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Abstract

All-electrical driven magnetization switching attracts much attention in next-generation
spintronic memory and logic devices, particularly in magnetic random-access memory
(MRAM) based on the spin—orbit torque (SOT), i.e. SOT-MRAM, due to its advantages of low
power consumption, fast write/read speed, and improved endurance, etc. For conventional
SOT-driven switching of the magnet with perpendicular magnetic anisotropy, an external
assisted magnetic field is necessary to break the inversion symmetry of the magnet, which not
only induces the additional power consumption but also makes the circuit more complicated.
Over the last decade, significant effort has been devoted to field-free magnetization
manipulation by using SOT. In this review, we introduce the basic concepts of SOT. After that,
we mainly focus on several approaches to realize the field-free deterministic SOT switching of
the perpendicular magnet. The mechanisms mainly include mirror symmetry breaking, chiral
symmetry breaking, exchange bias, and interlayer exchange coupling. Furthermore, we show
the recent progress in the study of SOT with unconventional origin and symmetry. The final
section is devoted to the industrial-level approach for potential applications of field-free SOT
switching in SOT-MRAM technology.

Keywords: spin—orbit torque, perpendicular magnetic anisotropy, field-free switching,
symmetry breaking, magnetic memory
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Future perspectives

Magnetic field-free approaches are important for next-generation
spin—orbit torque driven magnetic random-access memory (SOT-
MRAM) based on perpendicular magnetic anisotropy (PMA). The
symmetry breaking is crucial to realize the deterministic field-free
SOT switching, such as time reversal symmetry breaking by mag-
netic field, mirror symmetry breaking, chiral symmetry breaking
and crystal symmetry breaking. These inspire exciting possibilit-
ies for field-free SOT switching by breaking more symmetries in
the future: rotational symmetry breaking (magic angle), etc.

1. Introduction

In conventional electronics, only the charge degree of free-
dom of an electron is utilized to construct devices. The elec-
tron also possesses a spin angular momentum closely asso-
ciated with the magnetic moment and is called spintronics
[1]. The research field of spintronics exploits both charge and
spin degrees of freedom of electrons to provide additional
functionalities, such as non-volatility and reduced power con-
sumption, compared to conventional electronic devices. Since
1988, scientists have discovered the giant magnetoresistance
effect in multilayers [2, 3]. After that, the interaction between
charge transport and electron spin in magnetic nanomaterials
has become an essential factor in condensed matter physics.
Its research not only laid the foundation for the emerging
discipline of spintronics but also promoted the prosperity of
materials science to a large extent and has shown an ever-
increasing application value and economic value, such as in
hard-disk drive technology [4]. With the discovery of the tun-
nel magnetoresistance effect, magnetic tunnel junction (MTJ)
has become more and more widely used in the spintronic
industry [5-10]. Among them, the MTJ-based MRAM has
become a research hotspot for its high endurance, low power
dissipation, and high reading/writing speed.

In 1996, Slonczewski et al theoretically predicted the
spin-transfer torque (STT) effect [11, 12]. The STT-MRAM
designed and manufactured by the STT effect utilizes the elec-
trical current to drive the magnetization switching, a new type
of operation method of MRAM [13]. In recent years, research-
ers have proved that spin-orbit torque (SOT) can also be used
to switch the magnetization direction. Compared to STT, SOT
not only improves the switching speed but also separates the
read and write channels, which effectively improves the endur-
ance of the tunneling barrier for MTJ [14].

Although SOT is generated due to the accumulation of
spins at the FM/NM interface, the detailed microscopic origin
of the spin current generation is under debate and research.
Two main spin—orbit coupling (SOC) phenomena are attrib-
uted to spin accumulation: bulk spin Hall effect (SHE) and
interface Rashba-Edelstein effect. The SHE was theoretic-
ally predicted in 1971 by Dyakonov and Perel [15, 16], then
revived by Hirsch in 1999 [17] and observed directly by using
Kerr microscopy in 2004 [18]. The SHE exploits the bulk
SOC in the NM layer to convert an unpolarized charge cur-
rent into a pure spin current and can be represented by using

the equation: Jg = %GSH (Jc x o), where Jc is the applied
charge current, Jg is the spin current generated by the SHE,
and o is the polarization of the spin current. In addition, A,
e and fsy denote the reduced Planck constant, elementary
charge, and spin Hall angle (SHA), respectively. However,
the Rashba-Edelstein effect (also called inverse spin galvanic
effect [19]) mainly originates from an interfacial SOC phe-
nomenon [20, 21] that arises in structures with broken inver-
sion symmetry. Regardless of the potential origin of spin accu-
mulation at the NM/FM interface, due to this non-equilibrium
spin density, the SOT applied on the magnetization of adja-
cent FM can be decomposed into two components [22-24]:
the damping-like (or Slonczewski) torque 7pp. ~ m X (o X m)
and the field-like torque 7¢, ~ (o0 X m), where m and o rep-
resent the directions of the magnetization and the spin polar-
ization, respectively. SOT-driven magnetization switching is a
bipolar-type switching, where the current polarity needs to be
reversed for the back-and-forth switch of up and down magnet-
izations, different with the polar behavior in the magnetization
switching process induced by the optical or thermal pulses. At
present, the MTJ device with PMA is designed as the unit cell
SOT-MRAM due to its high thermal stability. However, for
the perpendicular magnet, it is generally necessary to apply
a magnetic field in a specific direction to break the symmetry
and determine the perpendicular direction of the magnet due to
the in-plane effective field (both damping-like and field-like)
from SOT [25-29]. The requirement for the assistant field is
a major obstacle for the application of SOT in the industry.
Therefore, magnetic field-free SOT switching has become one
of the key bottlenecks for the realization of SOT-MRAM [30].
In this review, based on the symmetry analysis, we mainly
focus on several field-free approaches for deterministic SOT
switching, such as lateral structural symmetry breaking, chiral
symmetry breaking, exchange bias and interlayer exchange
coupling, SOT with unconventional origins/symmetry, and the
industrial approach for applications.

2. Lateral structural symmetry breaking

Field-free deterministic SOT switching with lateral structural
symmetry breaking relies on the introduction of a current-
induced out-of-plane effective magnetic field. The direction of
this new field (4-Z or —2) is determined by the current polar-
ity. Consequently, it breaks the symmetry between up/down
magnetization states and facilitates field-free switching. In
conventional heterostructures, the inversion symmetry is only
broken along the stack deposition direction (z axis). How-
ever, with lateral structural asymmetry, symmetry is also
broken with respect to the x—z plane, and the only existing
mirror symmetry is along the x axis (current direction), as
shown in figures 1(a) and (b). Consequently, current-induced
effective SOT fields should be transformed as pseudo-vectors
only under reflections in the y—z plane, which allows for the
introduction of perpendicular effective fields H,FL. Revers-
ing the current direction in this case results in the reversal of
H_FL direction [31].
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Figure 1. Lateral structural symmetry breaking for field-free deterministic SOT switching. (a) Broken mirror symmetry in the lateral
direction allows for the creation of effective perpendicular magnetic fields H,F" [31]. (b) Measurement configuration: current is applied
along the x direction, and structural symmetry is broken along the y direction, i.e. current and wedge directions are perpendicular to one
another [31]. (c) Close correlation observed between H.'" and the magnetic anisotropy gradient dH/dy. (a)—(c) Reproduced from [31], with
permission from Springer Nature. (d) Similar results are obtained using a wedge-shaped ferromagnet, CoFeB in this case. A correlation
between the anisotropy gradient and H.™ is also found in this work. Reprinted from [32], with the permission of AIP Publishing.

(e) Current-induced effective perpendicular magnetic fields created using a wedge-shaped SOC layer Mo. Reprinted figure with permission
from [33], Copyright (2018) by the American Physical Society. (f) Creation of effective perpendicular fields using a thin asymmetric
light-metal insertion. Reprinted with permission from [34]. Copyright (2020) American Chemical Society.

In experiments, introducing a wedge-shaped layer in
the heavy-metal/ferromagnet/oxide heterostructure yields an
effective structural symmetry breaking. In the earliest experi-
mental work in this regard, a wedge-shaped oxide was depos-
ited by oblique angle sputtering without substrate rotation
[31]. A linear correlation was found between H.™™ and the
applied current density, with the slope defined as 3 = 61;?.
The authors also found a very strong correlation between
and the PMA gradient along the wedge direction 68—};", with Hy
defined as the effective anisotropy field (figure 1(c)). Later on
it was shown that similar results could be obtained by using a
wedge-shaped ferromagnet [32], SOC layer [33, 35, 36], and
even a thin wedge insertion layer [34, 37, 38], as shown in
figures 1(d)—(f). H,F" generically appears in all these works,
although their material systems are widely different, which
points to the important role of symmetry breaking. In addition
to H.F', the conventional SOT effective damping-like (H,P")
and field-like (HyFL) fields are also present in such heterostruc-
tures. The competing effect of all these fields in the switching
process has also been studied. It has been shown that at zero

external field, the switching process is driven by H.FL; and for
large external fields, switching is determined by the conven-
tional SOTs, especially H,°™ [39].

Several mechanisms have been proposed to explain the
microscopic creation of H.F' and the field-free switching
process. (a) Interfacial Rashba-Edelstein effect [31, 34]: by
breaking the inversion symmetry along the lateral direc-
tion, microscopic effective electric fields are allowed along
the y axis. According to the Rashba SOC Hamiltonian
Hg = S%ay,. (E x p) [19, 21], out-of-plane effective magnetic
fields are then expected upon the application of a charge cur-
rent along the x axis. Here, ag, fi, op, E, and p are the Rashba
parameter, reduced Planck constant, Pauli matrices, effective
electric field, and electron momentum, respectively. (b) Tilt-
ing of the poly-crystalline structure or anisotropy axis because
of oblique angle deposition of the wedge layer [33, 40, 41]: a
possible tilt of the crystal structure can lower down the struc-
ture’s symmetry and allow for the creation of perpendicular
effective fields, similar to the effect observed in WTe, [50].
Alternatively, if the magnetic anisotropy axis is tilted away
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Figure 2. Chiral symmetry breaking determined SOT switching for the lateral magnetization gradient. (a) DMI and SOT in the
heavy/metal/ferromagnet system. (b) For the lateral magnetization gradient, the SOT exerts the non-collinear spin textures, where the
chirality of the spin textures is performed by the DMI, leading to the deterministic switching. (c) The composition gradient of GdFeCo can
generate a saturation magnetization gradient along the y direction (V,Mj). (d) Chiral symmetry breaking determined field-free SOT
switching in Ta/GdFeCo structures with a V, M. (e) Under 20 mA currents, the anomalous Hall loops are shifted to the opposite
directions, indicating the z-component effective field H.°" from chiral symmetry breaking. Reprinted with permission from [49]. Copyright

(2021) American Chemical Society.

from the z axis, the symmetry between up/down magnetiz-
ation states is effectively broken and field-free SOT switch-
ing could be realized by the conventional damping-like SOT
scenario, due to the in-plane component of M. A tilt in the
anisotropy axis could be realized using the sputtering pro-
cess [40], or by partially covering the ferromagnet with an
oxide layer [42].

From the applications point of view, using an in-plane
structural asymmetry is supposed to be not desirable for wafer-
scale fabrication if an inhomogeneity of the magnetic prop-
erties exists in the film. However, it has been shown that by
using an asymmetric light-metal insertion, the magnetic aniso-
tropy, coercivity, SOTs, switching current density could all
be almost uniform across the whole sample, where the key is
the low SOC of light metals [34]. Furthermore, the scalabil-
ity of using wedge samples for field-free switching has also
been studied, where the same 3 values are obtained even if the
device dimensions are shrunk by two orders of magnitude [34].
One of the interesting questions that still need to be addressed
is the relationship between the (3 values and the slope of the
wedge layer. This is potentially important for further reduction
of the wedge layer’s thickness difference across the wafers and
paving the way for the practical application of this strategy for
field-free switching.

3. Chiral symmetry breaking

Besides mirror symmetry, chiral symmetry is very important

in magnetic systems. The chiral symmetry could be broken by

the non-collinear Dzyaloshinskii—-Moriya interaction (DMI)

[43-46], which leads to the chiral spin textures such as the

Néel-type domain walls and skyrmions [47, 48]. The Hamilto-

nian of DMI can be written as Hpyy = > —Dj - (m; x my),
ij

where Dj; is the DMI tensor between m; and m;. For a mag-
netic system with a gradient of magnetic properties, such as
in-plane saturation magnetization (M) gradient in ferrimag-
netic GdFeCo, which can be realized by a composition gradi-
ent due to the antiferromagnetically-coupled Gd and CoFe
lattices, when we apply a current, the SOT will exert a spin
texture because of Hsor = Zisﬂj, where h is the reduced
Planck constant, ¢ is the thickness of the magnetic layer, and
e is the elementary charge. Figure 2(b) shows the four pos-
sible configurations between the current and the spin tex-
tures, for a given DMI, such positive DMI in Ta/GdFeCo sys-
tem prefers the right-hand chirality due to the lower DMI
energy, and thus select the +M, and —M_ magnetizations for
+J. and —J., respectively, i.e. deterministic SOT switching
is achieved [49].




Mater. Futures 1 (2022) 022201

Topical Review

(a)
VM,

/—’y

2} —— Field-free

-10 0 10 20
6 -2
J, (108 A cm™)

t e MgO
A HSOT CoFe
VMS 1‘ / CoFeB

X
2} ——Field-free
Q-0+0-0-0-0:0-0-0-0 #0:0-0+0+:0-0
1t
@ 0
.
=
\d
Al
0-0+0-0:0:0:0°0-0-0-0°0-0+0-0-0-0-
21
-40 -20 0 20 40

J, (108 A cm™®)

Figure 3. (a) For the vertical magnetization gradient in Ta/GdFeCo, the chiral symmetry of the SOT-induced spin textures along the
thickness direction can be broken by the DMI, and thus contributes to the deterministic switching. (b) Even for the CoFeB/CoFe bilayer
structure with a small M gradient, the chiral symmetry breaking determined SOT switching is still robust. Reprinted with permission from

[49]. Copyright (2021) American Chemical Society.

In order to form the saturation magnetization gradient
VM, we co-sputter the Gd and FeCo in the opposite direction
by the same speed so that a composition gradient is formed
while the thickness is still uniform, as shown in figure 2(c).
In this way, the non-collinear spin textures are formed dur-
ing the gradient SOT strength, and thus the interfacial DMI
breaks the chiral symmetry and then determines the field-free
SOT switching, as shown in figure 2(d). The SOT-induced
anomalous Hall loop shift results are shown in figure 2(e),
and the R,,—H curves are shifted to the opposite directions for
420 mA currents, indicating an out-of-plane effective field by
a combination of chiral symmetry breaking and SOT, which
supports the field-free SOT switching.

However, the lateral magnetic gradient leads to the var-
ied device performance in the wafer scale, and thus makes
it not practical for industry-level applications. Therefore,
we design the vertical magnetic gradient in Ta/GdFeCo and
Ta/CoFeB/CoFe/MgO with an increasing Mg, as shown in
figures 3(a) and (b). In this case, the DMI determines the chir-
ality of the SOT-induced spin textures along the thickness dir-
ection, and thus contributes to the deterministic SOT switch-
ing. It is worth noticing that the conventional interfacial DMI
contribution is zero for the vertical spin textures, and the inter-
layer DMI plays the important role in this case, which has been
discovered recently by the chiral interlayer exchange coupling
phenomenon in multilayer systems [51-56].

4. Field-free switching by exchange-bias
and interlayer exchange coupling

One approach to realize deterministic magnetization switching
without the assistance of an in-plane external magnetic field
is harnessing the exchange-coupling effect on an FM layer
in the in-plane direction that can break the mirror symmetry.
Such in-plane exchange-coupling can be achieved by inter-
facing the FM layer with an AFM layer, where an exchange
bias will be established on the FM layer. Fukami et al demon-
strated that in a Co/Ni/PtMn multilayer system, after field
annealing in the x-direction, the exchange bias from the AFM
PtMn layer can tilt the perpendicularly magnetized Co/Ni lay-
ers adjacent to the PtMn layer towards the in-plane direction,
as illustrated in figure 4(a) [57]. The exchange bias can be
observed from the magnetic hysteresis loop in the x-direction
by SQUID measurements as shown in figure 4(b). Meanwhile,
the SOC from PtMn (SHA~+0.1.) can exert SOT that is suf-
ficiently large to switch the magnetization in the Co/Ni layer
after applying current pulses. Due to the in-plane exchange-
bias that breaks mirror symmetry, magnetization switching
at zero field is observed, and the switching loop vanishes
when the exchange-bias is compensated by an external field
of —10 mT (figure 4(c)). Additionally, by applying current
pulses with different amplitudes, the portion of the reversed
magnetization can be controlled to exhibit a memristor-like
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Figure 4. Exchange-bias and field-free magnetization switching in FM/AFM structures. (a) Schematic illustration of an exchange-biased
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AFM PtMn layer that breaks mirror symmetry [57]. (b) Magnetic hysteresis loops of the Co/Ni/PtMn structure along x, y and z directions
after field annealing in x-direction [57]. An in-plane exchange-bias is established as indicated by the green curve (c) SOT switching of the
Co/Ni/PtMn structure under different external magnetic fields and at zero field. (a)—(c) Reproduced from [57], with permission from
Springer Nature. (d) Schematic illustration of a CoFeB/IrMn/CoFeB system. (e) Field-free SOT switching of the CoFeB/IrMn/CoFeB
structure after field annealing. (d), (e) Reproduced from [58], with permission from Springer Nature.

switching behavior. Field-free magnetization in the FM/AFM
exchange-biased system is also demonstrated by Oh et al and
Zhao et al in CoFeB/IrMn structures. However, magnetiza-
tion switching loops with incomplete switching are observed
[58-61]. The partial magnetization switching is not desirable
and can result in critical issues in the application. Oh et al
pointed out that a weak exchange bias from the AFM IrMn
layer could be responsible for the incomplete magnetization
switching. To enhance the exchange-coupling, an additional
CoFeB layer is introduced beneath the IrMn layer, which con-
tributes to field-free switching with complete switching loops
(figures 4(d) and (e)).

The phenomenon of partial switching at zero field in
FM/AFM structures is also observed by van den Brink et al
in a IrMn-based structure (figure 5(a)) [62]. Differ from the
weak exchange-bias argument by Oh et al, another model is
proposed to account for the physical origin of such effect. In
the proposed model, the polycrystalline morphology nature of
the sputtered IrMn is taken into consideration, and the incom-
plete switching is attributed to the antiferromagnetic grains
with different local exchange-bias directions in the IrMn layer.
While the homogenous external field can reorient the perpen-
dicular magnetization in the same direction to achieve com-
plete switching, the local exchange-bias shown in figure 5(b) is
inhomogeneous after field annealing, causing opposite switch-
ing directions in local grains if the current is not perfectly
along the exchange-bias direction. Besides the multi-grain
effect, our previous investigation suggests that the Joule heat-
ing effect can also impact the switching ratio at zero field
in a FM/AFM system. Figure 5(c) shows a schematic of the
Pt/CoFe/IrMn structure used in the field-free switching study,
where the IrMn layer offers exchange-bias and the Pt layer
contributes to the SOT via SHE. After multiple switching

loops, it is observed that the switching ratio drops by more
than 70% as displayed in figure 5(d). The decreasing portion
of the reversed magnetization after multiple switching loops
can be attributed to the Joule heating effect, which raises the
system temperature during each switching loop and results in a
decreasing in-plane exchange-bias as well as a reduced switch-
ing ratio (figure 5(d)) [63].

Apart from adopting an adjacent AFM layer to induce
exchange-bias on the FM layer, another viable approach to
break mirror symmetry is utilizing the interlayer exchange-
coupling between two FM layers with a spacing layer.
Lau et al demonstrated a Pt/CoFe/Ru/CoFe/IrMn structure
where the two CoFe layers with different thicknesses are
exchange-coupled with each other with a Ru spacer in between
(figure 6(a)) [64]. The bottom CoFe layer with lower thick-
ness (0.7 nm) manifests PMA and serves as the free layer.
The top CoFe layer with higher thickness (2 nm) is the fixed
layer, which possesses in-plane magnetic anisotropy and is
exchange-biased by the AFM IrMn layer that pins the mag-
netization in the in-plane direction. The interlayer exchange-
coupling between the two CoFe layers cants the perpendicular
magnetization of the bottom CoFe layer toward the in-plane
direction similar to the effect of an external magnetic field.
As a result, the magnetic hysteresis loop in the x-direction is
shifted as displayed in figure 6(b). In such a way, the mirror
symmetry of the perpendicular magnetization is broken and
field-free switching is demonstrated (figure 6(c)). Meanwhile,
the interlayer exchange-coupling is still sufficiently strong to
assists field-free switching after replacing the Ru spacer with
Pt or slightly modifying the spacer thickness. Murray et al
pointed out that the interlayer exchange-coupling can still be
achieved without an AFM layer [65]. Figure 6(d) schemat-
ically shows the CoFeB/W/CoFeB structure with the CoFeB
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the cases of spin currents with non-zero OOP spin components § # 0, labelled by purple and blue squares in (b) these non-zero OOP spin
components facilitate field-free SOT switching. (a)—(c) Reproduced from [87], with permission from Springer Nature. (d), (e) The analytical
estimation of coefficients x (which parameterize spin density induced by an electric field) in a magnetic TI for (d) field-like spin torques and
(e) damping-like spin torques. Inset in (d) depicts the band structure of a magnetic TI when high-order momentum contributions are
involved at energy level away from the Dirac point. (d), (e) Reprinted figure with permission from [88], Copyright (2019) by the American
Physical Society. (f)—(h) Schematics of the pure spin current generated by the planar Hall effect. Reproduced from [89], with permission
from Springer Nature. (i) Schematics of SOTs with spin rotation symmetry (labelled by Q) in comparison with those with conventional
symmetry (labelled by Q). Reproduced from [90]. CC BY 4.0. (j) Schematic of the bilayer WTe,/Permalloy structures where field-free
switching is realized due to the reduced symmetry of the WTe, surface. Reproduced from [50], with permission from Springer Nature.

layers spaced by the W layer, which generates SOT on the top
CoFeB layer at the same time. While field-free switching is
also realized in this system, it is reported that the observed
switching by Kerr imaging primarily originates from domain
nucleation and domain wall motion (figure 6(e)). On the other
hand, micromagnetic simulation indicates that the roughness-
caused Néel coupling could be a more critical effect in achiev-
ing the field-free deterministic switching than stray field con-
tribution. The above phenomena might pose an obstacle in
using this material structure for memory application.

5. Spin-orbit torque with unconventional origins
and symmetry

Undoubtedly, the necessary symmetry breaking to realize
deterministic SOT-switching of perpendicular magnetization
is essentially associated with the symmetry of SOT itself [66].
Correspondingly, the emerging studies on SOTs with uncon-
ventional origins and the vectorial dependence of SOTs on
magnetic orders beyond the lowest order approximation not
only provide insights into the symmetry of SOTs but also lead
to new opportunities in developing novel field-free switch-
ing schemes [67, 68]. In this section, we review some of
the pioneering observations of SOTs with atypical origins
and symmetry.

The transverse voltage occurs in a magnetic material
when an electric field is present, the so-call anomalous Hall
effect, originates in the imbalance of electrons with oppos-
ite spins, and therefore, indicates that along with the accu-
mulation of charge at the opposite sides of the material, a
non-equilibrium spin accumulation will also occur. Like the
spin accumulation induced by SHE in a single heavy metal
layer, such a spin accumulation produced by magnetic mater-
ials can also be harvested and produce sizeable SOTs. This
can be viewed as an magnetic contribution to the charge-
to-spin conversion/SHE [69]. This type of contribution to
SOTs has been experimentally demonstrated in common ferro-
magnets [70-74, 87], ferrimagnets [75], and antiferromagnets
[76] with efficiency comparable to heavy metals and showed
unusual behaviors (as shown in figures 7(a)—(c)). Moreover,
antiferromagnets potentially allow the non-trivial control of
SOTs through either collinear or non-collinear magnetic struc-
tures [69, 76, 77]. Recently, the magnetic spin Hall effect in
non-collinear antiferromagnets have been reported to provide
the out-of-plane spins, either by the cluster magnetic octupole
or the momentum-dependent spin splitting, shedding light on
the new directions for the field-free SOT switching [78, 79].

Theoretical calculation also suggests the SOTs from AHE
can be effectively controlled by electric fields applied to fer-
romagnets or reducing symmetry in ferromagnets [80]; Com-
pared with SOTs with common symmetry which requires
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the directions of spin polarization, spin-current flow and
charge-current flow are mutually orthogonal (i.e. in common
HM/FM heterostructures, a charge-current flow in x direction
will generate spin flowing toward z direction into FM layer
with a polarization pointing along y direction), the incorpora-
tion of magnetic orders allows generating a spin accumulation
deviating from y direction for SOTs and field free-switching
enabled by this additional spin accumulation has been demon-
strated in pioneering experimental works [81, 82].

Beyond wusing magnetic orders to generate non-
conventional SOTs, the SOTs generated by topological insu-
lators (TIs) have spin polarization that are significantly depend
on azimuthal angle of the magnetization, i.e. the direction
of in-plane ferromagnetic orders [83]. An anisotropic anti-
damping-like SOT unique to TIs was identified in addition to
the conventional SOTs and was found to be originated in a dif-
fusive motion of conduction electrons [84]. Compared to fer-
romagnets, different behaviors of nonequilibrium (staggered)
spin density and SOTs were found in a Tl/antiferromagnet het-
erostructure where Dirac cone is preserved [85]. By including
the higher order contributions of momentum k> terms and the
hexagonal warping, studies in figures 7(d) and (e) theoretic-
ally predicted four new types of the SOT in addition to the
conventional field-like and the damping-like torques while
experimental demonstration is still unexplored [88].

Garello et al [66] provides a comprehensive summary on
the symmetry of SOTs from conventional sources (SHE and
Rashba effect), wherein the (higher-order) anisotropic (angle-
dependent) torques and contributions from planar Hall effect
were usually neglected. This study was experimentally com-
pleted by [86] recently, while the later prediction on planar
Hall effect was confirmed in [89] (as shown in figures 7(f)—(h))
where researchers showed a spin-polarized electric current
related to anisotropic magnetoresistance and the planar Hall
effect can additionally generate large damping-like SOTs with
an unusual angular symmetry. It has also been demonstrated
the conventional SOTs near the magnetic interfaces exhibit a
very different symmetry, namely spin-rotation symmetry (as
shown in figure 7(i)), where the spin polarization is rotating
about the magnetization [90]. Furthermore, to achieve bet-
ter control of SOTs, the intrinsic symmetries can be modi-
fied and free-field switching can be achieved by utilizing spin-
source materials with reduced crystal symmetries [41, 50, 91]
(as shown in figure 7(j)); magneto-crystalline anisotropy
design [92, 93], modulating the interfacial chemistry with
electric fields [94].

Actually, in addition to the material design, it is crucial to
combine SOT with the VCMA (the voltage-controlled mag-
netic anisotropy) effect to accomplish the switching in SOT-
MRAM with lower critical switching current Isor. VCMA
can change the interfacial magnetic anisotropy with a voltage
across the barrier in MTJs and he voltage pulse can reflect
the change between two stable magnetization states with
reduced power dissipation and enhanced scalability. Recently,
the VCMA effect has been introduced in the p-MT]J with the
AFM/FM/Oxide structure to modulate the critical Isor [95].

6. Industrial approach for applications

Due to the high density, nonvolatility and fast writing speed,
SOT-MRAM has wide potential application. In order to take
full advantage, it is critical to break the inversion symmetry by
a manufacturable approach to achieve the field-free switching
for practical application.

Several manufacturable methods to break the symmetry are
developed recently. One of the approaches is utilizing a build-
in in-plane stray field [64, 96]. A 50 nm Co hard mask layer
provides an in-plane bias magnetic field exerting on the free
layer [96] shown in figure 8(a). Due to the small distance
(~80 nm) between Co and free layer, the stray field can be
as large as 36 mT, which is sufficient to most SOT devices for
symmetry breaking. However, this method is not suitable for
the high-density device integration. Sub-ns writing and high
endurance performance is achieved as shown in figure 8(b).
Besides, it should be noted that Co is considered as an altern-
ative conductors for back end of line (BEOL) especially for
beyond 7 nm process [97], which makes this method suitable
for advanced technology node.

Secondly, inversion symmetry can be broken by canted
MTJ devices, shown in figure 8(c). The MTJ is patterned
to elliptical pillar, and the major axis of ellipse cants an
angle to heavy metal line. Zhaohao et al simulated the field-
free SOT switching in elliptical MTJs [98—100]. Because the
component of the uniaxial shape anisotropy field along with
the current channel breaks the inversion symmetry, field-free
switching is achieved on those elliptical MTJ devices. Honjo
et al first demonstrated the field-free switching based on can-
ted SOT-MTJs, under 300 mm BEOL process full compat-
ible with 400 °C thermal tolerance [101]. They achieved fast
write speed of 0.35 ns without an external magnetic field
shown in figure 8(d).

It is well known that STT effect breaks the inversion sym-
metry intrinsically. Therefore, three-terminal devices combin-
ing STT and SOT effect may be a promising approach to
achieve the field-free switching [ 14, 102]. In this case, the STT
current density is 10% of the threshold current of switching
by STT solely, and STT current does not dominate the switch-
ing behavior. Even though the STT current passing through
MT]J devices is small, the inversion symmetry can be broken
by STT. Hence, SOT-induced field-free magnetization switch-
ing takes place. The approach is not compromising the original
sub-ns writing and endurance.

In addition to above approaches, field-free SOT switch-
ing also may be achieved by other methods. Utilizing the in-
plane exchange bias effect [57] induced by antiferromagnetic
layer adjacent to free layer to break the symmetry may be an
optional method as well. However, the energy consumption
may be an issue due to the small SHA of IrMn/PtMn com-
paring with Ta or W. On other hand, field-free switching is
also achieved based on the type-y geometry of SOT [103, 104],
strain effect [105] and wedged samples [31]. However, those
approaches may be compromising on the device density, fab-
rication compatibility and energy consumption.
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Figure 8. (a) Lateral cross-section transmission electron microscope (TEM) view of the SOT-MRAM cell with 50 nm thick Co magnetic
hard mask (inset is the top view after etching) [96]. (b) Writing error rate and endurance measured on 60 nm MTJ devices with Co hard
mask. (a), (b) © [2019] IEEE. Reprinted, with permission, from [96]. (c) Sketch of canted SOT-MRAM cell structure [101]. (d) Switching
probability at different write pulse width for canted MTJ. (c), (d) © [2019] IEEE. Reprinted, with permission, from [101].

7. Conclusion and outlook

The seminal observation of field-free SOT switching in 2014
kicked off an intense research effort that has rapidly led to
advances both in the understanding of the underlying phys-
ical mechanisms and in the realization of SOT-hosting systems
suitable for application. It is now possible to achieve field-free
SOT switching by several schemes, but some pending ques-
tions still need to be addressed. For example, field-free SOT
switching is driven by the current-induced out-of-plane effect-
ive magnetic field, however, the microscopic and quantitat-
ive understanding of SOT-induced out-of-plane effective field
is still incomplete. Furthermore, exploring the field-free SOT
switching in quantum materials such as TIs/semimetals and
two-dimensional materials will be a crucial step for reducing
the power consumption for future SOT-MRAM. Besides those,
novel device applications based on field-free SOT switching
will be an important direction in the future, such as logic-in-
memory computing and neuromorphic computing.
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