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Abstract

Tar spot is a devasting corn disease caused by the obligate fungal pathogen Phyllachora maydis. Since its
initial identification in the United States in 2015, P. maydis has become an increasing threat to corn production.
Despite this, P. maydis has remained largely understudied at the molecular level due to difficulties surrounding
its obligate lifestyle. Here, we generated a significantly improved P. maydis nuclear and mitochondrial genome
using a combination of long- and short-read technologies and also provide the first transcriptomic analysis of
primary tar spot lesions. Our results show that P. maydis is deficient in inorganic nitrogen utilization, is likely
heterothallic, and encodes for significantly more protein coding genes, including secreted enzymes and
effectors, than previous determined. Furthermore, our expression analysis suggests that following primary tar
spot lesion formation, P. maydis might reroute carbon flux away from DNA replication and cell division
pathways and towards pathways previously implicated in having significant roles in pathogenicity, such as
autophagy and secretion. Together, our results identified several highly expressed unique secreted factors that
likely contribute to host recognition and subsequent infection, greatly increasing our knowledge of the biological

capacity of P. maydis, which have much broader implications for mitigating tar spot of corn.

Introduction

Tar spot is a devastating foliar disease of corn caused by the obligate fungal pathogen Phyllachora maydis
(Sordariomycete; Phyllachorales; Phyllachoraceae). Tar spot initially appears as a small yellow-brown lesion
that quickly transitions into raised irregular-shaped black lesions following melanization (Figure 1A) (Hock et
al., 1995). Originally a disease identified in 1904 and endemic to Central and South America, tar spot was first
reported in the United States in 2015 (Maublanc, 1904; Ruhl et al., 2015; da Silva et al., 2021). Since 2015,
tar spot has rapidly spread further each year and is now present in 15 states and Ontario, Canada where it
has caused significant yield loss; tar spot caused an estimated ~ $1.2B in yield loss in 2021 alone (Figure 1B)
(Ruhl et al., 2015; Mueller et al., 2020; Mueller et al., 2022).
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Despite its significant threat to agriculture, little information is currently known about the molecular
mechanisms that contribute to the P. maydis disease cycle (i.e., host recognition, plant tissue infiltration,
disease progression, reproduction, and subsequent spore dispersal) due to its obligate nature (Valle-Torres et
al,, 2020). Indeed, all attempts of culturing P. maydis have failed and inoculations have remained inconsistent
(da Silva et al., 2021), limiting our ability to study the molecular mechanisms of this pathogen. Furthermore,
the P. maydis disease cycle reports a 12 to 20 day latent period, and early infection has not been extensively
studied (Breunig et al. 2023). Given these limitations, other studies have demonstrated that genomic and
transcriptomic analyses are powerful tools for studying agriculturally-important obligate ascomycetes, such as
Blumeria graminis of barley, as well as obligate basidiomycetes, such as Puccinia graminis of wheat and
barley, Ustilago maydis of corn, and Tillefia indica of wheat, and provided a crucial foundation upon which
further molecular work was made feasible (Both et al., 2005; Skibbe et al., 2010; Singh et al., 2020; Henningsen
et al., 2021).

Genomic and transcriptomic studies of obligate fungal plant pathogens have illuminated several
cellular and metabolic processes and pathways highly expressed during disease emergence and progression,
including: (i) nutrient transporters (Lanver et al., 2018), (ii) glycolysis, lipid degradation, and glycogen utilization
(Both et al., 2005), (iii) secretion of effectors and cell wall degrading enzymes (Presti et al., 2015; Mapuranga
et al., 2022), (iv) mitogen-activated protein kinases (MAPK) signaling (Guo et al., 2011), and (v) autophagy
(Liu et al., 2016). Likewise, many obligate fungi utilize environmental cues, such as light quality and intensity,
to modulate essential cellular processes such as asexual and sexual reproduction, spore germination,
vegetative growth, nutrient uptake, secondary metabolism, and pathogenicity (Yu and Fischer, 2019). In
addition to cellular and metabolic changes during primary infection, all obligate fungi also secrete enzymes,
such as those that degrade plant cell walls, as well as effectors, small cysteine-rich virulence factors, to infiltrate
host cells and suppress immune responses (Stergiopoulos and Wit, 2009). Whether the genome of P. maydis
exhibits degradation in primary or secondary metabolic pathways or encodes for canonical light-sensing
proteins is currently unknown. Likewise, the cellular and metabolic pathways, as well as the secreted enzymes
and effectors, that are highly expressed during primary tar spot lesion formation remain outstanding questions.

Recently, a draft genome assembly of P. maydis was announced (Telenko et al., 2020). However, this
assembly was largely incomplete (11,228 scaffolds) and annotations lacked transcript evidence. Here, we
report a significantly improved P. maydis genome assembly consisting of 12 nuclear fragments (1 scaffold and
11 contigs) and the complete circular mitochondrial genome. Comparative genomic analysis identified that ~.
maydiis has significant degradation within inorganic nitrogen utilization pathways, potentially accounting for the
obligate lifestyle of P. maydis, and is a phenomenon also observed in obligate rust fungi. Furthermore, tar spot
transcriptomic analysis suggests that following conidia and ascospore formation, carbon flux from respiration
and glycolysis is primarily routed away from DNA replication and cell division and towards autophagy and
protein export during primary tar spot lesion formation. Importantly, we identified that 6 out of the top 27 highest
expressed genes in our analysis were predicted effectors unique to P. maydis, a result that illuminates the
importance of these secreted factors in tar spot disease. Together, these results provide significant insight into

the obligate lifestyle of P. maydis, identify cellular and metabolic pathways that are significantly expressed in
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primary tar spot lesions, elucidate secreted enzymes and effectors important for tar spot disease, and have

much broader implications for mitigating tar spot disease of corn.

Results and Discussion

A Near-Chromosomal Genome Assembly

The ability to better understand the precise biological capacity of plant pathogens requires a complete high-
quality annotated genome. While great efforts were recently made to generate the first draft genome assembly
of Phyllachora maydis, termed PMO1, this assembly remained largely incomplete partly due to the discovery
of high levels of unclassified repetitive regions throughout the genome that complicated assembly with Illumina
short reads (Telenko, et al., 2020). Therefore, to account for this issue, we first isolated high molecular weight
DNA from an enrichment of conidia mechanically removed from lesions on corn leaf surfaces. We then
generated a draft assembly, designated PMO02, using long reads generated from two independent Oxford
Nanopore PromethION runs, followed by error correction using lllumina short reads. Given the known difficulty
in computationally predicting fungal introns and exons, we utilized an RNA-informed approach using HISAT2
and BRAKER2 to accurately annotate PM02 (Kim et al., 2015, Bruna et al., 2021). This approach enabled us
to simultaneously annotate our genome and analyze gene expression at primary tar spot lesion formation.
Our approach yielded a high-quality haploid nuclear genome ~64 Mbp in size distributed over 12
fragments (1 scaffold and 11 contigs), as well as the complete ~66 kbp circular mitochondrial genome (Figure
1C). K-mer-based analysis predicted a genome size that was within 2.5 % of our PM02 assembly
(Supplementary Figure 1A) and BUSCO predicted that PM02 was 98.6% complete, likely the maximum
obtainable measure due to the obligate lifestyle of P. maydis (Vurture et al., 2017; Manni et al., 2021).
Consistent with the previous findings for PM01 (~56 % repetitive content), we found that PM02 contained ~59
% repetitive content, of which, ~54 % was classified as class | transposable elements, retrotransposons
(Supplementary Figure 1B). Importantly, PM02 encodes for 9,630 proteins, a ~61 % increase from PMO1
(5,992 protein coding genes). DeeplLoc 2.0 predicted that most PM02 proteins localized to the cytoplasm and
nucleus with a large quantity predicted to be extracellular (Supplementary Figure 1C). Consistent with this,
SignalP v6.0 predicted that PM02 secreted 492 proteins, and of those, 163 were predicted to be effectors, a 7
% and 176 % increase, respectively, from PMO1 (Figure 1C) (Telenko, et al., 2020; Sperschneider J and
Dodds, 2022; Teufel et al., 2022). This study increased contiguity, completeness, and accuracy of annotation

of the P. maydis genome.

Mating-Type Genes Suggest P. maydis is Heterothallic



113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

The genes responsible for sexual reproduction are highly conserved among fungi and are often found in a
mating-type (mat) locus (Fraser and Heitman, 2003; Ni et al., 2011). The maf locus often encodes for the
Anaphase-promoting complex subunit 5 (apc5), cytochrome ¢ oxidase subunit 13 (cox73), endonuclease /
DNA lyase (gpn2), and early endocytic patch protein (s/a2) genes, which flank the mat7-7, an alpha-box
transcription factor, and / or the mat7-2, a high mobility group (HMG) transcription factor (Figure 1D). Generally,
homothallic fungi possess both mat7-7 and mat7-2 idiomorphs, allowing a single cell to sexually reproduce,
whereas heterothallic fungi only possess one of either maf7-7 or mat7-2, requiring an interaction between
opposite mating-types to sexually reproduce (Ni et al., 2011).

Initial identification of the mat locus suggested that PM02 possessed mat7-2, but lacked mat7-1.
Interestingly, closely related Colletotrichum spp. possess mat7-2and lack mat7-7 but are still able to sexually
reproduce (Wilson et al., 2021). To explore whether P. maydis might also lack mat7-1, we aligned our raw
nanopore reads to the PM02 matf locus. Interestingly, we observed a ~50 % reduction in read similarity
precisely at the site of the mat7-2idiomorph (Figure 1D). Following generation of a consensus sequence from
the reads that differed at the site of mat7-2, BlastX confirmed the presence of the PM02 mat7-7 idiomorph,
confirming that the idiomorphs reside at the same genomic location between mating types. Since our genomic
reads were generated from conidial DNA isolated from several tar spots, we mapped our Illlumina reads to both
mat idiomorphs to determine the ratio of mating types within our population. Our results show a near equal
mapping of lllumina reads to both maf genes, and the quantity of reads that mapped to both maf genes are
roughly half the number of reads that mapped to the neighboring gpn2 and s/a2 genes (Figure 1E). This
confirms that mat7-7 and mat7-2idiomorphs exist at a near equal ratio in our sampled population.

The expression of either mat7-7or mat7-2 controls the downstream expression of specific pheromone
precursor and receptor genes required for mate recognition and subsequent sexual reproduction (Jones and
Bennett, 2011). We confirmed the presence of both a- and a-factor precursor pheromone genes (Figure 1F),
as well as both a- and a-factor receptor genes (preA and preB) (Figure 1G). Together, these results suggest
that P. maydis is heterothallic, uses a pheromone precursor / receptor mechanism for mate recognition, and
that both mating types existed in near equal ratio within our population sampled. Further study to determine
whether a single tar spot lesion represents a single mating type or equal ratio of both mating types would allow

us to determine if sexual reproduction is uncommon or a requirement for lesion formation, respectively.

Degradation of Inorganic Nitrogen Utilization Pathways

In obligate fungal pathogens, gene loss is a common consequence of genetic drift, which can ultimately result
in metabolic pathway degradation or destruction (Spanu, 2012). To determine if gene loss had occurred in ~.
maydiis, we first used KEGG GhostKoala to assign a K-number to each PM02 protein homolog (Kanehisa et
al., 2016). In total, 812 K-numbers were assigned to PM02. Next, we collected all available K-numbers from
each Sordariomycete within the KEGG database and generated a presence / absence metric in relation to

PMO2 (Figure 2A). Specifically, we focused on K-numbers that were present in all Sordariomycetes, suggesting
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an important or essential function, but that were absent in PM02. In total, we found 35 genes that fit this criterion
(Supplementary Table 1).

Most notably from this analysis, we discovered severe gene loss and pathway degradation for the
ability of P. maydis to utilize inorganic nitrogen. Indeed, we found that PMO02 lacked the high-affinity NrtA and
NrtB nitrate / nitrite transporters, nitrate reductase (NiaD), nitrilase (Nit), and formamidase (FmdA) (Figure 2B).
Similarly, while we found that PM02 does possess a nitrite transporter (NitA), no obvious nitrite reductase
(NiiA) homolog was identified. This suggests that NitA might function instead as a nitrite exporter, a function
that has been observed in Aspergillus nidulans (Akhtar et al., 2015). In support of this, we found both genes
necessary for nitroalkane utilization, 2-Nitropropane dioxygenase (NMO) and nitroalkane oxidase (NOX), are
presentin PMO02. In Magnaporthe oryzae, these genes combat the reactive nitrogen species that are generated
following colonization and subsequent triggering of host immunity by catalyzing the oxidative denitrification of
toxic nitroalkanes into nitrite (Zhao et al., 2020). Thus, these genes likely have a similar function in 2. maydis,
and the resulting nitrite is exported by NitA.

Interestingly, loss of inorganic nitrogen uptake and assimilation genes have also been described in
other obligate fungi, such as rusts (Spanu, 2012). Indeed, in Melampsora /arici-populina, which causes poplar
leaf rust, and in Puccinia graminis f. sp. tritici, which causes wheat and barley stem rust, nitrate / nitrite
transporters and nitrite reductase have been lost (Duplessis et al., 2011). Similarly, gene loss in inorganic
nitrogen and sulfur assimilation pathways have also been observed in the obligate oomycete
Hyaloperonospora arabidopsidis (Baxter et al., 2010). However, we found no evidence that P. maydis is

deficient in sulfur assimilation.

Tar Spot Transcriptome — Carbon and Nitrogen Utilization

Our ability to study P. maydis in detail is largely limited due to its obligate nature and it being recalcitrant to
culture. By utilizing trap plants placed into a corn field with heavy tar spot disease pressure we were able to
generate plants that were primarily infected with P. maydis with little to no other pathogens. The P. maydis
stroma lesions sampled ranged in size up to 2 mm and were no older than 24 days. Since P. maydis stroma
develop into a complex mixture of different P. maydis cell types as they age, it is not yet obvious how RNA-
seq differential reads could be disentangled and attributed to certain cell types. Therefore, we focused our
current efforts on profiling the transcriptome of a single timepoint, primary tar spot lesion formation. While a
single time point can have limitations for interpreting dynamic biological pathways, they can still be informative
for determining factors important for a given pathway or for what direction a given pathway is being driven at
our sampling time point. We also verified that these patterns were consistent across biological samples, as
each tar spot lesion represents a different expression profile. Our analysis revealed the relative expression
profile of this single timepoint, and we hypothesize upon the metabolic pathways being expressed.

For each metabolic pathway of P. maydis, we generated an average Transcripts Per Kilobase Million

(TPM) score, which is derived from the cumulative average expression (TPM) of each KEGG K-number-
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associated gene within that pathway (Supplementary Table 2). Following this analysis, we found that carbon
utilization, primarily oxidative phosphorylation (TPM = 450.84), glycolysis (TPM = 259.44), and the citric acid
cycle (TPM = 193.91), were in the top five highest expressed metabolic pathways (Figure 3A and
Supplementary Figure 2A). Importantly, this confirms that cells within our time point were metabolically active.
Interestingly, we found that the nitrogen metabolic pathway was one of the highest expressed pathways (TPM
= 212.76), a surprising result given our previous finding that P. maydis had extensive gene loss in inorganic
nitrogen assimilation pathways (Figures 2B and 3A). However, while most fungi can assimilate nitrate and
nitrite compounds abundant in soil, the reduction of nitrate / nitrite into ammonium is a less-preferred energy-
consuming process (Campbell and Kinghorn, 1990; Crawford and Arst, 1993). Instead, glutamine, glutamate,
and / or ammonium are much more favorable sources of nitrogen, and glutamine is one of the most abundant
amino acids in corn, serving as a major molecule for nitrogen transport throughout tissues (Chapman and
Leech, 1979; Magalhdes et al., 1990) In fact, corn leaves have been shown to exhibit constant glutamine
synthetase activity throughout leaf age and development (Hirel et al., 2005), and glutamine quantification has
even been proposed for predicting end of season corn grain yields (Goron et al., 2017), whereas other crop
species have shown a reduction in glutamine synthetase activity in older leaves (Kamachi et al., 1991;
Masclaux et al., 2000; Kichey et al., 2005). Importantly, extensive work has demonstrated that glutamine is the
main marker for cellular nitrogen status in filamentous fungi (Caddick et al., 1994; Magasanik and Kaiser, 2002;
Berger et al., 2008). Thus, we explored whether P. maydis might be utilizing glutamine, glutamate, and / or
ammonium as its primary nitrogen source.

We found that the highest expressed genes within the nitrogen assimilation pathway were glutamine
synthetase (GIn-1) (TPM = 1028.53), which produces glutamine from glutamate and ammonia (Minehart and
Magasanik, 1992), and glutamine-fructose-6-phosphate transaminase (GfpT) (TPM = 350.32), which produces
D-glucosamine 6-phosphate from L-glutamine + D-fructose 6-phosphate and regulates chitin synthesis by
controlling glucose flux into the hexosamine pathway (Maia, 1994) (Supplementary Figure 2B). Similarly, we
found that NAD-dependent glutamate dehydrogenase (NAD-GDH), which catalyzes glutamate from a-
ketoglutarate and ammonia (Kinghorn and Pateman, 1976), was another highly expressed gene within the
pathway (TPM = 346.05), and that P. maydiis surprisingly lacked a NADP-dependent glutamate dehydrogenase
(NADH-GDH), which is conserved among other Sordariomycetes within the KEGG database (Supplementary
Figure 2B). While we found that the major nitrate / nitrite transporters NrtA and NrtB are missing in 2. maydis
(Figure 2B), we found that homologs of the Fusarium fujikuroi ammonium transporters MEP1 and MEP2, and
the glutamine specific transporter GAP, were conserved, and that expression of GAP (TPM = 257.04) was
much higher than either MEP1 (TPM = 90.55) or MEP2 (TPM = 75.99) (Pfannmiller et al., 2017). Alternatively,
we observed much lower expression for the nitrate-specific transcription factors NirA and AreA (Supplementary
Figure 2B), which traditionally activate inorganic nitrogen assimilation pathways in the absence of glutamine
and ammonium and likely have an alternate function in P. maydis, given the absence of this pathway (Berger
et al., 2006; Tudzynski, 2014). Collectively, our results strongly suggest that 2. maydis is utilizing ammonium,
glutamate, and glutamine as its primary nitrogen sources, and may offer some hints to artificial culturing of ~.

maydis.
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Tar Spot Transcriptome — DNA Replication, Cell Division, and Autophagy

When analyzing the average expression values for pathways, we were surprised to find that among pathways
with the relatively lowest expression were those involved in genetic processing, such as non-homologous end-
joining (TPM = 34.96), base excision repair (TPM = 35.22), DNA replication (TPM = 41.79), mismatch repair
(TPM = 46.76), homologous recombination (TPM = 61.15), and nucleotide excision repair (TPM = 65.78), as
well as those involved in cellular processes, such as cell cycle regulation (TPM = 93.60) and meiosis (TPM =
108.07) (Figure 3B). Among critical genes within the DNA replication pathway with the lowest expression were:
(i) subunits of DNA polymerase a (PolA2 TPM = 15.78), & (PolD3 TPM = 29.46), and € (PolE1 TPM = 7.15,
PolE2 TPM = 13.69), (ii) DNA ligase 1 (TPM = 15.22), (iii) replication factor C (TPM = 17.57), (iv) flap
endonuclease-1 (TPM = 18.68), (v) DNA helicase (TPM = 18.88), (vi) DNA primase (TPM = 19.34), and (vii)
replication factor A1 (TPM = 23.26). Likewise, we also observed low expression for mcm2 (TPM = 30.08),
mcm3 (TPM = 14.98), mcm4 (TPM = 23.69), and mcm6 (TPM = 13.12), which are genes required for regulating
replication initiation in the meiotic cycle (Lindner et al., 2002) (Supplementary Figure 2C). Similarly, among
critical genes within cell cycle regulation and meiosis with the lowest expression were: (i) anaphase-promoting
complex subunit 1 (TPM = 3.16), subunit 2 (TPM = 4.52), subunit 4 (TPM = 24.93), and subunit 6 (TPM =
17.72), which regulate mitotic progression and subsequent exit (Chou et al., 2011), (i) CDC7 (TPM = 3.80), a
key regulator in the initiation of DNA replication (Masai and Arai, 2002), (iii) separase Esp1 (TPM = 3.94),
which is required for anaphase spindle elongation (Baskerville et al., 2008), (iv) Swi6 (TPM = 9.66), which
regulates meiotic initiation (Purnapatre et al., 2002), (v) Cdc45 (TPM = 25.93), which is involved in the initiation
and elongation steps of DNA replication (Aparicio et al., 1999), (vi) Rec8 (TPM = 24.05), which is critical for
recombination between homologous chromosomes during meiosis (Petronczki et al., 2003), (vii) Cdc6 (TPM
= 28.48), which is essential for initiation of DNA replication (Cocker et al., 1996), and (viii) Bub1 (TPM = 38.67),
which is required for sister kinetochore unification and centromeric cohesion retention during the first stage of
meiosis (Bernard et al., 2001) (Supplementary Figure 2D).

These findings suggest that 2. maydis might be rerouting energy derived from plant tissues away from
DNA replication and cell division and towards other cellular processes, such as those involved in virulence,
during tar spot lesion formation. In further support of this hypothesis, we found that the average expression for
the autophagy pathway was moderately high, a well-characterized pathway that plays a significant role in
pathogenicity and conidiation (Figure 3B and Supplementary Figure 2E) (Pollack et al., 2009; Liu et al., 2012;
Liu et al., 2016). Indeed, among highly expressed autophagy genes previously identified as essential for
pathogenicity were: (i) Sec17 (TPM = 256.93), which is required for vesicle-mediated transport between the
endoplasmic reticulum and the golgi apparatus, and has been shown to function in formation of Fusarium
graminearum effector-contained extracellular vesicles during infection of corn (Garcia-Ceron et al., 2021), (ii)
Ykt6 (TPM = 285.58), a SNARE family protein that has been proposed to function in secretion of Collefotrichum
orbiculare effectors (Irieda et al., 2014), (iii) Pep4 (TPM = 970.46), a late state protease involved in
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pathogenicity of Ustilago maydis (Soberanes-Gutiérrez et al., 2015), (iv) ATG8 (TPM = 1242.65), an essential
factor in autophagy that has been shown to influence pathogenicity in Beauveria bassiana, Cryphonectria
parasitica, Fusarium graminearum, Ustilaginoidea virens, and Ustilago maydis, (Nadal and Gold, 2010; Ying
etal., 2016; Lv et al., 2017; Shi et al., 2019; Meng et al., 2020), and (v) Prb1 (TPM = 1810.36), a subtilisin-like
protease that has been shown to be indispensable for virulence in several plant pathogens (Shi et al., 2014;
Fu et al., 2020). Together, these results suggest that P. maydis might be rerouting energy away from growth

and towards pathogenicity during tar spot lesion formation.

Tar Spot Transcriptome — Protein Export

The ability for plant pathogenic fungi to cause disease requires the secretion of numerous proteins into the
extracellular environment. This process involves the targeting and translocation of proteins, via N-terminal
signal peptides, across the endoplasmic reticulum membrane into the lumen, via the Sec61 complex. Proteins
are then embedded into vesicles that travel through the golgi apparatus and fuse with the cell membrane,
resulting in surface display or secretion of proteins into the extracellular environment (Walter et al., 1982;
Walter et al., 1984, Greenfield and High, 1999; Cross et al., 2009; Mandon et al., 2009). Among the cellular
pathways that we analyzed, we found that gene expression for the cAMP (TPM = 228.24) and RAS (TPM =
245.72) signaling pathways, which are important for regulating morphogenesis and virulence, were among the
pathways with the highest expression (Figure 3B) (Jacob et al., 2022). Similarly, we found that protein
processing (TPM = 233.32) and protein export (TPM = 273.64) were also pathways with relatively high average
expression (Figure 3B). Among genes within these pathways, we found that the those with the highest
expression were the HSPA1s (TPM = 2119.20), HSP90A (TPM = 1373.20), and BiP (TPM = 1180.38)
chaperones, which play critical roles in ensuring proteins are properly folded and that membrane permeability
of the endoplasmic reticulum is properly maintained (Ellgaard and Helenius, 2003). Similarly, we found that
two subunits of the SEC61 complex, SEC61G (TPM = 827.21) and SEC61A (TPM = 347.14), and the signal
peptidase complex, SPCS1 (TPM = 372.43), SPCS2 (TPM = 263.75), SPCS3 (TPM = 352.50), and SEC11
(TPM = 150.50), were also highly expressed (Meyer and Hartmann, 1997; de la Rosa et al., 2004).

SNARE family proteins mediate the final steps of vesicle docking and membrane fusion (Jahn and
Scheller, 2006). Specifically, the SNARE proteins SCN1, SSO1, and SSO2, are involved in fusion of vesicles
at the plasma membrane (Saloheimo and Pakula, 2011). While we found that expression for SNC1 (TPM =
1208.37) was high, expression of both SSO1 (TPM = 144.43) and SSO2 (TPM = 45.58) were much lower and
more similar to expression of the general fusion factor NSF1 (TPM = 130.47), which is involved in multiple
vesicle fusion steps. However, expression for FTT1 (TPM = 914.65) and FTT2 (TPM = 323.35), which function
in the last step of secretion, were much higher in comparison (Vasara et al., 2002). Collectively, these results

suggest that protein secretion is a process highly expressed by P. maydis during tar spot lesion formation.
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Tar Spot Transcriptome — Metabolite Transporters

In most fungi, glucose represents the main source of carbon for energy production. To better understand the
sugars P. maydis can transport, and thus metabolize, we analyzed the repertoire of sugar transporters and
their respective expression profiles (Figure 4A). Most notably, we found that P. maydis encodes 6 hexose
transporters that share homology with Aspergillus nidulans hexose transporters HXTA-E, which have
previously been demonstrated to transport glucose, fructose, mannose, and galactose (Reis et al., 2013).
Among these transporters, HXTA-D showed the highest expression (Figure 4A). Similarly, given that sucrose
represents the main sugar storage molecule in plant tissues, we observed strong expression for invertase
(TPM = 186.76), which catalyzes the hydrolysis of sucrose into glucose and fructose, and for two surface
receptors that sense extracellular glucose levels, SNF3 (TPM = 158.92) and RGT2 (TPM = 315.45) (Figure
4A) (Kim and Rodriguez, 2021). Given our previous finding that 2. maydis is likely utilizing amino acids as its
primary nitrogen source, we identified 6 amino acid transporters, all of which were strongly expressed (Figure
4A). Among those identified were the lysine-specific transporter LysP (TPM = 346.58), the glutamine-specific
transporter GAP (TPM = 257.04), the general amino acid transporter INDA (TPM = 250.82), the branched-
chain-amino-acid transaminase BAT1 (TPM = 190.17), and the proline-specific transporter PUT4 (TPM =
129.00) (Bianchi et al., 2019). These transporters had higher expression than additional transporters we

identified, including those for choline, magnesium, phosphate, urea, fluoride, and boron transport (Figure 4A).

Tar Spot Transcriptome — Light Sensing and Reproduction

Filamentous fungi possess several levels of protein regulation for translating environmental cues, such as light
intensity, light quality, and nutrient availability, into changes in gene expression. These environmentally
influenced changes in gene expression ultimately regulate essential processes such as asexual and sexual
reproduction, spore germination, vegetative growth, nutrient uptake, secondary metabolism, and pathogenicity
(Reviewed in: Yu and Fischer, 2019). Given the obligate nature of 2. maydis, we wanted to investigate whether
PMO02 possessed canonical light sensing and response pathways. Moreover, given the known importance of
light cues for asexual and sexual reproduction in fungi, we wanted to further search for homologs of known
regulators of these two processes.

In Meurospora crassa, the blue light-sensing proteins White Collar-1 (WC-1) and White Collar-2 (WC-
2), which form the white color complex (WCC), are critical regulatory transcription factors of the fungal circadian
clock (Baek et al., 2019). The LOV domain-containing protein VIVID (VVD) inhibits WCC activity to modulate
photoadaptation (Schwerdtfeger and Linden, 2001; Schwerdtfeger and Linden, 2003; Chen et al., 2010). We
found that PM02 possessed WC-1, WC-2, and VVD, confirming the ability for 2. maydis to sense blue-light.
Beyond the WCC complex, we confirmed the presence of additional light sensing homologs, including: (i) the
blue light / UVA sensing protein CryA, which represses sexual development under UVAass0.370 nm (Bayram et

al., 2008), (ii) the LaeA / VE-1 / VE-2 velvet complex, which controls asexual and sexual developmental
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pathways (Bayram O and Braus GH, 2012), (iii) SilA (but not SilG), which represses sexual reproduction in the
presence of light (Han et al., 2008), (iv) ImeB, which is required for inhibition of sexual development in the
presence of light and for mycotoxin production in A. nidulans (Bayram et al., 2009), and (v) the red light-sensing
photoreceptor FphA, which represses sexual development in red light (Blumenstein et al., 2005). Among these
light-sensing proteins, WC-2 had the highest expression (TPM = 163.27), ImeB (TPM = 61.47), VE-1 (TPM =
57.16), VVD (TPM = 44.94), WC-1 (TPM = 43.82), SilA (TPM = 35.57), FphA (TPM = 32.56), and LaeA (TPM
= 26.00) had relatively moderate expression, whereas VE-2 (TPM = 12.39) and CryA (TPM = 5.87) had very
low expression (Figure 4BC - Blue).

Beyond light cues, fungi also have mechanisms for directly sensing other extracellular signals that
subsequently regulate sexual reproduction, such as nutrients and inorganic molecules. In fact, Pho85 (PhoA)
senses phosphate levels by phosphorylating the transcription factor Pho4 under high phosphate conditions.
Alternatively, in low phosphate conditions, Pho81 inhibits PhoA (Lenburg and O’shea, 1996; Persson et al.,
2003; Huang et al., 2007). LsdA, which is required for inhibiting sexual reproduction under high salt conditions,
is highly expressed in late sexual development (Lee at al., 2001). When levels of amino acids are high, CpcB
promotes sexual reproduction, completion of sexual fruiting, and ascospore maturation (Kong et al., 2013).
Finally, EsdC, which is required for early sexual development, contains a glycogen binding domain that is
proposed to link sexual development to nutrient availability (Han et al., 2008; Dyer and O’Gormon, 2012). We
found homologs for PhoA, LsdA, CpcB, and EsdC in P. maydis, suggesting a conserved role in development
as in other fungi (Figure 4C - Red).

Interestingly, among these proteins, we observed extremely high expression for EsdC (TPM =
6699.95), a gene whose expression was the seventh highest in our data set, which suggests that 2. maydis
might have initiated or completed sexual reproduction at our timepoint sampled (Han et al., 2008; Dyer and
O’'Gormon, 2012). Likewise, the observed high expression for LsdA (TPM = 637.27) also suggests that sexual
development might have initiated or completed, since LsdA transcripts accumulate early in the sexual
development stage and peak in the late stage (Figure 4C - Red) (Lee et al., 2001). Further supporting that
sexual reproduction might have initiated or completed, we found that both a-factor (TPM = 21.58) and a-factor
(TPM = 28.46) pheromone precursors, both PreA (TPM = 73.97) and PreB (TPM = 63.52) pheromone
receptors, and Mat1-1 (TPM = 71.38) and Mat1-2 (TPM = 78.93) genes were expressed, and all had relatively
similar expression levels between mating types (Figure 4C - Purple). Lastly, consistent with our hypothesis
that P. maydis is likely utilizing amino acids as its primary source of nitrogen, expression for CpcB, which
promotes sexual reproduction, completion of sexual fruiting, and ascospore maturation when levels of amino
acids are elevated, was very high (TPM = 1087.68), a result that further suggests levels of amino acids are
high in tar spot lesions and that sexual reproduction might have initiated or completed (Figure 4C - Red) (Kong
et al., 2013). Collectively, these results strongly suggest that sexual reproduction might occur early in tar spot
lesion formation. In support of this hypothesis, we observed that tar spot lesions at our sampled timepoint
contained multiple perithecia with asci (Supplementary Figure 2F).

In addition to sexual reproduction, fungi can also perform asexual reproduction to generate conidia, a

process that has been primarily studied at the molecular level in A. nidulans and N. crassa. The fluffy genes
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(FIbA-FIbE) are a well-studied system of proteins, activated by blue light, that initiate conidiation by activating
the central transcriptional regulator BrlA (Olmedo et al., 2010; Kim et al., 2017). In Aspergillus spp., three
transcription factors, BrlA, AbaA, and WetA, form a central gene regulatory network that is required for the
development of asexual fruiting bodies (Figure 4B) (Sewall, 1994; Alkhayyat et al., 2015). Interestingly, we
found that P. maydis possesses AbaA and WetA, but lacks BrlA and FluG (an alternative BrlA activator) (Figure
4C). However, while FIuG, AbaA, and WetA are found in N. crassa, no homolog of BrlA has been identified to
date (Ruger-Herreros and Corrochano, 2020). This suggests that 2. maydis might have a BrlA-free conidiation
pathway that is more similar to that of V. crassa. Indeed, like V. crassa, we also found that P. maydis possesses
the genes Fluffy (FI) and Fluffyoid (FId), major regulators of conidiation, aconidiate-2 (Acon-2) and aconidiate-3
(Acon-3), regulators of Fluffy expression, Vad-5, an additional Fluffy activator, and Csp-1 and Csp-2, which
are required for conidial septation (Olmedo, et al., 2010; Sun et al., 2012) (Figure 4C). Additionally, we
identified arrested development-1 (Adv1), which is required for sexual development and perithecia formation
(Dekhang et al., 2017). Lastly, in Aspergillus spp., FadA stimulates cyclic AMP (cAMP)-dependent protein
kinase A (PkaA) activity, a process inhibited by elevated levels of FIbA, resulting in the inhibition of asexual
and sexual reproduction (Roze et al., 2004). Interestingly, we observed relatively high expression for Adv1
(TPM = 471.02), a master regulator of conserved fungal development genes (Steffens et al., 2016). Moreover,
PkaA (TPM = 534.56) and FadA (TPM = 371.68) expression was relatively high, which suggests that
conidiation is inhibited. Significantly however, expression for FIbA (TPM = 123.27) was also high, suggesting
that the FadA-PkaA signaling pathway might be inhibited via FIbA in our tar spot lesion samples, allowing
primary asexual and sexual reproduction to proceed (Figure 4C). Consistent with this hypothesis, we also
observed pycnidia at our sampled time point that contained numerous conidia (Supplementary Figure 2G).
Our data suggests that P. maydis sequesters significant carbon and nutrients from host tissues during
tar spot lesion formation (Figure 3A). Initially, this energy is likely primarily utilized for hyphal growth and
melanization within host tissues before reaching an optimum hyphal density (surface area) for rates of nutrient
diffusion and acquisition. Once reached, P. maydis then reroutes energy expenditure away from hyphal growth
and towards asexual and sexual reproduction. Once completed, energy is then likely rerouted to the secretion
of numerous pathogenicity factors. This process could account for why individual tar spot lesions remain
relatively small on leaf surfaces, instead of exhibiting continuous radial growth as the season progresses. Tar
spot lesions that do appear to increase in size are oblong in shape and likely the result of secondary infections
from ascospores or conidia falling adjacent to parent tar spot lesions. In support of this hypothesis, we found
that genes involved in hyphal tip growth, including: the polarisome scaffolding protein Spa2 (TPM = 116.25)
and actin nucleation—promoting factor Bud6 (TPM = 43.66) (Virag and Harris, 2006), the formin proteins Bni1
(TPM = 69.77) and SepA (TPM = 69.77) (Sheu et al., 1998; Sharpless and Harris, 2002), Myosin-5 (TPM =
46.03) (Schuchardt et al., 2005), and the kinesin motor protein KipA (TPM = 77.72) (Konzack et al., 2005), all
had much lower expression values in contrast to those genes involved in early ascospore formation, such as
Adv1 (TPM = 471.02), CpcB (TPM = 1087.68), and EsdC (TPM = 6699.95). This proposed mechanism is
further supported by our finding that the average TPM values for DNA replication (TPM = 41.79), cell cycle
regulation (TPM = 93.60), and meiosis (TPM = 108.07) pathways were much lower in comparison to the TPM
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values for other analyzed pathways (Figure 3AB). Together, these results support a model where P. maydis
reroutes carbon flux away from hyphal growth and towards ascospore and / or conidia formation following
establishment of a tar spot lesion. Whether this change in strategy is permanent, can be reversed, or is cyclic

in nature warrants further investigation to completely understand the disease cycle of P. maydis.

Secreted Proteins Analysis

The interaction of fungal plant pathogens with their host requires the secretion of a wide range of proteins that
facilitate host recognition, infiltration, immune suppression, disease emergence, and disease progression
(Girard et al., 2013). Traditionally, these proteins have been identified by the presence of an N-terminal signal
peptide and the absence of transmembrane domains. Using SignalP v6.0, we identified 492 proteins encoded
by PMO02 that were predicted to be secreted (Figure 1C). This quantity is much lower than other well-studied
fungal plant pathogens with broad host ranges, including Fusarium graminearum PH-1 (1,172 secreted
proteins), Fusarium oxysporum 5176 (1,519 secreted proteins), Colletotrichum gloeosporioides Nara gc5
(1,824 secreted proteins), Magnaporthe oryzae Y34 (1,703 secreted proteins), Botrytis cinerea B05.10 (916
secreted proteins), Verticillium alfalfaec VaMs.102 (967 secreted proteins), and Sclerotinia sclerotiorum 1980
(822 secreted proteins), and is more similar to obligate / facultative fungal plant pathogens that infect a single
or narrow range of hosts, including Blumeria graminis f. sp. hordei DH14 (679 secreted proteins) that infects
barley, Blumeria graminis f. sp. trifici 96224 (511 secreted proteins) that infects wheat, 7aphrina deformans
PYCC 5710 (233 secreted proteins) that infects peach and almond fruit trees, Hemileia vastatrix (615 secreted
proteins) that infects coffee, Puccinia striiformis f. sp. fritici Race 31 (687 secreted proteins) and Puccinia
triticina Race 77 and Race 106 (620 secreted proteins) that infect wheat, and Usfilago hordei 4875-4 (469
secreted proteins) and Ustilago maydis 521 (536 secreted proteins) that infect barley and maize, respectively
(Presti et al., 2015; Schuster et al., 2018; Mapuranga et al., 2022).

We further analyzed the predicted secreted proteins after first removing from our data set the 163
effectors predicted by EffectorP v3.0 (Figure 1C). From the remaining 329 secreted proteins, we found that
261 were conserved among other fungi, and that 68 were unique to P. maydis, suggesting a potential novel
role in corn recognition and targeted infection (Figure 5A). More recently, fungal secretomes have been further
characterized by carbohydrate-active enzyme (CAZyme) content (Drula et al., 2022). The first class of
CAZyme, glycoside hydrolases (GH), break down plant cell walls by hydrolyzing glycosidic bonds in complex
polysaccharides (Rafiei et al., 2021). Among these secreted CAZymes, we found that PM02 encoded 54
glycoside hydrolases with moderate expression (TPM = 172.09) (Figure 5A), and of those, we were able to
identify 11 endoglucanases (TPM = 42.65), 11 chitinases (TPM = 204.28), 8 a-amylases (TPM = 102.98), 4
xylanases (TPM = 48.69), and 1 xyloglucanase (TPM = 186.61), with chitinases, xyloglucanase, and ao-
amylases exhibiting the highest average gene expression by glycoside hydrolases during tar spot lesion
formation. We also found that PM02 encoded 18 proteins defined as having auxiliary activities (AA), redox

enzymes, that we observed as having similar average expression (TPM = 196.05) to those of glycoside
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hydrolases (Figure 5A). We only identified 6 carbohydrate esterases (CE), which hydrolyze carbohydrate
esters, and they exhibited moderate to low average expression (TPM = 79.25) (Figure 5A). Interestingly, while
we only identified 3 carbohydrate-binding (CB) proteins, classically defined as those that bind cellulose, we
observed an extremely high average expression (TPM = 695.013) for these genes. Lastly, while we did not
identify any known polysaccharide lyases in PM02, we did identify 2 Glycosyl Transferases (GT); however,
average expression for these two genes was the lowest (TPM = 36.01) among identified CAZymes.

The identification of only 83 predicted secreted CAZymes is in stark contrast to other pathogenic fungi.
Indeed, most Fusarium spp. and Magnaporthe spp. have over 600 CAZymes, Neurospora spp. over 400
CAZymes, Puccinia spp. around 300 CAZymes, and Ustilago spp. over 200 CAZymes; among those
characterized, most were glycoside hydrolases (Zhao et al., 2013). These results suggest a significant
deviation of CAZyme content between P. maydis and other fungi. Despite this, we were able to identify several
candidate proteins that likely play an important role in tar spot lesion formation. Likewise, while we found that
the average expression for all glycoside hydrolases was modest, we note that 8 out of the top 10 expressed
secreted proteins in our data set were glycoside hydrolases, and of those, the most highly expressed (TPM =
1953.00) was a protein predicted to belong to glycoside hydrolase family 15, glucoamylase. This family of
glycoside hydrolases catalyzes the release of D-glucose from starch and other oligo- and polysaccharides.
Similarly, of the 3 carbohydrate-binding proteins we identified, one in particular, was found to have extremely
high expression (TPM = 1953.30) and also possess an additional internal domain predicted to belong to
glycoside hydrolase family 15. Taken together, these results illuminate the complement of enzymes predicted
to be secreted by P. maydis and provide early evidence for the importance of glucoamylases during tar spot

lesion formation.

Secreted Effectors Analysis

Fungal effectors represent a class of small (usually <300 amino acids) cysteine rich proteins that are secreted
via endoplasmic reticulum-golgi transport, infiltrate host plant cells, and suppress host defense responses to
promote colonization (Reviewed in: Presti et al., 2015). Relative to corn pathogens, Ustilago maydis is a well-
studied pathogen, and several effectors have been identified and characterized. For example, the U. maydis
protein TIN2 interacts with and stabilizes the corn protein kinase ZmTTK1, thereby inducing anthocyanin
biosynthesis and promoting vein infiltration (Tanaka et al., 2014). Another protein, RSP3, blocks the antifungal
activity of mannose-binding corn proteins (Ma et al., 2018). A more recently identified and characterized
protein, ROS burst interfering protein 1 (Rip1), functions by relocating the corn protein Zmlox3 to the nucleus,
thereby suppressing overall corn ROS response (Saado et al., 2022). Together, these studies demonstrate
that thorough analyses of plant fungal effectors are needed and allow for the elucidation of the molecular
mechanisms of host recognition, infiltration, disease emergence, and disease progression.

From the 163 effectors we identified in PM02, we found that 79 were conserved among other fungi

and that 84 were unique to P. maydis (Figure 5B). This result is similar to what’s been described for effector
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repertoires in closely related fungal species, such as Colletotrichum graminicola (48 % unique effectors)
(O'Connell et al., 2012). Among P. maydis effectors that we identified to be widely conserved among other
fungi were cutinase and endosomal P24B (Wang et al., 2022), SSCR (Atanasova et al., 2013), concanavalin
A-like lectin/glucanase (Guyon et al., 2014), GAS1 (Xue et al., 2002), cyanovirin-N (Matei et al., 2011), alpha-
N-Arabinofuranosidase B (Wu et al., 2016), NEP1 (Duhan et al., 2021), RLPA (Charova et al., 2020), EMP24
(Xie et al., 2021), and superoxide dismutase (Wang et al., 2021). When predicting localization patterns of
conserved PMO02 effectors, most (28 %) were predicted to be apoplastic in host tissues, with 14 % predicted
to localize to the cytoplasm and only 7 % predicted to localize to both compartments (Figure 5B). Alternatively,
among unique effectors, most (31 %) were predicted to be cytoplasmic, with 9 % predicted to be apoplastic
and 11 % predicted to localize to both compartments (Figure 5B). Significantly, among all the genes within our
transcriptomic analysis, we were surprised to find that 5 out of the top 15 expressed genes were effectors.
Moreover, one unique effector had the highest overall expression (TPM = 33633.95), and an additional
conserved effector that had the third highest expression (TPM = 14942 .27), of all genes in our data set. These
results help illuminate those effectors that likely have a significant role in tar spot lesion formation and that
warrant further investigation to elucidate their function.

Since P. maydis is an obligate pathogen, the ability to characterize secreted effectors is extremely
difficult and molecular tools are limited. Despite this, a recent study characterized the subcellular organization
of 40 putative P. maydis effectors, sequences and predictions that were derived from the previous PM01
assembly, by expressing fluorescent-fusions of these proteins in a heterologous host plant system (Helm et
al., 2022). While most of these effectors localized to the nucleus and cytosol, a few were found to localize to
multiple compartments; one effector localized to the nucleus, nucleolus, and plasma membrane, another
effector localized to the nucleus and nucleolus, and an additional effector surprisingly localized to the stroma
of chloroplasts (Helm et al., 2022). Further effector characterization, such as quantifying host immune
suppression, identifying host protein interacting partners, and determining the temporal / spatial aspects of
secretion, will improve our understanding of how P. maydis is able to recognize, infiltrate, and cause disease.
Together, our results greatly improve upon previous foundational research on tar spot of corn and significantly
increase our knowledge of the biological capacity of P. maydis by providing a new high-quality RNA-informed
annotated genome assembily, the first tar spot transcriptomic analysis, and the identification of several unique

secreted proteins and effectors.
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Materials and Methods

Isolation of DNA and RNA

For collection of DNA, sweet corn hybrids (Triple Crown White and Triple Crown Bicolor — Burpee) were grown
in the Michigan State University (MSU) Research Greenhouses. At the V8 growth stage, plants were
transferred to a tar spot infested field at the MSU Plant Pathology Farm for 7 days in August 2020 to produce
high levels of disease. Plants were then returned to the greenhouse. After one month of growth in the
greenhouse, high levels of tar spot stroma had developed on leaves, and cirrhi exuded. Ascospores and
conidia from the cirrhi were vacuum harvested from leaf surfaces onto 70 mm Whatman 1 filters. High
molecular weight DNA was extracted from 100 mg desiccated spores using a modified chloroform and Qiagen
genomic tip extraction procedure (Vaillancourt & Buell, 2019).

For RNA, B73 v.3 corn was first grown in pots for 30 days in outdoor courtyard space (MSU Research
Greenhouses) in August 2021. Plants were then transported to a tar spot infested field (MSU Plant Pathology
Farm). After 10 days of exposure time, plants were then transported to a greenhouse to allow symptoms to
develop. After 14 days in the greenhouse, tar spot stroma ranging from 1 to 2 mm in size were visible on the
leaf surfaces. Tar spot stroma were collected by sampling leaf disks using a 5 mm diameter cork borer. Five
leaf disks were collected from tar spot stroma in the middle of eighth leaf. Three replicates were sampled from
three separate plants, all at V8 stage. Disks were placed in FastPrep tubes and flash frozen in liquid nitrogen,
followed by storage in a -80[1 C freezer. Samples were prepared for extraction by addition of 1 ml RNA later
ICE Tissue Transition Solution (Invitrogen). Leaf disks were lysed using Lysing Matrix A tubes (MPBio)
containing 450 pl of RLC buffer (Qiagen RNeasy Plant Mini Kit) with a fast prep homogenizer (Level 5, 30
seconds). RNA was finally isolated using RNeasy Plant Mini Kit (Qiagen). Samples were then treated with
DNase (Invitrogen — TURBO DNA-free).

Genome Sequencing and Assembly
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High molecular weight DNA was sent to the MSU Genomics Core for library preparation and sequencing. The
ONT SQK-LSK109 Ligation Sequencing Kit was used for library preparation, and sequencing was performed
on two independent PromethlON FLO-PROO002 flow cells. Guppy v5.0.16 was used for base calling. In total,
7,939,416 total reads were produced with an N50 value of 9,970 and mean quality Phred score of 12.8. ONT
adaptors were removed using Porechop v0.2.4 (https://github.com/rrwick/Porechop). Reads were filtered by
quality 10 and length 15,000 using Nanofilt v2.6.0 (De Coster et al., 2018). De-novo assembly was performed
with Flye v2.9. (Kolmogorov et al., 2019). Average coverage across resulting contigs was 112. Four iterations
of polishing were performed with Racon v1.4.3 (https://github.com/isovic/racon). Consensus sequence was
generated using Medaka v1.5.0 (https://github.com/nanoporetech/medaka).

For error-correction, lllumina sequencing was performed by the MSU Genomics Core using the same
DNA. Samples were prepared using an lllumina TruSeq Nano DNA library prep kit and sequencing was
performed with a NovaSeq 6000 S4 flow cell. In total, 259,624,387 paired-end reads were generated. Adapters
were removed from lllumina 150 bp paired end reads  with cutadapt v3.4
(https://github.com/marcelm/cutadapt). Four iterations of minimap2 v2.24 alignments (Li, 2018) and pilon v1.24
(https://github.com/broadinstitute/pilon) variant calling were used to polish the ONT assembly. Contigs were
checked for continuity and scaffolding performed with LASTZ v1.04.15 (https://github.com/lastz/lastz). BlastX
(https://blast.ncbi.nlm.nih.gov) was used to remove contaminating contigs. The completeness and contiguity
of the assembly was assessed using BUSCO v5.3.2 using the fungal database (Manni et al., 2021).
Transposable elements were annotated using Extensive de-novo TE Annotator (EDTA) (Ou et al., 2019).
Genome size was predicted by k-mer analysis of lllumina reads with Jellyfish v.2.3.0 (Marcais and Kingsford,

2011) and Genome Scope (github.com/schatzlab/genomescope).

RNA sequencing, genome annotation, and expression analysis

RNA libraries and sequencing was performed at the MSU Genomics Core. Paired end 150 bp libraries were
prepared with stranded mRNA lllumina TruSeq ligation kit and sequencing performed with an lllumina NovaSeq
6000 S4 flow cell. In total, 121,178,185 paired-end reads were generated for rep 1, 129,677,772 paired-end
reads were generated for rep 2, and 110,704,703 paired-end reads were generated for rep 3. Raw reads were
processed using cutadapt v3.4 (Martin, 2011). Corn reads were removed by alignment to the B73 v.5 genome
with HISAT2 v2.2.1 (Kim et al., 2019) and filtered with SAMtools v1.15.1 (Danecek et al., 2009). The resulting
unmapped reads from the three reps were concatenated and aligned to our polished P. maydis genome
assembly with HISAT2 v2.2.1 (Kim et al., 2019). This alignment was used by BRAKER2 v2.1.6 --fungus for
genome annotation default settings (Stanke et al., 2006, 2008; Hoff et al., 2016, 2019; Bruna et al., 2021).
Functional gene assignments were performed with PANNZER2 web server (Térdnen and Holm, 2021).
CAZyme prediction was performed with dbCAN meta server (https://bcb.unl.edu/dbCAN2/). Signal peptides
and localization patterns were predicted using SignalP v6.0 and DeepLoc v2.0 respectively (Teufel et al., 2022;
Thumuluri et al., 2021). Effectors were predicted from the predicted secreted proteins using EffectorP v3.0

(Sperschneider and Dodds, 2022). For analysis of gene expression, the three independent replicates were
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individually aligned to our P. maydis annotated assembly using HISAT2 v2.2.1 (Kim et al., 2019). StringTie
v2.2.1 was then utilized to calculate FPKM and TPM values for each gene (Pertea et al., 2016). Transcriptome
analyses was conducted in RStudio v4.2.0 using the tidyverse v1.3.1 (Wickham et al., 2019) and cowplot
v1.1.1 (https://github.com/wilkelab/cowplot/) packages.

Data Availability

PM02 genome assembly, annotation, mitochondrial genome, and raw sequence data can be found under NCBI
BioProject PRUNA928553.
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Figure and Table Legends

Figure 1: Genome assembly statistics and mating-type determination

(A) Aerial view of infected tar spot field (top left). Close up of infected leaf tissue (top right courtesy of Jill
Check). Zoomed in view of individual tar spot lesions (bottom left). Spore exudates appear as viscous globular
liquid or dried cirrhi (bottom right courtesy Austin McCoy). (B) Yearly spread of tar spot (courtesy of Joe
LaForest https://corn.ipmpipe.org/tarspot/). (C) P. maydis genome assembly statistics. (D) lllustration of
mating-type locus. (E) Genomic lllumina reads mapped to Mat genes and adjacent APN2 and SLA2 genes.

(F) llustration of both pheromone precursor loci. (G) lllustration of both pheromone receptor loci.

Figure 2: Comparative genomics between P. maydis and sordariomycetes
(A) Conservation or absence of KEGG K-numbers between P. maydis and all sordariomycetes within the
KEGG database. (B) Presence (blue) and absence (red) of known inorganic nitrogen utilization genes /in P.

maydiis in comparison to all sordariomycetes within the KEGG database.

Figure 3: Cellular and metabolic pathway expression
(A) Average metabolic pathway TPM values. (B) Average cellular process pathway TPM values. Circle size
corresponds to number of genes within the pathway. Circle color corresponds to average pathway expression

from low (blue) to high (red).

Figure 4: Transporter, light-sensing, and reproductive gene expression
(A) Mean TPM of identified transporters. (B) lllustration of identified light-sensing proteins and downstream
regulated proteins. (C) Mean TPM of well-studied genes involved in light sensing, nutrient sensing, mate

recognition, reproduction regulation, and sexual and asexual reproduction.

Figure 5: Expression analysis of secreted enzymes and effectors

(A) Identification of conserved and unique secreted enzymes encoded by P. maydis using an e2° threshold
(left). Quantity of glycoside hydrolases (GH), auxiliary activities (AA), carbohydrate esterases (CE),
carbohydrate-binding (CB), and glycosyltransferases (GT) CAZymes (middle). Mean expression of CAZymes
(right). (B) Identification of conserved and unique secreted effectors encoded by P. maydis using an e2°
threshold (left). Predicted host localization of conserved and unique effectors (middle). Mean expression of

effectors (right).

Supplemental Figure 1: Genome features
(A) K-mer-based genome size prediction. (B) Repetitive DNA quantification and characterization. (C) Predicted

localization of proteins encoded by P. maydis.
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Supplemental Figure 2: Expanded expression of genes in pathways

(A) Expanded metabolic pathway average expression including oxidative phosphorylation. (B) Schematic of
ammonia and glutamine utilization genes in fungi (top). Average TPM values for genes involved in this process
(bottom). (C) Mean TPM for each gene within the DNA replication KEGG pathway. (D) Mean TPM for each
gene within the meiosis KEGG pathway. (E) Mean TPM for each gene within the autophagy KEGG pathway.
Genes are colored red or blue depending on whether they have been previously implicated for their
involvement in pathogenicity or pathogenicity and conidiation, respectively (F) Microscopy images of perithecia

containing asci. (G) Microscopy images of pycnidia containing conidia.

Supplemental Table 1
KEGG orthology groups absent in PM02 genome and present in various Sordariomycete species (designated

by their KEGG organism code).

Supplemental Table 2

PMO02 annotated gene list with expression levels (TPM) and functional annotation.
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Figure 1: Genome assembly statistics and mating-type determination
(A) Aerial view of infected tar spot field (top left). Close up of infected leaf tissue (top right courtesy of Jill
Check). Zoomed in view of individual tar spot lesions (bottom left). Spore exudates appear as viscous
globular liquid or dried cirrhi (bottom right courtesy Austin McCoy). (B) Yearly spread of tar spot (courtesy
of Joe LaForest https://corn.ipmpipe.org/tarspot/). (C) P. maydis genome assembly statistics. (D)
Illustration of mating-type locus. (E) Genomic Illumina reads mapped to Mat genes and adjacent APN2 and
SLA2 genes. (F) Illustration of both pheromone precursor loci. (G) Illustration of both pheromone receptor
loci.
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Figure 2: Comparative genomics between P. maydis and sordariomycetes

(A) Conservation or absence of KEGG K-numbers between P. maydis and all sordariomycetes within the
KEGG database. (B) Presence (blue) and absence (red) of known inorganic nitrogen utilization genes in P.

maydis in comparison to all sordariomycetes within the KEGG database.
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Figure 3: Cellular and metabolic pathway expression

(A) Average metabolic pathway TPM values. (B) Average cellular process pathway TPM values. Circle size
corresponds to number of genes within the pathway. Circle color corresponds to average pathway
expression from low (blue) to high (red).
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Figure 4: Transporter, light-sensing, and reproductive gene expression
(A) Mean TPM of identified transporters. (B) Illustration of identified light-sensing proteins and downstream
regulated proteins. (C) Mean TPM of well-studied genes involved in light sensing, nutrient sensing, mate
recognition, reproduction regulation, and sexual and asexual reproduction.
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Figure 5: Expression analysis of secreted enzymes and effectors
(A) Identification of conserved and unique secreted enzymes encoded by P. maydis using an e-20 threshold
(left). Quantity of glycoside hydrolases (GH), auxiliary activities (AA), carbohydrate esterases (CE),
carbohydrate-binding (CB), and glycosyltransferases (GT) CAZymes (middle). Mean expression of CAZymes
(right). (B) Identification of conserved and unique secreted effectors encoded by P. maydis using an e-20
threshold (left). Predicted host localization of conserved and unique effectors (middle). Mean expression of
effectors (right).
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Supplemental Figures

ﬂ P. maydis genome size estimation 2] P. maydis genome contains significant repetitive content (o4 Deeploc 2.0 subcellular localization prediction
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Supplemental Figure 1: Genome features
(A) Kmer-based genome size prediction. (B) Repetitive DNA quantification and characterization. (C) Predicted localization of proteins
encoded by P. maydis.
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ﬂ Oxidative phosphorylation is highly expressed
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Supplemental Figure 2: Expanded expression of genes in pathways

(A) Expanded metabolic pathway average expression including oxidative phosphorylation. (B) Schematic of ammonia and glutamine
utilization genes in fungi (top). Average TPM values for genes involved in this process (bottom). (C) Mean TPM for each gene within the
DNA replication KEGG pathway. (D) Mean TPM for each gene within the meiosis KEGG pathway. (E) Mean TPM for each gene within
the autophagy KEGG pathway. Genes are colored red or blue depending on whether they have been previously implicated for their

involvement in pathogenicity or pathogenicity and conidiation, respectively (F) Microscopy images of perithecia containing asci. (G)
Microscopy images of pycnidia containing conidia.



