B)) = ms,β(∇B) are in bijection.

If i ∈ DesL(ρ) and i + 1 /∈, pop(ms,β(D)) = (i + 1, r) = pop(ms,β(B)) by Lemmas 4.6

and 4.7. Then, as above, ∇(ms,β(D)) = ms,β(∇D) and ∇(ms,β(B)) = ms,β(∇B) are in

bijection.

If i, i + 1 ∈ DesL(ρ), pop(ms,β(D)) = (i + 1, r) = pop(ms,β(B)). As ms,β(∇D)

and ms,β(∇B) are in bijection with �(ρ) < �(πts,β), induction hypothesis gives us

that mρ−1(i+2),ρ−1(i+1)(ms,β(∇D)) and mρ−1(i+2),ρ−1(i+1)(ms,β(∇B)) are in bijection via ϕ. So

∇(ms,β(D)) and ∇(ms,β(B)) are in bijection as desired.
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16 Y. Gao and D. Huang

Case (1)(b) of Lemmas 4.6 and 4.7: (s, β) = (π−1(i + 1), π−1(i)). The same argument

as in Case (1)(a) works here, by going through the different scenarios of whether

i, i + 1 ∈ DesL(ρ) and reading off that pop(ms,β(B)) = pop(ms,β(D)) and that ∇(ms,β(B))

and ∇(ms,β(D)) are in bijection via induction hypothesis.

The 1st commutative diagram of (*), that is, Case (2) of Lemmas 4.6 and 4.7,

follows basically from the same argument.

Case (2)(a) of Lemmas 4.6 and 4.7: α ≥ r. As ∇D and ∇B are in bijection, by induction

hypothesis, the PD xα�(∇D) and the BPD xα�(∇B) are in bijection via ϕ. So we can

let ρ = perm(xα�(∇D)) = perm(xα�(∇B)). As above, we see that pop(xα�D) = (i, r) =
pop(xα�B) if i /∈ DesL(ρ) and pop(xα�D) = (i + 1, r) = pop(xα�B) if i ∈ DesL(ρ), so

pop(xα�D) = pop(xα�B).

Moreover, if i, i + 1 ∈ DesL(ρ), as xα�(∇D) and xα�(∇B) are in bijec-

tion with �(ρ) ≤ �, by Case (1), mρ−1(i+2),ρ−1(i+1)(xα�(∇D)) = ∇(xα�D) and

mρ−1(i+2),ρ−1(i+1)(xα�(∇B)) = ∇(xα�B) must be in bijection. If not both of i, i+1 belong in

DesL(ρ), we also have that ∇(xα�D) = xα�(∇D) is in bijection with ∇(xα�B) = xα�(∇B)

by induction hypothesis.

Case (2)(b) is done in the same way. �

4.4 Induction on PDs

Referring back to Definition 4.2, we introduce more notations for xα� and ms,βs on PDs.

Fix a permutation π as in Section 4.1. These maps consist of basic Monk steps of deleting

-tiles (i.e., turning a -tile into a -tile), which we denote as k−, and steps of adding

-tiles (i.e., turning a -tile into a -tile), which we denote as k+, k = 1, 2, . . .. Write

(ik− , jk−) for the coordinate where step k− happens and (ik+ , jk+) for the coordinate where

step k+ happens. To be precise, the map xα� consists of steps 1+, 2−, 2+, 3−, . . . , q+

for some q ≥ 1 and the map ms,β consists of steps 1−, 1+, 2−, 2+, . . . , p−, p+ for some

p ≥ 1. We say that the sequence of coordinates (i1+ , j1+), (i2− , j2−), . . . , (iq+ , jq+) is the

Monk footprints for xα� and the sequence (i1− , j1−), (i1+ , j1+), . . . , (ip+ , jp+) is the Monk

footprints for ms,β .

Note that after a step k−, we have a genuinely reduced PD for π , and after

each step k+ except the last one, we have a double crossing at coordinate (ik+ , jk+) and

(ik+1− , jk+1−). Also, by definition, i−k = i+k for all k. Let ik := i−k = i+k . Also define, for ms,β ,

the complete Monk footprints to be

p⋃
k=1

{(ik, jk−), (ik, jk− + 1), . . . , (ik, jk+)},
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The Canonical Bijection between PDs and BPDs 17

and for xα�, the complete Monk footprints to be

{(i1, j1+)}
q⋃

k=2

{(ik, jk−), (ik, jk− + 1), . . . , (ik, jk+)}.

In other words, the complete Monk footprints are the Monk footprints union all the

coordinates strictly between (ik, jk−) and (ik, jk+), whose tiles are all ’s throughout the

process of Definition 4.2, as we show momentarily.

Example 4.8. Figure 9 shows an example of a step by step computation of the Monk’s

rule on a PD D ∈ PD(πts,β) where π = 21786534, (s, β) = (2, 5).

Lemma 4.9. The complete Monk footprints consist of distinct coordinates.

Proof. We first consider ms,β applied to D ∈ PD(πts,β). Keep the notations above for

Monk footprints (i1− , j1−), (i1+ , j1+), . . . , (ip+ , jp+). Let b = π(β), which is the larger pipe

number among the two pipes that intersect at (i1− , j1−) in D.

For k = 1, . . . , p, let Dk ∈ PD(π) be the PD obtained from D after the basic Monk

step k−. The readers are strongly recommended to refer to Figure 9 for a visualization,

where b = π−1(5) = 6.

We use induction on k to show that the grid (ik+ , jk+) in Dk, which is a -tile by

definition, contains the pipe b as its part.

For the base case k = 1, starting with D, we replace the -tile at (i1− , j1−)

with a -tile, so the part of this tile is pipe b. By Definition 4.2, we search

toward the right in D1 for the 1st -tile at (i1+ , j1+), which must contain pipe b as its

part.

Assume that we have proved this claim for k−1, k ≤ p. To do the step (k−1)+, we

insert a -tile in Dk−1 at coordinate (ik−1+ , jk−1+), which is a -tile in Dk−1 that contains

pipe b as its part by induction hypothesis. As this creates a double crossing with the

-tile in Dk−1 at (ik− , jk−), there must be two pipes b and c that pass through the tiles

(ik−1+ , jk−1+) and (ik− , jk−) in Dk−1, and moreover, pipe b must be on the NW side of pipe

c within this region, since it starts as the part of (ik−1+ , jk−1+). Denote these two paths

between (ik−1+ , jk−1+) and (ik− , jk−) as pb and pc, for pipe b and pipe c, respectively. After

we insert a -tile at (ik−1+ , jk−1+) and delete the -tile at (ik− , jk−) to obtain Dk, pipe b

now travels between these two tiles via path pc and contains the part of (ik− , jk−).

Therefore, searching from this tile toward the right for the 1st -tile at (ik+ , jk+), we see

that its part belongs to pipe b. The induction step is now complete.
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18 Y. Gao and D. Huang

The claim and the above analysis immediately implies that the area bounded by

the pipe b and the x, y-axis in Dk strictly increases as k increases. This monotonicity is

enough for us to conclude the lemma statement, as the added tiles in the complete Monk

footprints after each step lie between the pipe b in Dk−1 and the pipe b in Dk, so they

will never overlap.

The proof for xα� is exactly the same so we will not repeat the details here. �

We note that Lemma 4.9 gives us that pop(ms,β(D)), pop(xα�D) is either (i, r) or

(i + 1, r), if pop(D) = (i, r).

We are now ready to prove the main lemma of this subsection, Lemma 4.6.

Proof of Lemma 4.6. We will focus more on Case (1)(a), since Case (1)(b) is essentially

a degenerate Case of (1)(a), and Case (2) uses the same argument as Case (1).

Case (1)(a): D ∈ PD(πts,β), s < β, πts,β �π , pop(D) = (i, r), and (s, β) �= (π−1(i + 1), π−1(i)).

Recall that pop(D) = (i, r) means that the 1st -tile of D is located at (r, i− r +1), that is,

the rth row is the top row of D with a -tile, and that the -tile in the rth row furthest

to the right has coordinate (r, i − r + 1), which is the intersection of pipe i and i + 1. The

PD ∇D is obtained from D by deleting this -tile.

Assume that ms,βD consists of basic Monk steps 1−, 1+, . . . , p−, p+, at Monk

footprints F = {(i1− , j1−), . . . , (ip+ , jp+)}. Let the complete Monk footprints be

C =
p⋃

k=1

Ck, where Ck := {(ik, jk−), (ik, jk− + 1), . . . , (ik, jk+)}.

We further divide into subcases. In all the subcases, let ρ := perm(ms,β(∇D)).

Subcase (1)(a)(i): (r, i − r + 1) /∈ C.

This condition of the current subcase directly gives us pop(ms,β(D)) = (i, r). We

then compare the process of ms,β applied to D and ∇D. Each basic monk move that is

applied to D will be applied to ∇D in the exact same way, as the 1st -tile of D, which

is the only difference between D and ∇D, is not part of the conversation. In the end, we

obtain that ms,β(∇D) equals ms,β(D) taken away the 1st -tile at (r, i − r + 1), that is,

ms,β(∇D) = ∇(ms,β(D)). Moreover, recall that ρ = perm(ms,β(∇D)), so perm(ms,βD) = siρ

since ms,βD and ms,β(∇D) differs at the -tile at (r, i − r + 1) that corresponds to the

simple transposition si. By the reduced criterion of these PDs, i /∈ DesL(ρ).

Subcase (1)(a)(ii): (r, i − r + 1) ∈ Cp.

This condition of the current subcase is saying that when we are doing the

Monk’s rule ms,βD, the last two basic steps are deleting the -tile at (ip, jp−), which

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad083/7146961 by U

niversity of M
innesota - Tw

in C
ities user on 20 July 2023



The Canonical Bijection between PDs and BPDs 19

resolves a previous double crossing, and then inserting a -tile at (r, i−r+2), which does

not create a double crossing so that we stop here. Consequently, pop(ms,βD) = (i + 1, r)

by definition.

Again, we compare the process ms,β(D) with ms,β(∇D). The basic Monk steps are

the same before step p. At step (p−1)+, in ms,β(D), a double crossing is created with the

-tile at coordinate (ip, jp−) = (r, jp−), which is one of the -tile in D belonging to the

block of rightmost -tiles in row r. We split the discussions based on whether (r, jp−)

is the rightmost -tile in row r of D, that is, whether (r, jp−) is in ∇D or not, and then

arrive at the same conclusion.

If (r, jp−) /∈ cross(∇D), that is, jp− = i − r + 1, we know that ms,β(∇D) ends

at step (p − 1)+. The permutation ρ = perm(ms,β(∇D)) is also the permutation we

obtained from the process of ms,β applying to D after move p− so ρ = π in fact.

The move p− removes a -tile that corresponds to the simple transposition si, so

i ∈ DesL(ρ). And the move p+ adds a -tile at coordinate (r, i − r + 2) that corresponds

to the simple transposition si+1, so perm(ms,βD) = si+1ρ and i + 1 /∈ DesL(ρ).

Moreover, ∇(ms,βD) removes the -tile at (r, i − r + 2) from ms,βD so we observe that

∇(ms,βD) = ms,β(∇D).

If (r, jp−) ∈ cross(∇D), that is, jp− < i − r + 1, then the process of ms,β applied

to ∇D deletes the -tile at (r, jp−) at step p−, and adds a -tile at (r, i − r + 2) at step

p+, arriving at the PD that equals ms,β applying to D after step p−, which is reduced so

we stop. This also gives ∇(ms,βD) = ms,β(∇D). In ms,β(∇D), the coordinate (r, i − r + 1)

contains a -tile so i ∈ DesL(ρ) and since adding a -tile to coordinate (r, i−r+2) yields

a reduced PD ms,βD, we have i + 1 /∈ DesL(ρ).

The conclusion does not depend on whether (r, jp−) ∈ cross(∇D).

Subcase (1)(a)(iii): (r, i−r+1) ∈ Cq, for some q < p. By Lemma 4.9, pop(ms,βD) = (i+1, r)

since the 1st -tile of ms,βD must be located at (r, i − r + 2).

As above, the basic Monk steps for ms,βD and ms,β(∇D) agree for the steps up to

(q − 1)+, where in ms,βD, a double crossing is created at (iq−1+ , jq−1+) and at (iq− , jq−) =
(r, jq−). Either (r, jq−) /∈ cross(∇D) or (r, jq−) ∈ cross(∇D). Both situations will yield the

same conclusion.

If (r, jq−) /∈ cross(∇D), that is, jq− = i−r+1, then the process of ms,β applied to ∇D

ends after step (q−1)+. Since ms,β(∇D) would have a double crossing if (r, i−r+1) were

a -tile, siρ is not reduced and thus i ∈ DesL(ρ). Now, ms,β(∇D) ∈ BPD(ρ) is precisely the

PD of ms,β applied to D after move q−. The step q+ of applying ms,β to D adds a -tile at

coordinate (r, i−r+2) whose corresponding simple transposition is si+1, which creates a

double crossing with the -tile at (iq+1− , jq+1−), as q < p. This means that i+1 ∈ DesL(ρ).
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20 Y. Gao and D. Huang

Fig. 10. An example for Subcase (1)(a)(iii) of Lemma 4.6, with π = ρ = 21786534, (i, r) = (5, 1),

(s, β) = (2, 5). The 1st step 1− of each Monk move is circled and all the other grids in Monk’s

footsteps are shaded.

To simulate the steps q+1−, q+1+, . . . , p−, p+ of ms,βD, we can uncross the -tile

at coordinate (iq+1− , jq+1−), which is a crossing between pipe i + 1 and i + 2, of ms,βD,

and continue with step (2) of Definition 4.2. This is saying that the basic Monk steps

of mρ−1(i+2),ρ−1(i+1) applying to ms,β(∇D) are precisely the same as the basic Monk steps

q + 1−, q + 1+, . . . , p−, p+ of ms,β applying to D, as the -tile at coordinate (r, i − r + 2)

will not be involved in these steps by Lemma 4.9. See Figure 10 for an example.

If (r, jq−) ∈ cross(∇D), that is, jq− < i−r+1, then the process of ms,β applied to ∇D

ends after step q+, which yields a PD that equals ms,β applied to D after step q− so ρ =
perm(ms,β(∇D)) = π . The 1st -tile of ms,β(∇D) is at coordinate (r, i−r+1) so i ∈ DesL(ρ),

and since we would have a double crossing if the coordinate (r, i − r + 2) were a -tile,

i+1 ∈ DesL(ρ). To simulate the steps q+1−, q+1+, . . . , p−, p+ for computing ms,β applied

to D, we can as above uncross the -tile at (iq+1− , jq+1−) by applying mρ−1(i+2),ρ−1(i+1) and

concluding that ∇(ms,βD) = mρ−1(i+2),ρ−1(i+1)ms,β(∇D).

As a summary for Case (1)(a), we divide into subcases based on the local

conditions of whether and where the 1st -tile (r, i − r + 1) of D appears in the complete

Monk footprints C, but it turns out that this division is also governed by the “global

condition” of whether i ∈ DesL(ρ) and i + 1 ∈ DesL(ρ) where ρ = perm(ms,β(∇D)).
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The Canonical Bijection between PDs and BPDs 21

Fig. 11. Extra column moves for almost BPDs in (2’). We suppress the four possibilities for each

arrow by using gray to indicate other possibilities.

Fig. 12. Extra column moves for almost BPDs in (3’).

Specifically, if i /∈ DesL(ρ), we are in Subcase (1)(a)(i); if i ∈ DesL(ρ) and i + 1 /∈ DesL(ρ),

we are in Subcase (1)(a)(ii); if i, i + 1 ∈ DesL(ρ), we are in subcase (1)(a)(iii). The analysis

above within the subcases agree with the lemma statement, so we are done with Case

(1)(a).

Case (1)(b): (s, β) = (π−1(i+1), π−1(i)) where pop(D) = (i, r). As in case (1)(a), let the Monk

footprints be F = {(i1− , j1−), . . . , (ip+ , jp+)}, and define ρ := perm(∇D). The case condition

says that (i1− , j1−) = (r, i − r + 1), (i1+ , j1+) = (r, i − r + 2). By Lemma 4.9, the 1st -tile

remains at coordinate (r, i−r+2) throughout the rest of the Monk steps 2−, . . . , p+. Thus,

we already have pop(ms,βD) = (i + 1, r).

Subcase (1)(b)(i): p = 1. Here, the -tile at (r, i − r + 2), which corresponds to the simple

transposition si+1, does not create a double crossing, so i + 1 /∈ DesL(ρ). As ms,β(D) is

obtained from D by moving the 1st -tile one step right, ∇(ms,βD) = ∇D as desired.

Subcase (1)(b)(ii): p ≥ 2. Here, the -tile at (r, i − r + 2) creates a double

crossing after step 1+, so i + 1 ∈ DesL(ρ). To simulate the basic Monk steps

2−, 2+, . . . , p−, p+ of ms,β applied to D on ∇D, we need to remove the -tile at (i2− , j2−)

that is the crossing between pipe i + 1 and i + 2, and then continue applying

Step (2) of Definition 4.2. This means that mρ−1(i+2),ρ−1(i+2) applied to ∇D gives us

ms,βD without the 1st -tile at (r, i − r + 2). So mρ−1(i+2),ρ−1(i+2)(∇D) = ∇(ms,βD)

as desired.

We are now done with Case (1), which is the map ms,β . Case (2) deals with

the map xα�. The exact same argument from Case (1)(a) is applicable to Case (2)(a),

by dividing into subcases based on whether the 1st -tile of D appears in the Monk
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22 Y. Gao and D. Huang

footprints of ms,βD, analyzing whether i ∈ DesL(ρ), i + 1 ∈ DesL(ρ) where ρ :=
perm(xα�(∇D)), and simulating the Monk steps of ms,βD via xα�(∇D) and potentially

one more Monk move mρ−1(i+2),ρ−1(i+1). So we will not repeat the details here. Case (2)(b)

is a degenerate case where the newly inserted -tile at coordinate (α, 1) has become

the 1st -tile of xα�D. We evidently have pop(xα�D) = (α, α) and ∇(xα�D) = D

as desired. �

4.5 Induction on BPDs

Before spelling out the technical details, we take a moment to explain our ideas

intuitively. Our main idea is to perform two corresponding Monk’s rule computations

on the BPDs D and ∇D in parallel and study how these two processes are related.

Generically, by “corresponding Monk’s rule computations”, we mean applying xα� or

ms,β to both D and ∇D. Each computation of Monk’s rule consists of a sequence of basic

Monk moves. We will see that in most cases, we may cut the sequence of moves applied

to D into m subsequences and also cut the sequence applied to ∇D as m corresponding

subsequences (two corresponding subsequences might have different number of basic

moves), such that before the start of each pair of corresponding subsequences, the

two (almost) BPDs are related by ∇ and the 1st basic moves in the corresponding

subsequences start at corresponding tiles (which we define below). Therefore, in most

cases, applying Monk’s rule commutes with applying ∇. In the critical cases, when they

do not commute, we may still find corresponding sequences as described above until a

basic Monk move affects the last column move rectangle in a certain way. The detailed

analysis of the critical cases is in the proof of Lemma 4.7. The technical difficulties on

BPDs, as compared with on PDs, come from the fact that ∇ on PDs is simply removing a

cross, whereas on BPDs, the procedure is not local.

We first extend the definition of ∇ (Definition 3.1) to certain almost BPDs. We

introduce the following extra column moves.

(2’) In the column moves defined in Step (2) of Definition 3.1, simultaneously

replace exactly one -tile of the same two pipes in the input and output

with a -tile. This is illustrated in Figure 11.

(3’) To extend the column moves defined in Step (3) of Definition 3.1, add the

following column moves (Figure 12).

(a) If (x, y) is a marked tile and the pipe passing through (x, y+1) is y+1, and

the -tile is in column y below row x, follow the same rule as described

in Step (3) of Definition 3.1;
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The Canonical Bijection between PDs and BPDs 23

Fig. 13. Examples for when a column move is not defined on an almost BPD (the bottom row of

the 1st rectangle is also the bottom row of the BPD).

(b) If (x, y) is a marked tile, pipes y and y + 1 cross at (x	, y + 1) for some

x	 > x, and there is a -tile of pipes y +1 and q with coordinate (z, y +1)

for some x < z < x	, define the column move by first replacing the -tile

by a -tile and following Step (3) of Definition 3.1, and then replace the

-tile of y and q by a -tile.

We say an almost BPD D is ∇-admissible if ∇D is defined using the original and

additional column moves. We spell out the cases when the column moves are undefined;

see Figure 13 for examples. If (x, y) is a marked tile, let p be the pipe that passes through

(x, y + 1) that is either a -tile or -tile. Let (x	, y + 1) be the position of the -turn of p

in column y +1. If such a position does not exist, the column move is defined. If this is a

-tile, and the tile at (x	, y) is a -tile of pipes p and q, q must also intersect p at a tile

between row x and x	. In this case, a column move is undefined. If (x	, y + 1) is a -tile,

let q be the other pipe of this . If p = y and q = y + 1, the column move is undefined.

Suppose now we can find (x		, y + 1) that is the -tile of q in column y + 1. If p and q

cross at (x		, y), the column move is also not defined. It is okay to have these undefined

cases because these configurations will not appear right before the 1st moves of each

pair of corresponding subsequences of basic Monk moves, in which case we need ∇ to

be defined.

Let D be an ∇-admissible (almost) BPD of π .

Definition 4.10. Let E = ∇D, and suppose pop(D) = (i, r). We say that a tile (a, b) with

a ≥ r in D and a tile (a	, b	) with a	 ≥ r in E are corresponding tiles if in the case that

D and E each contains a -tile (a, b) and (a	, b	) are these -tiles, or in the case that

neither D nor E contains -tiles, (a, b) and (a	, b	) are both -tiles of pipes perm(D)(x)

and perm(E)(x) for some x and a = a	.

Example 4.11. In Figure 14, the 1st (D,E) pair has pairs of corresponding tiles

((2, 4), (2, 3)), ((3, 3), (3, 4)), ((4, 2), (4, 2)), ((4, 6), (4, 6)), ((5, 5), (5, 4)), and ((6, 4), (6, 5)); the

2nd (D,E) pair has ((3, 4), (4, 3)) as a pair of corresponding tiles.
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24 Y. Gao and D. Huang

Fig. 14. Examples of corresponding tiles.

We remark that in the process of performing two corresponding Monk’s rule

computations on D and ∇D, at the beginning of each corresponding subsequence of

basic moves, there will always be a single pair of corresponding tiles of interest that is

determined by the algorithm, even though there can be multiple pairs of corresponding

tiles in two BPDs related by ∇ according to the definition. Furthermore, outside of the

union U of column move rectangles of D and ∇D, a pair of corresponding tiles have the

same coordinates, since D and ∇D are identical outside of U .

Lemma 4.12. Suppose E = ∇D, pop(D) = (i, r), and (a, b) in D and (a	, b	) in E are

corresponding tiles. Suppose (a, b) is not the southernmost tile with an -turn in column

i + 1. Then there is a sequence of basic Monk moves following Steps (2) and (3) of

Definition 4.4 starting with a min-droop at (a, b) in D, and a corresponding sequence

(consisting of possibly different number of steps) of basic Monk moves starting at (a	, b	)
in E such that after applying both sequences of moves, the resulting (almost) BPDs D̃

and Ẽ satisfy Ẽ = ∇D̃ and pop(D̃) = (i, r). Furthermore, D̃ has more basic Monk moves

available if and only if Ẽ does, and these moves are min-droops at corresponding tiles.

Proof. Let U be the union of column move rectangles for D and E. If the basic

Monk move at (a, b) affects only tiles in outside of U , then (a, b) = (a	, b	) and we

simultaneously perform the move at (a, b) in D and E and get D̃ and Ẽ. The next basic

Monk moves in D̃ and Ẽ start at the same location.

If themin-droop at (a, b) affects tiles in U , let U be the column move rectangle that

contains (a, b) if it exists; otherwise, let U be the column move rectangle that intersects

row a closest to (a, b). Notice that the tile (a, b) could be to the left or right of U. We

now do a detailed case analysis. The readers are strongly recommended to refer to the

figures while reading. In each accompanying figure of this proof, the vertical arrows are

∇ and the horizontal arrows correspond to sequences of basic Monk moves described
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The Canonical Bijection between PDs and BPDs 25

Fig. 15. Case (1) of Lemma 4.12. In (1)(b), we show the case when the new -tile is in U	, but it is

possible that the new -tile is outside of a column move rectangle.

in the text; the positions of D, E, D̃, and Ẽ are NW, SW, NE, and SE, respectively. The

corresponding tiles in D and E where the sequence of basic Monk moves start at are

circled.

Case (1) (Figure 15). If the tile (a, b) is to the right of U, the only way a min-droop at (a, b)

could affect a column move rectangle is when (a, b) is the -turn of a pipe p with a -

tile at some (x, b) with x > a, where (x, b) is the NE corner of a column move rectangle

U 	. We perform the min-droop at (a, b).

(a) If thismin-droop does not create a -tile, let the result be D̃. The only affected

tile in U 	 by this move is (x, b). The corresponding min-droop move at (a, b)

in E changes the tiles in exactly the same way outside of U 	, and at (x, b) the

-tile becomes a -tile. Let Ẽ be the result after this move. Then Ẽ = ∇D̃,

and the next basic Monk move in D̃ is at (x, b), whereas the next move in Ẽ

is at (x, b − 1). These are corresponding tiles.

(b) If this min-droop creates a -tile, we check if a cross-bump-swap is nec-

essary. If not, the situation is similar to (a); otherwise, we perform a

cross-bump-swap move and let the result be D̃. We also perform the min-droop

at (a, b) in E followed by a cross-bump-swap and obtain Ẽ. We have Ẽ = ∇D̃,

and the next min-droops in D̃ and Ẽ are at the corresponding -tiles.

Now we consider Cases (2) to (4) when (a, b) is inside a column move rectangle

U, and U is not the southernmost column move rectangle. Let U 	 be the column move

rectangle immediately SE of U. Let (x, y) be the NE corner of U. U 	 could be the
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26 Y. Gao and D. Huang

southernmost column move rectangle, but the analysis for this case is similar to the

case when U 	 is not. Therefore, we focus attention on the case when U 	 is not the

southernmost column move rectangle. Suppose the pipe that goes through the NE corner

of U is p and the pipe that goes through the NE corner of U 	 is p	.
Case (2) (Figure 16). The tile (x, y) in D is an -tile and (a, b) = (x, y). In this case,

(a	, b	) = (x, y − 1). There are three subcases to consider

(a) U and U 	 have non-empty intersection, and the pipe p	 has an -tile in

column y + 1 that is below row x. First, we argue that in this case the width

of the rectangle that bounds this min-droop cannot be larger than 2 because

otherwise, the tile (x, y + 1) must be a -tile, and the pipe that contains the

vertical segment of this cross would be forced to cross p twice.

In D, starting at (x, y), perform all consecutive basic Monk moves that are

available in column y. At the same time, perform all consecutive min-droop

moves that are available in column y − 1 in E. Pipes p and p	 would bump

at a -tile in D and E. If p and p	 do not intersect, we replace this -tile

with a tile in D and E and let the results be D̃ and Ẽ. If p and p	 already

intersect, we simultaneously perform the cross-bump-swap move in D and E

and let the results be D̃ and Ẽ. Since the column moves run NW to SE and the

cross-bump-swap moves modify tiles that are NE-SW to each other, the new

-tiles created in D and E after the corresponding cross-bump-swap moves

must be outside of U and therefore at the same location.

Suppose (z, y + 1) is the SE corner of U 	. Then we see that the rectangle U 		

with (x, y) as the NW corner and (z, y + 1) as the SE corner is a column move

rectangle. Replacing U ∪ U 	 with U 		 in U , we see that Ẽ = ∇D̃.

(b) U and U 	 have non-empty intersection, (x, y + 1) is a -tile, and p	 has an

-tile in column y + 1 of D that is above row x. In this case, perform all the

basic Monk moves available in column y in D. If a -tile is created at the end,

perform also the next move that replaces this tile with a . Let the result be

D̃. In E, perform all the basic Monk moves available in column y − 1. In this

case, p would create a bump with p	 at (x	, y), the SE corner of U. Since p and

p	 already cross at (x, y + 1), a cross-bump-swap needs to be performed, and

after this, we perform all the basic Monk moves available in column y + 1.

If a -tile is created at the end, perform also the next move that replaces

this tile with a . Let the result be Ẽ. Suppose (z, y + 1) is the SE corner of U 	.
Let U 		 be the rectangle with (x, y) as its NW corner and (z, y + 1) as its SE

corner. Then U 		 is a column move rectangle. Replacing U ∪ U 	 with U 		 in U ,
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The Canonical Bijection between PDs and BPDs 27

Fig. 16. Cases (2) of Lemma 4.12. The illustration of (2)(b) omits the case analysis similar to Case

(1).

we see that Ẽ = ∇D̃. It is also easy to see that the next basic Monk moves in

D̃ and Ẽ are at corresponding tiles.

(c) If U and U 	 do not intersect, we exhaust all the basic Monk moves available

in column y in D and let the result be D̃. Correspondingly, we exhaust all

moves available in column y − 1 in E and let the result be Ẽ. Let U 		 be the

rectangle obtained by shifting U to the right by one tile. Replacing U with

(U \ U) ∪ U 		, we see that Ẽ = ∇D̃. It is also easy to see that the next basic

Monk moves in D̃ and Ẽ are at corresponding tiles.

Case (3) (Figure 17). The tile (a, b) in D is a that previously was a of p and q for some

pipe q. Then (a	, b	) is a also tile that was previously a of p and q in E. The case

analysis here is parallel to the three cases in (2), so we omit the details but include the

illustrations.

Case (4) (Figure 18.) The -turn at (a, b) inside U belongs to a pipe q intersecting p at

(a, y). Here, b = y−1. In the figure, we show the cases for when (a, b) is an -tile or when

(a, b) is a -tile separately. The corresponding min-droop in E is at (a, y). In D, exhaust

the basic Monk moves in column y − 1, and if at the end a -tile is created, perform

the move that replaces it with a -tile. In the meantime, exhaust the basic Monk moves

in column y of E, and if at the end a -tile is created, perform the move that replaces

it with a -tile. These moves preserve the fact that U is a column move rectangle. Let

the results be D̃ and Ẽ. We have Ẽ = ∇D̃. The next min-droops in D̃ and Ẽ, if exist, are at

corresponding tiles.
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28 Y. Gao and D. Huang

Fig. 17. Cases (3) of Lemma 4.12.

Fig. 18. Case (4) of Lemma 4.12.

We now consider the Cases (5) and (6) when (a, b) is to the left of U, and U is not the

southernmost column move rectangle.

Case (5) (Figure 19.) The SW corner (x	, y	) of U in D is a -tile and a = x	, b < y	. We also

have (a	, b	) = (a, b). We perform a single min-droop at (a, b) in both D and E. Again, if a

-tile is created, we perform also the move that replaces it with a -tile. The results are

D̃ and Ẽ.

Case (6) (Figure 20). The -turn at (a, b) belongs to a pipe q intersecting p at (a, y), and

(a, b) is outside of U. Pipe q intersects p at (a, y−1) in E and the corresponding min-droop

in E is also at (a, b). We exhaust all basic Monk moves in column b in D and at the same
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The Canonical Bijection between PDs and BPDs 29

Fig. 19. Case (5) of Lemma 4.12.

time exhaust all basic Monk moves in column b in E. If this does not create a -tile with

pipe p, let the results be D̃ and Ẽ. U remains a column move rectangle and Ẽ = ∇D̃. This

is illustrated as Case (6)(a). If a -tile of p and q is created, we have again three cases to

consider parallel to Case (3). These are illustrated as Case (6), (b)–(d).

Now consider Cases (7) and (8) when U is the southernmost column move rectangle.

Recall from the assumption of the lemma that (a, b) is not the southernmost -turn in

the east-side column of U.

Case (7) (Figure 21). Suppose b = i and (a, b) is the southernmost tile in column i that

contains an -turn. Then (a	, b	) = (a, i + 1). We simultaneously exhaust the basic Monk

moves in column i of D and in column i + 1 of E. The last move in either sequence must

be a min-droop that creates a bump at (c, j), the SE corner of the both min-droop moves.

The next move replaces this bump with a -tile, and let the results be D̃ and Ẽ. We give

separate illustrations for (a, b) is an -tile versus a -tile.

Case (8) Suppose b = i and (a, b) is above the southernmost -tile in column i. This is

similar to Case (4).

Finally, we consider the cases when U is the southernmost column move rectangle and

(a, b) is left of U.

Case (9) (Figure 22.) These cases are similar to (6)(a). We omit the details but include the

illustration for reference. �

We are now ready to prove the main lemma of this subsection, Lemma 4.7.

Proof of Lemma 4.7. We give a proof for Case (1); Case (2) is similar.

Case (1)(a). Let D be the almost BPD of π obtained from D by replacing the crossing

of pipes πts,β(s) and πts,β(β) with a -tile, and let E = ∇D. E is the almost BPD of siπ
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30 Y. Gao and D. Huang

Fig. 20. Case (6) of Lemma 4.12.

obtained from ∇D by replacing the crossing of pipes siπts,β(s) and siπts,β(β) in with a

-tile.

Consider simultaneously the process of computing ms,β(D) and ms,β(∇D) by

modifyingD and Ewith basic Monk moves, and letD0 := D and E0 := E. Applying Lemma

4.12 repeatedly, for each timestep d = 0, 1, 2, · · · , we let Dd+1 := D̃d and Ed+1 := Ẽd. Let

Ud be the union of column move rectangles where Dd and Ed differ for each d, and let

Ud denote the southernmost one in each Ut. We stop at step t when either we encounter
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The Canonical Bijection between PDs and BPDs 31

Fig. 21. Case (7) of Lemma 4.12.

Fig. 22. Case (9) of Lemma 4.12.

a min-droop at the southernmost -turn (a, i + 1) in column i + 1 of D, in which case

the corresponding min-droop is at the southernmost -turn (a	, i) in column i of E, or

such moves never occur and the computation of Monk’s rule is complete. In the latter

case, ∇(ms,β(D)) = ms,β(∇D), pop(ms,β(D)) = (i, r), and i �∈ DesL(ρ). We now do a careful

analysis of the former case.

We consider the case when (a, i + 1) in Dt is an -tile where the case for when it

is a -tile is similar. In this case a	 = a. We exhaust the basic Monk moves in column

i of Et starting at (a, i). When this is done, pipes i and i + 1 create a -tile. Since these

two pipes have not crossed before, replacing this -tile with a -tile terminates the

algorithm. Let the result be Et+1, so Et+1 = ms,β(∇(D)). Notice that in this case ρ = π ,

and in particular i ∈ DesL(ρ).
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Fig. 23. Case (1)(a)(i) of Lemma 4.7.

Fig. 24. Case (1)(a)(ii) of Lemma 4.12.
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The Canonical Bijection between PDs and BPDs 33

Fig. 25. Case (1)(b) of Lemma 4.7.

If i + 1 �∈ DesL(π), it must be the case that the southernmost -tile in Dt of

column i + 2 is below row a and pipes i + 1 and i + 2 do not cross. Therefore, after

exhausting the basic Monk moves in column i + 1 starting at (a, i + 1), pipes i + 1 and

i + 2 create a -tile, and we are done after we replace it with a -tile. Let the result be

Dt+1. The southernmost column move rectangle in Dt+1 is Ut shifted to the right by one

tile. Therefore, ∇(ms,β(D)) = ms,β(∇D), pop(ms,β(D)) = (i + 1, r).

If i + 1 ∈ DesL(π), we consider two cases.

(i) The tile (a, i+2) in Dt is a -tile where pipes i+1 and i+2 cross. Let D	
t+1 be

the computed from Dt by exhausting all basic Monk moves in column i+1. As

a result, the southernmost column move rectangle in D	
t+1 is Ut shifted to the

right by one tile. Meanwhile, in Et+1, the -tile of i+1 and i+2 is at (a, i+2).

Replacing it with a -tile and exhausting the basic Monk moves in column

i+2 gives E	
i+1 so that ∇D	

t+1 = E	
i+1. We see that the rest of basic Monk moves

that finish the computation of ms,β(D) and mπ−1(i+2),π−1(i+1)(ms,β(∇D)) do

not affect the union of column move rectangles. This case is illustrated in

Figure 23.

(ii) In Dt, pipes i + 1 and i + 2 cross in a column j > i + 2. Let D	
t+1 be obtained

from Dt by exhausting the basic Monk moves in column i + 1, followed by a

cross-bump-swap. Let Ut+1 be Ut shifted to the right by one unit. At this point,

D	
t+1 and Et+1 differ within Ut+1 by a column move. In Et+1 replace the -tile

of i+1 and i+2 in with a -tile and let the result be E	
t+1. Then ∇D	

t+1 = E	
t+1.

Again, the remaining basic Monk moves only affect tiles outside of the union

of column move rectangles. This case is illustrated in Figure 24.
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34 Y. Gao and D. Huang

In both cases, ∇(ms,β(D)) = mρ−1(i+2),ρ−1(i+1)(ms,β(∇D)) and pop(ms,β(D)) = (i +
1, r).

Case (1)(b). Let D be the almost BPD of π obtained by replacing the -tile at (a, i + 1) of

pipes i and i + 1 with a -tile. In this case, perm(D) = siπ = ρ.

If i + 1 �∈ DesL(ρ), then it must be the case that in D, there is an -tile (b, i + 2) of

pipe i + 2 for some b > a, and i + 2 does not cross with i + 1. Therefore, exhausting the

basic Monk moves in column i + 1 of D and then replace the -tile at (b, i + 2) with a -

tile completes the computation ms,β(D). We see that in this case pop(ms,β(D)) = (i + 1, r)

and ∇(ms,β(D)) = ∇D. See Figure 25 for an illustration of this case.

If i + 1 ∈ DesL(ρ), we may again consider two cases depending on whether the

-tile of pipes i + 1 and i + 2 in D is in column i + 2. The arguments are similar to that

of the parallel cases in (1)(a), so we omit the details. �
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