Downloaded 07/20/23 to 150.135.174.99 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SIAM J. MATH. ANAL. © 2022 Society for Industrial and Applied Mathematics
Vol. 54, No. 3, pp. 2845-2875

LOCAL WELL-POSEDNESS FOR THE BOLTZMANN EQUATION
WITH VERY SOFT POTENTIAL AND POLYNOMIALLY
DECAYING INITTIAL DATA*

CHRISTOPHER HENDERSON! AND WEINAN WANGT

Abstract. In this paper, we address the local well-posedness of the spatially inhomogeneous
noncutoff Boltzmann equation when the initial data decays polynomially in the velocity variable.
We consider the case of very soft potentials v + 2s < 0. Our main result completes the picture for
local well-posedness in this decay class by removing the restriction v+ 2s > —3/2 of previous works.
Our approach is entirely based on the Carleman decomposition of the collision operator into a lower
order term and an integro-differential operator similar to the fractional Laplacian. Interestingly, this
yields a very short proof of local well-posedness when v € (—3,0] and s € (0,1/2) in a weighted C*
space that we include as well.
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1. Introduction. The Boltzmann equation is a kinetic equation arising in sta-
tistical physics. Its solution f(t,z,v) > 0 models the density of particles of a diffuse
gas at time t € [0,T)], at location x € T?, and with velocity v € R3. Roughly, each
particle travels with a fixed velocity until a collision, at which time it takes on a new
velocity chosen in a way compatible with physical laws. In this article, we focus on the
noncutoff version of (1.1) that includes the physically realistic singularity at grazing
collisions. The equation reads

(O +v-Vo)f =Q(f. f) in [0,7] x T? x R3,
(1.1) .
JO0,)=fin =20 in T3 x R3.

The collision operator @ is defined by

A= [ [ Bo=0o) (06 = ) 0) drdo.

where v and v, are precollisional velocities and v and v/, are postcollisional velocities
related by

U,:v+v*+0|v—v*| and v;:U+U*—J|v_U*|
2 2 2 2

and the collision kernel B is given by

B(v—v.,0) = [v—v.]70727%b(cos §), where cosf = o- e

v —v.]
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and b is a positive bounded function. In this work, we are mostly interested in the
regime of very soft potentials, that is, when v + 2s < 0.

There are several active research directions regarding the well-posedness of the
Boltzmann equation: global well-posedness in the spatially homogeneous setting (that
is, z-independent), global well-posedness and regularity of weak solutions, global well-
posedness and convergence of close-to-equilibrium solutions, and local well-posedness
with large initial data. Here, we are interested in the local well-posedness of (1.1)
with large initial data and, as such, leave it to other references to detail the extensive
history of research into the first three categories (see, e.g., [3, 6, 9, 10, 12, 13, 16, 17,
18, 19, 20, 21, 22, 23, 25, 29, 36, 39, 40)).

Alexandre, Morimoto, Ukai, Xu, and Yang, often referred to by the acronym
AMUXY, made the first serious progress on the local well-posedness theory for the
(noncutoff) Boltzmann equation. In particular, in a sequence of seminal works, by
deriving new estimates on the collision operator @), they were able to establish local
well-posedness under the condition that eolvl® fin is bounded in certain Sobolev-based
spaces [2, 4, 5, 7, 8]. We note that the Gaussian decay plays a large role in their
analysis to compensate for moment loss.

The first results weakening the Gaussian-decay condition on the initial data are
due to Morimoto and Yang [37]. They established local well-posedness in an H®-
based space under the assumptions that v € (—=3/2,0] and s € (0,1/2). This was later
extended by Henderson, Snelson, and Tarfulea [28], who showed local well-posedness in
an H%-based space under the assumption s € (0,1) and max {—3, —% —2s} <y <0.
Our goal, in the present work, is to remove the restriction v+ 2s > —3/2. In general,
the larger 7y + 2s is, the more the decay of f at |v| = 400 is the issue, and the smaller
(more negative) v 4 2s is, the more regularity is the issue.

Our interest in establishing local well-posedness with initial data that is merely
polynomially decaying is due to its relationship to the recent conditional regularity
program initiated by Silvestre [38] and continued in collaboration with Imbert and
Mouhot [30, 31, 32, 33, 34, 35] (see also a recent work of Alonso [11]). The goal
of the program is to understand the regularity theory for the Boltzmann equation
conditional to the mass, energy, and entropy densities

M(t,x):/f(t,x,v)dv, E(t,x)z/f(t,x,v)wdv,
and H(t,x):/f(t,x,v)logf(t,a:,v)dv,

satisfying, uniformly in (¢, x),

(1.2) M,E,H<C and % <M for all (¢, x),

where C' is a positive constant. When f is z-independent, it is well-known that these
conditions are always satisfied. To date, Imbert, Mouhot, and Silvestre have developed
a Harnack inequality and Schauder estimates, obtained a sharp lower bound on the
tail behavior of f, and proved a propagation of polynomial upper bounds of f result,
all of which depended only on the bounds in (1.2).

An upshot of the program of Imbert, Mouhot, and Silvestre is that, roughly,
when a suitable local well-posedness result exists, solutions may be continued as long
as (1.2) holds (see [32, section 1.1.2] and [28, Corollary 1.2]). In particular, the local
well-posedness result must allow for polynomially decaying initial data as that type of
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decay can be propagated forward in time depending only on the constant C' in (1.2).
As no such propagation-of-decay result exists for Gaussian decay, the classical results
of AMUXY cannot be used. It is for this reason that it is important to develop the
local well-posedness theory when fi, decays only polynomially.

Our main theorem removes the restriction of previous results [28, 37] that v +
2s > —3/2, thereby completing the picture for local well-posedness with polynomially
decaying initial data when v € (—3,0) and s € (0,1). In order to state our result, we
define the following two spaces: given k,n,m > 0 and T > 0, let
(1.3)
xknm — gen (T3« R3) 0 L™(T3 x R®)  and Y™™ = L([0,T]; X5mm).

For any p > 1, we use LP™ to refer to the space of functions g such that (v)"g € LP,
where (v)2 =1+ |v|2. The weighted Sobolev space H*™ is defined analogously.

THEOREM 1.1. Assume that v+ 2s < 0, k > 5, n > 3/2, and m > M =
M (k,n,v,s) sufficiently large. Suppose 0 < fi, € X*™™_ Then there exists a time
T > 0, depending only on || fin||xrm.m as well as n, k, m, v, s, and b, and a unique
solution f € Y™™ N C([0,T); HE) of (1.1) such that f >0 and

[fllyzomm S [ fimllxmm

As discussed above, an important motivation of Theorem 1.1 is to extend the con-
tinuation criterion for the Boltzmann equation to the very soft potentials range. While
such a result does not directly follow from Theorem 1.1 and the Imbert—-Mouhot—
Silvestre regularity program (as these results only deal with the regime v+2s € [0, 2]),
it is likely a straightforward exercise after adding an additional assumption on the
LgS, LY norm of f to (1.2). Indeed, this has already been accomplished for the closely
related Landau equation in [26] in the analogous parameter regime. An upshot of
such a continuation criterion, were it established, is the ability to construct classical
solutions from rough initial initial data as accomplished for the Landau equation [27].
These will be the subject of a future work.

As is typical for nonlinear equations, the main step in the proof of local well-
posedness of (1.1) is to establish a priori estimates on solutions. In particular, this
requires obtaining bounds on the collision operator ) as a bilinear form from and to
various Banach spaces.

In order to explain the strategy and difficulties in obtaining such estimates, we
discuss the restriction v + 2s > —3/2 in [28]. This is inherited in the application of
the estimates on the collision operator developed in [4]. For certain key estimates,
AMUXY use Fourier analysis, which is most suited L?-based spaces. However, a major
lesson from [38] is that one can, very roughly, think of @ has having the decomposition

) Q) ~ ( [atwlo-wl ) (-5 + ([t - upaw) £

and one sees, after applying the Cauchy—Schwarz inequality, that the coefficient in
front of (—A)*® is bounded using the (weighted) L2-norm of g only when v+2s > —3/2.

In view of the above, it is required to develop new estimates on the collision
operator in spaces that are not L2-based. Our approach is to take advantage of
the Carleman decomposition (see (2.1)), which views @ as the sum of an integro-
differential operator similar to the fractional Laplacian and a lower order term. As
this is a real space-based approach, it is possible, through intricate analysis, to obtain
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estimates on Q(g, f) in various spaces depending on both L2?- and L*-based norms.
This allows us to circumvent the issues encountered in previous works.

Curiously, this approach leads to an extremely simple proof of local well-posedness
in a weighted C%! space when s € (0,1/2) as a priori estimates arise directly from
the comparison principle and a naive choice of supersolution. The reason for this is
as follows. First, the intuition in (1.4) roughly gives us that || f(¢)||p~.m satisfies

d
I @llzoem S NFENZm

and, hence, must be bounded by the solution ¢ of ¢ = C'p?. This is made rigorous by
showing, via straightforward computations (see [28, Proposition 3.2]), that f(t,z,v) =
o(t){v)~™ is a supersolution of

JFt+U'vaF:Q(f7JF)'

Hence, f is bounded in L*"™. A straightforward attempt to repeat this for the L>"
norm of Jf is complicated by the fact that df solves an equation whose right hand
side is Q(f,0f) + Q(Of, f). While Q(f,df) will have a “good” sign at a maximum,
Q(0f, f) will not; however, from (1.4), we see that

Qs 1)~ ([ 0slo =l dw) (~AY 1 £ 107w |(~A) F o
Fortunately, when s € (0,1/2), the last term is lower order:

(=) fllzoem S I fllzoem +[10F [ Looim.

Hence, roughly,

d
ZNOF @z S 1OF @) oo (0SB own + (D)l goe)

The previous argument can be repeated here to obtain a bound on ||0f]|ee.m.

We now state the result. We first define the C* analogue of the spaces X and
YT (13)
(1.5)
XEmomi — £ ()m0vtf e O(T? x RY)® for 0< €< k—1,(0)™V*f € L(T® x R®)®"}
and ymom — 1°°([o, T]; X™momt).

THEOREM 1.2. Let k > 1, v € (=3,0], s € (0,1/2), my > 3+ v + 2s, and
mg be sufficiently large depending only on k, v, s, and my. Let the initial data
0< fin € XFkmomi - Then there exists a time T > 0, depending only on || finl| g.mo.m »
v, s, mo, m1, and b, and a unique solution f >0 of (1.1) such that

~ kmo.
f c YT mo,m1 o d ||f||}~,;f,m0,m1 S ||finHXk,'m,0,m1.

It is easy to establish that f is a classical solution with the following heuristic
argument. Recalling (1.4) and that s < 1/2, it is easy to see that the continuity of
Q(f, f) is controlled by the Y ™0™ _norm of f. Its continuity and (1.1) yield the
continuity of (9; +v-V,)f. Hence, all terms in (1.1) “make sense” pointwise and are
continuous; that is, f is a classical solution.
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We also note that simply by differentiating the equation, we can obtain further
time regularity when k£ > 1. This is not the main interest of the statement above so
we omit it.

The significance of Theorem 1.2, besides having such a short proof, is that it
improves on [28, 37] in two major ways. First, it increases the range of possible
~: [37] requires v € (—3/2,0] and [28] requires v € (—3/2 — 2s,0). Second, it weakens
conditions on the initial regularity: [37] works in an HS-based space and [28] works
in an H°-based space, both of which embed in C'. Note that it also reduces the
regularity required of the initial data in comparison to Theorem 1.1. On the other
hand, like [37] but unlike [28] and Theorem 1.1, it only applies to s € (0,1/2).

1.1. Notation. We use the notation A < B if there is a constant C such that
A < CB. In general, the constant C' may depend on v, s, n, m, k, mg, m1, and b.
Additionally, if an assumption for an estimate involves a requirement such as o > £3,
then the constant C' may depend on oo — 3. We use A~ Bif A< B and B < A.
Occasionally, it will be necessary to include a constant, in which case we use C to
represent such a constant and this constant C' may change line-by-line.

Any integral whose domain of integration in v is not specified is understood to be
an integral over R? and any integral whose domain of integration in x is not specified
is understood to be an integral over T3. For example, for any measurable ¢ and any
measurable sets 0, C T3 and Q, C R3, we have

//Q’U o(z,v)dvdx :/11‘3~/QU o(x,v)dvdx and /Qm/go(xm)dvdx = /QJE/]R3 o(z,v)dvdz.

Similarly, we often suppress the domain in Lebesgue, Sobolev, and Holder spaces
when it is clear, writing, e.g., f € L°™ instead of f € L°™(R3) if has already been
established that f: R® — R.

We use Bpr to mean a ball of radius R around the origin. Whenever the ball is
not centered at the origin, we denote the center vy as Br(vg).

Finally, when stating estimates on the collision operator Q(g, f), we often omit
the assumptions on the involved functions g and f. In these cases, the estimate holds
whenever the right hand side is finite.

1.2. Outline. The rest of the paper is organized as follows. In section 2, we
consider bounds on the collision operator. In particular, we recall useful known results,
prove some easy extensions of them, and state our main new estimates. Then, in
section 3, we prove the existence and uniqueness of solutions using the bounds from
section 2. Afterward, in section 4, we prove the estimates on the collision operator
Q. Finally, in section 5, we give a simple proof of local well-posedness for the case of
s €(0,1/2) and v € (-3,0].

2. Estimates on the collision operator. In this section, we state the key
estimates on the collision operator ) that we use in our proof of well-posedness.
We begin with a brief overview of the Carleman decomposition allowing us to use
ideas from the study of integro-differential operators. Then we state known estimates
and their easy extensions. Finally, we state new estimates whose proof, contained in
section 4, makes up the bulk of this manuscript.

2.1. Carleman decomposition. A key tool in our analysis is the Carleman
decomposition [14, 15] that views the Boltzmann collision operator @ as the sum of a
nonlocal diffusion operator locally similar to —(—A)® and a lower order reaction term.
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This decomposition is well-known; see [1] for an early discussion of it and [38, sections
4 and 5] for the presentation used here. Indeed,

Q(gaf) = Qs(ga f) + Qns(ga f)7
2.1) Qulg, f) = / () — F(0)) Ky, o),
Qns(gvf) = Cb(S’Y * g)fa

where S, (v) = |v|?, ¢, > 0 is a fixed constant, and K, satisfies, for any g > 0 and
any v,v’ € R?,

1
K,(v,0") ~ 7/ g(w)|v — w2 dw
(22) I I'U - Ul|3+28 wev+ (v —v)t+

and  Ky(v,0+v") = Ky(v,0—").

We refer to Qs as the “singular” part and Qs as the “nonsingular” part.

Actually, to be fully rigorous, Qs should be defined using a principal value. We
abuse notation and suppress this as all our estimates occur over symmetric domains
near the base point v and are, thus, compatible with the limit involved in the principal
value.

2.2. Previously established estimates and easy extensions. In this sec-
tion, we state various estimates on the collision operator that are well-known or are
simple extensions of previous results.

LEMMA 2.1 (estimates of the kernel K,). For all ™ >0 and v € R3,

(i) / K,(v',v) dv’,/ Ky(v,0")dv' < r_25/|g(z)||z—v\"’+23 dz.
Bar (v)\Br(v) Bz (v)\Br(v)

(i) / Ky (0,0') — Koo 0)] dof| < / 9(2)l|z — o] d=.

(iii) / (v = v)Ky(v,0") dv' = 0.
B, (v)

W | o =K als [leel -
B, (v)

Lemma 2.1 follows from [34, Lemmas 3.4, 3.5, 3.6, and 3.7]. The following lemma can
be regarded as a slight generalization of [31, Proposition 2.1].

LEMMA 2.2. For0<s<1,a>2s,7>0, and g: R® — R there holds
/ Kg(v’,v)\v—v’|adv,/ Ky(v,0")v=0|%v < o2 / \g(w)vawr’Jrzsdw.
B, (v') r (v’

Proof. The proofs of both inequalities are similar, so we show only the latter.
Assume without loss of generality that ¢ > 0. We proceed with a simple annular
decomposition paired with the existing estimate Lemma 2.1(i). Indeed, letting Ay =
By, (V) \ By—-1,.(v"), we have

oo oo
/ Kg(v,v/)\v—v/|“dv:2/ Ky(v,v) v —2'|“dv < 22_0‘167"0< Ky(v,v")dv
By (v') k=0" Ak k=0 Ak

< 2270"“7’“/ Ky(v,v")dv < 227““725)1“0‘725 /g(w)|v' — w| " dw.
BE_,_, () o
2—k—1,

The claim then follows due to the fact that the sum over k is finite. O
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The next lemma concerns bounds on K via ||g||goe.m.
LEMMA 2.3. Fiz any m >3+~ +2s, g € L>™, and v,v' € R3. Then

1
[Kg(v,0")] S WHQHLoo (v)7 2ot
We omit the proof as this is obvious from (2.2) and a straightforward parametrization
of the two-dimensional hyperplane that is the domain of integration.

On the other hand, under a smallness condition on v’, we can establish a refined
estimate involving the decay of g. To our knowledge this was first observed in [28,
equation (4.39)] but not stated as a standalone lemma or given a proof in complete
generality. As such, we include it here.

LEMMA 2.4. Fiz any m > 3+~ +2s, 0 € (0,1), g € L>™, and v,v' € R3 with
(1=0)|v| > |v|. Then

1

|Kg(v,0")| < m“g“Lw,m@))’H—?s-‘ri’)—m.

As the proof of Lemma 2.4 is longer than the others of this subsection, we include
it in section 4; however, it is simply a more careful writing of the ideas in the proof
of [28, equation (4.39)].

The next lemma provides estimates for the nonsingular part Qns. Recall (2.2).
Then, we have the following estimates.

LEMMA 2.5. Suppose that f,g: T3 x R3 — R. Then, for any € >0 and n > 0,

[@usl Dl < {Hgnww ez
ns\Y» RS

||g||L2,n ||fHLoo,n+e+3/2+’y+(3/27'n,)+ .

Remark 1. The first inequality in Lemma 2.5 is obvious by writing Qus(g, f) =
(S % g)f and bounding S * g in L* using the weighted L* norm of g. The second
inequality can be easily proved by using our weighted Young’s inequality Lemma 4.2.
As this proof is straightforward from the statement of Lemma 4.2, we omit the details.

We also require the following from [28, Lemma 2.6].

LEMMA 2.6 (interpolation lemma). Ifn,m >0, k' € (0,k), and ! < (m—2)(1—
’%) + n%, then

1Kk
1w S A poo o LI -

2.3. New estimates. We now state new estimates on the collision operator that
are crucial to allowing us to extend well-posedness to the full range of soft potentials.
The prior similar work [28] relied heavily on [28, Theorem 2.4, Propositions 2.5 and
3.1]. The first two come directly from [4, Propositions 2.9 and 2.8], respectively. Each
result, unfortunately, requires v + 2s > —%. Thus, these are not applicable in our
setting, and the main issue of the present work is to obtain suitable replacements,
which we state here.

The first is a commutator estimate (cf. [4, Proposition 2.8], [28, Proposition 2.5]).

PROPOSITION 2.7 (commutator estimate). For any € > 0, v € (=3,0], p €
(1 —29)4+,2—2s), m > max{3+’y+23,£+7+%}, £> %, and f,g : R = R, we
have

(0)“Qs(9, ) = @s(g: (W) lllzz S (Iflpzevsrzre + [ fllmzs-tmmteeiae)

19| oo
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The next estimates concern Qs(g, f) and involve only the v-variable.

PROPOSITION 2.8. For any f,g:R®> = R, v € (=3,0], v+25 <0, and € > 0, the
following hold:
(i) If 6 € (0,2s), then

/ Qu(g, F)hdv < gl gessrsaese |l srzeal| Bl 0.

(ii) If 6 > 0, then

1Qs(g, Nllz> S Mgl Lo s+rvzete [ fllrzero.

(i) Ifn>3/2+~v+2s, m>3/2+~v+(3/2—n)4, and a > 2s, then
1Qu(g: Sl S lgllzzom (I lmom + [ (o)5/2H @/ st ).

(iv) If n >0, m >n+6+v+2s, and g > 0, we have

FllZ2n-

/ ()2 FQu(g, £) dv < [lgllpem

The first two parts above, (i) and (ii), rely heavily on the work in [34]; however, that
reference is focused on local estimates and, as such, is not concerned with understand-
ing the dependence on weights. Combined they are a replacement for [28, Theorem 2.4]
(see also [4, Proposition 2.9]). The second two parts above, (iii) and (iv), are new.
They are replacements for [28, Proposition 3.1(i) and (iii)], respectively.

During the submission of this paper, the anonymous referee made us aware of
an earlier result of Desvillettes and Mouhot that is similar to Proposition 2.8(iv) [18,
Corollary 2.2] but proved in the case v € [0,1] (recall that we consider v < 0 here).
While the proof is not immediately valid for v < 0, it is likely that one can modify it
to obtain a result similar to Proposition 2.8(iv) when v < 0 that would suffice for our
purposes. We note that the proof of [18, Corollary 2.2] differs significantly from the
proof of Proposition 2.8(iv) as it is not based on the Carleman decomposition.

We make two brief remarks. First, the result (i) is a slight generalization of the
results in [34] as it allows us to choose € in (i). Second, the result (ii) almost certainly
holds without 8 = 0; however, as this is not needed for our purposes and the current
statement is easy to derive from [34], we are content to use (ii) as is.

The final estimate makes use of the symmetry properties of Qs in order to avoid
having more than one full derivative “land” on f. This is crucial in case two of
the proof of the main a priori estimate Proposition 3.1. It is a replacement for [28,
Proposition 3.1(iv)].

PROPOSITION 2.9. Suppose that f,g : T3> x R® — R. If v € (=3,0], € > 0,
pe ((1-2s)1,2—2s), k € (s,min{2s,1}), n > 2, and m > max{3+y+2s,n+vy+3},
then

|l 2nssr2de + || f || srzs—1tmmtntrres ) || fll grn

| [P auts. 110 sdvda] £ gl (

1199l o2+ o171 reissrsasse | F I + lgllomore

f||H5‘n+3/2+€+(’Y+25+1)+ [FAlp7ens

where 0 = O, or 0y, for some i € {1,2,3}.

Recall that we prove the above estimates in section 4.
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3. Existence and uniqueness of solutions: Theorem 1.1. In this section,
we prove Theorem 1.1. The majority of the work is in the proof of existence and our
approach for this follows [28] closely. Indeed, the construction procedure is similar,
relying on exhibiting a solution to a suitably regularized and linearized problem. We
then use compactness to deregularize and a fixed point argument to pass from the
linearized problem to the nonlinear one. The main novelty to the current work as
compared to [28] is in the establishment of a priori estimates in lef T of the regu-
larized and linearized problem. When possible, we omit details that are unchanged
from [28].

3.1. Proof of existence in Theorem 1.1. First, we define a smooth cutoff
function 1 : R — R with 0 < ¢ <1, [¢(v)dv = 1,

=1 on By and =0 on BYf.

Next, for any ¢ : T3 x R? — R and € > 0, we define

€

. 1 =y v—w
gb(x,v)—e—ﬁ/w( )1/1( - )¢(y7w)dydw.
Then we define the regularized collision operator; for any 6 > 0 and (z,v) € T? x R3,

QQ(S(Q(IH ')7 f(.CC, ))(U) = @D(dU)Q(gE(I, ')’ 1/}(5)f(33, ))

Finally, for any o € [0, 1], we define the differential operator

(31) Ea,e,&(f) - atf + 0—1;[)(&0)” : vmf - (E + (1 - 0))Ax,vf - 0@6,5(9, f)

The intuition for the above regularizations and cutoffs is given in [28, section 3].
We now establish a priori estimates that hold for both the full equation and the
regularized one above. This is done in the following proposition.

PROPOSITION 3.1. Suppose thatT > 0,k > 5,n > 3/2+(y+2s),,0 € [0,1],¢,5 >
0, and m > 0. Supposing that R, f € quf’”’m

(3.2) Loesf =R in (0,T) x T3 x R3,
' f(0,-,2) = fin in T3 x R®.
Forany pu>0,if§=0and m>3/2+ p orif 6 >0, then

(3.3)
T

T
£ = < exp{C [ lglammminsrzenrdt) (Ufinllwon + [ 1R mme).
0 0
If § = 0 and m is sufficiently large depending on k,n,~y, and s, then
(3.4)
T T
0 ey <0 {C [ 19O de} (+TY il gt [ IR gt
, o o
Now, we prove Proposition 3.1. The proof follows that of [28, Proposition 3.1]

with small changes due to the new estimates on the collision operator necessary in
our setting.
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Proof. The argument of (3.3) goes exactly as that in [28, Proposition 3.1] and
hence we omit the proof here. Now we focus on proving (3.4). First, we let o, 3 € N3
be any multi-indices such that |a| + |8| = k. Then, differentiating (3.1), multiplying
the resulting equation by (v)2"920° f, and integrating in = and v, we get

n a b r2
2dt/| 0300 f|° dedv

3
_U/ (Zﬁzawlagag elf) <U>2"8§55fdxdv

Z Cor g7, 7 /Q 050 9,020l f)(v)*r 020} f dwdv
[e +oz =«
B'+8"=8
(e+1—0 /|vm,a§;a5f|2+/a;¥a§R<v>2"agaffdmdu
=hLh+L+1s+1,

for some constants Cqus g/ o7,87 > 0 depending only on the subscripted quantities
We see that I; is bounded by || f||3x.., 14 is bounded by ||R||3c.. + || 1135,

I3 has a good sign. Thus, our focus is primarily on I3, the term involving the colhslon

operator Q. We argue case by case depending on the size of |a”| + |3”| in order to

establish that

(3.5) Iy < llgllscsomom [Lf e -

The proof of (3.5) is postponed momentarily while we show how to conclude. Indeed,
assuming (3.5) is proved, we arrive at

3:6) 5 [1070202 12 dodo S (lglxhon + DI + 1 RI e

Recalling the definition of X*™™ in (1.3) and using (3.3), we find
(3. 7)

5 il S (gl e + D s

T
+ (lg@) [ xk.nm + 1) exp {C/O Ig(t)lxmmdt} (I finllZoem + RISk ) -

Therefore, we conclude the proof of (3.4) by applying Gronwall’s inequality.
We now establish (3.5). For notational ease, we set

(3.8) F=02"9"f, G=08v9"g

Thus, we are estimating terms of the form

[, o7 Favie
(3.9)
= / (0)2"Qs(G, )22 05 Fdvdz + / (0)2"Qus(G, F)0Y 05 Fdvdz.
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Case one: || +[8"| = k, i.e., &=, B"=P, and in the form of [(v)*"Q(g, F)F.
We estimate the Qs term first. We proceed by using Proposition 2.8(iv), up to in-
creasing m if necessary,

[ pipdds 5 [ 1712,

S AWz llglzoem S NSk gl xcrmm,

p dr S || F|2an

gl gllLoem

as desired.
Furthermore, for [(v)*"Qns(g, F)F dvdz, we recall (2.1) and apply Lemma 2.5 to
find

[0 Qo FIF dvda [ (0 (S, « ) Fdvda 5 [ gl | I do

SlglpoemllFllzen < llgllzoem 17 < Ngllxemm L e nm-

This concludes the proof of (3.5) in case one.

Case two: || +|8"| = k — 1, and in the form, [(v)*"Q(dg, F)OF. Here we
denote derivative operator & = 9% 92" as |o/| + || = 1.

We first estimate the Qs portion. Fix e € (0, min{s,1—s}). Let = (1—2s)4+ +e¢,
k= s+e¢ and m = e+ max{3 + v+ 2s,n + v + 3/2}. We then directly apply
Proposition 2.9 to find

‘ / (v)*"Q4(dg, F)OF dvdx
S N0gl| poon | F|| ros—1mmtntasa || F|| grom

187l 5o + 1109 st

F||Hs,n+5/2+e FHHl,n

S N0gll Lo fll w2 -0 tumwtnsare | 1 greon

Flaran

Applying the Sobolev embedding theorem on terms involving g and then Lemma 2.6
(up to increasing m if necessary) yields

+10%gll mrs-sae 1 F e + 109l cmasel| Fll n-ciopnss/te

‘/(@2"@5(69, F)oFdvdx

Flrin

Pk

The estimate of the nonsingular part Qs is the same as in the previous case and is
thus omitted.

Case three: ||+ |B"| = k — 2 and |&/| + |8'| = 2. First, we estimate the Qs
term. We see

[ @ Qu(G. Y9202 dude < |Qu(GF) |2 | e

S gllarssen | Fllecosmsmensosall fllamn + lgls-osse

 lglarasesse L Fllpumi—omsssose | Fll e S lgllscenm

(3.10)

IN

(IQs(G, ()" F) = (0)"Qs(G, F)[12 + |Qs(G, ()" F)lL2) | f || zre.n
(By+ Ba)|| fll g
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We estimate By first. Fix any 6 € (0,min{252%,3}) and let p = 3/(46) and

q = ﬁ. Then we apply Proposition 2.8(ii), Holder’s inequality, and the Sobolev
embedding theorem to find

1/2
2 2
Br £ [ 161 5o Wgevon dz) ™ S 161200 1Pl s
S Gl o220 a0l Fllygoyzeson S Gl oo Fllmaesaon S lglcnnll fll e

The last inequality follows by our choice of 6.

For By, for any p € ((1 —2s)4+,2 — 2s) and m = 1 + max{3,n + v + 3/2}, we
appeal to our commutator estimate Proposition 2.7, the Cauchy—Schwarz inequality,
and the Sobolev embedding theorem to obtain

1/2
B S ([P gos + 1FlLggossms PIGI . )
SNl gzm (1Fllpsgzmss + 1F] gy przemsomnen
NGl sz (1 Nsgsssonsn + 1F | gzecsssvienen)
S Ngllzroran (U lgassacns + 1 F vsas-srasmmsn).

Notice that 2s —9/4+ p < 0 as u < 2 — 2s. With this, observe that all three norms
above involve regularity of order strictly less than k. Hence, assuming m is sufficiently
large, the interpolation lemma Lemma 2.6 yields

Br S llglxsmm [ fllxwnm.

This concludes the estimates for the singular part.
For the nonsingular part, we apply Lemma 2.5 to find

/ (V)" Qus (G, F)0508 f dvdx
S ||fHHk*"||QHS(G7F)||L2*" S ||f||HkynHG||Lcc,3+'y+e

F||L2,n.

Using the Sobolev embedding theorem and Lemma 2.6, we obtain the desired estimate

/ (0)" Qus (G, F)O202 f dvdz < |lglxkomen |F 2.

This concludes the proof of (3.5) in this case.

Case four: |o"|+|8"| =k —3 and |&/| + |8’| = 3. The proof of (3.5) in this case
is exactly as in case three, except with the choices

. 1 5—4s 3 3
S <O,m1n{2, 6 }), p—m, and q—m

in the estimate of Q5. As such, we omit the proof.

Case five: |&"| + |p"| = k — 4 and |&/| + |B'] = 4. We begin with the singular
term:

/<U>Q"QS(G7F)3335f dvde 5 1030; fll 120 |Qs(G, F) | 2 <[|fl|irvn [|Qs (G, F)l| 2.0
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It is clear that we need only bound the last term above. Recalling Proposition 2.8(iii),
we have, for any p € ((2s —1)4,1),

1Qo(Gy P zn S (I1Fll o + 10} /25 F | s ) Gl zon

Applying the Sobolev embedding theorem with m sufficiently large (depending only
on n), we obtain, for e = (1 — pu)/4,

1Qs(G, F)ll p2n S Nl gorztnte |Gl g2

Using Holder’s inequality and the Sobolev embedding theorem yields

1Q(G. P < / VI, emscon |G 2 o < IFI2, o |G 2

S 72 provesisen1GllEn < Nl |71 smrem:

To control the last term, we use the interpolation lemma, Lemma 2.6, and that, by
construction, p + € < 1, to find

Il rre=rsmm < | Fllxcrinm

as long as m is sufficiently large depending only on n and s. This concludes the proof
of the bound of the singular term.

We now consider the nonsingular part. As above, it is enough to bound
|Qus(G, F)||2.n. To this end, applying Lemma 2.5 yields

1/2
1Qu(G. Pl 5 ([ 1P s [G12  d)
SN ol < [ s g v

Thus, we need only bound the norm of F' on the right hand side. By the Sobolev
embedding theorem and the interpolation lemma Lemma 2.6, we find

[El| poenss SN grrrzersames S\ flls-rransa S I Fllxwnm,

as long as m is sufficiently large. This concludes the proof of (3.5) in case five.

Case siz: ||+ |8"] < k=5 and |&/| + |B'| > 5. We begin by bounding the
term with Q5. As above, it is enough to bound Qs(G, F') in L?™. First, by Proposi-
tion 2.8(iil) with p € ((2s —1)4,1), we find

QUG Pl S [ 1GIEs (IF e + 1015/ F2,)
Applying the Sobolev embedding theorem and letting € = (1 — u)/2, we obtain
QG P S [ IGIE2n IFIE v d < G LI e senn

S NG 2 | Fllpssivern S Mgl Fpen 1 I pemaiem,

where m is a constant depending only on n. The proof concludes as in the previous
case by using the fact that k — 1 4+ p 4+ ¢ < k and Lemma 2.6.

The estimate of the nonsingular part .5 is the same as in the previous case and
is thus omitted. This concludes the proof of (3.5) in case six and, thus, all cases. 0O
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Having established the bounds above, we now construct a solution.

PROPOSITION 3.2 (construction of solution in the linear equation). Fiz T > 0,
a function g € Yzlf’"’m, and the initial data 0 < fi, € X*™™. Then there exists
fe YTk’""m such that

(3.11) fe+v-Vaof =Q(g. f)

and f(0,-,+) = fin. Moreover, f > 0.

Proof. The proof of [28, Proposition 3.3] can be adapted verbatim as it requires
only the established bounds in [28, Proposition 3.2] (the analogue of our Proposi-
tion 3.1). The proof is composed of three steps: (1) due to the Laplacian in L, ¢,
apply the Schauder estimates to establish boundedness of a linear operator involving
of L, s; (2) apply the method of continuity to construct the solution of L, sf =0
using the bounds from the previous step; and (3) use the a priori estimates from
Proposition 3.1 to deregularize. Due to its similarity to [28, Proposition 3.3], we omit
the details. ]

Proof of existence in Theorem 1.1. The analogous existence result [28, Theorem
1.1] proceeds by constructing a sequence f; solving

(3.12) (O +v- Vo) fi = Q(fi—1, fi),

establishing the boundedness of this sequence inductively, showing that f; — f;_1 tends
to zero, and then taking the limit ¢ — oo. These steps can be repeated verbatim
in our setting. Indeed, the existence of each f; follows from Proposition 3.2. The
boundedness of f; and the smallness of f; — f;—1 in [28, Theorem 1.1] rely only on
the bilinearity of @, the a priori estimates of [28, Proposition 3.2], and a Gronwall
argument. As Proposition 3.1 provides ezactly the same a priori estimates as [28,
Proposition 3.2], the convergence of f; to some f can be repeated exactly as the
convergence argument in [28, Theorem 1.1] (f solves (1.1) due to (3.12)). As such,
we omit the details, and the proof is concluded. 0

3.2. Proof of uniqueness in Theorem 1.1. We now finish the proof of The-
orem 1.1 by establishing uniqueness.

Proof of uniqueness in Theorem 1.1. Consider any two solutions f and g of (1.1)
with f(0,-,-) = ¢(0,-,-) = fin and set h = f — g. We have

Then, we multiply (3.13) by (v)?"h and integrate with respect to v and z, yielding

1d

(3.14) §£Hh||2LQn = /(v}Q"Q(f, h)h dvdx + /(v)Q”Q(h, g)hdvdx = I + I,

where
(3.15) I = /<v>2”Qs(f, h)h dvdzx + /(v)Q”Qns(f, h)hdvdx = Iy + Iz
and

(3.16) I = / (V)" Qg (h, g)h dvdx + / (V)" Qus(h, g)h dvdz = Ipy + Io.
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For I11, Proposition 2.8(iv) yields, for m sufficiently large,

(317) In 3 / 12l e de S AN s 2o o pom S Wl T2 1F L xkmm
For I3, we apply Lemma 2.5 to obtain

(3.18) Ly S Al el fllpostvie S IRl T2 [l fllxbmm.

For I, fix a € (25,2), € = (2 — «)/2, and m to be sufficiently large and apply
Proposition 2.8(iii) to find

B S [ 1050 gl + 10 gllcs) do S A gl v

S IhllLznllgllmrasasen < [AG2n Igllxrmnm.

(3.19)

For I35, apply Lemma 2.5 to find

(3.20) Ipg S [|hllZ2m

llzsomts < J1B)22m 9] xrmm.

Combining the estimates of I11, I12, I21, and Iy, that is, (3.17)—(3.20), and re-
calling that || f||xx.n.m, ||gllx#nm S 1, we find

d
SR S IO

The Gronwall inequality and the fact that h(0,-, ) = 0 imply that h = 0. We deduce
that f = g, concluding the proof. 0

4. Proof of the estimates on the collision operator Q.

4.1. Proof of the refined estimate on K; Lemma 2.4.
Proof. We first show that |v + w| = |v| + |w| for any w € (v —v’)+. The “<”
inequality is clear, so we show the other inequality:
lv+w|* = [v> +2v-w+ |w? = o> + 20" - w + |w|?
1
> Jof? — m|vl|2 — (1 =0)|w” + wf”
> o] = (1= 0)[v]* = (1 = O)w* + Jw|* = Olv|* + Olw|*.
In the second equality, we used that (v —v’) - w = 0, in the first inequality, we
used Young’s inequality, and in the second inequality, we used the hypothesis that

(L=0)v| = |-
Recalling (2.2) and changing variables, we have

v — v/|3+25K9(v, V') & /

v4(v! —v)L

g(w)|v —w| T dw = / g(v 4 w)|w" T dw.
(o)t
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Clearly, it is enough to simply bound the integral on the right hand side. Using that
|v + w| & |v] + |w|, as established above, we see that

(4.1)
|v|'y+25+1
‘/ g(v + w)|w[ 2! dw‘ < ||g||Loo,m/ - dw
(v —v)+ (v —v)+ <U + w>
|w|'y+23+1
Shollen [
(v —v)+ <U>m + <w>m,
|,w"y+2s+1 ‘w|’y+25+1
= ||9||L°°vm/ o o dwtlgll L m T o dw
(v —0)LNBy,, (0)T + (W)™ (w—v)tnpg,, (0™ + (W)™

)
= [lgllpoem (11 + I2) .

For Iy, that is, w € B(,), we use the fact that

‘UJP+25+1

(4.2) < Jw 2 w7,

()™ + (w)m ™

Thus, we see (recall we are integrating over a subset of a two-dimensional hyperplane)
(43) nse [ w72+ gy S (uyrHEHm,
(v'—v)+NB(y)

For I, that is, w € B<CU>, we have

|,w|'y+2s+1

(o)™ + (w)™

|w|'y+2s+1

(4.4) e

< < <w>'y+25+17m'

Therefore, we get (again, recall, we are integrating over a subset of a two-dimensional
hyperplane)

(45) ns [ S P O M)
’ (v —U)LHBZ‘U>

Combining (4.1), (4.3), and (4.5), we obtain the desired inequality, concluding the

proof. ]

4.2. Commutator estimate: Proof of Proposition 2.7. Before beginning,
we require a helper lemma concerning the weighted Sobolev norms. While this result
is somewhat elementary, we do not know of a reference.

LEMMA 4.1. For 5 € (0,1), R >0, £ >0, and D = {(v,v') € RS : [v — /| <
(v)/R}, we have, for any f € H>*(R?),

7\12
(46) L< >Z|f(v)_v/|3(+2)~| d’l)/d’U 5 ||f||§_lg,e

Before beginning we remark briefly about the content of Lemma 4.1. Recall that
I fllgs = [ £ (v) ,{3(125‘ dv'dv and, hence,

[lv—v

IAYA \|2
1 pne = ) e = N 11+ [ ST LTI 3

The difference between the quantity above and the left hand side of (4.6) is now clear.
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Proof. To begin, we use the triangle inequality and that (a + b)? < 2a% + 2b% to
find

/< >5Mdv do </ [(0) () =) F D PH @) =) PO

lu— ,U/|3+29 \v — /328
(v CONICRIE \ — (W) PP,
/ va’|3+25 dv'dv + va’|3+25 dv'dv.

The first term above is clearly bounded above by | f||;s.. simply by enlarging the
domain of integration. Hence, we consider only the second term.

For (v,v") € D, we find, via Taylor’s theorem, that |(v)¢—(v/)|? < (v)2¢2|v—v'|%
Thus,

(e—1) 1
/\ - PO g, 5 [ WUDIE 1,
- D

/|3+23 ‘U _ U/‘1+28

Next, clearly there exists R>0 depending only on R such that D C {(v,v') € RS :
v — | < (v')/R}. Additionally, (v,v") € D implies that (v) ~ (v'). These two facts
yield

‘ ||f( )| / </ n2(£—1) / 2/ ; /
/ |U _ ’U/|3+25 dv'dv ~ <U > |f(U )‘ 5 ) |1) — ’Ul|1+2s dvdv

(/R (

< / (WD P2 < / WY )P = | £l o

which concludes the proof. 0

Proof of Proposition 2.7. We prove this using the characterization of the L?-norm
via duality; that is, fix any h € L?(R?) and we estimate

[ (@) Quo.1) - Qula 0)°1) do
For any v, let R, = (v)/10 and denote the diagonal strip
(4.7) D ={(v,v): Jv—2"| < Ry}.
Recalling (2.1), we rewrite the quantity of interest as

(4.8)
/h(<v>4QS(g,f) — Qs(g, dv—/K v, 0" )h(v) (V) f (V) = W) F()) dv'dv
= [ Ko Do) (@10 - (0 F0) dfae
+ . Ky(v,0")h(v) ((0) () = (Y f (V) dv'dv = T; + L.

We estimate each of I; and I in turn.

Step one: Bounding I>. We further decompose I, as

I, = /Kg(v,v')h(v)@)ef(v') dv'dv — /Kg(v,v')h(v)@’)[f(vl) dv'dv = Iy — Iss.
De .
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We first consider Iss. Applying Lemma 2.3, we find
|h(v)] +2s+1 ¢
(4.10) 22| < |lgllpocm /D m@)v W'Y £ ("] dv'do.

Rewriting the limits of integration, using that [v — v’| 2 (v), and applying Cauchy—
Schwarz in v’ yields

e /
[ o @t = [ o) < [ dv’) o

&, (@) lv—v

pS /(v)v‘zh(v) (/(v')_3_2edv/)1/2 (/(v')l+3+2€f2(v/)dv/)1/2 dv.

Noticing that the integral involving f is a weighted L? norm of f, the middle integral
is finite, and combining this with (4.10), we obtain

3

(4.11)  [Io2| S llgllzesm I flL2e4 /<v>”_§h(v)dv = llgllzeem | fll g2zt

hl|pz.

We now consider I»;. Here, we split the integral as follows:
Iy = / Ky(0,0")h(v) (0) £ (') dv'dv
Den{|v’|>[v|/10}

—|—/ Ky(v,v")h(v){v) f(v") dv'dv
Den{|v’[<[v|/10}

= Io11 + 1212

The estimate of I51; reduces to the estimate Isa:
Lo < / Ky (0, 0" Yh(0) (o) £ () d/do
Den{]v’|2[v]/10}
< / 1K o (0,0 ) ()oY £ ()| ' do
Den{]v’|>[v]/10}
< [ 100 (o) ) 5] '
DC

The last term above is exactly the term we estimate in (4.10); hence,

(4.12) [211] S Mgllzoem || fll L2.evs/zee [[R] 2

Turning to Is12, we get

h(v) <,U>€+'y+23+3—mf(v/)
|’U _ 1)/‘3+25

(4.13) Era] < |lg ]l / o' do.

Den{jvr|<|v]/10}

After applying Cauchy—Schwarz to the integral in v/, a direct computation using that
¢ > 3/2 yields

(4.14)

l4+~+2s+3—m /
/ h(’l})<’l}> IEe. f(U ) d’l}ld’U
Den{jv’|<[vl/10} v —v|

nN—20 3 1 1/2 1/2
< [y < / o ‘i) (fuwrsea)
Br, (v)°NB|y| /10 v — ']

SNz /<U>Z+77mh(v)dv.
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Using that m > ¢+ v + 2, we conclude from (4.13) and (4.14) that

(4.15) (Lar2| S gllzoem | Fll2el[BllLrevs—m S llgllzoeom L f ]| L2l 2ll L2

Combining (4.11), (4.12), and (4.15) we deduce that

(4.16) (2| S I fllz2erllgllzoem

h| 2.

This concludes step one.

Step two: Bounding I;. For notational convenience, let Wy(v) = (v)¢. For
any function ¢ and any velocities v and v’, let d¢ = p(v) — ¥ (v") (we suppress the
dependence on v and v’ as no confusion will arise). Then, we rewrite I as

I = /K v, ) 6f5ngv’dv—|—/ Ky (v,0")h(v) f(v)dWydv'dv = Iy + L.

For I,1, we see, by the definition of the kernel K as in equation (2.2) and get that

~+25+1 ) 2
@i Bl ([ ol aa)

Next, applying the Cauchy—Schwarz inequality yields

(4.18)
’Y+25+1 / 9
</ v — v/ [3+2s |h()[|0f[|0We| dv dv)

h()? | =342 gy sisassny (OF2EOWe?
<(/D<U>2ﬂv—v| * dv' dv /D<v> pty Mmdvdv .

We first consider the integral involving h. Recalling the definition of D (4.7), we find
(4.19)
/ h(v)?|v — o' |32 (0) 2 du'dv < /h(v)2<v>_2”/ lv — o |32 du’ dv
D

Br, (v)
< / h(v)?dv = ||B]2..

Next, we consider the second integral in (4.18). Recall that |v — v'| < R, by the
definition of D, (4.7). Hence, by Taylor’s theorem, we have

[6Wel? S o' — vl (0)* 2
Using this and Lemma 4.1, we find

(4.20)
/ <,U>2(,u+-y+25+1) (5]0)2 (6We)2 dv/dv 5 / <,U>2(H+’Y+25+l) (5f)2
D D

|’U _ ,U/|3+45+2u |U _ v/‘3+2(2571+u)

dv'dv < || fl|3rze—14mpte-

We conclude by combining (4.17)—(4.20) to obtain

(4.21) 1121  llgll o

Bl L2 || f || mr2s -1t mmtesaras.
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2864 CHRISTOPHER HENDERSON AND WEINAN WANG

We consider now I15. Using a second order Taylor expansion of Wy(v) = (v), we
see that

112:/ Ky(v,v"Yh(v) f(v)dWe dv'dv
D

= [ hw) i) K,y (0,) (D) (o=0) + 2 (0=0) - (DIW)le, ,, (v=0') ) d v
frosw [ s ( ; )

= I121 + L1922,

where &, = tv’' + (1 — t)v for some ¢t € [0,1]. For I121, we use Lemma 2.1(iii) to
obtain

(4.22) I1p1 = 0.

For I192, we use that |(D3Wg)|§v,v,| < (0)'72) due to the fact that v’ € Bpg, (v), in
order to find

|12 5/ |h(v)f(v)| |[Kg(0,0")[(0) 2w — o' dv'dv.
R3 BRr, (v)

Thus, we have by appealing to Lemma 2.2
(4.23)
il S lallimon [ IO do < g 00

s

f” L2.6—2+~+2s

Combining (4.22) and (4.23) and the fact that £ +3/2 4+ € > ¢ — 2 + v+ 2s, we find

(4.24) [lh2| S Nlgllzosm [ 1 L2 eer 1] 2

Thus, by (4.21) and (4.24),

1] S (Il eerarave + L fllz2ersmmmrerrsze) gl nooom || 2

This concludes step two and, thus, the proof. ]
4.3. Collection of Qs estimates: Proof of Proposition 2.8(i)—(iv).
4.3.1. Proof of Proposition 2.8(i).

Proof. Let

. 1

(4.25) Ky(v,0") K,(v,v"),

and we have that K, satisfies the conditions (4.2), (4.3), and (4.4) in [34, section 4]
uniformly in v. This allows us to apply their general estimates, which we do now. For
clarity, we adopt their notation as closely as possible.

Let IAJg be the operator defined by replacing the kernel K, with K g in Qs, and let

ﬁg be its transpose. Letting A; be the Littlewood—Paley projectors as in [34, Proof
of Theorem 4.1] and using [34, Theorems 4.3 and 4.6] yields, for any 6,

1Egdifllze S 200 A oo and [|ELAM L2 S 25D Al o,

Also, recall that ||A;¢|| ge ~ 29||As¢|| 12 for any 6, i, and ¢.
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Using all estimates above for any fixed 6 € (0, 2s) yields

1 1
N B WO ] — (g, A f)A hd
ey AR v Z/ Qel: Baf) By

3+v+2s+e
:Z/(ﬁgAif)Ajhdv—&- > /Aif(ﬁZAjh)dv

i<j 0i>(25—0)j

S 2ENAS ol Asgllme + Y 27T Af a0 | A gl o
0i<(25s—0)j 0i>(25—0)j

=D 27O A f oo | Aygll e
irj
18I (25—8) 1/2 L 16i—(25—6Y 1/2
< (D2 A o) (327 Al ) S I arnes gl
i, W]
In the last inequality, we sum first over j, using that 6,2s— 6 > 0 by assumption, and
then recalling that Y, [|A; f[|%2.—0 = || f]|32.—¢ (and similarly for g). d

4.3.2. Proof of Proposition 2.8(ii).
Proof. We adopt the notation and setting of the proof of Proposition 2.8(i). Then

1 R (eS) R [’} .
Q59 Nz = 1Ly fllze < D IgAifllze S D27 Al r2eso

lgll o034y +2s+e i=0 i=0

> ) 1/2
5 (Z HAifHH2s+6> ~ ||f||H25+9.
=0

4.3.3. Proof of Proposition 2.8(iii). In order to establish part (iii) of Proposi-
tion 2.8, we require an analogue of Young’s convolution inequality in the setting of the
weighted Lebesgue spaces in order to handle terms of the form [ g(w)|v — w|?***dw.
These have been well-studied and are understood in some generality (see, e.g., [24]).
However, for the convenience of the reader and because we can get a slightly sharper
estimate (due to the specific form considered here), we include the proof.

LEMMA 4.2 (weighted Young’s inequality). Suppose thatn > 3/2+1n, =3 <n <
0, and £ >3/2+n+ (3/2—n),. If g € L>", then

(4.26) o ([t - ﬁ|"dﬂ)2 dv < gl

Proof. For succinctness, we let A(v) = |v|" and, without loss of generality, we
assume that g > 0. First, we decompose the integral on the left hand side yielding

/(11)_25(9 x A)? dv < /<v>_%(/B . g(v")A(v — ") dv’)2 dv

" /<U>2€(L§v(v) o)Al — ) dv’)Q dv="nh+1>

For I, we use the Cauchy—Schwarz inequality to obtain

I < /<U>—zé(/Bv/w(v) g(v)?A(v — ") dv’) (~/B|U/10(v) A(v =) dv’) dv
S /<U>72”3+”(/B ( )g(v’)zA(v — ') dv’) dv.
ol /10(v
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2866 CHRISTOPHER HENDERSON AND WEINAN WANG
For v" € Bjy|/10(v), we have (v') ~ (v) and v € Bj,/|/2(v"). Therefore,
L< / ()2 (o)~ Ay — o) do do’
By 72(v")
< / ()2 )2 / Ao — o) dvdv' < / g2 () 2 g < gl
Bory2(")

where we used that —¢+ (3+n) < n. For I, we apply the Cauchy—Schwarz inequality
to find

I < /<v>2£(/BCv/10(v)
Slalen [0 ([

We conclude by using the conditions on n and ¢. These were also used in the last
inequality. Combining the estimates of I; and I finishes the proof. ]

<U/>2n|g(vl)‘2 dv/)(/ <U/>72n|1171)/|2n d'l)l> dv
B0
e d S gl [ @O,
lvl/10%"

We are now able to prove Proposition 2.8(iii).

Proof of Proposition 2.8(iii). The proof is somewhat close to that of [28, Propo-
sition 3.1(i)], so we omit details where steps are similar. We may, without loss of
generality, assume that a € (0,1) U (1,2). If not, we may simply take o/ < « such
that o’ € (0,1) U (1,2) and use that C¢ — C®'. Finally, the proof is simpler when
a < 1; hence, we consider only the case o € (1,2).

We begin with an annular decomposition: let Ag(v) = Bak|y|(v)\Bak-1y|(v) and
write

4.27 s(g, f) = Ky(v,0")(f(v) — f(v)) dv'.
(4.27) Qulo. f) k%/m) (0,0)(f() — F(0)

Let i=n+5/2+(3/2—n)y +a+vy+e.
Step one: Estimating the sum for any k£ < 1. By using a Taylor expansion,
we see

f@) = f) = (D)) = (D)) - (V' = v) + (Df)(v) - (v" =),
where &, ,» = tv' + (1 — t)v for some t € [0, 1]. Thus, by Lemma 2.1(i) and (iii),

‘/ Ko(v,0)(f (') = f(v) dv'| < <v>7‘1(2k|vl)a723|\<‘>ﬂDf||ca/\g(v’)l\v*v'lvws dv'.
Ap@)

Recalling that o — 2s > 0, by assumption, we have that |v|*~2¢ < (v)*~25, Hence,

/ ( /A (v)<v>"Kg(v,v’)(f(v’) - f(v))dv’)Qdy

2
s npgfE, [y2emizee (flg)o - o)

We are now in a position to apply the weighted Young’s convolution inequality
Lemma 4.2. Indeed, by construction, ¢ := g —n — 1 — a + 2s and n satisfy the
conditions of Lemma 4.2 so that

/ (/A ( )<U>an(v7v/)(f(U') — f(v)) dv’>2 dv < 22K1+a=29) | (VD £, g2
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Step two: Estimating the sum for k£ > 0 when |[v'| > (v)/2. By Lemma 2.1(i),

[ K@) - S| S @ e [ G
Ap\B(v) /2 Ap\B (v /2

< ()™ £l e (25(0) (/|g Yo - de).

Then, similarly to step one, we apply Lemma 4.2 to obtain

2
()" Koo, ) (f0') — F0))dof| dv
/ kzm/f“k\me
2
S (5272 120 ([ latllo = v a' ) do S 11w ol

k>0

where we used n > 3/2+ v+ 2s and m > 3/2+ v+ (3/2 —n).

Step three: Estimating the sum for & > 0 when |v| < 10 and |v/| < (v)/2.
This is similar to step one. The benefit is we are integrating over a compact set in v.
As such, we omit the proof and simply state that

2
/Bm <kzzo/AmB<v>/2<v>an(v’v )= ) “

2
- / ( / (0" Ky (0,0 ) () — f(v))dv’> v < [ DS 2 llgl2 00
Bio B(vy/2\B|v|/2

Hence, we proved step three.

Step four: Estimating the sum for £ > 0 when |v| > 10 and [v/| < (v)/2.
For any |v| > 10,

S [ K6 - s

k>0

< / K gy (0, ) f ()] do’ + / Ky (0,0)f()|dv' = I + I.

(v)/2 Bvy/2

For I, we notice that B,/ € (Bayy(v)\Byy/a(v)) due to the fact that |[v] > 10.
Then by Lemma 2.1(i), we have

/ K|g‘('u,v/)dv'§/ Kg (v, o) dv' < /\g )Jv — |"’+2S dv'.
Bvy/2 By () (V\B(y) /4 (v)

Applying the weighted Young’s inequality Lemma 4.2 yields

2
Jorsas [wreop ( [lawito = dv’) v
2
Sl [y ( [ls@ito = pe dv’) do < 12

as desired. For Iy, the proof is omitted as it is exactly as in [28, Proposition 3.1(i)].
This finishes the proof. 0

gHiz,n,
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4.3.4. Proof of Proposition 2.8(iv).

Proof. Without loss of generality, we assume that f,g > 0. Let F' = (v)"f(v).
We see

/ ()" Qu(g. ) f dv = / FQ.(g, F) dv+ / Fl(0)"Qu(g. f) — Qu(g, F)do =T, + I,

We further decompose I into three parts:

I =— /[F(v) — F(")* K, (v,0") dv'dv + //[Kg(v,v’) — K,(v',0)|F(v)F(v') dv' dv

— /[Kg(v, V') — K (v, 0)]F(v')? dv' dv = I1 + Lo + ©13.

The first term, I11, has a good sign (and is used for cancellation below). The integrand
in 15 is antisymmetric with respect to the “pre-post change of variables” (v,v’) +—
(v',v), so I1a = 0. To estimate I;3, we use Lemma 2.1(ii). Hence, we find

EEIpS /F(v’)/g(zﬂz — V[T dzdv’ < gl | Fllzz = gl | fllz2n-

Here we used that m > 3 4+ v+ 2s and v + 2s < 0. This concludes the bound on I;.
For I, we apply Young’s inequality to find

= [ F@0)K, (0, 0)(0)" = )" '

= /(F(U) — F()f (V) Kg(v,0")((v)" = (')") dv'dv
+ [ PO K, (0 ()" — ) o

<yl [ PO - @) dds

+ / F) F(0) Ky (0,0) ()" — (oY) do/d,

Define the last two integrals to be I5; and I35. The argument for 57 is similar to and
easier than Iso; hence, we omit it.
We now bound Is3. To do so, we split the integral into domains of integration
D, DN {|v|] < 10|v'|}, and D° N {|v| > 10|v'|}, where D = {(v,v') : 10|v — V'] <
min{(v), (v')}}. We denote the resulting integrals Ia1, Io22, and Iaa3, respectively.
Considering 5o first, we use a Taylor expansion, Lemmas 2.1(iv) and 2.2, and
the fact that (v) ~ (v') to find, for £ between v and v’,

|T221 S/

F(v’)2
(v

- / Ky(v,0") [(v —v) - v'n(@)" + T(v —')
> B<1,/>/2(’U/)

: (Id —&-ﬂ?f) (v — 1/)} dvdv’
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% / F(U;)Q ’ / o) Ky(v,v") (v —0')dv|dv’

/ / Ky(v,v")|v —v'|*dvdv’
Boryj2(v')
<[5 / g’ — v dwdy
F(v')?
+/<1E/>2)s/9(w)v’w|”+25dwdv’ < Nlgllzoorm 1 £]20.n.

Above, we used that m > 3+~ + 2s.
Next we consider Ios. In this case (v) < (v'); hence, using that Lemma 2.1(i)
and that m > 3 + v + 2s yields

[I202| S / / v")dvdv'

(v’>/2

(' :
S [T [ ol w2 duas < gl | 1

Finally, we handle Io3. Indeed, we use that (v') < (v), the definition of D, and
Lemma 2.4 to get

/ PO F0) Ky (0,0) ()" — ()" dofdo
Den{fo]>10]v|}

< F(v v,v") (V)" dv’dv
Sy FO OO0

< / F') f(v’)wff (v, ') {0)"™ dv'dv
~ Jpenulz10/vy (v/)3+2s  TINT

< Jlgllzm / F) f() /{ o T S gl
10|v"|<|v

In the last inequality, we used that m > n + 6 4+ v + 2s. This concludes the proof. O

4.4. Proof of Proposition 2.9. In order to prove Proposition 2.9, we first state
a useful estimate that follows from work in [34].

LEMMA 4.3. For any measurable g, if v+ 2s <0 and € > 0, then

(4.28) | [ ol = 17 dv'd] S gl 1y

Proof. Recall that K, defined in (4.25), satisfies the conditions (4.2), (4.3), and
(4.4) in [34, section 4] uniformly in v. Thus, applying [34, Lemma 4.2], we find

| [ Ear = g7
7l

= ||gHL°°v3+'Y+2s+e

/Kg(v,v’)(f’ — )2 dv'dv| < ||gl|peesvizete

which concludes the proof. ]

Now we prove Proposition 2.9.
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Proof of Proposition 2.9. We consider only the case 0 = 9,, for i € {1,2,3}.
The case when 9 = 9, is similar and simpler as it commutes with (v)2". First, let
F = (v)"f. Then
[t auta. nos deds = [100Qula. ) - Qulg. )" Nlte)"0 duds
- [ Qula Py o) -2 duds
+ /QS(Q,F)aFdUd(E = Il + .[2 + Ig.

For I, we apply the commutator estimate Proposition 2.7 to get

1S [l ggmosrase + 15l gze-somssasnsar)

|g||L,LO,0’m ||afHL12)’" d.’I}'

(4.29) < /(||fHL12),n+3/2+e + ||f||Hgs—1+u,u+n+w+2s)

S llgllzeem (

9l Lo [ f |z dx

| fllern.

To estimate I3, we apply Proposition 2.8(i) with § = 1ifs > 1/20or =2s—1+p
if s <1/2 to find

215 [ 1l

§/HgHmml\flngmIIfHHgsfwfldfc§ gllzoom LF Wl zo.n | f | mr2e-o.m-1.

| Fllzamsormve + 1l zs-sbmmsnsnsan)

L°“"HF|

HY fnvi(v>"_2||H5379 dx

(4.30)

Using the choice of 6, the right hand side above is less than or equal to (up to a
constant) the right hand side of (4.29).
We decompose I3 into two parts:

I3 = /Qs(g,F)adedx
= /Kg(F’ — F)(OF — (OF)") dv'dvdzx
+ /(Kg - K;)(F’ — F)OF dv'dvdx = I31 + I35.
For I3;, we manipulate by integration-by-parts and apply Lemma 4.3 to find
1| = ‘ / Ky(0+8)(F — F)? du’dvda:( - ] / (0 + &) K, (F' — F)? dv'dvdz
— ’ /Kag(F' _F)? dv’dvd:c’ < / 10| oot 2ese | F 37 dee

:/||ag||L$o,3+’y+25+e

Fix the conjugate exponents p = 3/2(1 — s) and ¢ = 3/(2s + 1). Applying Holder’s
inequality and the Sobolev embedding theorem yields

F3gpede.

I31] S 11091l 1o o5 tzeve | £ 20 ggoun

5 ||89||Hi25*1/2>+Hg/2+e,3+w+2s+e ||f||§q};sH5)"

F3m.

SJ ||ag||H3/2+e+(2571/2)+,3+»y+2s+5

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/20/23 to 150.135.174.99 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

LOCAL WELL-POSEDNESS FOR THE BOLTZMANN EQUATION 2871

The term I3o is considered in [28, Proposition 3.1(iv), estimate of Is]. A close
inspection of the proof shows that it applies in our setting. Hence, for simplicity, we
cite directly that, for any p € (s, min{2s,1}),

2| S gllonste | fll gontsrzterzaeny | fllmrm.

Combining the above estimates of I3; and I35 together yields
(4.31) 13| S 109/l zrs—5 [ 7100 + [lgllcmsse

The proof is finished after combining (4.29), (4.30), and (4.31). d

Fll gonssrzservrzsiny || fllan.

5. A simple proof of local well-posedness when 0 < s < 1/2: Theo-
rem 1.2. Here we provide a short proof of local well-posedness when s € (0,1/2),
taken as a standing assumption throughout the section even when not explicitly stated.
As many of the technical details are exactly the same as in the proof of Theorem 1.1,
we only outline the main points. As the proof is the same for £ > 1, we show only
the £ = 1 case. Thus, we simplify the notation using Xmom jp place of X Lmo,mo
(the definition of X*™0:™1 is given in (1.5)).

The first step is to obtain a weighted C! estimate of Q.

LEMMA 5.1. Let mq > 3+v+2s and mq sufficiently large depending only on mq,
s, and y. The following inequality holds:

1Qs(g: Pllzeema S Ngllpoem ([ fllzoemo + (Vo fllzeem).

Proof. Let p=1ify < —1and p = _1”__22; otherwise. Fix r = (v)#/2. We first
decompose the integral into two parts:

|Qs(g, £) ()™ =/|<v>"“(f(v')—f(v))Kg(v,v')\dv’ <L+ I,

where I; and I5 are the integrals over B,.(v) and B,(v)¢, respectively. Applying
Lemma 2.2 and using that if £ € B,.(v), then (£) ~ (v), we bound I; as

(5.1)
L < [V f|lzem: / o = ' | K g1 (0,6 )" < [V fl] oo 72 / lg(w) o — w] "+ dw.
v)

We are finished after bounding the integral by (v)772%||g||L=.m0 and using the defini-
tion of 7.

The first step to handle I5 is to split it into the parts containing f(v) and f(v')
via the triangle inequality. Call these integrals I5; and Iss, respectively. Using item
(i) again, we see that

Iy :/ <U>7R1|f(1})|K|g|('U,v/)dv/ S ||f||L°Cv"”0 <1)>*7R07,.72s/g(z)|v . Z|’Y+28d1}l.
B, (v)°

Bounding the last integral using ||g||ze: and using the definition of r finishes the
estimate of Ia;.

The last integral, that of Iss, requires further decomposition into Iso; and I
over the domains By (v)® N B, , and By(v)® N Byyy /2. The former is easy to handle
using

[fF @] < 1 fllzoesmo (0) 770 S (1 f | zoeimo (v) ™0,

where we used that (v') 2 (v). The rest of the bound follows exactly as for Io;.

~
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As for Izo, notice that for such v, |[v —v'| &~ (v). We use this, along with
Lemma 2.4, to find

vy f (v —m
s & gl [ Bt persema
(5.2) B (v)°NB(y) /2
S llgllzeems / ) f(")dv" < lgllzoesms [1f ] osomo -
BT(’L))CQB<U>/2
Combining this with the above estimates finishes the proof. O

Next, we give the key estimate for constructing a solution. To that end, we present
a proposition that plays the role of Proposition 3.1 above. Recall the space Y™
from (1.5).

PROPOSITION 5.2 (propagation of the weighted C' bounds). Fiz any m; >
3 4+ v+ 2s and mq sufficiently large depending only on my, 7, and s. Suppose that
fin € X™0m1 gnd g R € }771310’7"1. If f solves (3.2), then there is a constant C' > 0
depending only on m, s, and ~y such that

T
| llgmams S exp{C / l9(t) g ms @ty (finll mams + Tl Rlggram )

Proof. First notice that the proof of the bound

. T
(53) 1l oryzoemoy S €0 W00t ([l o g, + / IR o dt)

is exactly the same as the (brief) proof in [28, Proposition 3.1] and, hence, is omitted
here. We note that it is a simpler version of the proof of the bounds on the derivatives
that follows.

We now focus instead on bounding V. f. Fix ¢(t) to be an increasing function
to be determined such that ¢(0) = ||V finllLeem:, and let F(t, z,v) = ¢(t)(v) ™.
Clearly we have that

(5.4)  F(0,z,v) > max {|0y, fin(z,v)|, |00, f(x,v)| : i € {1,2,3}}  for all (z,v).

Let ¢y be the first time that the above inequality is violated. If ¢y does not exist, we
are finished. Hence, we argue by contradiction assuming that there exists ¢y € [0,T].
Without loss of generality,! we may assume that there exists (g, v9) € T? x R3 such
that equality above holds in (5.4) at the point (¢o, 2o, vp). Assume momentarily that

(55) F(t07x07vo) = 8x1f(t0,$07’00)~

The cases where ¢ = 2,3 are clearly analogous, as is the case when a negative sign
appears in the equality (i.e., F' = —39,, f). The case when the derivative is in the v
variable is slightly more complicated as new terms arise, but these new terms can be
handled in a straightforward way.

ndeed, the only technical issue here is if the inequality is violated at |v| = co. One may sidestep
this by simply including a cutoff as a multiplicative factor of the initial data and of R. It then follows
from standard facts about the heat equation that f and its derivatives decay as a Gaussian at high
velocities. The cutoff can be removed by a limiting procedure.
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Since F' — 8., f > 0 on [0,%y] x T3 x R3, we find
(5.6)
O2at(F_azlf)+U'vz(F_azlf)_(€+(]—_J))Ax,v(F_aamf)_UQG,J(gvF_aamf)‘

We use this to derive a contradiction.
On the one hand, an explicit computation for F', along with [28, Proposition
3.1(v)], yields
(5.7)
O F+0- Vo F—(e4(1-0)) Az, 0 F=0Qc 5(9, F') = ¢'(vo) ™™ —Cp(1+]lg]| Loerm ) (v0) ~™,

where we used that m; > 3 + v + 2s, a condition of the quoted result.
On the other hand, using Lemma 5.1, we find

(5.8)
8t8z1f +ov- vzazlf - (6 + (]- - U))Az,vaxlf - 0Qe,§(ga azl f) = UQs,é(aamga f) + az1R

S (lgto)ll gmoumy ([[fllzeemo + [V fllzoema) + [ R(E0) | gmo.mi ) (vo) ™™
< (l9() | gmoms (1fllLoemo + @) + [|R(E0)]| gmo.mi ) (v0) ™™

Using (5.3), it is clear from (5.7) and (5.8) that we can choose ¢ to obtain a contra-
diction in (5.6). This yields a contradiction. Hence (5.4) always holds, finishing the
proof. ]

As usual, once a priori estimates are established, the construction of a solution
follows easily. In fact, in this case, the solution can be constructed exactly as in [28].
Indeed, one can use the method of continuity as well as a smoothing argument in order
to establish the existence of solutions to the linear problem. After this, an iteration
yields a solution to the nonlinear problem. As it is exactly the same as in [28], we
omit the details.

For uniqueness, one can actually simply use an L2-based argument. Indeed, a
quick check of the arguments in subsection 3.2 reveals that they can be adapted in a
straightforward way to use only the Y™ ™1 norms of two potential solutions f and
g. Actually, the proof is easier in this case as there is no need to use the Sobolev
embedding theorem.

The above concludes the proof of Theorem 1.2.
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