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ABSTRACT

The demand for additive manufacturing (AM) continues to
grow as more industries look to integrate the technology into their
product development. However, there is a deficit of designers
skilled to innovate with this technology due to challenges in sup-
porting designers with tools and education for their development
in design for AM (DfAM). There is a need to introduce intuitive
tools and knowledge to enable future designers to DfAM. Immer-
sive virtual reality (VR) shows promise to serve as an intuitive
tool for DfAM to aid designers during design evaluation. The
goal of this research is to, therefore, identify the effects of immer-
sion in design evaluation and study how evaluating designs for
DfAM between mediums that vary in immersion, affects the results
of the DfAM evaluation and the mental effort experienced from
evaluating the designs. Our findings suggest that designers can
use immersive and non-immersive mediums for DfAM evaluation
without experiencing significant differences in the outcomes of the
evaluation and the cognitive load experienced from conducting
the evaluation. The findings from this work thus have implications
for how industries can customize product and designer-talent de-
velopment using modular design evaluation systems that leverage
capabilities in immersive and non-immersive DfAM evaluation.

Keywords: Additive Manufacturing, Design for Additive
Manufacturing, Cognitive Load, Virtual Reality

NOMENCLATURE

AM  Additive Manufacturing

ME  Material Extrusion

CAE Computer-Aided Engineering
VR  Virtual Reality

1. INTRODUCTION AND MOTIVATION

The continued global expansion of the additive manufactur-
ing (AM) industry by nearly 7.5% to roughly $12.8 billion in 2020
[1] along with 2x forecasted growth worldwide to roughly $37.2
billion in 2026 [2] shows the growing significance and demand
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for AM in the product development market. Experts project that
by 2030, manufacturing of less critical spare parts will be primar-
ily driven by AM and a significant amount of AM products will
leverage capabilities in multi-material fabrication and product de-
velopment with embedded electronics [3]. Although the demand
for AM-driven product development continues to grow, there is a
deficit of designers and engineers [4] in the workforce suited to
meet this demand. This deficiency in in-house AM and design for
AM (DfAM) knowledge is a barrier to the integration of AM in
the industry [5, 6] inhibiting industries from innovating with AM.
It is, therefore, imperative to prepare the future workforce with
the skills and knowledge in AM and DfAM to meet this growing
demand for AM-driven innovation in product development.

The typical considerations for DfFAM contrast against the
standard design for manufacturing and assembly (DfMA) con-
siderations due to the unique design freedoms and restrictions
offered by AM technologies; this contrast thus requires a new
wealth of knowledge tailored to support industrial DfAM prac-
tices [7, 8]. Focus on developing AM and DfAM capabilities
through design-centric resources [9-11] and accessible in-depth
process-centric education [12] can empower designers and engi-
neers in the future AM workforce [13] to creatively leverage AM
in product development [14]. Past work supports designers by
providing tools [9, 15], frameworks [10], and design guides and
heuristics [11, 16] to improve DfAM-focused product design ex-
ercises. Such tools are useful aids for designers when designing
and evaluating production using AM, but they are limited in their
medium of presentation and utility: specifically, they are limited
to non-immersive sketching or computer mediums. The medium
of design evaluation, however, influences the results of the evalu-
ation [17-20] and presents different levels of difficulty and mental
load [21] during the evaluation exercise. It is, therefore, impor-
tant to consider how the medium through which designers access
and apply design and process-centric AM knowledge affects their
DfAM development and product design capabilities.

Spatial and psychomotor characteristics of the media and
tools strongly influence design evaluation exercises [17] and in-
creasing the immersion of the medium shows improvements in the
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outcomes of a design evaluation exercise [19, 20, 22-25] while
minimizing the limitations from non-immersive mediums [18].
The immersion of a medium, therefore, has a strong influence
on design evaluation and the mental effort experienced from the
evaluation exercise; however, limited work [26] in the fields of
AM and DfAM investigates how the medium in which a designer
conducts DfAM evaluation affects their evaluation. No identified
work in AM and DfAM literature compares the effects of immer-
sion between virtual and in-person mediums or investigates the
effects of immersion on cognitive load from a design evaluation.
This research, therefore, aims to address this gap in the literature
and analyze and compare the use of different immersive medi-
ums as tools in DfAM evaluation; the mediums compared are
Computer-Aided Engineering (CAE), Virtual Reality (VR), and
the real physical medium. There is an opportunity to improve
DfAM evaluation exercises and designer talent to enhance indus-
trial product design capabilities. The goal of this research is to,
therefore, identify the effects of immersion in the design expe-
rience and study how evaluating designs for DFAM in mediums
of varying immersion affects the results of the evaluation and
the mental effort experienced to evaluate designs. The findings
from this work can have significant implications for how future
designers are trained in AM and DfAM to meet the AM-driven
product development demands in the workforce.

2. RELATED WORK

Immersion in virtual environments aims to give users a "vivid
illusion of reality" [27, 28] and is measured in comparison to the
real and physical world having the highest levels of immersion.
As such, virtual realities are often a technological collaboration
of immersion and presence [28, 29] to surround a user in a digital
space that mimics visual, auditory, and other sensory elements of
the physical reality. VR is hence measured in terms of the extent
to which a virtual environment can surround users to simulate im-
mersion and presence. Therefore, traditional computer displays
typically fall under non-immersive VR while head-mounted dis-
plays (HMDs) fall under immersive VR [29, 30]. However, for
the sake of clarity, this research reinterprets these definitions
with the following distinctions: CAE = non-immersive virtual
medium (i.e., a flat computer screen), VR = immersive virtual
medium (i.e., an HMD), REAL = immersive physical medium
(i.e., the physical world). The goal of this research is to identify
how the differences in immersion between CAE, VR, and REAL
mediums impact the results of a DfFAM evaluation and the cogni-
tive load experienced from the evaluation. The remainder of this
section highlights past work to provide insight into the challenges
with using traditional manufacturability evaluation methods for
DfAM evaluations and emphasizes the need for AM and DfAM
tailored tools (Section 2.1). It also analyses the existing applica-
tions of immersive virtual mediums in product design evaluation
to support the use of VR for DfAM evaluations (Section 2.2).

2.1 Tailoring design for manufacturability evaluation in
AM-driven product design
Traditional DfMA aims to integrate design considerations
driven by the manufacturing processes to realize designs into
physical products. Doing so bridges the gap between design and

manufacturing engineers [31] to reduce development time and
cost, and increase performance, quality, and profitability in the
product development cycle [8]. DfMA-focused tools and tech-
niques are, therefore, commonplace resources to help designers to
consider DEMA in product development. Similarly, DFAM needs
to be considered when developing products powered by AM; how-
ever, due to the various design freedoms and restrictions offered
by AM technologies, the design knowledge, tools, and method-
ologies are different from traditional DfMA [8, 32]. Traditional
DfMA tools, knowledge, and design considerations thus may not
apply when designing for production through AM. Therefore, the
analytical tools, training programs, and design frameworks for
DfAM need to advance simultaneously to support designers for
AM-driven product innovation in the workforce.

Research into automated AM analysis presents promising
avenues for industries to use in their digital thread [33-35] by
empowering designers with relevant analytical and design tools.
As automation in digital manufacturing improves and provides
expedited and easy-to-use design evaluation options to leverage
within the AM digital thread, there will be a demand for new
knowledge and skills in digital manufacturing [36] to enable de-
signers to think "generatively" and design for AM [3]. In addition
to focusing on automation in AM, it is thus essential to invest
in developing tools and resources that aid designers in learning
and applying DfAM to suitably support parallel advancements
in AM. These tools and resources need to enable designers to
operate with both design and process-centric AM knowledge and
thus help them creatively leverage the range of AM capabilities
in product development. As such, past work provides differ-
ent worksheets [9, 15, 37, 38], methodologies [10], and design
heuristics [11, 16] as tools for designers to use during product
development that provide insight on when, where, and how to
consider AM. While such existing tools offer extensive capabili-
ties to evaluate different DFAM design elements, they are limited
to process-dependent guidance tailored to specific AM processes
[9, 15, 16, 38]. There is a need for a consolidated tool that covers
a range of DfAM metrics and offers a process-agnostic DfAM
tool when conducting user-based DfAM evaluation.

Past work leverages different DfAM tools and principles
to investigate the outcomes from user-based design evaluation
[26, 39, 40]. Generally, such work focuses on restrictive DfAM
metrics. Ostrander et al. [26] and Budinoff and McMains [40]
studied how DfAM analysis tools help users identify quality is-
sues and potential print failure in designs prior to manufacturing.
Scheele et al. [39] evaluated AM process capabilities by lever-
aging users’ DfAM intuition to assess manufactured part quality
through restrictive DfAM metrics. However, this past work re-
lies on existing DfFAM tools that are limited to non-immersive
or textual mediums of utility due to their inherent benefits dur-
ing design [18]. Limited work i) investigates alternate mediums
of presenting designers with DfAM knowledge [41], ii) stud-
ies the application of virtual and immersive technology, such as
VR, to support DfFAM [26], or iii) quantifies the mental load
caused by different media during design evaluations [21]. There
is, therefore, a gap in existing knowledge supporting the field of
DfAM that explores how design evaluation and cognitive load
are impacted by the medium of evaluation. Understanding how
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the medium of evaluation affects a DFAM evaluation may help
improve a designer’s AM product design capabilities.

2.2 Comparing virtual and real, immersive and
non-immersive mediums in engineering and design
Designers need to supplement their traditional DEMA tools

with intuitive tools that improve their DfAM capabilities; how-
ever, existing DfAM tools heavily rely on non-immersive medi-
ums where the lack of immersion may prove limiting during
DfAM evaluation. Unlike traditional manufacturing that can
leverage traditional media, such as 2D sketches and computer
drawings, AM requires digital 3D model data for the eventual
realization of a design. Immersive design environments like VR,
therefore, make intuitive sense to investigate as tools for DFAM
evaluation due to the streamlined nature of introducing complex
virtual models into an immersive virtual space. Past work sup-
ports this intuitive investigation into VR to serve as a design
evaluation medium tailored for AM and DfAM.

Designers need to prototype and evaluate their designs to
innovate during product development. Traditionally, designers
leverage physical models and prototypes to visualize and identify
the issues and improvements to address in their designs. Doing
so can boost design performance [42] by rectifying flaws in the
designer’s mental models [43]. However, repeated and extensive
use of physical prototypes fabricated through traditional manufac-
turing processes can be expensive and time-consuming [44, 45].
With the growth of AM technology, physical prototyping can be
more feasibly considered as a method to conduct design evalu-
ation. However, an AM prototype is directly dependent on the
digital input [44], which requires designers to be trained in DfAM
to minimize build failures and strengthen their understanding of
restrictive DfAM [14]. Therefore, virtual prototyping may avoid
some of the costs, limitations, and challenges with physical pro-
totyping [44, 45]. Since AM relies on virtual models and digital
manufacturing information, virtual prototyping is an inherently
appealing approach during AM product development.

Computer-aided technology enables virtual testing and pro-
totyping that can be applied to various product design, engi-
neering, and learning requirements [12, 46-48]. While non-
immersive virtual tools offer numerous benefits for designers,
research shows that adding immersive elements can improve the
design experience and its outcomes [20, 23-25, 27, 29]. As Bux-
ton [17] summarizes, this is because the characteristics of the
media, tools, and human-related factors, such as spatial percep-
tion and reasoning, and psychomotor skills, strongly influence
the design evaluation exercise. Ibrahim and Rahiman [18] conse-
quently reflect this summary and show that conventional sketch-
ing is a useful tool to highlight design concepts, but is limited
when analyzing complex designs. Conversely, while computer-
aided design is advantageous for detailed engineering, it was
found to limit intuitive ideation. These observations emphasize
the need for tools that offer enhanced spatial and psychomotor
capabilities while providing efficient design and prototyping ca-
pabilities. Past work indicates that immersive technologies like
VR can consolidate the benefits of conventional sketching and
CAE while avoiding their limitations, to offer fast and fluent de-
sign conceptualization and analysis of complex designs.

Advancements in immersive technology are driving industry
use of VR in product design, engineering, and manufacturing to
support decision making and enable innovation [49]. This trend
is significant enough that educational analyses suggest that virtual
and real platforms will power future hybrid learning opportuni-
ties [50]. Existing research provides insight into the effectiveness
and applicability of VR in industry and education [27, 29, 49].
Specifically, past work indicates that VR shows promise in de-
veloping declarative and procedural-practical knowledge [27],
cognitive skills (e.g., understanding spatial and visual informa-
tion), psychomotor skills (e.g., visual scanning or observational
skills), and affective skills (e.g., controlling responses to chal-
lenging situations) [29]. Additional observable benefits of VR
include: 1) allowing designers to better perceive the fit of Ul
elements and estimation of the model dimensions [22], ii) iden-
tifying more errors and defects in 3D models when compared to
CAE evaluation [20, 23], iii) making fewer mistakes in procedural
assembly tasks [24] when compared to REAL product assembly,
and iv) reducing task completion times when compared to both
CAE and REAL [24, 25] conditions. Furthermore, past work
suggests that designers experience differences when using VR
over CAE as affected by the design complexity of their products
[19, 22] where studies reported that models with a higher design
complexity might benefit from review in VR than in CAE.

While these benefits of VR to a designer’s product design
abilities are key motivators for this work, it is also important
to understand how challenging designers may find experiences
when working across different mediums. One metric to measure
this challenge is cognitive load, which quantifies the mental effort
experienced to navigate or accomplish a task or action. Past work
suggests that cognitive load may be influenced by immersion de-
pending on the manual operations performed for task completion
and the range of precise motor skills required to complete differ-
ent tasks [51-56]. Specifically, there is an influence on cognitive
load as the difficulty of processing task-related information and
performing manual operations changes between low difficulty
[51, 53, 55] to high difficulty [51, 52, 54, 56].

The literature strongly supports the potential benefits of im-
mersion and VR in design evaluation. Limited work, however,
explores these effects to specifically support DfAM [26]. Ad-
ditionally, no known literature offers guidance on the cognitive
load experienced by designers from their DfAM evaluation ex-
ercises across mediums of different immersion. The collective
knowledge of how the immersion in a designer’s product de-
sign and evaluation environment affects their DFAM evaluations
and cognitive load can be leveraged to further improve industrial
product design processes and better train and equip designers for
the AM-driven product demands in the workforce.

3. RESEARCH QUESTIONS

Based on this previous work, the goal of this research is
to analyze the effects from the differences between immersive
(i.e., VR and REAL) and non-immersive evaluation conditions
(i.e., CAE) on design evaluation (as measured by DfAM score,
evaluation time, and evaluation confidence) and cognitive load
(as measured by self-reported values). With this scope in mind,
this research explored the following key research questions:
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RQI: How do the differences in immersion between CAE, VR,
and REAL mediums affect the DfAM evaluation results for
designs of varying manufacturability?

We believe that the evaluation through VR and REAL conditions
will yield scores significantly closer to expert-reviewed scores,
significantly faster evaluation times [26], and significantly higher
reported confidence values than will the evaluation through the
CAE condition; however, we do not expect significant differences
between the two immersive conditions. This is expected due to
the effects from the varying capabilities offered by the conditions
when evaluating designs: capabilities such as interactivity, im-
mersion, psychomotor coordination, and spatial perception and
reasoning [17]. Additionally, changes in design complexity can
influence the evaluation and performance outcomes [19, 22] when
considered alongside the effects of immersion.

RQ2: How do the differences in immersion between CAE, VR,
and REAL mediums affect the cognitive load experienced
when evaluating designs of varying manufacturability?

We believe that as the difficulty of design evaluation operations
changes due to the change in immersion, the VR and REAL
experiences will require significantly less mental effort and will
yield lower reported cognitive load values than will the CAE
experiences; however, we do not expect significant differences
between the two immersive conditions [51, 55]. This is expected
due to the effects from the varying capabilities offered by the
conditions which affect the difficulty of evaluating the features
of the designs for manufacturability within the environmental
restrictions. These effects are expected by virtue of the changes in
difficulty of processing task-related information and performing
manual operations changes between low difficulty [51, 55] to high
difficulty [51, 52, 56] with the change in immersion.

4. METHODOLOGY

The goal of this research was to identify the effects of immer-
sion on DfAM evaluation and experienced cognitive load when
evaluating designs of varying manufacturability. This research,
therefore, studied the experiences of novice designers within dif-
ferent mediums when they evaluated different designs for manu-
facturability with ME. Participants in this research were second
and third-year undergraduate students recruited from an engineer-
ing design methodology course at an R1 university. Volunteers
were first informed of their rights and options as per IRB protocol
before conducting the study. Those who opted in to participate
were provided an online Qualtrics survey that they completed on
their PCs. Each participant was randomly assigned to one of
the three conditions (i.e., either CAE, VR, or REAL). Balancing
the number of data points between the three conditions was also
handled automatically by the survey. During the study, partici-
pants shared their interest and motivation levels in learning and
using AM, as well as their awareness of AM, material extrusion
(ME), and design for ME (DfME) before they conducted the de-
sign evaluations for the study (Section 4.1). They then completed
three design evaluation exercises one at a time (Section 4.2) and
reported the cognitive load they experienced from evaluating all
the designs (Section 4.3). A participant’s design evaluation was

measured by three metrics: i) the design’s DfAM score, ii) the
time taken for the evaluation, and iii) the confidence of the evalua-
tion. The DfFAM score was measured by adding scores from eight
metrics where each metric was evaluated on a 3-point likert scale.
Each design was thus scored between 8-24 points with a higher
score suggesting a higher recommendation for manufacturability
by ME. Cognitive load was measured by self-reported mental
effort exerted during the experience. This section discusses how
the designed experimentation measured these metrics to address
the proposed research questions and further elaborates on the
specifics in the overall experimental procedure.

4.1 Assessing the participants’ backgrounds

Participants first shared their interest and motivation regard-
ing learning about AM and using AM. They indicated their agree-
ment to the posed inquiries on interest and motivation on a 5-point
likert scale that ranged from strongly agree to strongly disagree.
They then shared their awareness of the overall AM technology.
This data indicated their general experience working with their
interpretation of AM and its design and manufacturing practices.
They then shared their awareness specifically with the ME pro-
cess and DfME practices. Awareness in AM, ME, and DfME
was also recorded on a 5-point likert scale that covered identical
options in each topic: i) never heard or learned about the topic, ii)
had some informal knowledge in the topic, iii) had some formal
knowledge in the topic, iv) had lots of formal knowledge in the
topic, or v) was an expert in the topic. Comparing this data with
the data on their general awareness of AM indicated the depth
of awareness participants generally had with the AM technology,
including the range of AM processes and their relevant design
considerations. Collectively, the data on interest and motivation
and AM, ME, and DfME awareness helped strengthen the statis-
tical analysis on the results of the design evaluation and cognitive
load. Before proceeding to the design evaluation exercise, par-
ticipants in the CAE and VR conditions also shared their comfort
levels in working with or interacting with 3D models (i.e., vir-
tual objects) within their specific conditions. Participants in the
REAL condition were not asked for their comfort levels.

4.2 Conducting design evaluation

After providing information on their background, partici-
pants were directed to the design evaluation exercise. The ex-
perimental design for the part evaluation exercise across all the
conditions gathered information on the evaluated DfAM score,
the time taken for evaluation, and the confidence of the evalu-
ation with logistical requirements in setup, required hardware,
and adjustments to the study, tailored to the needs and constraints
for each condition. Participants assigned to the CAE condition
were directed to the design evaluation exercise in the survey on
their PCs. Those assigned to the VR and REAL conditions were
directed to designated study zones where they were provided the
equipment and tools needed to complete the exercise. Participants
in the VR condition were given Oculus Quest 2 VR headsets and
controllers and directed to the design evaluation exercise on the
Oculus browser. Participants in the REAL condition were di-
rected to a table with the physical parts where they continued the
design evaluation exercise on their devices. The virtual designs
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for the CAE (Fig. 1a) and VR (Fig. 1b) conditions included vir-
tual parts, tools, and instructional information to help participants
gauge scale and interact with their environment. The design of
the REAL condition included physical parts, tools for measur-
ing scale, and digital instructions for the exercise. The physical
parts were manufactured using ME and underwent multiple post-
processing cycles of coating with primer and sanding to minimize
any visible indications of the original fabrication process.

Material Removal
Support structures ruin the surface finish

Evaluate the part for manufacturability by material extrusion AM in
this orientation

i

Model Transform Controls

Internal cavities, channels, or holes do not generally have
openings for removing materials

The gaps for support material removal are generally small and
difficutt to navigate

Material can generally be removed from intenal cavities,
channels, or holes

(a) The CAE setup provided the worksheet side-by-side to the de-
sign evaluation stage with standard 3D modeling controls

is generally

vidth ratio s generally below 20:1

7he grid consists of 1 cm x 1 cm ce\\s

(b) The VR setup provided the worksheet in front of the design
evaluation stage with intuitive interaction and selection controls

Bl

A

(c) The REAL setup provided the worksheet in front of the design
evaluation stage with the scale and orientation information

- orted e

FIGURE 1: Showcasing the design evaluation setup for each con-
dition to highlight the experimental design

In each condition, participants were instructed to evaluate
the designs for manufacturability in a functionally constrained
orientation as shown in Fig. 1 and were informed that the de-

signs were to be manufactured using the ME process and hence to
be evaluated for manufacturability for this specific AM process.
They were allowed to freely interact with the parts and environ-
ment to the extent permitted within the given design evaluation
medium. These interactions included picking up, rotating, and
moving the parts to get a good view of the design and did not
include re-scaling or digital enlarging capabilities.

During the evaluation exercise, participants used the pro-
vided worksheet [57] to evaluate a design using eight distinct
process-agnostic metrics consolidated from work by Booth et
al. [9] and Bracken et al. [15]. These metrics covered mate-
rial removal, unsupported overhangs and bridges, self-supporting
features, cross-sectional features parallel to the build plate, thin
features, and surface accuracy of curved surfaces. Each metric
was evaluated on a 3-point likert scale that was identical to a
low-medium-high scale for evaluating quantities, thus, allowing
participants to score a design between 8-24 points with a higher
score suggesting a higher recommendation for manufacturability
by ME. They were not informed of the scores they evaluated for
the designs and hence were not given explicit feedback on their
evaluation. They only saw the three options for each metric in the
worksheet and were instructed to select the option that best fits
the design they were evaluating. The summed scores for the de-
signs were calculated later during the data analysis. Participants
concluded one evaluation by filling out the entire worksheet and
reporting their confidence in their evaluation of the design. They
completed the entire exercise by evaluating three out of the five
possible designs highlighted in Fig. 2, one at a time.

s ﬂ ' ﬂ ﬁ
4 [ .
D1 D3 D4 D5

D2

(§
L4

Levels of design complexity

FIGURE 2: Showcasing the designs used in this research in the
order of increasing design complexity [26]

Providing only three designs from Fig. 2 minimized the
effects of survey fatigue thereby focusing on the cognitive load
directly impacted by the exercise of evaluating designs within
their assigned condition. The order of the designs presented was
determined from a Balanced Latin Square that counterbalanced
the participant pool to account for immediate sequential or carry-
over effects [58]. Participants were only given designs listed in
the first three columns in the 10x5 counterbalanced table. Doing
so still honored the principles of the counterbalancing approach
while addressing the concerns with survey fatigue. Multiple
participants received the same order of designs, however, each
order from the counterbalanced table was assigned to a participant
randomly and the overall distribution was balanced by the survey.

4.3 Reporting experiential cognitive load

After completing the design evaluation exercise, participants
reported their cognitive load using the Workload Profile Assess-
ment (WPA) tool [59] by reporting the mental effort they exerted
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during the experience. The tool’s high sensitivity when com-
pared to the Subjective Workload Assessment Technique and the
NASA Task Load Index [60] and its non-intrusive nature, when
compared to other multidimensional subjective workload assess-
ment instruments, provide strong support for its use in this study.
Participants scored each of the eight workload profile dimensions
(i.e., the perceptual, response, spatial, verbal, visual, auditory,
manual, and speech) between 0 and 10 to represent their exerted
mental effort. Each participant received a textual and audio de-
scription on each workload profile dimension to review, along
with an example of each dimension applied in practice. This en-
sured consistency with how participants assessed their cognitive
load and assigned quantitative values to each dimension.

5. RESULTS

This research collected 114 data points that were evenly dis-
tributed across the three conditions (CAE = 39, VR = 38, REAL
= 37). Further breakdown of the data within each condition is
listed in Tables. 1 and 2 show that each design (i.e., D1-D5) was
presented evenly across the conditions, and the ordered set of
designs presented was also evenly distributed (with the exception
of the ordered set 541 in CAE and VR).

TABLE 1: Breakdown of the frequency of evaluation of each de-
sign within each condition

DI D2 D3 D4 DS

CAE 23 26 25 21 22
VR 21 23 24 24 22
REAL 23 21 22 22 23

TABLE 2: Distribution of ordered sets of designs participants re-
ceived within each condition (NOTE: ordered set 125 indicates
that participants saw D1, D2, and D5 in that order)

125 152 213 231 324 342 435 453 514 541

CAE 5 4 4 5 4 4 4 4 4 1
VR 3 4 4 3 5 4 3 5 5 2
REAL 4 3 4 4 3 3 4 4 4 4

The even distribution of data across the conditions, de-
signs, and ordered sets minimizes the effects of skewed data and
strengthens the statistical analysis of the data on design evaluation
and cognitive load. This research collected demographic data,
design evaluation data, and cognitive load data and reports this
collective data and the results from its analyses while maintaining
all outliers. To account for the complexity of the experimental
setup and the presence of multiple dependent and independent
variables in its statistical analysis, this research uses linear re-
gression modeling (Im) for the demographic and cognitive load
data and linear mixed-effects regression modeling (Imer) for the
design evaluation data. A 95% confidence interval was used to
determine statistical significance (i.e., p < 0.05). The assumptions
for linear regression and linear mixed-effects regression model-
ing were checked for violations using the Pefia and Slate [61] and
the Loy and Hofmann [62] procedures respectively. This research

did not find any observable violations and relies on the acceptable
range for the robustness of Ims and lmers in its reported findings.
Therefore, the statistical analyses in the following sections pro-
vide support from the participant demographic data (Section 5.1)
to highlight the findings from the design evaluation exercises to
address RQ1 (Section 5.2) and the reported cognitive load to
address RQ2 (Section 5.3).

5.1 Demographic analysis of the participant pool

Demographic data collected from the participants (Fig. 3)
strengthened support for the effects of experimental factors on
the later observed results in design evaluation and cognitive load,
by accounting for the effects from the participants’ backgrounds
on the observed results.

I am interested in learning about additive manufacturing

REAL | |
VR ]
CAE |
I am interested in using additive manufacturing
REAL [ |
o VR |
S CAE |
;é I am motivated to learn about additive manufacturing
8§ REAL [ | ]
VR ]
CAE L
I am motivated to use additive manufacturing
REAL [ |
VR ]
CAE |
0 25 50 75 100

Percentage of Participants
B Strongly agree Disagree

Response Agree B strongly disagree
Neither agree nor disagree

(a) Reported interest and motivation to learn and use AM

AM
REAL -
VR ) |
CAE |
o ME
]
= REAL B
S VR |
§ CAE e
DfME
REAL
VR I
CAE L |
0 25 50 75 100
Percentage of Participants
Response

I have some informal knowledge
I have never heard or learnt

B 1aman expert
B 1 have received lots of formal knowledge
I have received some formal knowledge

(b) Reported prior awareness in AM, ME, and DfME
FIGURE 3: Showcasing the collected demographic information

for the participant pool highlight

Regressing the interest and motivation levels on the centered
condition (CAE=-0.5, VR=0, REAL=0.5) showed no observable
significant difference between the three conditions in interest and
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motivation (for interest to learn AM: b=-0.199, F(1,112) =1.263
[t(112) = -1.124], p = 0.264, for interest to use AM: b= -0.224,
F(1,112) =1.663 [t(112) =-1.29], p = 0.2, for motivation to learn
AM: b= -0.286, F(1,112) = 2.561 [t(112) = -1.6], p = 0.112,
for motivation to use AM: b= -0.181, F(1,112) = 0.886 [t(112)
= -0.942], p = 0.348). Many participants generally agreed or
strongly agreed (Fig. 3a) that they were interested and motivated
to learn about and use AM within each condition.

Regressing the distributions of the prior awareness in AM,
ME, and DfME on the centered condition (CAE= -0.5, VR=
0, REAL= 0.5) showed no observable significant difference be-
tween the three conditions in prior awareness (for AM: b=-0.194,
F(1,112) =1.237 [t(112) =-1.112], p = 0.268, for ME: b=-0.114,
F(1,112) = 0.291 [t(112) = -0.54], p = 0.591, for DfME: b= -
0.302, F(1,112) =2.215 [t(112) = -1.488], p = 0.139). As shown
in Fig. 3b, the distribution of awareness in AM, ME, and DEIME
suggests that the collective experience within the three condi-
tions was similar; however, while many participants had some
form of informal or formal experience with AM, ME, and DfME,
participants claimed a significantly higher awareness of general
AM than they did specifically of ME (b= 6.667, F(2,6) = 10.42
[t(6) = 3.651], p = 0.01) and DfME (b= 7.667, F(2,6) = 10.422
[t(6) = 4.199], p = 0.006). This can be observed in Fig. 3b with
the significantly higher number of participants reporting that they
had "never heard or learnt about" ME or DfME before the study
indicating that they were novices to ME. These analyses suggest
that the results from later design evaluations can be attributed
to changes in the experimental factors, rather than underlying
variations in interest, motivation, or prior awareness.

Lastly, regressing the collapsed technology comfort levels on
the centered condition (CAE= -0.5, VR= 0.5) showed that par-
ticipants in the CAE condition had a significantly higher comfort
for CAE technology than did participants in the VR condition for
VR technology (b= -0.749, F(1,77) = 11.79 [t(77) = -3.434], p
< 0.001). This result was expected as this research worked with
second to third-year undergraduate students from an engineering
design methodology course at an R1 university who would have
completed at least one semester of CAE course requirements, and
likely not have completed any VR course work. Nonetheless, the
analysis suggests that effects from varying comfort levels for the
technologies in each condition could influence the study, however,
with the limited scope in mind for this work, we acknowledge the
limitation of not accounting for technology comfort levels that
will be considered as an opportunity for future work.

5.2 Design evaluation as affected by the conditions

For the first research question, this research aimed to un-
derstand how the differences in evaluation conditions (i.e., CAE,
VR, REAL) affected the results of the design evaluation as mea-
sured by the DfAM score, evaluation time, and confidence of
evaluation. Figure 4 highlights the results of the evaluation for
each design across each condition. We hypothesized that de-
sign DfAM scores, time taken for the evaluation, and confidence
in evaluation between the conditions will differ as the designs
change. To study this, the DFAM score, evaluation time, and
reported confidence were regressed on the centered variables for
condition (CAE = -0.5, VR = 0, REAL = 0.5; between-subjects

variable) and design (D1 = -0.5, D2=-0.25, D3 = 0, D4 = 0.25,
D5 =0.5; within-subjects variable) as the covariate. The analysis
utilized restricted maximum likelihood estimation to iteratively
modify the parameter estimates to minimize the log-likelihood
function and evaluated this model with the Kenward and Rogers
(KR) adjustment [63]. The following results reported from the
analysis focus on each detailed effect when controlling for all
other main effects in the model. No interaction effects between
any of the independent variables were considered in the analysis.

The main analysis showed no significant effect of condition
onscore (b=0.312,F(1,112) =0.553 [t(112) =0.744], p = 0.458),
time (b = -24.653, F(1,112) = x [t(112) = -1.276], p = 0.204), or
confidence (b = -0.223, F(1,112) = 0.287 [t(112) = -0.535], p =
0.593). As can be observed from Fig. 4, this analysis suggests
that participants generally did not display a significant difference
between the conditions when evaluating different designs and
generally reported identical scores, experienced identical times,
and were equally confident across the mediums. The main anal-
ysis also showed no significant effect of design on score (b = 0.4,
F(1,112) = 1.634 [t(112) = 1.278], p = 0.204), time (b = 13.657,
F(1,112) =0.374 [t(112) = 0.611], p = 0.542), and confidence (b
=-0.272, F(1,112) = 1.953 [t(112) = -1.397], p = 0.1662). This
further suggests that participants generally did not identify any
significant differences between the designs themselves in regard
to their DfFAM scores, the time it takes to evaluate the designs,
and the confidence for evaluating the designs.

To identify whether novices scored the parts similarly to ex-
perts, the DfAM score (collapsed expert and novice scores) was
regressed on the centered variables for expertise (Novice = -0.5,
Expert = 0.5; between-subjects variable) and design (D1 =-0.5,
D2=-0.25, D3 = 0, D4 = 0.25, D5 = 0.5; within-subjects vari-
able) as the covariate. The expert scores were calculated after
confirming the inter-rater agreement between two experts using a
weighted Kohen’s kappa (k) with linear weights. The agreement
was calculated from the individual scores for each metric in the
worksheet and not the cumulative scores. The calculated « value
of 0.739 was considered to represent good to an excellent agree-
ment beyond chance. The averages of the expert scores were taken
and summed to obtain the total DFAM scores for each design. As
can be observed in Fig. 4b, the regression analysis of collapsed
DfAM score on expertise and design showed no significant effect
of design on the DfAM score (b = 0.386, F(1,7) = 1.269 [t(7) =
1.127], p = 0.297) and no significant difference between the ex-
pert and novice scores (b = 1.253, F(1,7) = 4.108 [t(7) = 2.027],
p = 0.823). This suggests that like the novices, the experts also
did not identify any significant differences between the designs
themselves concerning their DfAM scoring. This observation of
expert scoring indicates a potential issue with the chosen geome-
tries for this research suggesting that the preliminary condition of
the designs having sufficiently varying manufacturability needs
to be reassessed (elaborated upon in Section 6, RQ1).

5.3 Cognitive load as affected by the conditions

For the second research question, this research aimed to un-
derstand how the differences in evaluation conditions (i.e., CAE,
VR, REAL) affected the cognitive load experienced from the eval-
uation exercise as measured by the eight dimensions in the WPA

Copyright © 2022 by ASME
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FIGURE 4: Highlighting the results from the DfAM evaluation for
each design as affected by the three conditions

tool. Figure 5 highlights the cognitive load experienced across
each condition. We hypothesized that cognitive load between the
conditions will differ as the characteristics of the medium and the
tasks and required motor skills needed to adequately evaluate the
designs change. To study this, cognitive load was regressed on
the centered variable for condition (CAE =-0.5, VR =0, REAL =

0.5; between-subjects variable) using a multiple regression model
which regressed the grouped cognitive load values. The follow-
ing results reported from the analysis focus on each detailed effect
when controlling for all other main effects in the model.

The main analysis showed no statistically significant differ-
ence in cognitive load for any of the WPA dimensions across the
three conditions (Table. 3). As can be observed from Fig. 5, this
analysis suggests that participants generally did not experience
one medium to require more or less mental effort than the others
when completing the design evaluation exercise.

TABLE 3: List of the different cognitive load dimensions indicat-
ing how they generally differ across the conditions

Dimension Estimate SE tratio p.value
Auditory -0.35 0.667 -0.52 0.597
Manual 1.17 0.611 1.92 0.056
Perceptual 0.05 0431 0.13 0.896
Response -0.51 0504  -1.02 0.308
Spatial -0.33 0507 -0.65 0.513
Speech 0.03 0.661 0.04 0.963
Verbal -0.63 0.652 -0.96 0.334
Visual 0.39 0.535 0.74 0.459
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FIGURE 5: Showcasing the distribution of reported cognitive
load as affected by the three conditions

While the analysis indicates that there was generally no sig-
nificant difference in cognitive load between the conditions, Ta-
ble. 3 and Fig. 5 suggest that there was an emerging trend ob-
served for the manual cognitive load dimension seemingly driven
by the REAL condition. However, the sample size of the current
dataset is insufficient to infer more information for potentially
significant trends (elaborated upon in Section 6, RQ2).

6. DISCUSSION

This work found that novice designers do not experience
significant differences in their DfAM evaluation of designs for
manufacturability by ME. They also do not experience significant
differences in their mental effort to evaluate the designs when us-
ing mediums of different immersion. Additionally, both novices
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and experts did not perceive significant differences in manufac-
turability between the five different designs presented (Fig. 2)
as indicated by their DfAM scoring. These findings present in-
teresting implications for DfFAM and product development when
leveraging immersive or non-immersive mediums of evaluation
and indicate key avenues for future research opportunities to fur-
ther expand AM and DfAM knowledge in literature. This section
thus highlights the implications of our collective findings on the
proposed research questions and elaborates on the interpretation
behind the observed results and their underlying mechanisms.

RQI: How do the differences in immersion between CAE, VR,
and REAL mediums affect the DfAM evaluation results for
designs of varying manufacturability?

For the first research question, this research aimed to under-
stand how differences in immersion between mediums of evalu-
ation affect the DfAM evaluation of designs. We hypothesized
that the evaluation through VR and REAL conditions would yield
scores significantly closer to expert-reviewed scores, faster evalu-
ation times, and higher reported confidence values than evaluation
through the CAE condition, but with no significant differences
between the two immersive conditions. The results and analysis
in section 5.2 failed to reject the null hypothesis for each met-
ric (i.e., score, time, confidence) which indicates that this study
did not identify any generally significant effects from immersion
on the results of the design evaluation. However, in addition to
not identifying any significant effects from immersion on the re-
sults of the design evaluation, this study also did not identify any
significant differences in design DfAM scoring between the five
designs when controlling for the condition. This suggests that
our findings for research question 1 are influenced by the limited
design variation (as measured by manufacturability) among the
designs used in this study. A posthoc observation of the data
was conducted to further evaluate this influence and understand
whether the variation in the designs was limited in this research.
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FIGURE 6: Showcasing the distribution of time taken to evaluate
designs with respect to the ordered set of evaluation (e.g., set
125 indicates that participants evaluated D1, D2, and D5 in order)

The distribution of the time taken for each design evaluation
as shown in Fig. 6 indicates that participants generally spent more

time on the first design they evaluated but spent less time for the
following two designs. This can be observed for all the ordered
sets, suggesting that participants displayed this trend regardless
of which design they saw first and which designs were included
in their ordered set. The duration of the second and third analyses
was less than the duration of the first evaluation and participants
also spent roughly identical time intervals for the second and
third analyses. This trend where time taken between the first and
the two following analyses is a strong indicator that participants
found the three designs identical regarding manufacturability by
ME because the differences in manufacturability between the
three designs were trivial. Furthermore, this influence on the par-
ticipant experiences by the limited diversity in manufacturability
of the designs is suggestive of why both novices and experts did
not report significantly different DfAM scores for the different
designs. Regarding the goals for research question 1, these ob-
servations imply that immersion does not play an observable role
in design evaluation when designers are given designs that do not
vary significantly in manufacturability even though they may vary
in design complexity. This is observed in Fig. 4b which shows
that there is no significant difference in DfAM scores between
any of the five designs regardless of the condition. Findings from
past work suggest that limited variations in complexity may not be
reflected in product or design evaluation [S1]. The observations
in this research due to the limited variations in manufacturability
may extend to these past observations due to the limited varia-
tions in complexity. Therefore, the variation in complexity and
manufacturability of the designs needs to be larger for designers
to assess the manufacturability of the designs differently.

RQ2: How do the differences in immersion between CAE, VR,
and REAL mediums affect the cognitive load experienced
when evaluating designs of varying manufacturability?

For the second research question, this research aimed to un-
derstand how differences in immersion affect the cognitive load
experienced from a design evaluation exercise. We hypothesized
that the VR and REAL experiences would require significantly
less mental effort and yield lower reported cognitive load values
than the CAE experience, but with no significant differences be-
tween the two immersive conditions. The results and analysis in
section 5.3 failed to reject the null hypothesis for each cognitive
load dimension which indicates that this study did not identify
any generally significant differences in mental effort due to im-
mersion. This means that designers may generally find using
immersive or non-immersive mediums equally challenging when
evaluating their product designs for manufacturability with ME.
These findings are based on the inferred low difficulty of the given
task. Evaluating designs for manufacturability may likely be sim-
ilar to past research into low difficulty operations [51, 53, 55], our
findings indicate that designers do not experience requiring sig-
nificantly different mental effort when working with immersive
and non-immersive media for DFAM evaluation tasks. Specifi-
cally, the low manual and processing difficulty required by the
task of evaluating designs for manufacturability with ME likely
contributed to the observed experiential similarities between the
three mediums. The low difficulty can be attributed to the relative
simplicity and small scale of the five designs that were evaluated.
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When considering more complex designs and manufacturability
considerations, such as those involving lattice or generative de-
sign features, designers may experience a higher cognitive load as
the difficulty of processing information and manually assessing
manufacturability within the medium increases [51, 52, 54, 56].

7. CONCLUSION

The goal of this research was to identify the effects of immer-
sion in the design experience and study how evaluating designs
for DfAM in mediums of varying immersion affects the results of
the evaluation and the mental effort experienced to evaluate the
designs. This research measured the DfAM score, time taken for
evaluation, and confidence in the evaluation to study the DfAM
results from the experience and measured cognitive load using
the WPA tool to study the mental effort experienced to evaluate
designs from the experience. The results in section 5 indicate
that differences in immersion between the three mediums (CAE,
VR, and REAL) did not significantly affect the manufacturability
evaluation of any of the five designs. Immersion also did not im-
pact the cognitive load experienced by the participants from their
DfAM exercises. These findings suggest that designers can use
immersive and non-immersive mediums for design evaluation
without experiencing significant differences in their evaluation
outcomes and mental effort. This implies that industries can tai-
lor their product and designer-talent development initiatives by
using modular design evaluation systems that leverage capabili-
ties in both immersive and non-immersive DfFAM evaluation.

While the results in section 5 highlight the similarity of the
three mediums (CAE, VR, REAL) in the design evaluation and
cognitive load when evaluating designs for manufacturability by
ME, these findings need to be considered with certain limitations
of this work. This research limited its scope toward manufactura-
bility evaluation for ME. Material extrusion is a relatively more
accessible and functionally less complex process than processes
like powder bed fusion. Therefore, the findings from this work
are limited to manufacturability evaluations when the AM process
is functionally simpler and the relevant DFAM considerations of
the process are in turn easier to evaluate. However, knowledge
from future work will expand on ongoing work [12] that explores
learning and intuition development for multiple AM processes.
Doing so will aid industries in improving their digital threads by
empowering their designers to meet AM-driven product design
needs for a range of AM processes. Additionally, this work iden-
tified underlying trends and observations from the data that did
not answer aspects of the studied research questions. Specifically,
this research identified the lack of diversity in manufacturability
between the five designs evaluated by the designers and con-
cluded that the insufficient variation between the designs could
not sufficiently highlight how the differences in immersion affect
the DfFAM evaluation and the experienced cognitive load when
designers evaluate designs of varying manufacturability. How-
ever, knowledge from future work will address this limitation in
inadequate design diversity by using validated process-agnostic
tools to identify expert reviewed designs of low and high com-
plexity. Such work will enhance our current findings and will
further inform industries on how to train their designers to assess
product needs that require evaluating widely complex designs and
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their manufacturing requirements.
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