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Abstract

Motivation: The accurate prediction of complex phenotypes such as metabolic fluxes in living systems is a grand
challenge for systems biology and central to efficiently identifying biotechnological interventions that can address
pressing industrial needs. The application of gene expression data to improve the accuracy of metabolic flux predictions
using mechanistic modeling methods such as flux balance analysis (FBA) has not been previously demonstrated in
multi-tissue systems, despite their biotechnological importance. We hypothesized that a method for generating
metabolic flux predictions informed by relative expression levels between tissues would improve prediction accuracy.
Results: Relative gene expression levels derived from multiple transcriptomic and proteomic datasets were integrated
into FBA predictions of a multi-tissue, diel model of Arabidopsis thaliana’s central metabolism. This integration dramatic-
ally improved the agreement of flux predictions with experimentally based flux maps from *3C metabolic flux analysis
compared with a standard parsimonious FBA approach. Disagreement between FBA predictions and MFA flux maps
was measured using weighted averaged percent error values, and for parsimonious FBA this was169%—-180% for high
light conditions and 94%-103% for low light conditions, depending on the gene expression dataset used. This fell to
10%-13% and 9%-11% upon incorporating expression data into the modeling process, which also substantially altered
the predicted carbon and energy economy of the plant.

Availability and implementation: Code and data generated as part of this study are available from https://github.
com/Gibberella/ArabidopsisGeneExpression

Weights.

engineering, metabolic engineering can benefit from mathematical
models that describe and predict the behavior of the relevant sys-
tem(s). Researchers have developed two major modeling approaches
to address this need: (i) *C-metabolic flux analysis (‘*C-MFA) and

1 Introduction

A grand challenge for systems biology is the ability to accurately
predict complex phenotypes from omic datasets based on functional

principles and mechanisms. Patterns of cellular metabolism—flux
maps—are one such complex phenotype (Ratcliffe and Shachar-Hill
2006), for which tools to predict phenotypes from basic assumptions
have proven useful in exploring and designing metabolic capabilities
(Burgard et al. 2003; Orth et al. 2010; Chen et al. 2011). Methods
to quantify flux maps from labeling data now allow the testing of
such predictions in both simpler and multicellular systems.
However, the integration of omic data to improve the accuracy of
flux predictions is still at an early stage.

Metabolic flux predictions are also important for real-world appli-
cations since modifying an organism’s metabolic activity in order to
achieve some practical aim, such as overproducing a specific metabol-
ite, is central to many biotechnology projects. As in other areas of
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(i) flux balance analysis (FBA; Orth et al. 2010; Antoniewicz 2015).
With ""C-MFA, steady-state or kinetic isotopic labeling data for
metabolites in a small- to medium-sized network are used to obtain
estimates of the net and exchange fluxes through that network
(Antoniewicz 2015). These metabolic flux maps are regarded as the
most reliable measures of in vivo metabolic fluxes; however, the
throughput of this technique is limited by the large amounts of isotop-ic
labeling data and other measurements needed to generate each flux
map. FBA, which is based on applying conservation principles to a
network of reactions using one or more assumptions about the func-
tional objective(s) driving biological organization, requires substan-
tially less experimental input data and is therefore an attractive and
commonly used metabolic modeling technique.
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FBA and related metabolic modeling methods in microbial sys-
tems, together with genome-scale models (GEMs) that represent the
biochemical reactions encoded in an organism’s genome, have
enabled radical modification of microbial central metabolism (e.g.
Gleizer et al. 2019) and substantial improvements in bioproduct
yields (e.g. Park et al. 2007, Lee et al. 2007). These methods can,
e.g. allow bioengineers to predict the behavior of their system and
identify interventions, such as gene knock-outs or knock-ins, that
will help them modify the organism’s phenotype (Burgard et al.
2003, Tepper and Shlomi 2009). However, many metabolic engin-
eering applications require the modification not of microorganisms,
but of multicellular eukaryotes like plants. Most GEMs of plants to
date (e.g. Poolman et al. 2009; Dal’Molin et al. 2010ab; Saha et al.
2011; Arnold and Nikoloski 2014), have treated plants, which are
composed of multiple tissues with substantial functional diversity,
as single-tissue aggregated metabolic networks. This has motivated
the creation of “multi-tissue” GEMs to investigate source-sink dy-
namics and resource allocation, with the earliest efforts in this space
focusing on the interplay between mesophyll and bundle-sheath cells
in C4 photosynthesis (Dal’Molin et al. 2010b; Shaw and Cheung
2020).

Re-engineering of plant metabolism on the scale seen in micro-
bial systems has not, to date, been possible and predictive modeling
has been neither validated in detail nor applied to successful plant
metabolic engineering. This is partly due to the ease and high
throughput of microbial transformation relative even to model plant
systems. In addition to the greater experimental demands, the meta-
bolic modeling of these systems is also substantially harder. There is,
consequently, a relative lack of MFA datasets with which to com-
pare the predicted flux maps from FBA in plants. This contrasts
with the availability of rich multiomic datasets combining flux esti-
mates with transcript and protein data for a number of different gen-
otypes and growth conditions in systems like Escherichia coli (Ishii et
al. 2007). The challenges involved in generating *C-MFA flux
maps for plants make improvement of plant FBA flux predictions an
attractive path towards replicating the biotechnological successes
seen in microbes.

An appealing approach to improving the quality of plant FBA
predictions is the integration of additional network-wide data from
transcriptomic and proteomic datasets. Gene expression data—par-
ticularly transcript data—are substantially easier to generate than
3C-MFA flux maps. Previous attempts at integrating gene expres-
sion datasets into metabolic flux predictions have been reviewed
elsewhere (Machado and Herrgard 2014; Vijayakumar et al. 2017).
Methods developed before 2014 were evaluated on the basis of their
ability to improve upon parsimonious FBA (pFBA; Lewis et al.
2010) in terms of their predictions’ agreement with MFA-estimated
fluxes in microorganisms and were found to not do so reliably
(Machado and Herrgard 2014). A key limitation of these studies
was a lack of comparison of FBA predictions against *C-MFA-
derived flux estimates. This lack of comparison against *C-MFA is
shared by the plant FBA literature, in which we are aware of only a
small number of evaluations under heterotrophic conditions in green
algae (Boyle et al. 2017), Arabidopsis cell cultures (Williams et al.
2010; Cheung et al. 2013), and Brassica napus embryos (Hay and
Schwender 2011). Since then, several studies have developed algo-
rithms benchmarked by their ability to make predictions in agree-
ment with empirical flux maps derived from MFA studies (Tian and
Reed 2018; Pandey et al. 2019; Ravi and Gunawan 2021). These
studies have focused on unicellular organisms or animal tissues
modeled in isolation. Their application to FBA in more complex sys-
tems is limited by the large number of resource-intensive MFA data-
sets needed to calibrate them (Tian and Reed 2018) or their need for a
reference expression dataset paired with an assumed-correct flux
map (Pandey et al. 2019; Ravi and Gunawan 2021).

To improve the accuracy of FBA in multicellular systems, par-
ticularly plants with their complex metabolic networks, we devel-
oped a method that integrates tissue-atlas data from multi-tissue
systems into the flux-minimization procedure employed in pFBA.
This method incorporates evidence from gene expression datasets
into FBA metabolic flux predictions by applying weights to

individual reactions according to the relative transcript or protein
expression of the gene(s) assigned to those reactions between differ-
ent modeled tissues. The method is evaluated on its ability to make
predictions in agreement with MFA flux maps. We demonstrate sub-
stantial improvements in the agreement of our FBA-predicted fluxes
with flux estimates from a >*C-MFA study on Arabidopsis thaliana
rosette leaf central metabolism (Ma et al. 2014). Finally, we show
that multiple gene expression datasets, when used as inputs, result in
similar improvements in agreement and that this result generalizes
across different MFA flux maps. This approach has particular po-
tential for plant and animal systems for which there are only a lim-
ited number of experimental flux maps.

2 Materials and methods

2.1 Overview of approach

Our method makes two key assumptions: (i) Metabolic flux maps
predicted from pFBA (Lewis et al. 2010), minimizing the sum total
of flux through the network, are more likely to reflect real flux maps
than ones not subject to this constraint, and (ii) A reaction present in
two tissues A and B catalyzed by an enzyme encoded by a gene that
is highly expressed in A and poorly expressed in B is likely to carry
higher flux in tissue A.

We incorporate assumption 1 by making the objective function
of our FBA optimization the minimization of total flux, the same as
pFBA (Lewis et al. 2010). This is represented mathematically as
finding the minimum value of the linear combination of all fluxes in
the network, with each flux v; multiplied by a corresponding
coefficient ¢;:

P )]
min jZReactionstVj

Where Reactions is the list of all reactions j in the network, v; is the
flux through a reaction j, and ¢; is the coefficient—hereafter referred
to as a penalty weight since it represents a penalization of the likeli-
hood of using a reaction j to carrying flux. When c; takes a value of
1 for all reactions, our method reduces to pFBA, which can be seen as
the limiting case of gene expression having no influence in pre-
dicting network flux patterns. We incorporate assumption 2 by cal-
culating, for each reaction in our network model, a coefficient
derived from the relative expression of genes encoding the enzyme(s)
that catalyze that reaction between the different tissues in the gene
expression dataset. The association between reactions and genes is
captured by the gene-protein-reaction (GPR) terms in the model.
This results in reactions mapped to relatively highly expressed genes
receiving small values of ¢; and reactions mapped to minimally
expressed genes receiving large ones. This use of the coefficient vec-
tor to account for relative expression evidence is related to the ap-
proach taken in Jenior et al. (2020). However, among other
differences in implementation, the two methods differ in their
assumed relationship between gene expression and flux and their ap-
plication. Our method compares gene expression across tissues with-
in a multi-tissue model to generate more accurate flux predictions,
rather than comparing the expression of genes to the most expressed
gene in a dataset as a proxy for transcriptional investment and a
way of generating context-specific models.

2.2 Model construction and dataset selection

The A.thaliana core metabolism model developed in Arnold and
Nikoloski (2014) was used as the basis for a multi-tissue diel model.
This model was chosen due to its rich GPR annotation and focus on
central metabolism. The core model was duplicated six times to cre-
ate leaf, stem, and root versions of the model for both day and night,
which were interconnected by transporters allowing the movement
of specific compounds and metabolites. The substrates, products,
and constraints applied to the model can be found in the
Supplementary Methods. The model used in this study can be found
in Supplementary Dataset S2.
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BC-MFA flux maps were obtained in planta in A.thaliana by
Ma et al. (2014), and these were used as the empirical best estimates
of flux distributions. Although there are not any other *C-MFA
flux maps available of autotrophic A. thaliana leaves Szecowka
et al. (2013) provide estimates of select fluxes in autotrophic A.
thaliana leaf central metabolism, which we used for additional con-
firmation of our method’s efficacy. The pairing of fluxes in both flux
studies to the FBA network is described in Supplemental Dataset S1.

We searched the literature for high-quality, high-coverage RNA-
seq, and quantitative proteomic tissue atlases and found two suit-
able datasets meeting these criteria: Klepikova et al. (2016) and
Mergner et al. (2020). The proteomic dataset from Mergner et al.
(2020) is a mass spectrometry-based quantitative proteome that
reports IBAQ (Intensity-Based Absolute Quantification) values,
which are an accurate measure of protein abundances (Krey et al.
2014). For bioinformatic processing details, see Supplementary
Methods. For dataset IDs, growth conditions, and key parameters
from each study, see Supplementary Tables S4 and S5.

2.3 Penalty weight vector calculation
We calculated the expression weight for each gene in each tissue on
the basis of how the expression of a reaction in a particular tissue, as
measured by transcriptomic or proteomic abundance, compared
with the expression of that same gene in the other tissues.

W, % MaxdE;p 2

Eit

where W;, is the expression weight for a given gene i in a tissue t,
E; is the list of expression values of gene i for each tissue, E;; is the
expression of gene i in tissue t, and Max() is the maximum value
from a set of one or more elements. Note that although the tran-
scriptomic and proteomic datasets used in this study report abso-
lute quantities, our method is applicable as long as relative
amounts of RNA or protein across tissues are available. Many
GPRs in the model consist of multiple genes that represent iso-
zymes or members of protein complexes. The former are denoted
by OR terms and the latter by AND terms in the GPR formula-
tion. This results in many reactions having more than one expres-
sion weight due to being mapped to multiple genes. We combine
these multiple weights into a single penalty weight value for each
reaction by averaging the expression weights of isozymes and tak-
ing the “worst” (i.e. largest, most penalizing value) when genes
form subunits of a protein complex. As an example, the penalty
weight for a reaction R in the leaf subnetwork of our model with a
GPR of the form (Genel OR Gene2) AND (Gene3), correspond-ing
to a protein complex made of the product of Gene 3 and the
product of Genes 1 or 2, would be represented by:

y
Wgene];lf b Wgenez;lf
2

crif % SF Max ; Weenesse vV 1 b 1
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where cg i represents the overall penalty weight in the leaf (If) for re-
action R, SF (or the scaling factor) is a coefficient that modulates the
magnitude of the calculated penalty weights and Weene1,1r, Wegene2,1f,
and Woenes,ir are the penalty weights for the individual genes Genel,
Gene2, and Gene3. Note that in the present implementation of this
method, stoichiometric coefficients in GPR terms are ignored. When
one or more genes contained in a GPR for a reaction/tissue combin-
ation are all more highly expressed than the same genes in the other
tissues, the scale for that reaction/tissue combination will be 1. For
reaction/tissue combinations that have no corresponding GPR, we
explored setting the penalty weights to 1 or a value calculated from
the median penalty weight assigned to reactions in the same tissue
(for details, see Supplementary Methods).

2.4 Optimization

The optimization performed in this paper is a variation on pFBA,
which finds the flux map(s) satisfying imposed constraints with min-
imum total flux through the network (Lewis et al. 2010). The

minimization of total flux (Equation 1) is subject to the following
constraints:

SV% 0 4)
LBj Vj UBJ' (5)
Vbiomassatissuep % Viixed biomassiissue (6)

Where S is the stoichiometric matrix of the metabolic network being
modeled, v is the vector of all fluxes, LB and UB are the vectors of all
upper and lower bound constraints, and Vpiomassctissuey aNd Vixed
biomass(tissue) are the biomass flux for a given tissue and the defined
biomass constraint for that tissue, respectively. Equation (4) repre-
sents the steady state of all internal metabolites, Equation (5) repre-
sents the bounds and reversibility constraints, and Equation (6)
represents the definition of biomass accumulation rates. All optimi-
zations were done in the COnstraint-Based Reconstruction and
Analysis (COBRA) Toolbox in MATLAB (Heirendt et al. 2019)
using the Gurobi™ optimizer version 8.1.1 (Gurobi Optimization,
LLC 2019).

2.5 Error evaluation

We assume that the *C-MFA fluxes reported in Ma et al. (2014)
are the true in vivo metabolic fluxes and therefore regard the dis-
crepancy between FBA-predicted fluxes and these *C-MFA fluxes
as a measure of error. Biomass accumulation (i.e. the difference in
dry weight between a timepoint t and another timepoint ty;) was
not reported in Ma et al. (2014), but is the basis for the flux through
the biomass equation in FBA. To allow a comparison between our
FBA-predicted fluxes and the MFA-estimated fluxes in Ma et al.
(2014), we set an arbitrary biomass flux of 0.01 g/h through the leaf,
stem, and root biomass reactions in both the day and night, similar to
the approach taken in de Oliveira Dal’Molin et al. (2015). We then
normalized our fluxes by multiplying them by the ratio of the
measured leaf CO, uptake from Ma et al. (2014) and the net leaf
CO; uptake in our FBA flux map. A weighted average error for each
FBA-predicted flux map was obtained using the following
expression:

0 1
dvPAP § vm ;
X j j Vi A
' m P m (7
j2Measured V; j2Measured Yj

where v and v are the FBA-predicted and MFA-estimated fluxes of a
flux j and A is the normalization factor previously described. We calcu-
lated weighted average errors rather than just average errors because
small absolute differences between FBA-predicted and MFA-estimated
flux values can correspond to extremely large % error values when the
MFA-estimated fluxes are small. We quantified the maximum/min-
imum weighted average errors of each flux map using flux variability
analysis (FVA; Mahadevan and Schilling 2003). Additional details can
be found in the Supplementary Methods.

3 Results

3.1 The application of gene expression penalty weights
reliably reduces discrepancies between FBA-predicted
and MFA-estimated fluxes

Predicted flux maps were generated for a multi-tissue diel model of
A.thaliana’s central metabolism using FBA in which the sum of all
the metabolic and transport fluxes required for steady-state growth is
minimized, with each flux being multiplied by a penalty weight that
was derived from the relative expression of the gene(s) involved in
conducting that flux (see Section 2). Penalty weights for each re-
action were calculated from RNA-seq (Klepikova et al. 2016;
Mergner et al. 2020) and proteomic (Mergner et al. 2020) datasets
using the relative expression of each gene in the different tissues.
The weighted average % error between these flux maps and '*C-
MFA estimates from Ma et al. (2014) were used to quantify the
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Table 1. Weighted average % error values calculated from
weighted versus unweighted flux maps for transcriptomic and
proteomic datasets from Klepikova et al. (2016) and Mergner et al.
(2020).7

Dataset Light Weighted average error (%)
level
No gene With
expression penalty
weights weights
Mergner et al. Transcriptome High 169-180 14.7-17.1
Low 93.8-103 14.9-18.1
Mergner et al. Proteome High 169-180 10.9-13.4
Low 93.8-103 8.74-10.9
Klepikova et al. Transcriptome High 169-180 14.8-17.4
Low 93.8-103 19.3-21.7

*Values represent the lowest and highest possible error values given the
results of FVA. Weighted average error values were calculated from flux maps
generated using a scaling factor of 1.

accuracy of these FBA predictions, as compared with the accuracy of
flux maps generated by pFBA (Lewis et al. 2010) alone. The flux
maps arrived at after the application of either transcriptomic or
proteomic penalty weights show greater agreement, as measured by
the weighted average % error, with *C-MFA estimates than the
results from pFBA alone (Table 1). These reductions in error are
substantial and statistically significant at a% .01; they are consistent
across comparisons against two different flux maps (high- and low-
light conditions) and are sustained across a range of assumed ratios
of starch to sucrose production and carboxylase to oxygenase fluxes
through RuBisCO (vo/vc). Marked reductions in error are seen
whether one uses the transcriptomic or proteomic tissue-atlas data-
sets from Mergner et al. (2020) or the transcriptomic dataset from
Klepikova et al. (2016), so that the improvement in flux predictions
is not dependent on the values obtained in a specific gene expression
dataset or type.

We wanted to confirm that these reductions in error are in fact
dependent on penalty weights calculated from gene expression data
and not an artifact of the weighting procedure itself. Indeed, previ-
ous studies have used the application of randomized weights as a
method of exploring different possible flux modes in a plant meta-
bolic network (Cheung et al. 2015). We found that substituting the
leaf for the root proteomic dataset, and vice-versa, resulted in no re-
duction in weighted average error (Supplemental Table S1) com-
pared with pFBA. Neither did randomization of the penalty weight
vector and subsequent optimization. The mean of the weighted aver-
age errors of 50 high-light condition flux maps generated with inde-
pendent randomized penalty weight vectors at a scaling factor of 1
was 201%, versus the unweighted error value of 169%—180% for
that condition.

3.2 Increases in agreement between FBA-predicted and
MFA-estimated fluxes are broadly distributed across
central metabolism

Although there is variation among individual fluxes in the degree to
which omic data integration improves agreement between predicted
and experimentally derived values, the reduction in weighted error
as a result of penalty weight application is distributed broadly across
the fluxes for which '*C-MFA estimates are available. If, for ex-
ample, the improvement were due to a substantial decrease in one or a
small number of high-flux reactions and a negligible decrease or
even increase in error for other reactions (Fig. 1) the overall finding
would be less striking and potentially less broadly applicable. The
reductions in error are consistent not only across metabolic subsys-
tems within a single FBA flux map, but also across alternative stoi-
chiometric network structures. Initial pFBA-derived solutions for a
model identical to that used to generate the other predictions except

A RUBP 2P G GLY Color Error (%)
co2 @ 200+
co2 @
RU5P @IR5P PGAwSER -
o
' /‘/\.’ PGA.c -
S7P €mSBP GAP/DHAP.
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-
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B RUBP 2PG=——pGLY Arrow  Flux
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Figure 1 Percent errors of specific reactions in central metabolism before (A) and
after (B) gene expression weight application. The error values in (A) are the lowest
possible given FVA results and the values in (B) are the highest possible given FVA
results. We see substantial decreases in errors associated with central carbon assimi-
lation, as well as starch and sucrose synthesis. Since the *C-MFA estimated fluxes
from Ma et al. (2014) do not feature the flux from ADPG to Starch, this flux lacks an
estimated error and is therefore shown in black. Flux values are relative to the
lowest flux in the network.

with unconstrained uptake and discharge of protons from root tissue
show similar reductions in error (Supplementary Table S2). Upon
application of penalty weights, this model converges to a similar
value of weighted average error and linear correlation as other
model configurations.

3.3 Error reductions are a function of the scaling factor
parameter and are improved by the application of a
tissue-specific median weight for reactions lacking gene
protein reaction terms

The magnitude of the penalty weights calculated and applied by the
present method depends on the magnitude of the scaling factor
term, (Equation 3). The increased agreement between the FBA-
predicted and MFA-estimated flux maps only manifests in the ma-
jority of cases for scaling factors of 0.05-0.1 or greater (Fig. 2). We
also note that the relationship between the scaling factor value and
the improved agreement is monotonic—i.e. we do not see erratic
increases and decreases as we increase the scaling factor value and,
by extension, the strength of the assumed relationship between flux
and gene expression. The necessity of a non-negligible scaling factor,
the consistency of error improvement as the scaling factor is
increased, and the similarity in the pattern of error improvement
across multiple datasets as seen in Fig. 2, all suggest that real bio-
logical signal related to the partitioning of metabolic activity across
the plant’s tissues is being extracted from the gene expression data-
sets. Finally, we observe that the flux maps generated using penalty
weight derived from Mergner et al. (2020) proteomic dataset have
noticeably better weighted average errors than flux maps generated
using transcriptomic dataset (Table 1 and Fig. 2). This is consistent
with the closer relationship between measured protein levels and
metabolic fluxes than between transcripts and fluxes. It is also con-
sistent with at least one other study’s attempts at integrating gene
expression data into FBA in E.coli (Tian and Reed 2018).

Although the method presented does not involve fitting the
Scaling Factor parameter using goodness-of-fit to the 13C-MFA
fluxes, in Fig. 1 and Tables 1 and 2, we show results from a Scaling
Factor of 1 because it falls in the plateau of low average error values
we see in Fig. 2. To further explore the usefulness of a Scaling
Factor of 1, we used the fluxes reported in Szecowka et al. (2013)
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for illuminated A.thaliana leaves estimated by kinetic flux profiling.
The FBA-derived flux map generated using vo/vc and starch: sucrose
synthesis constraints from that study without any omic weighting
has a weighted average error of 108%; this error drops to 8, 6, and
9% when protein or transcript weights from Mergner et al. (2020)
or transcript weights from Klepikova et al. (2016), respectively, are
applied with a Scaling Factor of 1 (Supplementary Table S6 and
Dataset S5).

In our initial formulation of the algorithm for generating gene
expression-derived penalty weights, the weight of all reactions with
no associated GPR was set to 1, since this is the implicit value of the

Weighted Average Error vs. Scaling Factor
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Figure 2 Weighted average errors of FBA predictions compared with MFA-esti-
mated flux maps as a function of scaling factor value, light-level, and application of a
tissue-specific median weight correction. Panels show weighted average errors of flux
maps generated using (A) low-light constraints and a tissue-specific median cor-
rection applied, (B) low-light constraints and without a tissue-specific median cor-
rection applied, (C) high-light constraints and with a tissue-specific median
correction applied, and (D) high-light constraints and without a tissue-specific me-
dian correction applied. “M Protein” and “M Transcripts” refer to flux maps gener-
ated using proteomic- and RNA-seq-derived weights from Mergner et al. (2020). “K
Transcripts” refers to flux maps generated using RNA-seq derived weights from
Klepikova et al. (2016). Upper and lower bars on each point represent the highest
and lowest possible weighted average errors given FVA results, and the points them-
selves represent the average of these values.

coefficient for all reactions in a standard pFBA optimization. Since
this runs the risk of introducing a systematic bias against using reac-
tions that have associated GPRs, we attempted to counteract this
risk by assigning all reactions lacking a GPR a penalty weight corre-
sponding to the median penalty weight of all weighted reactions in
the tissue in which those reactions are found. Comparing the results
with and without the tissue-specific median penalty weights for reac-
tions without GPRs, we see modest improvements in the weighted
average errors from a scaling factor of 1 onwards when using the
transcriptomic and proteomic datasets from Mergner et al. (2020;
Fig. 2), though the effect is not large, indicating that our method is
robust to including or omitting the tissue-specific median weight
correction.

3.4 Changes in the carbon and energy economy upon
application of gene expression weights

In addition to improving quantitative agreement between the FBA-
predicted and MFA-estimated flux maps, the gene expression
weighting procedure also generates flux maps that present a sub-
stantially different picture of carbon and energy metabolism in
Arabidopsis leaves.

In both high and low light FBA-predicted fluxes there is a sub-
stantial decrease in leaf mitochondrial electron transport chain
(ETC) activity and overall flux in mitochondria-localized reactions
in the light relative to nighttime ETC activity and overall flux
(Supplementary Table S3). MFA and other recent work further
points to low TCA cycle fluxes in photosynthesizing leaves
(Tcherkez et al. 2005; Xu et al. 2021; 2022). This decrease in mito-
chondrial activity goes hand-in-hand with a predicted decrease in
the use of unusually high fluxes related to proline metabolism to in-
directly support the consumption of excess reductant produced via
the light reactions of photosynthesis. Alongside this decrease in
mitochondrial activity is a decrease in the ratio of cyclic electron
flow (CEF) to linear electron flow (LEF) in the chloroplast
(Table 2). Although reliable empirical measurements of this CEF/
LEF ratio are difficult to obtain, previous studies have shown that a
C3 plant like Arabidopsis relying on CEF to bring the ratio of ATP/
NADPH produced up to that needed for normal growth would have
a CEF amounting to 13% of LEF (Kramer et al. 2004). Due to the
presence of other balancing mechanisms, such as the malate valve
(Selinski and Scheibe 2019), this 13% value would represent an
upper bound on stoichiometrically predicted values for CEF/LEF.
Application of gene expression data decreases the CEF/LEF ratios in
all but one FBA-predicted flux map to values much closer to the
expected 13% upper bound than are predicted using conventional
pFBA (Table 2).

Ma et al. (2014) reported MFA-derived estimates of %vpr, or
the rate of photorespiratory CO, release via glyoxylate decarboxyl-
ation as a % of CO, assimilation, as well as the ratio of RuBisCO

Table 2. Measures of carbon and energy utilization derived from the predicted flux maps with and without penalty weights applied.

Dataset used for weighting Light RuBisCO flux net Photorespiratory CO, CEF/LEF (%) % of leaf daytime
CO, assimilation loss/net CO, CO, assimilation
assimilation (%) going to biomass

None High 2.86 62 24 43

Low 1.85 26 31 54
Mergner et al. Protein High 1.29 26 20 18

Low 1.17 14 15 26
Mergner et al. Transcripts High 1.20 25 21 18

Low 1.15 14 27 33
Klepikova et al. Transcripts High 1.30 27 17 19

Low 1.25 15 14 31
Reference values High 1.28° 28° 13b 56%¢

Low 1.17° 16*

"Ma et al. (2014).
*Kramer et al. (2004).

‘Weraduwage et al. (2015). The superscript letters b and ¢ reference values are not associated with a particular light level.
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carboxylation flux to net CO, assimilation in the leaf. The
unweighted flux predictions for the high and low light conditions
disagree substantially with these estimates (Table 2). However, the
application of gene expression weights consistently brings estimates
of these parameters into close agreement with MFA-derived values.
The integration of gene expression also changes the predicted effi-
ciency with which Arabidopsis converts atmospheric CO; into bio-
mass (Table 2). For comparison with these predicted efficiencies, we
used the empirical A.thaliana biomass, leaf area, and gas exchange
data reported in Weraduwage et al. (2015) to calculate that 56% of
the net CO, assimilation in illuminated leaves ends up in incorpo-
rated into biomass, which is closer to the value in our unweighted
flux predictions than our weighted flux predictions, although it
should be noted that these data were gathered from a hydroponic
system.

4 Discussion

BC-MFA is broadly accepted as being the most reliable method for
estimating metabolic flux maps in vivo due to its ability to make use
of substantial amounts of isotopic labeling data to arrive at well-
supported flux maps in small- to medium-scale networks
(Antoniewicz 2015). However, the technique’s utility is limited by
the substantial experimental effort that goes into the generation of
each individual flux map. FBA, with its requirement of much less ex-
perimental data, has become the method of choice for more explora-
tory or predictive metabolic modeling studies. The implicit
assumption is usually that the predictions of FBA—or at least the
range of its predictions in cases where a unique solution is not pro-
vided—agree with those we would arrive at if we were able to con-
duct a "*C-MFA study. This makes our optimization procedures
when performing FBA and validation of FBA models against MFA
results of vital importance. The method presented here, by bringing
FBA-predicted fluxes into line with MFA estimates represents a step
in the direction of higher-confidence FBA flux maps.

One limitation, as well as motivation, for this study is the lack of
a large set of *C-MFA datasets in plants and other multi-tissue eu-
karyotic systems. Systems like E.coli have multiomic datasets con-
sisting of transcriptomic, proteomic, and fluxomic measurements
(Ishii et al. 2007) that have been utilized to empirically infer the rela-
tionship between gene expression and metabolic fluxes. This empir-
ical training can then be used to more accurately predict fluxes in
new contexts (Tian and Reed 2018). The sparsity of '*C-MFA data
in more complex systems makes such an approach currently
impossible.

A noteworthy theoretical aspect of the present approach is its
simplicity, the only variable parameter being a single scaling factor
that controls the magnitude of the penalty weights. That the as-
sumption of a consistent value relating the relative abundances of
transcripts or proteins in different tissues to the “preference” of an
organism to partition flux among particular reactions can result in
substantial improvement in error was of great interest in light of the
complexity of the relationship between measures of gene expres-
sion—transcriptomic and proteomic abundances—and flux.
Particularly when making biotechnological interventions in a system
to modify its metabolism, there is often an assumed strong linear re-
lationship between transcription, translation, and, ultimately, meta-
bolic flux, but the reality is rarely so simple. Although moderate
correlations between transcript and protein abundances have been
demonstrated across many systems, the degree of correlation varies
across systems and experimental contexts (Maier et al. 2009; Liu et
al. 2016). The correlation between these data types and rates of
central metabolic reactions, which carry the large majority of total
metabolic flux, is weaker still (Kuile and Westerhoff 2001). Some
previous studies found that changes in the gene expression related to
individual reactions typically do not correlate well with changes in
fluxes (Schwender et al. 2014; Tian and Reed 2018), with some cen-
tral metabolic fluxes in particular showing a negative correlation be-
tween changes in gene expression and flux. In both cases, gene
expression data related to reactions were compared within the same
cell type or tissue; in our study, we instead compare intertissue

abundances, mirroring the long-standing practice in the literature of
inferring relative metabolic activity in different tissues by their tran-
script and protein investment in relevant pathway steps. It may be
that only by considering gene expression on an intertissue basis in
the context of the entire complex stoichiometric network underlying
metabolism can predictive gains from including gene expression evi-
dence be properly realized.

Future work should aim to expand the number of available data-
sets, and the experimental conditions and genotypes for which they
are gathered, in order to enable more thorough evaluation of meth-
ods like the one presented in this article. Indeed, evaluating the pre-
sented method requires 3C-MFA fluxes, multi-tissue omic data, and a
GEM all for the same biological system, which, to our knowledge, is
currently only available for A.thaliana. Building on the work of Ma
et al. (2014), experimental improvements and refinements of the
underlying network architecture of central carbon metabolism have
been introduced in the context of *C-MFA in Camelina sativa (Xu
et al. 2021; 2022) and Nicotiana tabacum (Chu et al. 2022). In this
study, Ma et al. (2014) flux maps are used without change and we
adopted a highly curated A.thaliana GEM from which to construct
the whole-plant model. This approach precluded the possibility of
our reanalyzing the MFA-estimated flux map or biasing the con-
struction of a purpose-built GEM, making the MFA-to-FBA com-
parison more favorable. However, in future studies, a combination
of MFA network refinements, expanded datasets, and further
improvements in the flux estimation procedures holds promise for
improving the fidelity of the *C-MFA comparison data. On the
FBA side, the use of more detailed growth and composition meas-
urements for FBA along with more detailed representation of differ-
ent tissue types will potentially allow for more biologically accurate
and representative FBA flux map predictions. These improvements
in both MFA-estimation and FBA-prediction of flux maps, along
with an expansion in the number of available *C-MFA datasets
against which to compare FBA predictions, will allow for more ex-
tensive validation of the method described in this paper as well as
other methods aiming to incorporate omic datasets into flux
prediction.

A distinct aspect of the proposed method is its demonstrated
ability to bring FBA-predicted fluxes in line with MFA-estimated
fluxes across multiple input datasets, model architectures, and using
multiple independent gene expression datasets. Our hope is that
methods for incorporating transcriptomic and proteomic data may
advance this field to the point where FBA-predicted flux maps can
be used with high confidence for practical engineering goals. This,
combined with the automated reconstruction of GEMs from genom-ic
and biochemical databases (Saha et al. 2014) suggests a future with
rapid turnaround from the initial identification of an organism of
interest to metabolic flux predictions and rational genetic engin-
eering to achieve biotechnological aims.
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