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The separation of substances into different phases is ubiquitous in nature and important
scientifically and technologically. This phenomenon may become drastically different
if the species involved, whether molecules or supramolecular assemblies, interconvert.
In the presence of an external force large enough to overcome energetic differences
between the interconvertible species (forced interconversion), the two alternative
species will be present in equal amounts, and the striking phenomenon of steady-state,
restricted phase separation into mesoscales is observed. Such microphase separation is
one of the simplest examples of dissipative structures in condensed matter. In this work,
we investigate the formation of such mesoscale steady-state structures through Monte
Carlo and molecular dynamics simulations of three physically distinct microscopic
models of binary mixtures that exhibit both equilibrium (natural) interconversion
and a nonequilibrium source of forced interconversion. We show that this source can
be introduced through an internal imbalance of intermolecular forces or an external
flux of energy that promotes molecular interconversion, possible manifestations of
which could include the internal nonequilibrium environment of living cells or a
flux of photons. The main trends and observations from the simulations are well
captured by a nonequilibrium thermodynamic theory of phase transitions affected
by interconversion. We show how a nonequilibrium bicontinuous microemulsion or
a spatially modulated state may be generated depending on the interplay between
diffusion, natural interconversion, and forced interconversion.

molecular interconversion | phase separation | dissipative structures

Two distinct molecular species may separate if the interactions between them are
energetically unfavorable relative to the interactions between like species. The most
recognizable example is the almost complete separation of water and oil. During
phase separation via spinodal decomposition (mixture quenched into the unstable
region), transient patterns of mesoscale inhomogeneities are observed (1, 2). However,
such patterns are unstable and disappear in equilibrium, although they may be
“frozen” by rapid quenching, as commonly observed in glasses (3, 4). Alternatively,
in equilibrium, examples of mesoscale structures are present in bicontinuous or spatially
modulated microemulsions (5, 6) and microphase separation of diblock or polyelectrolyte
copolymers (7, 8), where these mesoscale patterns are the result of the minimization of
the equilibrium free energy (9, 10).

In this work, we consider three physically distinct microscopic realizations of a binary
mixture, where the alternative species naturally interconvert according to thermodynamic
equilibrium. We show that the presence of a nonequilibrium force (either originating
internally or imposed externally), which, if large enough, can cause the alternative
species to be present in equal amounts (“forced interconversion”), drives the system
away from equilibrium and produces the striking phenomenon of steady-state, restricted
(“microphase”) separation into mesoscale domains. We observe that the structure of the
phase domains formed from nonequilibrium microphase separation resembles modulated
or bicontinuous microemulsion structures (5-10). However, contrary to the patterns
formed in equilibrium or in metastable (“frozen”) conditions, these nonequilibrium
structures persist in steady-state due to the continuous energy supply. Thus, steady-
state microphase separation is one of the simplest examples of dissipative structures in
condensed matter. The characteristic length scale of this dissipative structure emerges
as a result of the competition between forced interconversion and phase growth. If
the source of forced interconversion is not sufficiently strong to overcome the natural
interconversion of alternative species, then the phenomenon of phase amplification,
the growth of one stable phase at the expense of another phase, is observed (11-13).
In fluids that exhibit molecular interconversion of species, the conservation of the
number of alternative molecules is broken and phase amplification would occur to avoid

PNAS 2023 Vol. 120 No.1 2215012120

https://doi.org/10.1073/pnas.2215012120

Significance

We investigate the formation

of nonequilibrium mesoscopic
structures induced by the
interconversion of species

in three physically distinct
microscopic binary-mixture
models. We show that these
models exhibit identical behavior
depending on the interplay
between diffusion, natural
interconversion, and forced
interconversion. This behavior

is well captured by a
nonequilibrium thermodynamic
theory. The phenomenon
(referred to as “microphase
separation”) is one of the simplest
examples of steady-state
dissipative structures in
condensed matter, e.g.,
hydrodynamic instabilities

and bifurcations in chemical
reactions. Nonequilibrium
microphase separation may exist
in chemical and biological
systems, where the alternative
molecular or supramolecular
states may interconvert via
mechanisms like polymerization,
protein folding-unfolding, and
self-assembly, in which the
nonequilibrium conditions are
imposed by an external flux of
matter or energy.

Reviewers: S.C.G., University of Michigan; and R.V.P,,
Washington University in St Louis.

The authors declare no competing interest.

Copyright © 2022 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).

"To whom correspondence may be addressed. Email:
pdebene@princeton.edu.

This article contains supporting information online
at http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2215012120/-/DCSupplemental.

Published December 29, 2022.

10f9



Downloaded from https://www.pnas.org by Crystal Simpkins-White on December 29, 2022 from IP address 144.171.219.106.

the formation of an energetically unfavorable interface. However,
in a nonequilibrium system in the presence of an external source
of energy, the formation of mesoscale interfaces (microphase
separation) may become favorable (13).

An external-forced interconversion source can be achieved in
physical systems through the interactions of energy-carrying par-
ticles, such as photons, that may break intramolecular bonds (14).
A possible source could also be the nonequilibrium environment
of biological cells, where the associated continuous dissipation
of energy can be used to drive chemical reactions (15-17), or it
could be achieved chemically through an external flux of matter or
heat (18-20). In simulations, the nonequilibrium state could be
achieved through an internal imbalance of intermolecular forces
or an imbalance of free energy by introducing an external source
of energy. Previous studies of a nonequilibrium phase-separating
binary mixture in the presence of an external reaction source,
originally introduced by Glotzer et al. (21-29), as well as a more
recent dissipative chiral model of interconverting enantiomers
with unbalanced intermolecular forces (30) and a nonequilibrium
hybrid Ising/lattice-gas model with an imbalance of internal
energy (31), have all demonstrated steady-state microphase
separation.

Previous theoretical studies of phase separation in chemically
reactive binary mixtures have demonstrated that the formation
of steady-state dissipative structures (in systems with a sim-
ple A = B interconversion reaction) is only possible under
nonequilibrium conditions (10, 20, 29). In their seminal work,
utilizing a scalar field theoretical approach, Li and Cates have
shown that different kinds of steady-state structures may be
formed in a nonequilibrium system with a combination of
diffusion and chemical-reaction dynamics (10, 32). In our work,
we study the formation of nonequilibrium dissipative structures
by investigating three nonequilibrium microscopic models of
phase-separating binary systems with mixed dynamics. We unify
the behavior of the three distinct models through a theoretical
approach, conceptually similar to the study of Li and Cates. In our
case, however, we explicitly consider the evolution of the three
models toward equilibrium and their behavior at equilibrium. We
describe the interconverting mixtures phenomenologically by a
single-order parameter that possesses both conserved (diffusion)
and nonconserved (interconversion) dynamics (SI Appendix,
section S1.C for more details). This dynamic feature of the order
parameter is inherent to the three atomistic models considered in
our work. In our approach, we separate the effect of interconver-
sion into two parts: an equilibrium (natural) interconversion,
governed by the same free energy as phase separation, and
a nonequilibrium (forced) interconversion, controlled by an
external energy source.

The microscopic models are simulated through Monte Carlo
(MC) and molecular dynamics (MD) methods. We consider a
hybrid-lattice (HL) model with an externally introduced imbal-
ance of internal energy (31), a dissipative chiral mixture model
(DCM) with unbalanced intramolecular forces (30, 33), and a
hard-core-shoulder (HCS) model with an external energy source.
We also qualitatively compare the behavior of the simulated
models with the behavior of Glotzer etal.’s nonequilibrium
binary-mixture model (21-23, 26-29). We show that all of these
models can be described through the same theoretical approach
(13), and we obtain a quantitative agreement between the theory
and simulations. We show that during the evolution of the
system to a steady state, the interplay between phase separation,
natural interconversion, and forced interconversion may generate
novel dissipative structures—a nonequilibrium bicontinuous
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microemulsion, revealed by MD, or a nonequilibrium spatially
modulated state, as observed in MC studies. We show that under
certain constraints, the three models with different origins of
interconversion i.e., our three microscopic models: HL (12, 31),
DCM (30, 33), and HCS, as well as the model of Glotzer et al.
(21-23, 26-29) may exhibit identical behavior.

1. Simulated Models

We simulate three microscopic models: a nonequilibrium hybrid-
lattice (HL) model with an externally induced imbalance of
internal energy, a dissipative chiral-mixture (DCM) model where
the internal source is an imbalance of intermolecular forces,
and a hard-core-shoulder (HCS) model where the external
source is caused by energy-carrying agents, such as photons,
neutrons, or adenosine triphosphate (ATP) molecules. In each
model, the alternative species interconvert naturally (according
to thermodynamic equilibrium), but also, forcefully via either an
internal or external source of energy or matter.

A. Hybrid-Lattice (HL) Model with an Imbalance of Internal
Energy. This model was introduced, in its equilibrium formu-
lation, in ref. 12, and the nonequilibrium formulation was
introduced, and qualitatively considered, in ref. 31. To model
diffusion and interconversion dynamics in a binary system,
we consider a simple lattice model where the particles of
different types are represented by spins of different orientations.
Diffusion is simulated by “swapping” a pair of randomly selected
neighboring spins and interconversion is simulated by “fHipping”
a spin at a randomly selected lattice site. At each MC step, the
probability that a random spin will attempt to flip is p,, while
swapping a randomly selected pair of nearest neighbor spins
will be attempted with probability 1 — p,. This step is accepted
according to the standard Metropolis criterion (34).

In the nonequilibrium formulation of the HL model, addi-
tional energy, £, due to the external source of forced interconver-
sion is incorporated into the Boltzmann factor for the Metropolis
criterion of a spin flip as p ~ exp[—(AU — E)/kp T, where
AU is the difference in internal energy of the system for
this step. When E = 0, the system evolves according to
the equilibrium formulation detailed in ref. 12, which leads
to phase amplification. If £ > 0 and is large enough to
overcome natural interconversion (and, consequently, phase
amplification), then steady-state microphase separation occurs.
The energy source, E, reduces the thermodynamic energy barrier
between inhomogeneous and phase-separated states. Thus, it
promotes interconversion to an equal composition of species
in opposition to natural interconversion where, in general,
the relative population of interconverting species varies with
thermodynamic conditions. For energy £ > 12, the external
source of forced interconversion is always greater than AU
(cubic lattice in 3-d), such that spin interconversion occurs with
probability, p,, and the Metropolis criterion is always accepted
(p ~ 1). This scenario makes this model equivalent to the
model of Glotzer etal. (21-23, 26). For £ < 12, the local
environment of the selected species influences the probability of
the interconversion reaction occurring (p < 1). Thus, whether
a spin-flip will be accepted at each MC step is determined by
both the spin-flip probability, p,, and the Metropolis criterion,
. For the diffusion dynamics, the spin-swap step is performed
according to the standard Metropolis criterion without any
additional energy source, such that diffusion is the same in both
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the equilibrium and nonequilibrium formulations of this model.
For more information about the HL model, ref. 31.

B. Dissipative Chiral Mixture (DCM) Model with Unbalanced
Forces. The chiral-tetramer force-field model is based on a four-
site flexible molecule that can adopt two mirror-image configu-
rations (30, 33, 35) and is simulated via MD. In the conservative
formulation, all intermolecular forces are balanced by taking into
account the multibody forces arising from an explicit chirality-
dependent characteristic interaction energy term, as detailed in
ref. 35. In this case, phase amplification is observed where the
growth of one of the two alternative states is restricted only
by system size. The dissipative formulation, on the other hand,
exhibits an imbalance of intermolecular forces resulting from
not applying the gradient operator to the chirality-dependent
term in the potential energy function (30) (87 Appendix, section
2.B for details). The phenomenon of microphase separation is
observed in the dissipative formulation of this model. Now, in
this work, we show that the ubiquitous nature of this striking
phenomenon can be better understood in connection with other
nonequilibrium models with molecular interconversion.

In the DCM model, molecules feature left- and right-handed
configurations. Interconversion from one enantiomer to another
is controlled through bond rotations about the dihedral angle
(81 Appendix, Fig. S3 for details). The force constant for dihedral
rotation controls the kinetics of enantiomeric interconversion and
is denoted by 4,. The model includes a chiral bias parameter, A,
whose sign defines the nature of chiral bias, such that A < 0 favors
local (short-ranged) heterochiral interactions, A > 0 favors ho-
mochiral interactions (enantiopure states), and A = 0 represents
a bias-free scenario (33). For the simulations considered in this
work, A = 0.5 (energetically favored local interactions between
molecules of the same chirality).

C. Hard-Core-Shoulder (HCS) Model with an External Energy
Source. Unlike the previous examples, this model, which has
not been considered before, utilizes a tunable source of forced
interconversion, implemented through the interactions with an
external flux of energy-carrying agents. In biological systems,
these agents can be thought of as ATP molecules, which change
the conformation of a protein between two phase-segregating
states. We consider a system initially consisting of an equal
number of Ny = Np = N /2 = 32,000 identical hard spheres of
type A and B with diameter 0. While all particles repel each other
as hard spheres with diameter o, phase segregation is generated
by the additional repulsion between A and B particles via a
square shoulder potential at distance 4 = 1.30, with energy
£0. We simulate the interactions within the system via event-
driven MD with discontinuous potentials (36, 39). Additionally,
we introduce N,, = 10,000 agents as an external source of
energy, which collide with particles A and B at a distance 4 < o.
The agents contain an additional energy & (measured in units
of &9), which upon collision with particles A or B boosts the
probability of species interconversion (A == B). Physically, ¢
can be regarded as an external energy carried by an ATP molecule
oranother active agent, which can compensate for the effect of the
heat of mixing arising from interconversion. In our simulations,
this reaction occurs instantaneously, without any metastable
intermediate state of either species.

The systems considered in this work are simulated in an £ x £ x
£ box of length £ = 400 with periodic boundaries at temperature
T, measured in units of g/ k. To regulate the temperature, we
use a Berendsen thermostat (38). The collision of the agents with
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species A or B occurs with conservation of linear and angular
momentum of the pair as well as with total potential energy
change, AU. The total energy is composed of potential, kinetic,
and external energy, in which the external energy is incorporated
into the kinetic energy of the colliding particles. The equilibrium
formulation occurs with conservation of energy, such thate = 0.
In the equilibrium formulation, the agents either contain no
additional energy, €, or the cross-sectional area of their interaction
with the species, &2, is zero, such that the agents pass through
species A or B without interacting. Physically, this corresponds to
a scenario when the energy is unable to transfer from the agents to
the species in the system. In the nonequilibrium formulation, the
agents possess both the additional energy and cross-sectional area
necessary to interact and convert species A to B and vice versa.
Without an external source of energy, an energetically costly
interconversion reaction violates the conservation laws, so the
particles will recoil and interconversion will not happen. How-
ever, in the presence of an external source of energy, provided
by the agents, the interconversion reaction may happen both in
favorable or unfavorable conditions, just as in the HL model.
The particles (A, B, and the agents) have equal masses 72, and
the simulation time is measured in units of o +/m/gg. Overall,
in the HCS model, the system is a dense fluid of hard spheres

with molecular mobility M o« v/ T (8] Appendix, Fig. S4), and
interconversion rate proportional to the interaction cross-section,

b* (SI Appendix, section 2.C for details).

2. Simulation Results

In this section, we discuss the conditions for the formation of
dissipative structures using as parameters: the distance to the
equilibrium critical temperature of demixing, 7¢, the interconver-

sion probability (p,, k;z , or b” respectively), and source strength
(E or € respectively). We show the ubiquitous nature of the
formation of dissipative structures in the different simulated
models.

A. HL Model. The effect of the source of forced interconversion is
introduced into the HL model through a tunable imbalance in the
internal energy via the energy of forced interconversion (£), such
that the source boosts the probability for two alternative species
to interconvert into equal amounts. If forced interconversion is
not strong enough to overcome natural interconversion (which
corresponds to equilibrium conditions), then phase amplification
(the growth of one stable phase at the expense of the other) is
observed, provided that the natural interconversion probabil-
ity is significant. If forced interconversion overcomes natural
interconversion by a sufficient amount, we observe that the
locally phase-separated domains stop growing upon reaching
a characteristic size, as illustrated in Fig. 14. We define the
temperature and energy at which this occurs as the “onset” of
microphase separation (7% and £*). As shown in Fig. 1 B and
C, for temperatures and energies, 7 > 7™ and £ > E* (for
a given probability, p,), dissipative structures are observed, and
the steady-state domain size decreases as the energy of forced
interconversion increases and as the temperature becomes closer
to the critical demixing temperature, 7.

We find that the dissipative domain structure has the form of
spatially modulated stripes due to the symmetry and boundary
conditions of the lattice on which the MC simulations are
performed. As shown by the simulation snapshots in Fig. 1B, the
striped pattern becomes more disordered when the domain size
becomes comparable with the correlation length of concentration
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Fig. 1. Effect of forced interconversion on domain size, R, normalized by the system size, ¢, in the HL model. (A) The time dependence of the domain growth
for energy source £ = 5 and interconversion probability pr = 1/128 at T/Tc = 0.24 (green), T/Tc = 0.27 (blue), and T/T¢ = 0.40 (red), where Tc = 4.511 (37). The
horizontal dashed line indicates the size of the simulation box, R = ¢. (B) Temperature dependence of the steady-state domain size for £ =5 and pr = 1/128.
The vertical dashed line indicates the onset temperature, T*/Tc. (C) Dependence of the steady-state domain size on the energy of forced interconversion for
pr = 1/256 and T/Tc = 0.31. The vertical dashed line denotes the onset source energy, £*. In (A-C), the system is simulated on a three-dimensional lattice of size
¢ = 100. The open circles are the results of MC simulations, the images are snapshots of the system for selected conditions, and the curves are the theoretical
predictions (S/ Appendix, section 2.A for details). In (A-C), black denotes up-spins, and white denotes down-spins.

fluctuations (SI Appendix, Eq. S6). We also observed that
the chance of forming defects, like kinks or corners in the
phase-domain structure, increases for larger-sized microphase
structures (see the simulation snapshots in Fig. 1C). Only after
an astronomically large simulation time will these kinks fully
diffuse to produce the final steady-state structure. We attribute
this effect to the fact that the energy penalty from forminga corner
is minuscule when compared to the bulk, such that these defects
would take a longer time to diffuse. Yet, for smaller microphase
domains, these defects generate a larger energy penalty when
compared to the bulk, and thus, are removed faster.

B. DCM Model. In the DCM model, the nonequilibrium condi-
tion is mimicked internally through an imbalance in intermolec-
ular forces (30, 35). This imbalance is introduced if the chirality-
dependent characteristic energy scale is not included (as it should)
when applying the gradient operator to calculate site-site forces.
As illustrated in Fig. 24, the size of the microphase domains
is restricted proportionally to the dihedral-force constant (4;) at
fixed temperature and pressure (30) before it reaches the size of the
computational box, £ ~ 1/4* (k). Just like the nonequilibrium
HL model, the domain size at fixed dihedral-force constant
decreases with increasing temperature as shown for £; = 5 in
Fig. 2B. As depicted by the simulation snapshots in Fig. 2, the
onset temperature 7" and £ correspond to the conditions where
the domain size reaches the size of the simulation box.

Unlike the HL model, where the source of forced intercon-
version (E) is uncoupled from the interconversion probability
(#+), in the DCM model, both of these effects are controlled by
the rigidity parameter, £,. Consequently, when k; — o0 (corre-
sponding to p, — 0 in the HL model), no interconversion, either
natural or forced, occurs and the system would phase separate via
Cahn—Hilliard diffusion-induced spinodal decomposition (13).
A study of the equilibrium HL model demonstrated that the
system, for low interconversion probability, commonly enters a
metastable state with an interface rather than undergoing phase
amplification (12). This phenomenon is also relevant to the
DCM model, where it is increasingly likely for high-enough
k; that the system will enter a long-living transient state with
two phases separated by an interface. This state would eventually
converge to a steady-state configuration with the lowest possible
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interfacial energy (a single phase formed via phase amplification),
for low 7" and high 4, (which corresponds to low p, in the
HL model). This transient dissipative structure is depicted in
the simulation snapshots of Fig. 2, where it is observed that an
interface has formed between the two phases.

C. HCS Model. In the HCS model, nonrelativistic energy-carrying
particles are introduced as a source of forced interconversion.
They carry energy, €, and transfer this energy via molecular colli-
sions with cross-sectional area 4#2. When the additional particles
carry no extra energy, € = 0, only natural interconversion, with
a probability 4, will occur. However, due to the external source
of energy provided by the particles, forced interconversion will
occur just like in the previously considered models. Similar to
those models, in the HCS model, the characteristic domain
size decreases as a function of temperature and interconversion
probability, 4, as depicted in Fig. 3. In this case, when & = 0, then
regardless of &, no interconversion will be possible. For conditions
b < b* ~002at T < T* = 0227, and ¢ < &* = 10,
corresponding to the onset of microphase separation, the system
enters a transient state with an interface, similar to the DCM
model, as illustrated by the simulation snapshots in Fig. 3B.

We note that below the onset of microphase separation, the
characteristic steady-state domain size is comparable to the size
of the simulation box, £ ~ 1/4*. Consequently, the onset
conditions for all models depend on the system size. In addition,
for small system sizes, phase amplification occurs faster than
for large systems, such that instead of entering a transient state
below the onset, the system may undergo phase amplification.
As observed in the HCS model, for large system sizes, in
the microphase separation region, one could observe more
regular structures, like the nonequilibrium spatially modulated
stripes observed in the HL model. The snapshots presented in
Fig. 3 demonstrate that the off-lattice MD simulations produce
nonequilibrium bicontinuous “microemulsion” structures.

3. Generalized Cahn-Hilliard Theory

We now seck to provide a theoretical framework to model
and explain the above-described phenomenology provided by
simulations. To this end, we consider a generalized version (13)
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Fig. 2. Steady-state domain size, R, normalized by the size of the system,
¢, in the DCM model. (A) The time evolution of the domain size for different
interconversion rates, ~T2/k§ (30), tuned by the rigidity parameter, k4, as
kg = 3 (purple), ky = 5 (green), and k; = 9.86 (red) at the reduced pressure
P = 0.1 and T/Tc = 0.35, where T¢(P = 0.1) = 2.32 (30). (B) The normalized
steady-state domain size as a function of temperature at P = 0.1 and
kg = 5. The vertical dashed line indicates the onset temperature, T*/Tc.
In (A) and (B), the open circles correspond to simulation results, the curves
correspond to the theoretical predictions (S/ Appendix, section 2.B and Table
S.3 for details), and the images show snapshots of the system simulated at
the indicated conditions. In (A and B), dark/clear spheres correspond to the
L-/D-configuration of a chiral tetramer (spheres are located at a tetramer’s
center of mass).

of the classic Cahn—Hilliard theory (40, 41). In this approach,
we consider the source of forced interconversion to be an
imbalance in chemical potentials that alters the relaxation of
the interconversion dynamics to equilibrium, thereby generating
a nonequilibrium steady-state condition. The imbalance of
the chemical potentials can be introduced through unbalanced
intermolecular forces, like in the DCM model; through an
imbalance of internal energy, as in the HL model; or externally
through a flux of energy-carrying agents, like in the HCS model.
In the Cahn-Hilliard theory (40, 41), the evolution of the local
concentration of one of the alternative species, ca, expressed
through the order parameter ¢ = 2(ca — 1/2), is described
via the conserved continuity equation: d¢/dr = V - Jc. In
this expression, Jc is the mutual diffusion flux, related to
the gradient of the equilibrium chemical potential difference,
A= pu/kgT. = g — fip, as Jc = —MV i, where M is the
molecular mobility, 4 is Boltzmann’s constant, and 7 is the
liquid-liquid critical demixing temperature. In the symmetric,

PNAS 2023 Vol. 120 No.1 2215012120

regular-solution model, the chemical potential is represented by
a sum of entropic and enthalpic mixing contributions and a
“local” spatially dependent term (13, 40, 41):

f=Tl <%> — 4 — R3V?¢, (1]

where 2 = a/kp T is the nonideality interaction parameter, 7 =
T/T¢ is the reduced temperature, and Ry is the microscopic
length scale on the order of the molecular size. Minimization of
this equation results in the critical temperature of demixing, 7. =
a/2kp (42) (SI Appendix, section 1.A). The conserved continuity
equation describes the dynamics of phase separation (13).

The generalized Cahn—Hilliard theory (13) includes the flux
associated with the nonconserved interconversion dynamics, /Nc,
which contains both the natural and forced interconversions
as JNc = —Li + Kfu (ST Appendix, section 1.B for details).
Natural interconversion is described by —Zji, while forced
interconversion is described by Kfi, where L and K are
kinetic coefficients. We note that the flux, /N, contains two
different chemical potentials: an equilibrium chemical potential,

107" . )
0.00 0.05 0.10 0.15

Fig.3. Steady-state domainsize, R, normalized by the size of the system, ¢, in
the HCS model. (A) The temperature-dependence of the normalized steady-
state domain size for b = 0.005 (blue), b = 0.050 (black), and b = 0.075
(green)ate = 10.(B) The normalized steady-state domain size as a function of
interconversion probability, b, for the energy source e = 12 and T/T¢ = 0.22,
where Tc = 3.6+0.05 (S/ Appendix, Fig. S5 for details). The vertical dashed line
indicates the onset interconversion probability, b*. In (A) and (B), the open
circles correspond to simulation of 64,000 particles, the curves correspond
to the theoretical predictions (S/ Appendix, section 2.C. for details), and the
images show snapshots of the system simulated at the indicated conditions.
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L, given by Eq. 1, the same for both natural interconversion
and diffusion dynamics, and a nonequilibrium (“unbalanced”)
chemical potential fi. In the first-order approximation, [t is a
nonlocal (spatially independent) chemical potential that scales
linearly with the order parameter as fi ~ —¢. Thus, the general
continuity equation involving all three dynamical processes is
given in the form (13, 31)

%—‘f =MV*pi — L+ Kjl. [2]
In this expression, the terms on the right-hand side describe
diffusion, natural interconversion, and forced interconversion,
respectively. The kinetic coefficients, M, L, and K, typically
depend on temperature, pressure, and (for L and K) the
interconversion probability. In the lowest-order approximation,

the natural interconversion dynamics scales as —Lji ~ —L(7 —
1)¢, which is positive for 7 < 7, while in the same
approximation, the forced interconversion dynamics scales as
KL ~ —K¢, which is negative, meaning that it always opposes
natural interconversion. Consequently, the difference between
the unbalanced and balanced chemical potentials, At = L — 1,
provides the net driving force on the system.

By rearranging Eq. 2 to explicitly include this driving force,
the dynamics of the natural and forced interconversions may
be combined into a single term with a kinetic coefficient, L.
Redefining the unbalanced chemical potentialsas i’ = (K/L)fi,
a simplified continuity equation may be expressed through two
dynamic processes in the form

9
8—"; = MV?0 — LAR, (3]

where Al is the difference between the balanced and (redefined)
unbalanced chemical potential, Al = i — i, such that the
second term describes the coupled natural-forced interconversion
dynamics in the system. In this form, Eq. 3 is similar to the
continuity equations used to describe the dynamic behavior in
active matter systems (10, 32, 43, 44). However, we note that our
work is different from other studies of active matter systems as we
explicitly consider the evolution of the system toward equilibrium
and the behavior at equilibrium. For instance, in our approach,
both the natural interconversion and diffusion dynamics depend
on the local (spatially dependent) part of the chemical potential,
L (SI Appendix, section 1.C for details). We emphasize that this
property of dynamics is inherent to all of the models simulated
in this work.

In the lowest-order approximation, the unbalanced chemical
potential directly impacts the enthalpy of mixing in a compress-
ible system. We note that in an incompressible system, the heat
of mixing is given by the change of the internal energy. As such,
if the unbalanced chemical potential contains a tunable energy
parameter, &, which controls the strength of the source of forced
interconversion, then the difference in chemical potentials is

s (14 K
A;L:Tln<1_$>+(zs—a>¢—R§V2¢. (4]

If the source of forced interconversion, K¢, is not sufficiently
strong to overcome the natural interconversion, K& < La, then
equilibrium interconversion (although limited by a reduced heat
of mixing) will still dominate the system, and phase amplification
will be observed. However, if Ke > La, then forced intercon-
version will dominate the system, and microphase separation
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will be observed. In the case when the kinetic coefficients of
forced interconversion, K, and natural interconversion, L, define
the same rates, K = L (as is the unique case for the DCM
model), then the case ¢ = & corresponds to the specific case of
the DCM model considered in ref. 30 for the particular case
A = 0.5. We note that this case is also possible in the HL and
HCS models for specific combinations of L, X, and . Thus,
in all three models studied in this work, the source of forced
interconversion can be considered as affecting the contribution
from the enthalpy or internal energy of mixing (2¢) and may,
either fully (as in the DCM model) or partially (as in the HL
and HCS models), cancel this contribution, thereby overriding
natural interconversion (S Appendix, section 2 for details).

4. Discussion

In this section, we illustrate the ubiquitous nature of the nonequi-
librium behavior in interconverting binary systems through a
comparison of the simulated models. We also discuss the limiting
conditions for the observation of microphase separation. We
show that under certain constraints, all three of the considered
models, as well as the model of Glotzer et al. (21-23, 26-29),
would exhibit the same behavior.

A. Comparison Between the Sources of Microphase Separa-
tion. As indicated by Eq. 2, there are three kinetic coefficients,
L, M, and K, whose interplay determines whether microphase
separation may occur. In the HL model, the kinetic coefficients,
L and M (considered to be independent of temperature and
pressure), determine the probability of natural interconversion,
pr through p, = L/(qu + L) (12, 13). Thus, M = 0
corresponds to fast interconversion (p, = 1), while L = 0
corresponds to no natural interconversion (p, = 0). In this
model, for small p,, we approximate the source of forced
interconversion as being uncoupled from natural interconversion
and related to the kinetic coefficient K as K o E2, where the
prefactor depends only on temperature (31). In the limit when
E — Enx = 12, the HL model becomes equivalent to the
model of Glotzer etal. (21-23, 26-29), in which there is no
natural interconversion (p, = 0).

In the DCM model, the source of forced interconversion is
coupled to the natural interconversion rate through the dihedral
force constant, £;4. The behavior of the system with different
dihedral-force constants may be related to the behavior of the
HL model system for different interconversion probabilities, p,,
by considering an interpolation between two limits as k; =

V(1/p;) — 1, such that £; — 0 (p, = 1) corresponds to fast

natural and forced interconversion, while £; — oo (p, = 0)
corresponds to no interconversion (13). This specific feature of
the DCM model, that the natural and forced interconversions
are controlled by a single parameter k;, means that without
interconversion (only in the limit 4, — o00), the DCM
system is in equilibrium and exhibits regular phase separation.
This effect is utilized in the theoretical model, Eq. 2, when
both the natural and forced interconversions are controlled
by the same kinetic coefficient, such that L = K, where
the dissipative intramolecular forces may be expressed, in the
interconversion dynamics, through the difference between the
balanced and imbalanced chemical potentials, Aji (given by
Eq. 4 where ¢ = 2). The mobility, M, is described by
the Stokes—Einstein relation, while the interconversion kinetic
coefficient, L, has been found to be proportional to M, such that

L =MT?/k; (30).
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Just like the behavior of the HL model, the source of forced
interconversion in the HCS model depends on the relation
between L and K, and, in the first-order approximation, they may
be assumed to be uncoupled from each other. Consequently, the
behavior of the nonequilibrium HCS model may be described
via a similar dynamic equation as used to describe the behavior of
the HL model. However, in the nonequilibrium HCS model,
while the natural interconversion rate is determined by the
interaction cross-section of the molecules and energy-carrying
agents, L 4%, as described in ST Appendix, section 2.C, the effect
of forced interconversion varies with the strength of the energy
source, €. This effect is introduced into the difference between the
balanced and imbalanced chemical potentials, Eq. 4, as a tunable
parameter, such that when ¢ — 0, the nonequilibrium chemical
potential i — 0 and the system evolves according to equilibrium
conditions. However, in the limiting case, when K and L are of
equal magnitude and & = 2, such that the enthalpic contribution
to the chemical potential is completely compensated, then the
HCS model will be dynamically equivalent to the DCM model.

For all of the models considered, in the first-order approxima-
tion, the domain size (R) scales with interconversion probability
as R oc 1/,/p; o kg o< 1/b. The steady-state domain size also
depends on the temperature. In the DCM and HCS models,
this temperature dependence originates from M and L, while
in the HL model, this temperature dependence originates from
the relationship between K and E. As shown by the solid curves
on Figs. 1-3, we obtain a quantitative comparison between the
simulation results and the theory. For more details, S/ Appendix,
section 2.

B. Onset and Termination of Microphase Separation. As ob-
served in the simulations of all three microscopic models, there
are three regions in which different phenomena may be observed.
They may be identified by the interplay between diffusion,
natural interconversion, and forced interconnection, which are

described by the kinetic coefficients M, L, and K in Eq. 2. When

natural interconversion, L, is faster than the diffusion or forced
interconversion rate, then phase amplification is observed. For
instance, in the HL model, this occurs where 77 < 7™ and
E < E*. When the diffusion rate, D o qu, is faster than
the natural and the forced interconversion rates, then transient
(“apparent”) two-phase separation on the scale of the simulation
box is observed. For instance, in the DCM and HCS models,
this is observed where 7 < 7™ and 1/k4 < 1/k}; (DCM) or
b < b* (HCS). The curve that separates the phase amplification
or transient two-phase region from the microphase separation
region is referred to as the onset. This curve may be found from
Eq. 2, considered for the particular case, when the characteristic
size of the phase domains, determined from the maximum of the
growth rate equation (87 Appendix, Eq. S6 for details), becomes
equal to the size of the simulation box, ¢ ~ 1/£.

Alternatively, when forced interconversion, K, is faster than
diffusion and natural interconversion, then the alternative species
will interconvert so fast that no dissipative structures may form
and only a homogeneous steady state with a statistically equal
concentration of the interconverting species will remain. In this
case, the characteristic size of the domains is of the order of
the molecular length scale, Ry. We define the temperature and
energy at which this occurs as the “termination” of microphase
separation (7** and E**). For instance, in the HL and HCS
models, this occurs when E > E** (¢ > ¢™*)or T > T™**, while
in the DCM model, since the natural and forced interconversion
are coupled, this region occurs when 1/k4 > 1/k}* or T > T**.
This effect is shown in Fig. 44 where the characteristic size
for £ > 7 is Ry for all temperatures. An increase in Ry with
temperature could be attributed to the growing correlation length
of concentration fluctuations upon the approach to the critical
temperature. The curve that separates the microphase region
from the homogeneous steady-state region is referred to as the
termination curve and may be found in the present theory, when
the maximum of the characteristic growth rate with respect to ¢

reaches zero (SI Appendix, Eq. S6 for details).
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Fig. 4. Onset and termination of microphase separation. (A) Steady-state domain size in the HL model for pr = 1/128 and different forced interconversion
energies from £ = 1 (orange) to £ = 10 (dark blue) in steps of AE = 1 (Fit parameters provided in S/ Appendix, Table S1). For E > E** = 7 (termination energy),
the data collapse into a single line (black), indicating that the characteristic steady-state domain size remains on the order of the microscopic length scale Ry (T),
which corresponds to homogeneous steady-state systems for all temperatures. For £ < 7, the onset of microphase separation is observed at T = T*(E*), where
E* is the onset energy. For T < T*, the steady-state domain size is equal to the size of the system, R = ¢. (B) Onset energy E* (black circles and curve) for the
HL model as a function of temperature for pr = 1/128. Colored open circles and dashed curves correspond to steady-state domain sizes: R = 0.143 (blue),
R = 0.095 (green), and R = 0.074 (red). (C) The inverse onset rigidity parameter 1/k:; (black circles and curve) for the DCM model at P = 0.1. Colored circles and
dashed curves correspond to steady-state domain sizes: R = 0.32 (blue), R = 0.22 (green), and R = 0.18 (red). In (B) and (C), the blue area corresponds to the
phase separation on the scale of the simulation box, the white area corresponds to microphase separation, and the yellow area corresponds to homogeneous
steady states. The images in (B) and (C) correspond to the different final states of the systems below £*(T*) and 1/k};(T*), where the size of the phase domain
is on the scale of the simulation box (g* ~ 1/¢). In (B), phase amplification is observed since for pr = 1/128, natural interconversion is relatively fast, while in (C),
where natural interconversion is relatively slow for the simulated range of k4, we find two-phase separation on the scale of the simulation box.
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The region of the phase diagram where microphase separation Nonequilibrium microphase separation could exist in a wide

occurs (between the onset and the termination lines) is where class of systems, including “active matter systems,” a recent
diffusion, natural interconversion, and forced interconversion focus of theoretical and experimental studies (15, 45), as well as
are balanced and where steady-state dissipative structures are  biomolecular condensates (e.g. membraneless organelles), where
observed. The characteristic length scale of the microphase region ~ natural interconversion could be caused by mechanisms like

is predominantly given by the interplay between diffusion and  polymerization, protein folding-unfolding, and self-assembly,
forced interconversion (S Appendix, section 1.B for details). The while forced interconversion could be generated by the nonequi-
comparison between these three regions in the HL and DCM librium environment of the cell (32, 44-53). The developed
models is illustrated in Fig. 4 B and C. As shown, the onset and ~ approach could be applicable to understanding and quantitatively

termination curves behave similarly between these regions. describing these phenomena. In addition, microphase separation

We have shown that under certain limits, all of the simulated ~ may also exist in other supramolecular structures, e.g., polymer
models would exhibit identical dynamic behavior. These limits ~ solutions in the presence of photochemical reactions (3, 54).
are summarized as: 1) The limit of complete phase separation ~ Our approach could be linked to other dissipative phenomena,

occurs when p, — 0 and £ — 0 (HL), k; — oo (DCM), like hydrodynamic instabilities and bifurcations in chemical
and & — 0 and ¢ — 0 (HCS). 2) Microphase separation in the reactions (55).

absence of natural interconversion occurs in the HL and HCS
models when E' < Epay and € < gyax at constant p, or & and
T'. In the limit when p, and & are small, while £ > E;,« and
€ > Emax, the dynamic behavior of the HL and HCS models
becomes equivalent to the model of Glotzer et al. (21-23, 26—
29). 3) The dynamic behavior of the DCM model (imbalance of
interaction forces) is a limiting case of the behavior of the HL . , ul di
and HCS models (external source of energy-carrying particles). wgrk isa part_ofth_e research col!aboratlon betvyeen the Un|ve.r5|ty.ofMaryIand,
4) Limit of a homogeneous steady state occurs in all the models Princeton University, Boston University, and Arizona State University supported

ok ok by the NSF. SV.B., MAA, and P.G.D. acknowledge the financial support
£°r> Z*: (PITC53 when £ > E** (HL), #; — 0 (DCM), and & "\ op (Award Nos. CHE-1856496, CHE-1856479, and CHE-1856704,

respectively). S.V.B. acknowledges the partial support of this research through
.. Bernard W. Gamson Computational Science Center at Yeshiva College. B.U.
5. Summary and Applications acknowledges the partial support of her work through Bogazici University
In summary, depending on the rate of interconversion and dis- ~ Research Fund (Award No. 17841) and the Scientific and Technological
tance to the critical temperature, there are three possible scenarios Research.Cou ncil of Turkey International Fellow.sh|pfo.r0utstand|ng Researchers
that are observed in the behavior of our three microscopic models Fellowshlp (Award No. T118C220). Some simulations were performed on
of mixtures that exhibit phase separation in the presence of computgtlonal resources managed an_d supported by_ Princeton Research
both the natural and forced interconversions of species: 1) phase Computlng, a co.nsomum of groups mcludmg the Prmcgton Institute .for
amplification or transient two-phase separation on the scale of the Computat|0,naI_SC|ence and Engmeermg.(PICSuE) and th_e Off_|ce pf Information
. - . 3 Technology's High Performance Computing Center and Visualization Laboratory
simulation box, 2) microphase separation, and 3) homogeneous at Princeton Universit

steady state. Unlike the modulated phases and bicontinuous )

microemulsion structures observed in equilibrium conditions or
the patterns formed in “frozen” metastable conditions (5-10),
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