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We present a direct bijection between reduced pipe dreams and reduced bumpless
pipe dreams (BPDs) by interpreting reduced compatible sequences on BPDs and show
that this is the unique bijection preserving bijective realizations of Monk's formula,

establishing its canonical nature.

1 Introduction

The complete flag variety

Fl,={{0}=V,CV, C--CV, ;CV,=C"| dim(V,) =ifori=0,...,n}
is a smooth projective manifold, that is, central in the study of Schubert's enumerative
calculus, which is also known as Hilbert's fifteenth problem. The flag variety admits a
stratification via Schubert cells {X, | = € S,,} indexed by permutations. The correspond-
ing Schubert classes form a basis of the cohomology ring of the flag variety, with the

following presentation:

H*(Fl(n); Z) ~ ZIx,, ..., x,1/3,
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where the ideal J is generated by symmetric polynomials in x, ..., x, with no constant
terms. A combinatorial rule to compute structure constants with respect to the Schubert
classes remains one of the biggest open problems in Schubert calculus and algebraic
combinatorics.

Schubert polynomials, {&,, |7 € S,,}, defined by Lascoux and Schiitzenberger [14],
are polynomial representatives of the Schubert classes {[X ] |7 € S,,} of the flag variety.
They can be defined via the divided difference operators as follows:

n—-1.,n-2

x xy, “ox,, fw=nn-1-...1,

G, =
S EYCHN if 0(7) < £(ns;),

where s; is the simple transposition (i i+1), which acts on polynomials by swapping the

variables x; and x;, ;, and

_fesf

X; — Xi41

o,f

Schubert polynomials and their various generalizations are the central objects
of interest in Schubert calculus and algebraic combinatorics and possess very rich com-
binatorial structures. The Schubert polynomials &, expand positively into monomials.
Notable combinatorial models for this result involve compatible sequences by Billey—
Jockusch-Stanley [3], which are equivalent to pipe dreams (PDs), also called RC-graphs,
by Bergeron and Billey [1].

Theorem 1.1 ([1, 3]). For a permutation 7, &, = > pcpp(r) WHD).

We will introduce the necessary notations in Section 2.
Relatively recently, Lam-Lee-Shimozono [13] introduced bumpless pipe dreams
(BPDs), in the context of back stable Schubert calculus, that provide another monomial

expansion of the Schubert polynomials.
Theorem 1.2 ([13]). For a permutation 7, &, = > pcppp () WiD).

Theorems 1.1 and 1.2 guarantee that there exists a weight-preserving bijection
between PDs and BPDs of a fixed permutation. We remark here that PDs and BPDs

both have combinatorial and geometric significance beyond Theorems 1.1 and 1.2. For
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The Canonical Bijection between PDs and BPDs 3

example, PDs encode Grobner geometry of matrix Schubert varieties via antidiagonal
degenerations [12], and similar results for BPDs have been explored recently in [9].
Furthermore, both PDs and BPDs give rise to different lattice models for double
Grothendieck polynomials [4, 5]. For our current purposes, we do not consider the
equivariant or K-theoretic generalizations of Schubert polynomials.

The following question has been of interest since the discovery of BPDs.

Question 1.3. Can we explicitly describe a “natural” weight-preserving bijection

between PD(r) and BPD(xr) for any permutation 7?

The goal of this paper is to answer the above question affirmatively, by providing
such a bijection ¢ (Definition 3.3). The word “natural” in Question 1.3 can be made
precise, in the sense that we will show in Theorem 4.5 that our bijection ¢ preserves
bijective realizations of Monk’s formula, established on pipe dreams in [15], and on
BPDs in [7]. A little bit of history regarding the bijective proof of Monk's formula on
pipe dreams seems necessary when this subject is discussed. In this paper, we attribute
the main proof to Little [15], where most of the hard work is done. A detailed description
of the Little bumping algorithm appears first in [2], which deals with a special case. In
his lecture notes [10], Knutson attributes this proof to Buch. Regardless, a complete
description of the algorithm that proves Monk's rule bijectively on pipe dreams is
documented in Section 4.1.

One notable consequence of Theorem 4.5 is that it unifies all previous attempts
to define bijections between PDs and BPDs via any choices of Monk's rules. Specifically,
the 2nd author mentioned a family of bijections [7] between PDs and BPDs defined
using (co)transition formulas that are special cases of Monk's rule. Each bijection in
this family depends on a choice « for each permutation = upon which the (co)transition
is performed. By Theorem 4.5, we now know that this family of bijections is in fact one
single bijection (Definition 3.3).

For the organization of this paper, we first introduce background knowledge in
Section 2. Then we describe the bijection in Section 3. Finally, we show that the bijection
preserves Monk's rule in Section 4, which is divided into many subsections due to the

technicality the proof of our main theorem, Theorem 4.5.

2 Preliminaries

Let S, be the infinite symmetric group that consists of bijections from Z_ to itself with
all but finitely many fixed points. Namely, S, = (J,~; S,- The group S, is generated by

the simple transpositions s; := (i i+1), fori € Z_,. Fora < b, let tab be the transposition
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4 Y. Gao and D. Huang

(a b). Let £(w) be the standard Coxeter length of w, and let Red(w) be the set of reduced
words of w.

The Bruhat order on S, is the transitive closure of the binary relation w < wt, ,
if £(w) < &(wt, ). The cover relation in the Bruhat order is given by x <y if x = yt, , for
some a < b and {¢(x) = £(y) — 1. Also, let Des; () := {i € Z_ | s;# < '} be the set of (left)
descents of 7.

The stability property of the Schubert polynomials allows us to work with
permutations = € S, instead of each symmetric group S,, separately. Recall that the
stability property states that for any m < n, = € S,;,, we have &, = &, where

t:8S,, = S, is the natural embedding.

2.1 Pipe dreams and compatible sequences

Definition 2.1 (Pipe dream, RC-graph [1]). For a permutation = € S, a (reduced) pipe
dream (PD) D of n is a tiling of the square grid Z_, x Z_, using two kinds of tiles, the
cross-tile H and the elbow-tile ¥4, with finitely many H-tiles, forming pipes that travel
from the north border to the west border, such that for i € Z_,, the pipe starting at

column i, which is labeled as pipe i, ends at row 7 (i), and no two pipes cross twice.

We typically draw a pipe dream in a staircase shape of size n if 7 € S,,. Let
PD(7) be the set of PDs of 7, and for D € PD(xr), let cross(D) denote the coordinates of
its H-tiles. Then the weight of D is defined as

wt(D) = H X;.

(i,j)ecross(D)

Given a pipe dream D, we let perm(D) denote the permutation given by D.

Definition 2.2 (Compatible sequence [3]). For a permutation = € S, with £(7) = ¢, a
pair of integer sequences (a = (@;,...,a),T = (rl,...,r,z)) is a (reduced) compatible

sequence of 7 if

a=(ay,...,a,) is areduced word of =;
r; <.-- <r, is weakly increasing;
rj < ajforj= 1,...,¢;

r;<rjpifa; <aj,.

Bw b=

There is a straightforward bijection between pipe dreams of = and compatible

sequences of 7w, which we describe here.
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Fig. 1. Examples of PDs and their corresponding compatible sequences.

We label the square grids with matrix notation and give a total order to the
square grids, by going from top to bottom, and within each row, right to left. To be
precise, (i,j) < ({',j)ifi < i ori =1i,j > j. For D € PD(w) with £(x) = ¢, order its
tB-tiles cross(D) in this way as (r{,j;) < --- < (r,,J,). Then its corresponding compatible
sequence is (a = (a,...,a,),r = (ry,...,1,)) where a; = r; + j, — 1. Note that each
BH-tile at coordinate (i,j) corresponds to the simple transposition Siyj—1- See [1] for

further details on this bijection.

Example 2.3. Figure 1 shows two PDs of n = 21543 of weight x?x,x; and their

corresponding compatible sequences.

As the bijection between PDs and compatible sequences is quite straight-
forward, we will abuse notation, and from now on, consider them to be the same
combinatorial objects for simplicity.

For D € PD(wr) with compatible sequence (a,r), its 1st B-tile corresponding to
the order on the square grid will play an important role later on, which has coordinate
(r;,a, —r; +1). We denote by VD the PD obtained from D by turning this 1st H-tile into
a Pd-tile and write pop(D) = (a,,r;). We have that VD € PD(sq, ), where a; € Des; () so
that ¢(s, ) = () — 1.

2.2 Bumpless Pipe dream

Definition 2.4 (Bumpless pipe dream [13]). For a permutation = € S_, a (reduced)

bumpless pipe dream (BPD) D of r is a tiling of the square grid Z_, x Z_, using the

FY o+ = LXK

with finitely many H-tiles, forming pipes labeled by Z_, such that pipe i travels from

following six tiles:

(00, 1) to (7 (i), 00) in the NE direction and that no two pipes cross twice. Among the tiles,
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6 Y. Gao and D. Huang
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Fig. 3. The final step of deleting a marked H-tile.

“[d" is pronounced “are” and “F1” is pronounced “jay”. The name “bumpless” comes from

the fact that the tile “Z4” where two pipes “bump” is forbidden.

We typically draw a BPD in a square grid of size n x n if 7 € S,,. Let BPD(x)
denote the set of BPDs of 7, and for D € BPD(xr), let cross(D) denote the coordinates of
its H-tiles and blank(D) denote the coordinates of its [J-tiles. Then the weight of D is

defined as

wt(D) = H X;.

(i,j)eblank(D)

3 Description of the Bijection

We start with the following operation on BPDs, which is defined in the rectification
process described in [8]. These moves are generalizations of the backwards direction of
the insertion process described in [13, Section 5]. We recall the definition of droop and
undroop moves on BPDs as in [13, Section 5]. A droop is a local move that swaps this
[d-tile of pipe p at position (a, b) with a strictly southeast blank tile at position (a+i,b+
J). Let R be the rectangle with NW corner (a,b) and SE corner (a + i,b + j). After the
droop, p travels along row a + i and column b + j, (a, b) becomes blank and (a +i,b + )
becomes a Fl-tile. The droop is only allowed if every tile in row a and column b of R
contains p, R contains only one [d-tile at (a, b), and after the droop, we obtain a valid

BPD. An undroop at a Pl-tile is the reverse of this operation.
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The Canonical Bijection between PDs and BPDs 7

Definition 3.1. Given D € BPD(x) with £(wx) > 0, the following process produces
another BPD VD € BPD(r’) where ¢(r') = £(r) — 1. Suppose D is an n x n grid. Let r
be the smallest row index such that the row r of D contains [J-tiles. To initialize, mark

the rightmost [l-tile in row r with a label “x".

1. If the marked (J-tile is not the rightmost [CI-tile in a contiguous block of
O-tiles in its row, move the label “x" to the rightmost [I-tile of this block.
Assume the marked tile has coordinate (x,y) and the pipe going through
(x,y+1)isp.

2. If p # y+1, suppose the PI-tile of p in column y+1 has coordinate (x’, y+1) for
some x’ > x. Call the rectangle with NW corner (x, y) and SE corner (x’,y + 1)

the column move rectangle U. We modify the tiles in U as follows.

a. For each pipe g intersecting p at some (z,y + 1) where x < z < x’ and (z, y)
is an [d-tile, let (Z, y) be the Pl-tile of g in column y. Ignoring the presence
of p, droop q at (z,y) within U, so that (z,y + 1) becomes an [4-tile and
(Z,y + 1) becomes a Pl-tile.

b. Undroop pipe p at (x/,y + 1) into (x,y), and move the mark to (x’,y + 1).

Go back to step (1) and repeat. The column moves are illustrated in Figure 2.

3. If p=y+1, the pipes y and y + 1 must intersect at some (x’,y + 1) for some

x' > x. Replace this B-tile with a P3-tile, undroop the Pl-turn of this tile into

(x,y) and adjust the pipes between row x and x’ so that their “kinks shift

right”, in a same fashion as described in Step (2) above. In this case, call the

rectangle with NW corner (x,y) and SE corner (n,y + 1) the column move

rectangle. These moves are shown in Figure 3. We are done after this step.

Let a be the column index of the left column of the last column move rectangle as
in Step (3). The final BPD is of the permutation s, 7. Denote the result by VD € BPD(s,7),
and write pop(D) = (a,r). Let the footprints of D be the set of coordinates that are SE

corners of the column move rectangles except for the southernmost one.

Note that each step above is invertible. Specifically, given D’ and a pair (a, r), we
can uniquely recover D, if it exists, such that VD = D’ and pop(D) = (a,r), by inverting
the above steps: start with crossing the pipe a and pipe a + 1 where the pipe a + 1 first
turns right (if pipe a and a + 1 already cross in D’, then we know that such D does not
exist) and creating a [J-tile in some row r’; then keep doing backward-direction column
moves and sliding the [I-tile to the left until the [J-tile reaches row r. If this [l-tile

cannot land exactly on row r, we also conclude that such D does not exist.
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8 Y. Gao and D. Huang

Fig. 5. An example for the bijection ¢ with = = 21543, where the values of pops are shown on the

arrows.

Example 3.2. Figure 4 demonstrates how Definition 3.1 works for a certain BPD D €
BPD(r) step by step, where VD € BPD(s,7) is obtained in the end, with # = 2153746,
a=4,popD) =4,1).

Repeatedly applying the procedure in Definition 3.1, we obtain the following

map, which is the main object of study of this paper.

Definition 3.3 (The bijection). Given D € BPD(xr) with ¢() = ¢, let

eD) = (@a=(ay,...,a),r=(r,...,1y)),

where pop(Vi~1D) = (a;, 1) fori=1,...,¢.

11

Example 3.4. Figures 5 and 6 demonstrate two examples of the bijection ¢ in Definition
3.3 for # = 21543, whose Schubert polynomial &_ is not multiplicity-free in the

monomial expansion (see [6]). Both examples have weight x2x,x.
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The Canonical Bijection between PDs and BPDs 9

Fig. 6. Another example for the bijection ¢ with = = 21543, where the values of pops are shown

on the arrows.

Lemma 3.5. For D € BPD(x), ¢(D) is a compatible sequence of x.

Proof. We check the conditions of compatible sequences for ¢(D) as in Definition 2.2.
Condition (1) follows from VD € BPD(s,x) if pop(D) = (a, r). Condition (2) is evident from
construction, as we are removing [-tiles from top to bottom. Note that if pop(D) = (a,r),
with D € BPD(rr), there are no [J-tiles in the 1st r — 1 rows of D, meaning that 7 (i) = i
fori=1,...,r—1, and consequently a > r. Thus, condition (3) follows. For condition (4),
we assume the opposite that r; > r;,, that is, r; = r;;; and a; < a;,,. Since a; < a;,,
by [8, Lemma 3.5, the footprints of V/~!D are strictly to the S/W/SW direction of the
footprints of V/D. However, the starting point of the footprints of V/~1D is directly east
of the footprints of V/D as we start in the same row r; = ;- Contradiction. |
Theorem 3.6. The map ¢ in Definition 3.3 is a weight-preserving bijection between

BPD(xr) and PD(r), that is, compatible sequences of 7.

Proof. By Lemma 3.5, we have a well-defined map ¢ from BPD(x) to PD(rr). Immediate
from the construction (Definition 3.3), ¢ is weight-preserving. Since each step V is
invertible if a preimage exists, the map ¢ is injective. As both PDs and BPDs enumerate

monomials in the Schubert polynomial &_, ¢ is a bijection. ]

4 Preserving Monk's Rule

In this section, we demonstrate why the map ¢ in Definition 3.3 is “canonical”, by

showing that it preserves Monk’s rule.
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10 Y. Gao and D. Huang

Theorem 4.1 (Monk's rule [16]). Let 7= be a permutation and « be a positive integer:

%6, 4+ D G = D G (1)

s<a I>a
Tts,q > Tty >

This version of Monk’s rule is derived from the Monk's rule that expands the
product of a linear Schubert polynomial with a general Schubert polynomial. In the
cases when the summation on the right-hand of Equation (1) is a single Schubert
polynomial, the formula specializes to the transition formula of Schubert polynomials,
which is an important inductive formula for Schubert polynomials. In the case when the
summation on the left-hand side is empty, the formula specializes to the cotransition
formula [11]. In [2], a bijective proof of the transition formula is given using PDs,
which can be easily extended to a proof of Monk’s rule in its general form. The 2nd
author gives a bijective proof of Monk's rule with BPDs in [7], which also generalizes
to the equivariant version. It is also remarked in [7] that using either the transition
or the cotransition formula, one can construct bijections inductively of PDs and BPDs.
As a corollary of our result, these inductive bijections agree. We review both weight-

preserving bijections for Equation (1) on PDs and BPDs in Sections 4.1 and 4.2.

4.1 Monk’s rule on PDs
We present the following maps:
X, PD) —> U 1sa PD(rt, ;)

Tl 1>

mg st PD(mtgg) — U 8 PD(rtg)), s < B, mitgp>m
wtg 1 >7

such that x,~~ and mg gs for f = o together form a weight-preserving bijection from the
left-hand side to the right-hand side of Equation (1). To be precise on the weight, x,~~
multiplies the weight by x, while m, ; preserves the weight. Readers are referred to [2]

for further details and how these maps can be inverted.

Definition 4.2 (x,~+, mgz on PDs). Given D € PD(x), the following procedure produces
X, ~D.
Find the leftmost Pd-tile on row « of D and replace it by H.
2. If the newly added H-tile creates a double crossing with another H-tile at
coordinate (i,j), replace the fB-tile at (i,j) with 73, find the smallest j > j
such that (i,j') is a 3-tile, and replace it by . Repeat this step.
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r

min-droop cross-bump-swap

Fig. 7. Basic monk moves at the circled coordinates.

Analogously, given r, D € PD(w ¢ 5) such that nt, 5 > 7, the following procedure
produces my (D) € PD(rtg ) for some [ > B where Ttg >,

1. Locate the H-tile between pipe 7 ~1(s) and #~!(8) in D at coordinate (i, ).
Make it into a Fd-tile. Find the smallest j/ > j such that (i,j) is a F3-tile, and
replace it by H.

2. Exactly the same as step (2) above.
See Figure 9 for an example.

4.2 Monk's rule on BPDs
We present the analogous maps
x,~: BPD(r) - U 1>« BPD(rt,))

o
iy 1>T

mg st BPD(mtg4) — U 8 BPD(rtg)), s < B, mwtgp>m
w1 >7

for BPDs. For details including illustrated examples, see [7]. First, we recall from [7] that
an almost BPD of 7 is defined by relaxing the condition of BPDs by allowing a single
Pd-tile in the grid.

Definition 4.3 (Basic Monk moves on (almost) BPDs). We define two basic Monk moves,
min-droop and cross-bump-swap, on (almost) BPDs. See Figure 7.

min-droop: Let (a, b) be the position of an [d-turn of a pipe p. Note that the tile at (a, b)
could be a [d-tile or Fd-tile. Let x > O be the smallest number where (a + x,b) is not a
H-tile, and y > 0 be the smallest number where (a, b + y) is not a H-tile. A min-droop at
(a,b) droops p into (a + x,b + y).

cross-bump-swap: Suppose (a,b) is a Ed-tile of pipes p and g, and p and q also have a
crossing at (a’,b’). Then a cross-bump-swap move at (a,b) swaps the two tiles at (a, b)
and (a’, b’).
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12 Y. Gao and D. Huang

Fig. 8. The base case for the second commutative diagram of (¥).

Furthermore, we consider the initial move that replaces a H-tile with a Fi-tile
when computing m g, and the final move that replaces a E2-tile with a H-tile also as

special basic Monk moves.

By the stability property of Schubert polynomials, we may embed 7 into a larger

symmetric group as necessary so that a min-droop is always possible.

Definition 4.4 (Xo,w,m&/3 on BPDs). Given D € BPD(r), the following procedure

produces x, ~» D.

1. Let («,j) be the easternmost [4-tile in row «, initialize (X,y) := («,J).
2. Perform a min-droop at (X, y). Let (z, w) be the SE corner of this min-droop.

a. If after the min-droop, (z, w) is a Pl-tile, update (X,y) as the position of
[4-tile of pipe 7 («) in row z, and repeat this step.
b. If after this min-droop, (z, w) is a Pd-tile, let g be the pipe of the [d-turn in
this tile.
i. If w(x) and g have already intersected at (Z,w’), perform a
cross-bump-swap move at (z, w). Update (X,y) := (2, w’), and repeat
Step (2).
ii. If n(@) and g have not intersected before, replace the £3-tile with a
BH-tile and stop.
To define m, 4(D), replace Step (1) with

(1) Initialize (x,y) to be the position of the H-tile of 7 (s) and 7 (8). Replace this
H-tile with a P3-tile.
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The Canonical Bijection between PDs and BPDs 13
4.3 The main theorem and the proof
The following is the main theorem of the paper.

Theorem 4.5. For any 7 € S, the bijection ¢ : BPD(wr) — PD(x) preserves Monk's rule,

that is, ¢ intertwines with x,~~, m 4s. Specifically, the following diagrams commute:

BPD(nr) 22 | 150 BPD(mta;) BPD(rtes) —% J 155 BPD(nts,)

Tl > Tt >m
\tp l%" ’ lﬁO l#’ )

PD(T&') e U I>a PD(TI‘!‘,QJ) PD(?Ttsﬁ) &) U I>8 PD(?Tt,g,g)

Tl 1 >T g, >T (*)

where o € Z_ is arbitrary and n ¢,z > 7 with s < g.

The main difficulty of Theorem 4.5 is that the operator V does not commute
with either x,~~ or m, g, on either PDs or BPDs. Therefore, Theorem 4.5 is only true in
a “global” sense. The proof relies on technical lemmas on PDs (Lemma 4.6) and BPDs
(Lemma 4.7), which discuss how much the operator V commutes with x,~+s and myg ¢S

respectively on PDs and BPDs.

Lemma 4.6. Letrw € S_ . The following statements are true.
1. Suppose D € PD(rt, p), where s < 8 and mtg g > 7. Let pop(D) = @i,r).
a. If (s,8) # (i + 1), 771@1), let p := perm(m 4(VD)). Then
(i+1,r) ifieDes;(p)

pop(mg g(D)) =
@i,r otherwise

Furthermore,

M 1iso o1iap) (Mg (VD)) ifi,i+ 1 € Des, (p)
V(mg gy = | P DT 0 s B

myg 4(VD) otherwise

b. If (s,8) = w1+ 1),771(i)), then pop(my (D)) = (i + 1,7). Furthermore,
let p := perm(V(D)). Then,

M ;142 p-1G+1) (VD) if i+ 1 € Desy(p)
v(ms,ﬂ(D)) — p~H(1i+2),p~H(I+1) )

VD otherwise

2. Suppose D € PD(xr) and pop(D) = (i, 7).

€20z AINP 0Z Uo J8sn Sal)In UIM | - BJOSBUUI 10 AlISIoAluN AQ L9691 | Z/S8OPBUI/UIWI/SE0 L 0 | /I0P/3|o1e-00uBAPE/UIWI/WOo9 dNo olwapeae//:sdjy Wol) papeojumo



14 Y. Gao and D. Huang

(@) Ifa>r,let p:=perm(x,~(VD)). Then

i+1,r) ifie Des
pop(x, D) = ( ) 7.(0) .
@ir otherwise

Furthermore,

V(x, D) = My1iy2),p-1+1) X (VD)) if i, i+ 1 € Desy(p) .

x,~+ (VD) otherwise

(b) If o <r, then pop(x, ~ D) = («,@), and V(x,~D) = D.

Lemma 4.7. After replacing PDs by BPDs, the statements in Lemma 4.6 hold.

The proof of Lemma 4.6 is given in Section 4.4 and the proof of Lemma 4.7 is
given in Section 4.5. We finish the main proof here assuming that both lemmas are

already taken care of.

Proof of Theorem 4.5. This theorem is a direct consequence of the induction principle
and the fact that V and x,~, m ;4 interact in the exact same way on PDs (Lemma 4.6)
and BPDs (Lemma 4.7).

To be precise, we proceed by induction on £(r). The base case is £(r) = 0, that
is, # = id. Take B € BPD(xr), which has no crossings. Its corresponding PD D := ¢(B)
also has no crossings. By the definition of x,~+, x,~~B has a crossing between pipe «
and o + 1 at coordinate (¢ + 1, + 1) and the insertion creates a [J-tile on row «, while
x,~D has a single crossing at coordinate («, 1). By Definition 3.1, pop(x,~B) = («,«)
that gives us ¢(x,~+B) = x,~»D. For the 2nd commutative diagram in (¥), in order for
mtg g >, we must have s = g — 1. Any B € BPD(r ¢, ») must have a crossing between
pipe B — 1 and B at coordinate (8, 8) and a [J-tile at coordinate (k, k) for some k < 8.
The operation mg ; uncrosses the H-tile between pipe g — 1 and g and inserts a H-tile
between pipe g and 8 + 1 at coordinate (8 + 1, 8 + 1), keeping the position of the [-tile.
Thus, we see that pop(B) = (8 — 1,k) and pop(m, 4(B)) = (B, k), meaning that ¢(B) has
a single H-tile at coordinate (k, 8 — k) and @(myg 4(B)) has a single H-tile at coordinate
(k, B —k+ 1) so evidently myg 4(9(B)) = @(my 4(B)) as desired. See Figure 8.

Now assume that we have established the commutative property of the above
diagrams for permutations 7" with £(n’) < ¢. Now fix = with ¢(7) = ¢ so that Urtgp) =
¢ + 1. We first argue about the 2nd commutative diagram in (*). Take B € BPD(rt, g),
and let D = ¢(B) € PD(rtg ). Since D and B are in bijection, let pop(B) = pop(D) = (i, 7).
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The Canonical Bijection between PDs and BPDs 15

12 3 4 5 6 7 8 12 3 4 5 6 7 8 12 3 4 5 6 7 8
. | J . | J . 7
T HA e
o r 1~ Kp r 170 r
; J ; J - J
8 J = 8 J 1,27 8 J
1jrjrjr’ Gjrjrjr’ Gjrjrjr’
Hiede Hiere Hiere
35S 35S 35S
i ms 3 =1ma5 4 1Y \ +
' ’ 2+ 3~
1 12 3 4 5 6 7 8 12 3 4 5 6 7 8
o5 S B B e B B B o
J J
1 1 s 1 s
7J 7J (J 7J éd
sf sf (5 3t, 4~ SJ( 4
97 e/l ot el ot
5 5SS 5SS
3 35S 3
), . .
6

Fig. 9. An example for basic Monk steps for mg g on some D € PD(rts,g) where 7 = 21786534,
(s,B) = (2,5). The tiles that are going to be modified immediately are circled, and the complete
Monk footprints are shaded. Notice that area above pipe 6 is growing toward the SE direction.

Our goal is to show that the BPD myg 5(B) and the PD myg (D) are in bijection via ¢.
By Definition 3.3 of ¢, it suffices to show that pop(mg 4(B)) = pop(mg z(D)) and that
V(mg 4(B)) and V(mg 4(D)) are in bijection via ¢.

Case (1)(a) of Lemmas 4.6 and 4.7: (s, 8) # (x~1(i + 1), 7~1(i)). By induction hypothesis
where ¢(perm(VD)) = {(perm(VB)) = U(wtgy) —1 = ¢, as VB and VD are in bijection,
myg 3 (VB) and myg (VD) must be in bijection. Therefore, we can let p := perm(mg 4(VB)) =
perm(m, 4(VD)). We further divide into subcases based on whether i € Des;(p) and
i+ 1 € Des;(p), as indicated by Lemmas 4.6 and 4.7.

If i ¢ Des;(p), by Lemmas 4.6 and 4.7, pop(mg (D)) = (i,r) = pop(m,4(B)).
Furthermore, as mg 5(VD) and myg 4(VB) are in bijection via ¢, V(mg 4(D)) = mg z(VD)
and V(myg 4(B)) = mg z(VB) are in bijection.

If i € Des;(p) and i+ 1 ¢, pop(my 4(D)) = i+1,r = pop(my 4(B)) by Lemmas 4.6
and 4.7. Then, as above, V(mg (D)) = mg (VD) and V(mg g(B)) = myg(VB) are in
bijection.

If i,i + 1 € Des;(p), pop(mg (D) = (i + 1,7) = pop(mg4(B)). As my4(VD)
and mg 4(VB) are in bijection with £(p) < Ut p), induction hypothesis gives us
that m,-1,9) ,-1¢41)(Ms (VD)) and m 14 9) 1341, (Mg g(VB)) are in bijection via ¢. So

V(mg 4(D)) and V(mg 4(B)) are in bijection as desired.
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16 Y. Gao and D. Huang

Case (1)(b) of Lemmas 4.6 and 4.7: (s,8) = (7~ '(i + 1),771(i)). The same argument
as in Case (1)(a) works here, by going through the different scenarios of whether
i,i+ 1 € Des;(p) and reading off that pop(my 4(B)) = pop(my (D)) and that V(mg 4(B))
and V(myg 4(D)) are in bijection via induction hypothesis.

The 1st commutative diagram of (¥), that is, Case (2) of Lemmas 4.6 and 4.7,

follows basically from the same argument.
Case (2)(a) of Lemmas 4.6 and 4.7: « > r. As VD and VB are in bijection, by induction
hypothesis, the PD x,~+(VD) and the BPD x,~+(VB) are in bijection via ¢. So we can
let p = perm(x,~+ (VD)) = perm(x,~+(VB)). As above, we see that pop(x,~~D) = (i,1) =
pop(x,~B) if i ¢ Des;(p) and pop(x,~~D) = (i + 1,r) = pop(x,~B) if i € Des;(p), so
pop(x,~>D) = pop(x,~B).

Moreover, if i,i + 1 € Des;(p), as x,~(VD) and x,~»(VB) are in bijec-
tion with ¢(p) < ¢, by Case (1), My1(i12) p-1ii+1) X (VD)) = V(x,~D) and
M1ty o1 i4+1) X~ (VB)) = V(x,~B) must be in bijection. If not both of 7, i+1 belong in
Des; (p), we also have that V(x,~+D) = x,~»(VD) is in bijection with V(x,~+B) = x,~>(VB)
by induction hypothesis.

Case (2)(b) is done in the same way. |

4.4 Induction on PDs

Referring back to Definition 4.2, we introduce more notations for x,~» and mg gS on PDs.
Fix a permutation 7 as in Section 4.1. These maps consist of basic Monk steps of deleting
B-tiles (i.e., turning a BH-tile into a F4-tile), which we denote as k~, and steps of adding
HH-tiles (i.e., turning a Pd-tile into a H-tile), which we denote as k*, k = 1,2,.... Write
(ix- . Ji-) for the coordinate where step k= happens and (i+,j;+) for the coordinate where
step k™ happens. To be precise, the map x,~ consists of steps 17,27,2%,37,...,g"
for some g > 1 and the map mg 4 consists of steps 17, 1+,27,2%, ..., p~,pT for some
p > 1. We say that the sequence of coordinates (i1+,j1+),(i27,j27),...,(iq+,jq+) is the
Monk footprints for x,~» and the sequence (i;-,j;-), (Gy+,J1+)s-- -, (ip+,jp+) is the Monk
footprints for mg 4.

Note that after a step k~, we have a genuinely reduced PD for z, and after
each step k' except the last one, we have a double crossing at coordinate (i3, ji+) and
(igs1-Jrs1-)- Also, by definition, i, = i for all k. Let i := i; = i} . Also define, for mg g,
the complete Monk footprints to be

p
U {(ik’jkf)l (ikljk7 + 1), ey (ik’jk+)}'
k=1
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The Canonical Bijection between PDs and BPDs 17

and for x,~+, the complete Monk footprints to be

q
{(i11j1+)} U {(ikljk*)l (ikljk* + 1), NG (ikljk+)}'
k=2

In other words, the complete Monk footprints are the Monk footprints union all the
coordinates strictly between (iy, j,-) and (i, ji+), whose tiles are all s throughout the

process of Definition 4.2, as we show momentarily.

Example 4.8. Figure 9 shows an example of a step by step computation of the Monk’s
rule on a PD D € PD(rt, 5) where 7w = 21786534, (s, B) = (2,5).

Lemma 4.9. The complete Monk footprints consist of distinct coordinates.

Proof. We first consider mg, applied to D € PD(rt, 4). Keep the notations above for
Monk footprints (i;-,j;-), (i1+,j1+),...,(ip+,jp+). Let b = n(B), which is the larger pipe
number among the two pipes that intersect at (i;-,j;-) in D.

Fork=1,...,p, let Dk ¢ PD(7) be the PD obtained from D after the basic Monk
step k~. The readers are strongly recommended to refer to Figure 9 for a visualization,
where b = 771(5) = 6.

We use induction on k to show that the grid (i;+,j;+) in Dk, which is a P3-tile by
definition, contains the pipe b as its F] part.

For the base case k = 1, starting with D, we replace the H-tile at (i;-,j;-)
with a Pd-tile, so the [4 part of this tile is pipe b. By Definition 4.2, we search
toward the right in D! for the 1st #3-tile at (i;+,j;+), which must contain pipe b as its
vl part.

Assume that we have proved this claim for k—1, k < p. To do the step (k—1)", we
insert a B-tile in D*~! at coordinate (i;_,+,Jjj_;+), which is a PA-tile in D¥~! that contains
pipe b as its F1 part by induction hypothesis. As this creates a double crossing with the
M-tile in D¥1 at (ix-,Jx-). there must be two pipes b and c that pass through the tiles
(ix_1+Jx_1+) and (ix-,jx-) in D*~!, and moreover, pipe b must be on the NW side of pipe
c within this region, since it starts as the £l part of (i;_;+,j;_;+). Denote these two paths
between (i;_;+.j;_;+) and (ix-,j;-) as pb and pc, for pipe b and pipe c, respectively. After
we insert a B-tile at (i;_;+,j;_;+) and delete the B-tile at (i;,j,-) to obtain D¥, pipe b
now travels between these two tiles via path pc and contains the [d part of (i;-,j;-).
Therefore, searching from this tile toward the right for the 1st Fd-tile at (iy+,j;+), we see
that its 2 part belongs to pipe b. The induction step is now complete.
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18 Y. Gao and D. Huang

The claim and the above analysis immediately implies that the area bounded by
the pipe b and the x, y-axis in D strictly increases as k increases. This monotonicity is
enough for us to conclude the lemma statement, as the added tiles in the complete Monk
footprints after each step lie between the pipe b in D¥~! and the pipe b in D¥, so they
will never overlap.

The proof for x,~+ is exactly the same so we will not repeat the details here. W

We note that Lemma 4.9 gives us that pop(m; 4(D)), pop(x,~~D) is either (i,r) or
@i+ 1,7),if pop(D) = (@, ).
We are now ready to prove the main lemma of this subsection, Lemma 4.6.

Proof of Lemma 4.6. We will focus more on Case (1)(a), since Case (1)(b) is essentially
a degenerate Case of (1)(a), and Case (2) uses the same argument as Case (1).
Case (1)(a): D € PD(nty4), s < B, wtg 5 > 7, pop(D) = (i, 7), and (s, ) # @ 1G+1), 771@)).
Recall that pop(D) = (i, r) means that the 1st H-tile of D is located at (r,i —r+1), that is,
the rth row is the top row of D with a H-tile, and that the H-tile in the rth row furthest
to the right has coordinate (r,i — r + 1), which is the intersection of pipe i and i + 1. The
PD VD is obtained from D by deleting this H-tile.

Assume that mg D consists of basic Monk steps 17,1%,...,p~,p", at Monk

footprints F = {(i;-,j;-), ..., (ip+,Jp+)}. Let the complete Monk footprints be

p
C = U Ck’ Where Ck = {(lk,]k*)r (lk:Jk* + l)l ey (lkIJk+)}
k=1

We further divide into subcases. In all the subcases, let p := perm(mg 4(VD)).
Subcase (1)(a)(i): (r,i—r+1) ¢ C.

This condition of the current subcase directly gives us pop(mg z(D)) = (i,r). We
then compare the process of mg 4 applied to D and VD. Each basic monk move that is
applied to D will be applied to VD in the exact same way, as the 1st HH-tile of D, which
is the only difference between D and VD, is not part of the conversation. In the end, we
obtain that myg (VD) equals my 4(D) taken away the 1st H-tile at (r,i — r + 1), that is,
mg g(VD) = V(mg (D)). Moreover, recall that p = perm(mg 4(VD)), so perm(m, zD) = s;0
since mg gD and mg 5(VD) differs at the H-tile at (r,i — r + 1) that corresponds to the
simple transposition s;. By the reduced criterion of these PDs, i ¢ Des; (p).

Subcase (1)(a)(ii): (r,i—r+ 1) € Cp-
This condition of the current subcase is saying that when we are doing the

Monk’s rule my 4D, the last two basic steps are deleting the H-tile at (ip,jpf), which
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The Canonical Bijection between PDs and BPDs 19

resolves a previous double crossing, and then inserting a H-tile at (r,i—r+2), which does
not create a double crossing so that we stop here. Consequently, pop(m zD) = (i +1,1)
by definition.

Again, we compare the process myg 4(D) with myg 4(VD). The basic Monk steps are
the same before step p. At step (p— 1), in mg 4(D), a double crossing is created with the
H-tile at coordinate (i,,j,-) = (r,j,-), which is one of the tH-tile in D belonging to the
block of rightmost H-tiles in row r. We split the discussions based on whether (r,j,-)
is the rightmost H-tile in row r of D, that is, whether (r,jp_) is in VD or not, and then
arrive at the same conclusion.

If (r,jp,) ¢ cross(VD), that is, jp, = 1i—r+ 1, we know that mg 4(VD) ends
at step (p — 1)*. The permutation p = perm(mg (VD)) is also the permutation we
obtained from the process of mg,; applying to D after move p~ so p = x in fact.
The move p~ removes a H-tile that corresponds to the simple transposition s;, so
i € Des;(p). And the move pt adds a H-tile at coordinate (r,i — r + 2) that corresponds
to the simple transposition s;,;, so perm(mg gD) = S;qp and i + 1 ¢ Des.(p).
Moreover, V(mg zD) removes the H-tile at (r,i — r + 2) from mg zD so we observe that
V(mg 4D) = myg 4(VD).

If (r,j,-) € cross(VD), that is, j,- < i —r+ 1, then the process of m, 4 applied
to VD deletes the fH-tile at (r,j,-) at step p~, and adds a H-tile at (r,i — r + 2) at step
p*, arriving at the PD that equals my ¢ applying to D after step p~, which is reduced so
we stop. This also gives V(mg D) = mg z(VD). In mg z(VD), the coordinate (r,i — r+ 1)
contains a H-tile so i € Des; (p) and since adding a H-tile to coordinate (r,i —r+2) yields
a reduced PD m, zD, we have i + 1 ¢ Des (o).

The conclusion does not depend on whether (r,jp_) € cross(VD).

Subcase (1)(a)(iii): (r,i—r+1) € Cq/ for some g < p. By Lemma 4.9, pop(mg gD) = (i+1,r)
since the 1st HH-tile of mg gD must be located at (r,i — r + 2).

As above, the basic Monk steps for mg ;D and my 4(VD) agree for the steps up to
(g — 1)*, where in mg 4D, a double crossing is created at (iq_1+,jq_1+) and at (iq,,jq,) =
(r,jq,). Either (r,jq,) ¢ cross(VD) or (r,jqf) € cross(VD). Both situations will yield the
same conclusion.

If (r,jg-) ¢ cross(VD), thatis, j,- = i—r+1, then the process of mg 4z applied to VD
ends after step (g—1)*. Since mg 5(VD) would have a double crossing if (r,i —r+ 1) were
aH-tile, s;p is not reduced and thus i € Des;(p). Now, mg 5(VD) € BPD(p) is precisely the
PD of my 4 applied to D after move g~ . The step q* of applying my 5 to D adds a fi-tile at
coordinate (r,i—r+2) whose corresponding simple transposition is s;, ;, which creates a

double crossing with the H-tile at (qu_ ,qu_), as g < p. This means that i+1 € Des;(p).
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Fig. 10. An example for Subcase (1)(a)(iii) of Lemma 4.6, with n = p = 21786534, (i,r) = (5,1),
(s,B) = (2,5). The 1st step 1~ of each Monk move is circled and all the other grids in Monk's
footsteps are shaded.

To simulate the steps g+17,q+1%,...,p~,p" of mS’ﬂD, we can uncross the H-tile
at coordinate (iq+17,jq+17), which is a crossing between pipe i + 1 and i + 2, of my 4D,
and continue with step (2) of Definition 4.2. This is saying that the basic Monk steps
of m,119) ,-1i41) @aPplying to mg 4, (VD) are precisely the same as the basic Monk steps
q+17,9q+1%,...,p7,p* of m, 4 applying to D, as the tH-tile at coordinate (r,i —r + 2)
will not be involved in these steps by Lemma 4.9. See Figure 10 for an example.

If (r,jg-) € cross(VD), thatis, j,- < i—r+1, then the process of mg 4z applied to VD
ends after step g+, which yields a PD that equals my 5 applied to D after step g~ so p =
perm(mslﬂ(VD)) = 7. The 1st H-tile of msyﬁ(VD) is at coordinate (r,i—r+1) soi € Des;(p),
and since we would have a double crossing if the coordinate (r,i — r + 2) were a H-tile,
i+1 € Des;(p). To simulate the steps g+17,q+17,...,p~,p* for computing my 4 applied
to D, we can as above uncross the H-tile at (i;,-,j441-) by applying m,-1;,5) ,-1(;41) and
concluding that V(mg gD) = m -1, 9) ,-1(i41)Ms, 5 (VD).

As a summary for Case (1)(a), we divide into subcases based on the local
conditions of whether and where the 1st B-tile (r,i — r+ 1) of D appears in the complete
Monk footprints C, but it turns out that this division is also governed by the “global
condition” of whether i € Des;(p) and i + 1 € Des;(p) where p = perm(myg (VD).
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iR

Fig. 11. Extra column moves for almost BPDs in (2'). We suppress the four possibilities for each
arrow by using gray to indicate other possibilities.

IR

Fig. 12. Extra column moves for almost BPDs in (3').

Specifically, if i ¢ Des; (p), we are in Subcase (1)(a)(i); if i € Des;(p) and i + 1 ¢ Des;(p),
we are in Subcase (1)(a)(ii); if i,7 + 1 € Des;(p), we are in subcase (1)(a)(iii). The analysis
above within the subcases agree with the lemma statement, so we are done with Case
(1)(a).
Case (1)(b): (s, B) = (w1 (i+1), 771 (i)) where pop(D) = (i, ). As in case (1)(a), let the Monk
footprints be F = {(i;-,j;-),---, (ip+,jp+)}, and define p := perm (VD). The case condition
says that (i,-,j,-) = (r,i —r+ 1), (iy+,j;+) = (r,i — r + 2). By Lemma 4.9, the 1st H-tile
remains at coordinate (r,i—r+2) throughout the rest of the Monk steps 27,...,p". Thus,
we already have pop(mg D) = (i +1,7).
Subcase (1)(b)(i): p = 1. Here, the H-tile at (r,i — r + 2), which corresponds to the simple
transposition s;,,, does not create a double crossing, so i+ 1 ¢ Desy(p). As m, (D) is
obtained from D by moving the 1st f-tile one step right, V(m, D) = VD as desired.
Subcase (1)(b)(ii): p > 2. Here, the B-tile at (r,i — r + 2) creates a double
crossing after step 17, so i + 1 € Des;(p). To simulate the basic Monk steps
2-,2%,...,p~,p" of m 5 applied to D on VD, we need to remove the H-tile at (iy-,j,-)
that is the crossing between pipe i + 1 and i + 2, and then continue applying
Step (2) of Definition 4.2. This means that m,-1,) ,-1i12 applied to VD gives us
myg D without the 1st H-tile at (r,i — r + 2). S0 M 1519 ,-1342(VD) = V(myg 4D)
as desired.

We are now done with Case (1), which is the map my 5. Case (2) deals with
the map x,~+. The exact same argument from Case (1)(a) is applicable to Case (2)(a),

by dividing into subcases based on whether the 1st H-tile of D appears in the Monk
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footprints of mg gD, analyzing whether i € Des;(p), i + 1 € Des;(p) where p :=
perm(x,~>(VD)), and simulating the Monk steps of mg »D via x,~(VD) and potentially
one more Monk move m 1,5 ,-1(;41)- SO we will not repeat the details here. Case (2)(b)
is a degenerate case where the newly inserted H-tile at coordinate («, 1) has become
the 1st H-tile of x,~+D. We evidently have pop(x,~~D) = («,«) and V(x,~D) = D

as desired. ]

4.5 Induction on BPDs

Before spelling out the technical details, we take a moment to explain our ideas
intuitively. Our main idea is to perform two corresponding Monk's rule computations
on the BPDs D and VD in parallel and study how these two processes are related.
Generically, by “corresponding Monk’s rule computations”, we mean applying x,~ or
mg 4 to both D and VD. Each computation of Monk's rule consists of a sequence of basic
Monk moves. We will see that in most cases, we may cut the sequence of moves applied
to D into m subsequences and also cut the sequence applied to VD as m corresponding
subsequences (two corresponding subsequences might have different number of basic
moves), such that before the start of each pair of corresponding subsequences, the
two (almost) BPDs are related by V and the 1st basic moves in the corresponding
subsequences start at corresponding tiles (which we define below). Therefore, in most
cases, applying Monk's rule commutes with applying V. In the critical cases, when they
do not commute, we may still find corresponding sequences as described above until a
basic Monk move affects the last column move rectangle in a certain way. The detailed
analysis of the critical cases is in the proof of Lemma 4.7. The technical difficulties on
BPDs, as compared with on PDs, come from the fact that V on PDs is simply removing a

cross, whereas on BPDs, the procedure is not local.
We first extend the definition of V (Definition 3.1) to certain almost BPDs. We

introduce the following extra column moves.
(2') In the column moves defined in Step (2) of Definition 3.1, simultaneously
replace exactly one H-tile of the same two pipes in the input and output
with a Pd-tile. This is illustrated in Figure 11.

(3") To extend the column moves defined in Step (3) of Definition 3.1, add the

following column moves (Figure 12).

(@) If (x,y)is a marked tile and the pipe passing through (x, y+1) is y+1, and
the Pi-tile is in column y below row x, follow the same rule as described
in Step (3) of Definition 3.1;
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xg X E X E
Fig. 13. Examples for when a column move is not defined on an almost BPD (the bottom row of
the 1st rectangle is also the bottom row of the BPD).

(b) If (x,y) is a marked tile, pipes y and y + 1 cross at (x/,y + 1) for some
x' > x, and there is a Pd-tile of pipes y+ 1 and g with coordinate (z,y +1)
for some x < z < x’, define the column move by first replacing the #3-tile
by a H-tile and following Step (3) of Definition 3.1, and then replace the
H-tile of y and g by a Pd-tile.

We say an almost BPD D is V-admissible if VD is defined using the original and
additional column moves. We spell out the cases when the column moves are undefined;
see Figure 13 for examples. If (x, y) is a marked tile, let p be the pipe that passes through
(x,y + 1) that is either a -tile or [4-tile. Let (x’,y + 1) be the position of the FI-turn of p
in column y + 1. If such a position does not exist, the column move is defined. If this is a
PIH-tile, and the tile at (x’, y) is a Pd-tile of pipes p and g, g must also intersect p at a tile
between row x and x’. In this case, a column move is undefined. If (x’,y + 1) is a P3-tile,
let g be the other pipe of this F4. If p = y and g = y + 1, the column move is undefined.
Suppose now we can find (x”,y + 1) that is the #I-tile of g in column y + 1. If p and q
cross at (x”,y), the column move is also not defined. It is okay to have these undefined
cases because these configurations will not appear right before the 1st moves of each
pair of corresponding subsequences of basic Monk moves, in which case we need V to
be defined.

Let D be an V-admissible (almost) BPD of x.

Definition 4.10. Let E = VD, and suppose pop(D) = (i,r). We say that a tile (a, b) with
a > rin D and a tile (a’,b’) with @’ > r in E are corresponding tiles if in the case that
D and E each contains a Pd-tile (a,b) and (a’,b’) are these Pd-tiles, or in the case that
neither D nor E contains P3-tiles, (a,b) and (a’,b’) are both [d-tiles of pipes perm(D)(x)

and perm(E)(x) for some x and a = a’'.

Example 4.11. In Figure 14, the 1st (D,E) pair has pairs of corresponding tiles
((2,4),(2,3)),((3,3),(3,4),((4,2), (4,2)),((4,6),(4,6)), ((5,5),(5,4)), and ((6,4), (6, 5)); the
2nd (D, E) pair has ((3,4), (4, 3)) as a pair of corresponding tiles.
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1 1 1
3 2 2
2 3 3
6 —» 6 —» 6
5 5 4
1 23 456 1 23 456 1 23 456 1 23 456
D E=VD D E=VD

Fig. 14. Examples of corresponding tiles.

We remark that in the process of performing two corresponding Monk's rule
computations on D and VD, at the beginning of each corresponding subsequence of
basic moves, there will always be a single pair of corresponding tiles of interest that is
determined by the algorithm, even though there can be multiple pairs of corresponding
tiles in two BPDs related by V according to the definition. Furthermore, outside of the
union U of column move rectangles of D and VD, a pair of corresponding tiles have the

same coordinates, since D and VD are identical outside of /.

Lemma 4.12. Suppose E = VD, pop(D) = (i,r), and (a,b) in D and (a/,b’) in E are
corresponding tiles. Suppose (a, b) is not the southernmost tile with an [4-turn in column
i + 1. Then there is a sequence of basic Monk moves following Steps (2) and (3) of
Definition 4.4 starting with a min-droop at (a,b) in D, and a corresponding sequence
(consisting of possibly different number of steps) of basic Monk moves starting at (a’, b’)
in E such that after applying both sequences of moves, the resulting (almost) BPDs D
and E satisfy E = VD and pop(ﬁ) = (i,r). Furthermore, D has more basic Monk moves

available if and only if E does, and these moves are min-droops at corresponding tiles.

Proof. Let U/ be the union of column move rectangles for D and E. If the basic
Monk move at (a,b) affects only tiles in outside of i, then (a,b) = (a’,b’) and we
simultaneously perform the move at (a,b) in D and E and get D and E. The next basic
Monk moves in D and E start at the same location.

If the min-droop at (a, b) affects tiles in i/, let U be the column move rectangle that
contains (a, b) if it exists; otherwise, let U be the column move rectangle that intersects
row a closest to (a,b). Notice that the tile (a,b) could be to the left or right of U. We
now do a detailed case analysis. The readers are strongly recommended to refer to the
figures while reading. In each accompanying figure of this proof, the vertical arrows are

V and the horizontal arrows correspond to sequences of basic Monk moves described
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| | | |

ﬁ ol L, géﬁ_f . @Q

U’ v’ u' v’

E Case (1)(a) E Case (1)(b)

Fig. 15. Case (1) of Lemma 4.12. In (1)(b), we show the case when the new HH-tile is in U’, but it is
possible that the new H-tile is outside of a column move rectangle.

in the text;

the positions of D, E, 5, and E are NW, SW, NE, and SE, respectively. The

corresponding tiles in D and E where the sequence of basic Monk moves start at are

circled.

Case (1) (Figure 15). If the tile (a, b) is to the right of U, the only way a min-droop at (a, b)

could affect a column move rectangle is when (a, b) is the [d-turn of a pipe p with a [J-

tile at some (x, b) with x > a, where (x, b) is the NE corner of a column move rectangle

U’'. We perform the min-droop at (a, b).

(a)

(b)

If this min-droop does not create a Fi-tile, let the result be D. The only affected
tile in U’ by this move is (x,b). The corresponding min-droop move at (a, b)
in E changes the tiles in exactly the same way outside of U’, and at (x, b) the
PI-tile becomes a —-tile. Let E be the result after this move. Then E = Vf),
and the next basic Monk move in D is at (x,b), whereas the next move in E
is at (x,b — 1). These are corresponding tiles.

If this min-droop creates a Pd-tile, we check if a cross-bump-swap is nec-
essary. If not, the situation is similar to (a); otherwise, we perform a
cross-bump-swap move and let the result be D. We also perform the min-droop
at (a,b) in E followed by a cross-bump-swap and obtain E. We have E = VD,

and the next min-droops in D and E are at the corresponding P3-tiles.

Now we consider Cases (2) to (4) when (a, b) is inside a column move rectangle

U, and U is not the southernmost column move rectangle. Let U’ be the column move
rectangle immediately SE of U. Let (x,y) be the NE corner of U. U’ could be the
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southernmost column move rectangle, but the analysis for this case is similar to the

case when U’ is not. Therefore, we focus attention on the case when U’ is not the

southernmost column move rectangle. Suppose the pipe that goes through the NE corner

of U is p and the pipe that goes through the NE corner of U’ is p'.

Case (2) (Figure 16). The tile (x,y) in D is an [4-tile and (a,b) = (x,y). In this case,

(a’,b’) = (x,y — 1). There are three subcases to consider

(a)

(b)

U and U’ have non-empty intersection, and the pipe p’ has an [4-tile in
column y + 1 that is below row x. First, we argue that in this case the width
of the rectangle that bounds this min-droop cannot be larger than 2 because
otherwise, the tile (x,y + 1) must be a H-tile, and the pipe that contains the
vertical segment of this cross would be forced to cross p twice.

In D, starting at (x,y), perform all consecutive basic Monk moves that are
available in column y. At the same time, perform all consecutive min-droop
moves that are available in column y — 1 in E. Pipes p and p’ would bump
at a Pi-tile in D and E. If p and p’ do not intersect, we replace this Pd-tile
with a tile in D and E and let the results be D and E. If p and p’ already
intersect, we simultaneously perform the cross-bump-swap move in D and E
and let the results be D and E. Since the column moves run NW to SE and the
cross-bump-swap moves modify tiles that are NE-SW to each other, the new
Pd-tiles created in D and E after the corresponding cross-bump-swap moves
must be outside of ¢/ and therefore at the same location.

Suppose (z,y + 1) is the SE corner of U'. Then we see that the rectangle U”
with (x,y) as the NW corner and (z,y + 1) as the SE corner is a column move
rectangle. Replacing U U U’ with U” in U, we see that E = VD.

U and U’ have non-empty intersection, (x,y + 1) is a H-tile, and p’ has an
[d-tile in column y + 1 of D that is above row x. In this case, perform all the
basic Monk moves available in column y in D. If a Fd-tile is created at the end,
perform also the next move that replaces this tile with a . Let the result be
D. In E, perform all the basic Monk moves available in column y — 1. In this
case, p would create a bump with p’ at (x/, y), the SE corner of U. Since p and
p’ already cross at (x,y + 1), a cross-bump-swap needs to be performed, and
after this, we perform all the basic Monk moves available in column y + 1.
If a FA-tile is created at the end, perform also the next move that replaces
this tile with a . Let the result be E. Suppose (z,y + 1) is the SE corner of U".
Let U” be the rectangle with (x,y) as its NW corner and (z,y + 1) as its SE

corner. Then U” is a column move rectangle. Replacing U U U’ with U” in U,
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Fig. 16. Cases (2) of Lemma 4.12. The illustration of (2)(b) omits the case analysis similar to Case
(1).

we see that E = VD. It is also easy to see that the next basic Monk moves in
D and E are at corresponding tiles.

(c) If U and U’ do not intersect, we exhaust all the basic Monk moves available
in column y in D and let the result be D. Correspondingly, we exhaust all
moves available in column y — 1 in E and let the result be E. Let U” be the
rectangle obtained by shifting U to the right by one tile. Replacing &/ with
U\ U)UU”’, we see that E = VD. It is also easy to see that the next basic

Monk moves in D and E are at corresponding tiles.

Case (3) (Figure 17). The tile (a,b) in D is a P4 that previously was a of p and g for some
pipe g. Then (a’,b’) is a also P4 tile that was previously a of p and g in E. The case
analysis here is parallel to the three cases in (2), so we omit the details but include the
illustrations.

Case (4) (Figure 18.) The [d-turn at (a, b) inside U belongs to a pipe g intersecting p at
(a,y). Here, b = y—1. In the figure, we show the cases for when (a, b) is an [d-tile or when
(a,b) is a Fd-tile separately. The corresponding min-droop in E is at (a, y). In D, exhaust
the basic Monk moves in column y — 1, and if at the end a Pi-tile is created, perform
the move that replaces it with a H-tile. In the meantime, exhaust the basic Monk moves
in column y of E, and if at the end a Pd-tile is created, perform the move that replaces
it with a H-tile. These moves preserve the fact that U is a column move rectangle. Let
the results be D and E. We have E = VD. The next min-droops in D and E, if exist, are at

corresponding tiles.
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Fig. 17. Cases (3) of Lemma 4.12.

I
!
18—

—

r

%
%

S g | W s

T=-C
!
-

Case (4)(a Case (4)(b)

Fig. 18. Case (4) of Lemma 4.12.

We now consider the Cases (5) and (6) when (a, b) is to the left of U, and U is not the
southernmost column move rectangle.

Case (5) (Figure 19.) The SW corner (x',y’) of Uin D is aH-tileand a = x/, b < y’. We also
have (a’,b’) = (a,b). We perform a single min-droop at (a, b) in both D and E. Again, if a
Pd-tile is created, we perform also the move that replaces it with a H-tile. The results are
D and E.

Case (6) (Figure 20). The [d-turn at (a, b) belongs to a pipe g intersecting p at (a,y), and
(a,b) is outside of U. Pipe g intersects p at (a, y—1) in E and the corresponding min-droop

in E is also at (a, b). We exhaust all basic Monk moves in column b in D and at the same
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Fig. 19. Case (5) of Lemma 4.12.

time exhaust all basic Monk moves in column b in E. If this does not create a £3-tile with
pipe p, let the results be D and E. U remains a column move rectangle and E = VD. This
is illustrated as Case (6)(a). If a E4-tile of p and g is created, we have again three cases to
consider parallel to Case (3). These are illustrated as Case (6), (b)—(d).

Now consider Cases (7) and (8) when U is the southernmost column move rectangle.
Recall from the assumption of the lemma that (a, b) is not the southernmost [d-turn in
the east-side column of U.

Case (7) (Figure 21). Suppose b = i and (a, b) is the southernmost tile in column i that
contains an [d-turn. Then (a’,b’) = (a,i+ 1). We simultaneously exhaust the basic Monk
moves in column i of D and in column i + 1 of E. The last move in either sequence must
be a min-droop that creates a bump at (c,j), the SE corner of the both min-droop moves.
The next move replaces this bump with a B-tile, and let the results be D and E. We give
separate illustrations for (a, b) is an [d-tile versus a Fd-tile.

Case (8) Suppose b = i and (a, b) is above the southernmost [d-tile in column i. This is
similar to Case (4).

Finally, we consider the cases when U is the southernmost column move rectangle and
(a,b) is left of U.

Case (9) (Figure 22.) These cases are similar to (6)(a). We omit the details but include the

illustration for reference. |
We are now ready to prove the main lemma of this subsection, Lemma 4.7.

Proof of Lemma 4.7. We give a proof for Case (1); Case (2) is similar.
Case (1)(a). Let D be the almost BPD of n obtained from D by replacing the crossing
of pipes mtg 5(S) and mtg 5(B) with a Pd-tile, and let E = VD. E is the almost BPD of s;7
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Fig. 20. Case (6) of Lemma 4.12.

obtained from VD by replacing the crossing of pipes s;wt; 4(s) and s;7t 4(B) in with a
Fd-tile.

Consider simultaneously the process of computing my4(D) and mg (VD) by
modifying D and E with basic Monk moves, and let D, := D and E, := E. Applying Lemma
4.12 repeatedly, for each timestep d =0,1,2,---, we let Dy, := f);l and Eg | = E:l. Let
U, be the union of column move rectangles where D; and E; differ for each d, and let

U, denote the southernmost one in each f,. We stop at step ¢t when either we encounter
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Fig. 21. Case (7) of Lemma 4.12.
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Fig. 22. Case (9) of Lemma 4.12.

a min-droop at the southernmost [d-turn (a,i + 1) in column i + 1 of D, in which case
the corresponding min-droop is at the southernmost [d-turn (a’,i) in column i of E, or
such moves never occur and the computation of Monk's rule is complete. In the latter
case, V(mg (D)) = mg z(VD), pop(mg (D)) = (i,1), and i ¢ Des;(p). We now do a careful
analysis of the former case.

We consider the case when (a,i+ 1) in D, is an [d-tile where the case for when it
is a Pd-tile is similar. In this case a’ = a. We exhaust the basic Monk moves in column
i of E, starting at (a,i). When this is done, pipes i and i 4 1 create a Fd-tile. Since these
two pipes have not crossed before, replacing this £4-tile with a H-tile terminates the
algorithm. Let the result be E; ;, so E,; = m4(V(D)). Notice that in this case p = 7,

and in particular i € Des; (p).
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Fig. 23. Case (1)(a)(i) of Lemma 4.7.
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Fig. 24. Case (1)(a)(ii) of Lemma 4.12.
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Fig. 25. Case (1)(b) of Lemma 4.7.

If i+ 1 ¢ Des;(w), it must be the case that the southernmost [4-tile in D, of

column i + 2 is below row a and pipes i + 1 and i + 2 do not cross. Therefore, after

exhausting the basic Monk moves in column i + 1 starting at (a,i + 1), pipes i + 1 and

i + 2 create a Pd-tile, and we are done after we replace it with a H-tile. Let the result be

D;, . The southernmost column move rectangle in D, is U, shifted to the right by one
tile. Therefore, V(mg 4(D)) = mg z(VD), pop(mg z(D)) = (i + 1,7).

If i+ 1 € Des; (), we consider two cases.

(i)

The tile (a,i+2) in D, is a fB-tile where pipes i+1 and i+ 2 cross. Let D} | be
the computed from D, by exhausting all basic Monk moves in column i+1. As
aresult, the southernmost column move rectangle in D}, is U, shifted to the
right by one tile. Meanwhile, in E,, ;, the B-tile of i+1 and i+2 is at (a,i+2).
Replacing it with a Fd-tile and exhausting the basic Monk moves in column

i+2 gives E} ; sothat VD, , = Ej, ;. We see that the rest of basic Monk moves

i+l
that finish the computation of m4(D) and m -1, 9) 7-141)(M, (VD)) do
not affect the union of column move rectangles. This case is illustrated in
Figure 23.

In D,, pipes i + 1 and i + 2 cross in a column j > i + 2. Let D}, ; be obtained
from D, by exhausting the basic Monk moves in column i + 1, followed by a
cross-bump-swap. Let U, ; be U, shifted to the right by one unit. At this point,
D}, and E, ; differ within U, by a column move. In E; ; replace the B-tile
of i4+1 and i+2 in with aP3-tile and let the result be E; ;. Then VD;; = E; ;.
Again, the remaining basic Monk moves only affect tiles outside of the union

of column move rectangles. This case is illustrated in Figure 24.
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In both cases, V(mg g(D)) = M,13i49) p-1(i41) (M5 (VD)) and pop(m gp)) = i+
1,n).

Case (1)(b). Let D be the almost BPD of = obtained by replacing the B-tile at (a,i+ 1) of
pipes i and i + 1 with a Pd-tile. In this case, perm(D) = s;m = p.

Ifi+ 1 ¢ Des;(p), then it must be the case that in D, there is an [4-tile (b, i+ 2) of
pipe i + 2 for some b > a, and i + 2 does not cross with i + 1. Therefore, exhausting the
basic Monk moves in column i + 1 of D and then replace the F4-tile at (b, + 2) with a -
tile completes the computation mg (D). We see that in this case pop(my 4(D)) = i+1,7r
and V(myg 4(D)) = VD. See Figure 25 for an illustration of this case.

If i+ 1 € Des;(p), we may again consider two cases depending on whether the
HH-tile of pipes i + 1 and i + 2 in D is in column i + 2. The arguments are similar to that

of the parallel cases in (1)(a), so we omit the details. [ |
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