A Case Study on When and How Novices Use Code Examples in

Open-Ended Programming

Wengran Wang
North Carolina State University
Raleigh, USA

Alexandra Milliken
North Carolina State University
Raleigh, USA

Sarah Martin
North Carolina State University
Raleigh, USA

Tiffany Barnes
North Carolina State University
Raleigh, USA

Yudong Rao
North Carolina State University
Raleigh, USA

Yihuan Dong
North Carolina State University
Raleigh, USA

Veronica Catété
North Carolina State University
Raleigh, USA

Chris Martens
North Carolina State University
Raleigh, USA

Archit Kwatra
North Carolina State University
Raleigh, USA

Neeloy Gomes
North Carolina State University
Raleigh, NC, USA

Amy Isvik
North Carolina State University
Raleigh, USA

Thomas Price
North Carolina State University
Raleigh, USA

ABSTRACT

Many students rely on examples when learning to program, but
they often face barriers when incorporating these examples into
their own code and learning the concepts they present. As a step
towards designing effective example interfaces that can support
student learning, we investigate novices’ needs and strategies when
using examples to write code. We conducted a study with 12 pairs of
high school students working on open-ended game design projects,
using a system that allows students to browse examples based on
their functionality, and to view and copy the example code. We
analyzed interviews, screen recordings, and log data, identifying
5 moments when novices request examples, and 4 strategies that
arise when students use examples. We synthesize these findings
into principles that can inform the design of future example systems
to better support students.

CCS CONCEPTS

« Human-centered computing — Human computer interac-
tion (HCI); User studies; Empirical studies in HCI.

KEYWORDS

open-ended programming, code examples, block-based program-
ming, novice programming

ACM Reference Format:

Wengran Wang, Yudong Rao, Archit Kwatra, Alexandra Milliken, Yihuan
Dong, Neeloy Gomes, Sarah Martin, Veronica Catété, Amy Isvik, Tiffany

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ITiCSE 2023, July 8-12, 2023, Turku, Finland

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0138-2/23/07...$15.00
https://doi.org/10.1145/3587102.3588774

Barnes, Chris Martens, and Thomas Price. 2023. A Case Study on When
and How Novices Use Code Examples in Open-Ended Programming. In
Proceedings of the 2023 Conference on Innovation and Technology in Computer
Science Education V. 1 (ITiCSE 2023), July 8-12, 2023, Turku, Finland. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3587102.3588774

1 INTRODUCTION

Code examples are one of the primary sources of information that
programmers of all skill levels use to acquire programming knowl-
edge and learn language usage patterns [4]. In particular, novice
programmers stand to benefit from programming examples, which
can introduce new programming concepts [26, 28, 31, 34], and scaf-
fold users to create more complex and interesting programs [19].
However, prior work on systems that support novices’ example
use has identified a variety of barriers encountered by students,
such as difficulties to understand the example code, to integrate the
example code to their own program, and to modify the example
towards their own goals [18, 34, 37].

These barriers raise questions about how systems can more ef-
fectively support novices’ example use. To do so, it is important to
understand situations in which novices are asking for and using
examples. Specifically, we aim to investigate when students request
examples, as effective support systems must directly address these
needs [14]. For example, a student who is using examples to im-
plement a feature may need different support from a student using
examples to verify their work or generate ideas. Additionally, we in-
vestigate students’ strategies for using examples because systems
should encourage effective strategies, and discourage less effective
ones [22].

In this work, we ask the research question: When do novices
ask for code examples, and how do they use code examples,
when creating open-ended programming projects? We choose
to focus on open-ended projects, because these projects attract
students of varying interests by allowing them to pursue goals
that feel meaningful to them [15], and are therefore widely used

https://doi.org/10.1145/3587102.3588774
https://doi.org/10.1145/3587102.3588774

ITiCSE 2023, July 8-12, 2023, Turku, Finland

in many introductory programming curricula [12, 37], and after-
school or informal learning settings. However, students are also
known to face a number of barriers to incorporate challenging new
programming patterns and APIs in open-ended programming [13],
which code examples that demonstrate such knowledge may help
to overcome [19, 37].

We conducted our study with 24 high school novice students
as they created open-ended programming projects. While making
these projects, students were able to search, browse, view and copy
code examples from a system called Example Helper [37], an ex-
ample support system designed for open-ended programming in
Snap!. We analyzed video, interview, logs, and project submissions,
identifying 5 distinct moments and 4 key strategies that students
employ when using examples. Based on these findings, we then
propose a set of design recommendations to facilitate students’
learning through creative design and planning, active code recon-
struction, and comparison-based knowledge integration. Our key
contributions are:

e An analysis of novices’ potential needs and strategies when
using code examples in open-ended programming.

e Recommendations of design opportunities for systems to
incentivize effective learning from active use of examples.

2 RELATED WORK

Open-Ended Programming. Much prior work on novices’ ex-
ample use focus on supporting students to complete closed-ended
programming tasks [26, 34, 36]. By contrast, in open-ended projects,
students are encouraged to choose their own goals and to pursue
projects that feel meaningful to them, such as making apps, games,
and simulations [13]. These open-ended, choice-driven projects
engage students by allowing them to create projects that connect to
their own personal interest [15], and are popular among many intro-
ductory programming curricula [12, 13, 37]. However, prior work
has shown that students encounter a number of barriers during
open-ended programming, such as difficulties to apply knowledge
of programming concepts into code implementation [13]; and dif-
ficulties in understanding and using unfamiliar APIs [37]. These
challenges could be effectively addressed by code examples, which
can demonstrate concepts and API use [37], suggesting the need for
a better understanding of novices’ example use during open-ended
programming. We do so by investigating when and how students
use code examples, discussed below.

When do novices ask for examples? Our goal of identifying
the moments of example use is to understand novices’ needs when
requesting examples. There has been little prior work investigating
novices’ needs for using code examples in open-ended program-
ming. This is because traditionally in programming education, ex-
amples are used in the context of worked examples [26, 31]. When
learning worked examples, students follow the structured learning
practice to first study a step-by-step demonstration of solving a
short, closed-ended problem (called a worked example), and then
to solve a similar problem independently [31]. Some CS instructors
[24] or systems [35] also includes examples in Use-Modify-Create
pedagogy or practices, where students first learn an example demon-
stration of a problem (use), then make modification (modify), and
finally use the concepts they have learned to build a new program

Wengran Wang et al.

(create). This context differs fundamentally from our goal, which
is to support students’ self-initiated example use in the middle of
programming. We draw inspiration from Wang et al. [34]’s work,
which provides novices with code examples upon request, in the
middle of completing closed-ended, drawing-based problems. In an
interview study with 9 undergraduate novice students, they found
that students request examples for 3 main reasons: “find next step;
find how to complete a step; and fix a problem in their code” [34].
Going beyond prior work [34], we aim to collect data from multiple
sources in a larger-scale study to identify the key moments when
novices ask for examples, with a focus on the context of open-ended
programming, in which students can encounter a different set of
barriers [13].

How do novices use examples? Much prior work has focused
on understanding experienced programmers’ [4] and professional
end-users’ [3, 39] example reuse behaviors. Example reuse refers
to “gluing together” [22] code from existing examples to use in a
new context [22]. Such reusing behavior is usually “opportunistic”
[4], with the primary goal of saving time [4]. Rosson and Carroll
investigated four experienced Smalltalk programmers’ example
use, and summarized the reusing process as “getting something to
work with” by directly copying an example to their own workspace,
and then heavily relying on the system debugger to test the exam-
ple code and “debug into existence”. The authors concluded that
this strategy allowed programmers to quickly incorporate example
functionality into their own code, but also may have caused two
of the programmers to end up with an imperfect programming
artifact [29]. Prior work that investigated Scratch’s “remix” projects
also found that novices encounter challenges to reusing or mod-
ifying complex API usage patterns (e.g., cloning and procedure)
when remixing an example project, and encounter challenges when
understanding and applying an example into their own projects
[1, 20]. Analysis of Scratch’s “remixing” projects also found that
novices often misuse or ignore sophisticated APIs (e.g., cloning and
procedures) when remixing an example project, and experience
difficulties to understand example code and connect them with
their own goals [1, 20]. Some prior work that investigated novices’
example reuse behaviors has shown that novices may employ other
strategies when using examples [18, 34]. Wang et al. found that
novices use strategies such as comparison, locating a change, or
copying directly to use examples in closed-ended tasks [34]. Ichinco
and Kelleher found two strategies novices employ when working
with code examples in closed-ended tasks: 1) code-example com-
parison, where they compare example and their own code to find
what’s missing; 2) example-emphasis, where they find important
parts of an example from highlights in the system [18]. However,
prior work [18, 34] did not analyze how these strategies may have
supported more effective example use, and it is unclear whether
these strategies would show up consistently in the context of open-
ended programming, and whether new strategies would appear. We
investigate these questions from a systematic analysis of multiple
data sources in this work.

A Case Study on When and How Novices Use Code Examples in Open-Ended Programming

[oo JER submit R

UI WIDGETS

‘Why does the code here create the effect you see
in the animation?

Figure 1: The Example Helper Interface.

3 STUDY SETUP

Our study setup aims to collect multiple sources of data to record
novices’ example-usage experience, in an authentic, engaging open-
ended programming experience.

3.1 System

We make use of an existing system called Example Helper [37],
which adds a “show example” button on the Snap! editor, showing
a gallery of examples upon request (Figure 1). Example Helper is
suitable for our goal to analyze novices’ example use, for three key
reasons:

High-quality examples. Example Helper includes a curated
gallery of high-quality code examples, collected from a systematic
analysis of common game behaviors students make in open-ended
programming [37, 40], and refined by expert researchers for the
purpose of readability and integration of advanced concepts (e.g.,
lists).

Supports for searching, copying, and testing example code.
The Example Helper’s design follows the COIL model [11] on pro-
grammers’ information search and integration process. First, a stu-
dent can search for an example (information collection [11]): When
clicking the “show example” button, students see a gallery of exam-
ples [37], where they can browse; search over a search box; or filter
examples based on tags. Next, when they find an example and click
to open it, they can read the example, or copy the code by dragging
it to their own code (information organization[11]). Lastly, to test
code, they may run copied example code in their own program, or
open the example code in a separate window by clicking on the
“open the project” button (solution testing [11]).

Prompts to self-explain. When reading an example, the stu-
dent may answer a self-explanation prompt: “Why does the code
here create the effect you see in the animation?”. After typing 30
characters, they can copy the example code by dragging blocks
to their own workspace. Example Helper encourages this self-
explanation process, as it has consistently been shown to aid learn-
ing from examples [34].

3.2 Participants & Procedure

We held our study in a summer internship program, which aimed to
teach high school students about programming, as well as creating
computing-infused projects for middle and high school teachers.
The program was held online due to the COVID-19 pandemic. Our
participants included 24 high school students in the program, 7

ITiCSE 2023, July 8-12, 2023, Turku, Finland

males and 17 females, who self-reported as 2 White, 2 African
American, 17 Asian, 1 Other, and 2 Multiracial.

Our study occurred in the first 3 days of the second week, before
which students completed a one-week tutorial to program in Nets-
Blox [5]. We designed a formative study, alternating conditions for
when students had access to Example Helper. The Early group (n =
7 pairs) had access to examples only on Day 2, and the Late group
(n = 5 pairs) had access to examples only on Day 3. A researcher
demonstrated how to use Example Helper, but students were not
specifically prompted to use examples. To ensure an authentic and
engaging learning experience, students pair-programmed in Days
2 & 3, as pair-programming has been shown to promote higher
performance for novices during open-ended programming [13],
and is a standard practice in many real-world classrooms [32]. We,
therefore, analyzed students in pairs.

Day 1: warm-up activity to assign groups & pairs. Students
did a warm-up activity in Snap! on Day 1, where they programmed
18 short, using loops and conditionals [35]. We ranked students’
performance based on the time each student spent completing the
warm-up activity, and used this rank to balance groups, such that
each group had a similar average performance. We also assigned
students with adjacent ranks into the same pair, which can promote
better learning outcomes for the pairs [23].

Day 2 & 3: building games. On Days 2 & 3, students built
games with two different themes — breakout and space-invaders,
respectively. These two themes include features such as the player
interacting with a larger group of sprites (e.g. bricks, enemies), or
using collision which causes them to disappear. These themes were
suitable open-ended tasks, as they required the usage of many con-
cepts (e.g., loops) and APIs (e.g., cloning in Snap!), and provided
flexibility and variability in game design [17] (e.g., adding new ac-
tors with different roles, and designing levels), allowing students
to incorporate their own choices and goals. To foster creativity, we
started Days 2 & 3 by introducing a variety of breakout/space in-
vader games, retrieved from the online Scratch community [25, 33].
We did not require any specific features in games, and encouraged
students to make unique and creative artifacts.

Interviews. To understand students’ own perceptions, at the end
of Days 2 & 3, we invited each pair to a 15-minute semi-structured
interview, where they discussed their experience by answering
questions such as “Describe a scenario where you have requested a
code example”. When students used vague terms such as “helpful”,
we encouraged them to describe a concrete example usage scenario
they experienced.

4 ANALYSIS

We analyzed our data using the “Case Study Research” [16, 41]
method, a systematic approach to research “decisions” — “why they
were taken, how they were implemented, and with what result”
[30]. Yin proposed that these “why” and “how” questions require
tracing over time, and are therefore difficult to be summarized as
incidents or frequencies, but rather require analysis from a time-
series-based perspective, collecting data from multiple sources to
describe phenomena with their own context — “cases” [41].

ITiCSE 2023, July 8-12, 2023, Turku, Finland

Data Organization. To ensure construct validity [7], we collected
and organized data following the 3 principles by Case Study Re-
search: 1) We collected data from “multiple sources” [41], includ-
ing: a) video recordings of students’ screen, including transcriptions
of each pair’s conversations; b) interview transcriptions; c) logs,
including students’ code and activities (e.g., each code edit) at every
timestamp; and d) students’ final submissions. 2) Since we focused
on analyzing example usage, we defined each example request as
a single “case”, and created a “case study database” [41] of all 88
example requests. For each request, we compiled a “case profile”,
including the data from sources (a) — (c). Because we encouraged
students to describe concrete scenarios (Section 3), most interview
quotes map to specific example requests, though some do not -
for those interviews that describe students’ general experience,
and for data source (d), we 3) established a “chain of evidence”
[41] by linking interview and submissions to the case profiles of
corresponding pairs, to enable tracing backward/forward between
different data sources and analysis stages [41].

Analysis. We next analyzed data to investigate our research ques-
tion on novices’ moments and strategies, following the 2 analytic
techniques by Case Study Research.

1. Finding “patterns” [41] from logs. A pattern” describes the
cause, effect, or events that relate to the central phenomenon of
interest [41]. We start our analysis of cases first on their log data, a
commonly-used primary data source to analyze programmers’ [4],
end users’ [21] including novices’ [18] programming experiences.
Log data most precisely captures students’ experience compared to
interviews, which may suffer from response bias and inaccuracies
[9]. We searched for patterns of situations where students ask
for examples, based on two types of log data: 1) the code students
have to complete a feature demonstrated by an example before ask-
ing it (called “starter code”); and 2) the activities students engaged
in with examples — whether they attempted reusing the example
code, or they immediately closed examples. Similarly, we looked
for patterns of strategies by analyzing students’ programming
activities in logs. From the case database of 88 requests, we first
filtered out 41, where students immediately closed the example
after opening. For the remaining 47, we analyzed the repetitive
requests of the same example in aggregate, creating a total of 29
sets of example requests. We started with a detailed account of
all activities pairs engaged in when using examples, such as the
time when the student started programming the relevant feature,
their starter code, and the programming behaviors they engaged in
while using examples (e.g., “copied block x from example code”),
with timestamps, students’ conversations (capture by the videos),
the students’ final code after completing (or abandoning) the fea-
ture demonstrated by the example (called “final code”) and their
comments in the interview when available. One researcher thor-
oughly coded these documents, generating 7 initial patterns of
strategies. The researcher next worked with another researcher to
merge similar strategies, which generated 4 key strategies, and cre-
ating definitions of these strategies. The researcher next re-coded
these documents again to confirm these strategies and label each
example request with its corresponding strategies.

2. Building “explanations” [41] from conversations, interviews and
submissions. In the “building explanations” step, we aim to find
evidence from students’ conversations and interviews to explain

Wengran Wang et al.

students’ needs and strategies. Towards this goal, we coded the
conversations and interview data on each case profile to look for the
presence of existing patterns, and examine whether new patterns
appeared. Based on the situations of when students ask for examples,
we used evidence from conversations and interviews to explain
students’ needs. This extra data confirmed our identified situations
and strategies, and added students’ perceptions of the causes and
effects of their example usage needs and strategies. We used this
data to re-code all case profiles for a third time, confirming that
students’ discussions were accurate at describing their example
reuse scenarios.

5 RESULTS
5.1 When do students ask for examples?

We found 5 distinct situations when students requested examples:
when browsing/exploring, when starting a step, when debugging
incorrect/incomplete code, when finished with a step, and when
re-implementing a step. We found that many example requests
(68.1%, 60/88) came from students who opened an example about a
new feature not implemented in their code, including when brows-
ing/exploring (38.6%, 34/88), and when starting a step (29.5%, 26/88).
“Browsing/exploring” refers to when students opened and closed
the example, without attempting to integrate the example into their
own code. A student described in the interviews that they “scrolled
through the gallery” to “choose our examples”, by “click[ing] on
it” to open and check “if it looked like something in I would be
using"[E6!]. “Starting a step” refers to situations where students
attempted to integrate the example into their own code. Students’
quotes explained their needs as to understand an implementation
detail: “we had an idea of how the code would work, but we didn’t
know the exact way we could all put it together."[E4]. 22.7% (20/88)
example requests also came from students who were debugging
incorrect or incomplete code. Students explained that they were
in the middle of completing a certain feature — “we sort of got it”,
but don’t know “what wasn’t working with our [code])"[E1]. 8.0%
(7/88) requested examples were about features the students have
already completed in their code. In these example requests, stu-
dents opened the example, but did not try to integrate the example
code into their own code, perhaps due to the need to confirm an
already-completed step. One student, after spending time learning
and using an example, requested the example again in another
sprite, and directly copied the example to their own code. While the
student did not explain their motivations during the interview, it
seems that the student was using the example code for the purpose
of avoiding to re-implement it on their own.

5.2 How do students use examples?

We next discuss the students’ example reuse strategies that reflect
their own choice of how to learn and use examples.

Strategy 1: Integrate one block/feature at a time. In 37.9%
example requests, students integrated the example code to their
own code, by copying, modifying, and testing the example code
one block or one small feature at a time. For example, L3 separated
the process of copying and reusing into 4 sub-steps, each focused

!A quotation from Pair 6 in the Early group. E and L denote the Early and Late groups,
respectively.

A Case Study on When and How Novices Use Code Examples in Open-Ended Programming

on one block, shown by the arrows from the example code to the
student’s own code?. With each sub-step, they modified their code,
sometimes testing it (2/4 times), before copying the next code block.
During the interview, L3 explained that they “individually went
into"[L3] the left code palette to copy code, and explained that
“doing that allowed me to make my own modifications as I went
and I better understood it."[L3].

Strategy 2: Comparison to identify key differences with the
example. When requesting examples, many students have existing
code that partially completes the target feature they need (e.g., when
the feature was half-complete but was buggy). However, students’
existing code can be different from the example code they requested.
In these scenarios, students have described a comparison strategy,
where they “looked at [their] code and that [example] code side by
side” and “compare[d] it"[L1]. For example, E7’s code attempted
a feature, where the actor will change costumes one at a time.
However, the costumes change instantly, so the change effect could
not be observed. E7 requested an example, where the actor creates
clones one at a time, and found that the example included a “wait
0.01 secs” block. E7 then added the “wait 0.01 secs” block into their
own code. In this scenario, the students’ code has many differences
compared to the example. However, while comparing their own
code to the example code, the students identified the meaningful
differences between their own code and the example code, and
added it to their own code without discarding the less meaningful
differences (e.g., changing costumes).

Strategy 3: Understanding through tinkering. Tinkering refers
to “an informal, unguided exploration initiated by features visi-
ble in the environment” [2]. After copying examples to students’
workspace, we found that some students experimented with code
blocks by modifying (e.g., changing variables, or by removing a
block they do not understand), and testing to find the difference,
showing a “test-based tinkering” behavior [10], which aimed to
understand the example code. We call this strategy “understanding
through tinkering”, shown in 17.2% of the example requests. For
example, L4 was confused by the code block “set size to Game Scale
%”, explaining in pair conversation that they “do not know what
Game Scale is or what it’s doing."[L4]. They right-clicked on the
“Game Scale” variable to open the Help documentation, which only
explained the generic usage of a variable block, but not how the
“Game Scale” is used in the context. So the student then changed the
value of the variable from 100 to 20, and tested again. The student
realized that the block changes sizes of a sprite: “so, is it like, if you
make it a larger number it would just get ...ah I see."[L4] They later
integrated the example by deciding on the value of “Game Scale”
to be 30.

Strategy 4: Implement after closing the example. In 13.8%
of example requests, students closed the example, and tried to
implement their desired feature themselves. However, students did
not discuss this strategy during interviews.

Lack of strategy: copy-run-debug. 13.8% example requests did
not include any of the aforementioned example reuse strategies, but
used more expedient, “opportunistic”[4] approaches (called “copy-
run-debug”), with two representative behaviors. 1) copy/replace

2Specifically, such copying is made by using the example as a reference, and moving
the code from the left block palette (Figure 1).

ITiCSE 2023, July 8-12, 2023, Turku, Finland

Table 1: 4 example reuse strategies and the copy-run-debug
behavior.

strategy name freq. succ.rate add.rate del rate adapt. rate kept rate

one at a time 37.9% 1.0 0.53 0.02 0.71 0.38
comparison 34.5% 0.8 0.22 0.01 0.9 0.42
tinkering 17.2% 1.0 0.87 0.01 0.83 0.90

impl. after closing 13.8% 0.75 0.56 0.0 0.74 0.47
copy-run-debug 13.8% 0.25 0.33 0.0 0.84 0.15

blindly: In 2 example requests, the students copied the entire exam-
ple to their own code, and completely removed their own existing
code, leading to functional, although partially correct behavior. In
these scenarios, the “comparison to identify key differences” strat-
egy would have been useful but was not employed. 2) shallow
debugging: In 3 example requests, the students tested the copied
code from the example and found it did not work as expected. How-
ever, students’ conversations showed they ignored the blocks they
were unfamiliar with, but kept modifying other (correct) blocks
that they thought produced the error, making arbitrary changes in
an effort to resolve the error. In these scenarios, the “understand-
ing through tinkering” strategy would have been helpful for the
students to first understand the unfamiliar blocks.

How effective are these strategies? One way to evaluate effec-
tiveness is to understand how these strategies helped students to
overcome their barriers when using examples. We focus on two
measures: 1) Was the example successfully integrated in students’
code?; 2) To what extent did the student modify the example code?
We focus on evaluating integration and modification, as they demon-
strate how examples were successfully and meaningfully reused
[34, 37]. We calculated 6 statistics to investigate integration and
modification, presented in Table 1: 1) The frequency (freq), showing
the percentage of strategies shown in the 29 example requests. 2)
The success (succ.) rate, indicating the proportion of the example re-
quests that were successfully integrated to students’ code. We refer
to this number as success rate. 3) The addition (add.) rate, showing
the number of blocks students added while using the code example,
divided by the number of blocks in the example code. 4) The deletion
(del.) rate, showing the number of blocks students deleted while
using the code example, divided by the number of blocks in the
students’ own code. 5) The adaptation (adapt) rate, showing the
proportion of the added code blocks that are in the example code.
6) The kept rate, which defines the percentage of a student’s final
implementation of a certain feature, that comes from the example
code. For addition, deletion, adaptation, and kept rates, the number
presented in Table 1 is averaged across the 29 requests. We discuss
the following findings based on Table 1:

a) Students almost always used a strategy of some form,
which often led to success and adaptation. 86.2% (25/29) of
example requests included the use of at least one of the 4 key
strategies. Each strategy led to at least a 75% successful integration
rate. The adaptation rate shows that the majority of students did
not copy blindly, as when adding example code to their own code,
students also added code blocks that are not from the example code,
showing evidence of modifications.

b) Different strategies have different use cases and affor-
dances. The kept rate shows how many similarities there was

ITiCSE 2023, July 8-12, 2023, Turku, Finland

YVY DAY 2 DAY 3

Et| 0| v 448 1:24

£2 S 21:02 1:58

E3 32:27 3:18

¢ B 35:29 %20:15

E5 | v 23:40 3:12

E6 - 36:39 2:43

L1 34:17 3:22

L2 6:58 v 0:39

L3 X0:00 (did not try implementation) 5:35

L4 X0:00 (did not try implementation) [] 15:27
when y when when when

browsing starting a step debugging confirming a step

one at a time @ comparison [] understanding

thru. tinkering

(J impl. after closing @ copy-run-debug no activity

Figure 2: Case students’

spawn_clones.

study: implementation of

between the students’ final code and the example code. The tinker-
ing strategy creates code with the highest similarity and addition
rates, showing that students may use tinkering when copying large
chunks of example code, without much modification. The compari-
son strategy was employed when adding a small amount of code
from the example to students’ own code, which was usually kept,
showing that this strategy was most often employed in scenarios
where students already had partially complete code blocks, and
used the needed block from an example to fix a bug. Finally, one at
a time and implement after closing led to high modifications, shown
by the lower adaptation and kept rates. This shows that these two
strategies were more appropriate for students who needed more
example adaptation, mirroring students’ interview comments pre-
sented in Section 5.2.

c) Lack of strategy can lead to failures of integration. While
typical strategies led to at least 75% success rate, in the 4 instances
of copy-run-debug behaviors, only one led to successful integration.
It also had high kept rate (0.84), showing that students modified
less of the example when adding. In addition, many parts of the
example were discarded from the students’ final code, as they were
not able to reuse them successfully, shown by its low addition and
kept rates.

5.3 An in-depth analysis

We use the most frequently requested example “spawn_clones”
to illustrate how motivations and strategies were reflected in stu-
dents’ experience. “Spawn_clones” demonstrates a commonly-seen
feature in breakout and space invaders, which creates groups of
bricks/enemies by using clones, an API that creates copies of sprites
in Snap!. The grey bars in Figure 2 indicate the time duration when
students were implementing this feature. We removed the dura-
tions of activities on creating other features, which are sometimes
interleaved in between implementations of “spawn_clones”. At the

Wengran Wang et al.

end of each grey bar shows the implementation outcome — suc-
cessful (tick) or abandoned (cross), as well as the total time spent
on implementing just “spawn_clones”. The colored boxes on the
grey bars are the time when students had the example interface
opened, where each color represents a specific example use strategy
(see Section 5.2). The triangles at the start of these boxes indicate
the students’ situation/motivation when opening the example (see
Section 5.1). Figure 2 presents the following highlights:

Students employed diverse strategies for a variety of reuse
scenarios. E2 first used the copy-run-debug behavior to blindly
copy the example code. They found the integration to be erroneous,
but superficially debugged and were unable to fix the error. They
next removed their code and requested the example again, while
spending more time modifying and testing different blocks in the
example code. After they attempted to understand the example
through tinkering, they removed all of their code again and started
over, finally leading to a successful integration. This shows that
strategies are not used in isolation, and students may start with
more expedient strategies, and move on to more time-consuming
(and effective) strategies.

Programming a feature for the second time can be easier.
When students succeeded in creating the feature on Day 2, they
were able to spend about 10 times less of the time to program
“spawn_clones” on Day 3, regardless of whether the example was
used. With the exception of E4, who implemented the feature on
Day 2 with help from instructors, the rest of the students from the
Early group were all able to efficiently create the feature on Day 3.

6 DISCUSSION & CONCLUSION

One of the most frequent situations when students request exam-
ples, is when they were browsing (38.6%), where students needed
to find features that they wanted to create. This need for design is
consistent with the potential benefits of open-ended programming,
which aims to help students create projects that they personally
connect to. Therefore, examples should support students to create
designs that feel challenging and meaningful to them.

In addition, the diversity of effective strategies implies that we
could build systems that “work in the way they are used to working,
but inject good design decisions into their existing practices” [22].
For example, one reason why the integrating one block/feature at
a time strategy to be effective, is that it transforms passive code
copying to active code reconstruction, which can improve learning
[6]. Systems can encourage this using Parsons problems [27], or
separate examples into different sub-components [8, 38].

In conclusion, in this work, we conducted a case study with 12
pairs of high school students working on open-ended game design
projects, while having access to Example Helper, an example gallery
system in Snap!. We identified distinct and diverse motivations and
strategies novices employ when using code examples in open-ended
programming, and found that students used a diversity of strategies
to reuse and modify examples.

7 ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. 1917885.

A Case Study on When and How Novices Use Code Examples in Open-Ended Programming

REFERENCES

(1]

(2]

3

=

[10

(1]

[12]

[14]

[15]
[16]

[17]

(18

[19

[20]

[21]

[22]

Kashif Amanullah and Tim Bell. Evaluating the use of remixing in scratch projects
based on repertoire, lines of code (loc), and elementary patterns. In 2019 IEEE
Frontiers in Education Conference (FIE), pages 1-8. IEEE, 2019.

Laura Beckwith, Cory Kissinger, Margaret Burnett, Susan Wiedenbeck, Joseph
Lawrance, Alan Blackwell, and Curtis Cook. Tinkering and gender in end-user
programmers’ debugging. In Proceedings of the SIGCHI conference on Human
Factors in computing systems, pages 231-240, 2006.

A. F. Blackwell. First steps in programming: a rationale for attention invest-
ment models. In Proceedings IEEE 2002 Symposia on Human Centric Computing
Languages and Environments, pages 2-10, 2002.

Joel Brandt, Philip J Guo, Joel Lewenstein, Mira Dontcheva, and Scott R Klemmer.
Two studies of opportunistic programming: interleaving web foraging, learning,
and writing code. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 1589-1598, 2009.

Brian Broll, Akos Lédeczi, Peter Volgyesi, Janos Sallai, Miklos Maroti, Alexia
Carrillo, Stephanie L Weeden-Wright, Chris Vanags, Joshua D Swartz, and Melvin
Lu. A visual programming environment for learning distributed programming.
In Proceedings of the 2017 ACM SIGCSE technical symposium on computer science
education, pages 81-86, 2017.

Michelene TH Chi and Ruth Wylie. The icap framework: Linking cognitive
engagement to active learning outcomes. Educational psychologist, 49(4):219-243,
2014.

Lee J Cronbach and Paul E Meehl. Construct validity in psychological tests.
Psychological bulletin, 52(4):281, 1955.

Adina Deiner, Patric Feldmeier, Gordon Fraser, Sebastian Schweikl, and Wen-
gran Wang. Automated test generation for scratch programs. arXiv preprint
arXiv:2202.06274, 2022.

Nicola Dell, Vidya Vaidyanathan, Indrani Medhi, Edward Cutrell, and William
Thies. " yours is better!" participant response bias in hci. In Proceedings of the
sigchi conference on human factors in computing systems, pages 1321-1330, 2012.
Yihuan Dong, Samiha Marwan, Veronica Catete, Thomas Price, and Tiffany
Barnes. Defining tinkering behavior in open-ended block-based programming
assignments. In Proceedings of the 50th ACM Technical Symposium on Computer
Science Education, pages 1204-1210, 2019.

Gao Gao, Finn Voichick, Michelle Ichinco, and Caitlin Kelleher. Exploring pro-
grammers’ API learning processes: Collecting web resources as external memory.
In Michael Homer, Felienne Hermans, Steven L. Tanimoto, and Craig Anslow,
editors, IEEE Symposium on Visual Languages and Human-Centric Computing,
VL/HCC 2020, Dunedin, New Zealand, August 10-14, 2020, pages 1-10. IEEE,
2020. doi: 10.1109/VL/HCC50065.2020.9127274. URL https://doi.org/10.1109/
VL/HCC50065.2020.9127274.

Dan Garcia, Brian Harvey, and Tiffany Barnes. The beauty and joy of computing.
ACM Inroads, 6(4):71-79, 2015.

Shuchi Grover, Satabdi Basu, and Patricia Schank. What we can learn about stu-
dent learning from open-ended programming projects in middle school computer
science. In Proceedings of the 49th ACM Technical Symposium on Computer Science
Education, SIGCSE ’18, page 999-1004, New York, NY, USA, 2018. Association for
Computing Machinery. ISBN 9781450351034. doi: 10.1145/3159450.3159522. URL
https://doi.org/10.1145/3159450.3159522.

Mark Guzdial. Learner-centered design of computing education: Research on
computing for everyone. Synthesis Lectures on Human-Centered Informatics, 8(6):
1-165, 2015.

Mark Guzdial and Andrea Forte. Design process for a non-majors computing
course. ACM SIGCSE Bulletin, 37(1):361-365, 2005.

Lorna Hamilton and Connie Corbett-Whittier. Using case study in education
research. Sage, 2012.

Robin Hunicke, Marc LeBlanc, and Robert Zubek. Mda: A formal approach
to game design and game research. In Proceedings of the AAAI Workshop on
Challenges in Game Al volume 4, page 1722, 2004.

Michelle Ichinco and Caitlin Kelleher. Exploring novice programmer example
use. In 2015 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pages 63-71. IEEE, 2015.

Michelle Ichinco, Wint Yee Hnin, and Caitlin L Kelleher. Suggesting api usage
to novice programmers with the example guru. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems, pages 1105-1117, 2017.
Prapti Khawas, Peeratham Techapalokul, and Eli Tilevich. Unmixing remixes:
The how and why of not starting projects from scratch. In 2019 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC), pages 169-173.
IEEE, 2019.

Amy] Ko, Brad A Myers, and Htet Htet Aung. Six learning barriers in end-user
programming systems. In 2004 IEEE Symposium on Visual Languages-Human
Centric Computing, pages 199-206. IEEE, 2004.

Amy J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett,
Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman, Brad Myers,
et al. The state of the art in end-user software engineering. ACM Computing
Surveys (CSUR), 43(3):1-44, 2011.

[23

[24

[25]

IS
S

[27]

[28

[33

[34

@
2

[36

[37

[38

[39

=
=

[41]

ITiCSE 2023, July 8-12, 2023, Turku, Finland

Colleen M Lewis and Niral Shah. How equity and inequity can emerge in pair
programming. In Proceedings of the eleventh annual international conference on
international computing education research, pages 41-50, 2015.

Nicholas Lytle, Veronica Cateté, Danielle Boulden, Yihuan Dong, Jennifer Houch-
ins, Alexandra Milliken, Amy Isvik, Dolly Bounajim, Eric Wiebe, and Tiffany
Barnes. Use, modify, create: Comparing computational thinking lesson progres-
sions for stem classes. In Proceedings of the 2019 ACM Conference on Innovation
and Technology in Computer Science Education, pages 395-401. ACM, 2019.
John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. The scratch programming language and environment. ACM Transactions
on Computing Education (TOCE), 10(4):1-15, 2010.

Briana B Morrison, Lauren E Margulieux, and Mark Guzdial. Subgoals, context,
and worked examples in learning computing problem solving. In Proceedings of
the eleventh annual international conference on international computing education
research, pages 21-29. ACM, 2015.

Dale Parsons and Patricia Haden. Parson’s programming puzzles: a fun and
effective learning tool for first programming courses. In Proceedings of the
8th Australasian Conference on Computing Education-Volume 52, pages 157-163.
Australian Computer Society, Inc., 2006.

Peter Pirolli and Mimi Recker. Learning strategies and transfer in the do-
main of programming. ITLS Faculty Publications, 12, 09 1994. doi: 10.1207/
$1532690xci1203_2.

Mary Beth Rosson and John M Carroll. Active programming strategies in reuse.
In European Conference on Object-Oriented Programming, pages 4-20. Springer,
1993.

Wilbur Schramm. Notes on case studies of instructional media projects. 1971.
John Gregory Trafton and Brian J Reiser. The contributions of studying examples
and solving problems to skill acquisition. PhD thesis, Citeseer, 1994.

Jennifer Tsan, Jessica Vandenberg, Zarifa Zakaria, Danielle C Boulden, Collin
Lynch, Eric Wiebe, and Kristy Elizabeth Boyer. Collaborative dialogue and
types of conflict: An analysis of pair programming interactions between upper
elementary students. In Proceedings of the 52nd ACM Technical Symposium on
Computer Science Education, pages 1184-1190, 2021.

Wengran Wang, Yudong Rao, Yang Shi, Alexandra Milliken, Chris Martens,
Tiffany Barnes, and Thomas W. Price. Comparing feature engineering approaches
to predict complex programming behaviors. Educational Data Mining in Computer
Science Education (CSEDM) Workshop @ EDM 20, 2020.

Wengran Wang, Yudong Rao, Rui Zhi, Samiha Marwan, Ge Gao, and Thomas
Price. The step tutor: Supporting students through step-by-step example-based
feedback. ITiCSE’20 - Proceedings of the 2020 ACM Conference on Innovation and
Technology in Computer Science Education, To be published, pages 391-397, 2020.
Wengran Wang, Rui Zhi, Alexandra Milliken, Nicholas Lytle, and Thomas W.
Price. Crescendo: Engaging students to self-paced programming practices. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Education,
SIGCSE 20, page 859-865, New York, NY, USA, 2020. Association for Computing
Machinery. ISBN 9781450367936. doi: 10.1145/3328778.3366919. URL https:
//doi.org/10.1145/3328778.3366919.

Wengran Wang, Gordon Fraser, Tiffany Barnes, Chris Martens, and Thomas
Price. Execution-trace-based feature engineering to enable formative feedback
on visual, interactive programs. Educational Data Mining in Computer Science
Education (CSEDM) Workshop @ EDM’21, 2021.

Wengran Wang, Archit Kwatra, James Skripchuk, Neeloy Gomes, Alexandra
Milliken, Chris Martens, Tiffany Barnes, and Thomas Price. Novices’ learning
barriers when using code examples in open-ended programming. In Proceedings
of the 26th ACM Conference on Innovation and Technology in Computer Science
Education V. 1, ITiCSE 21, pages 394-400, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450382144. doi: 10.1145/3430665.3456370.
URL https://doi.org/10.1145/3430665.3456370.

Wengran Wang, Chenhao Zhang, Andreas Stahlbauer, Gordon Fraser, and
Thomas Price. Snapcheck: Automated testing for snap programs. In Proceedings
of the 26th ACM Conference on Innovation and Technology in Computer Science
Education V. 1, ITiCSE ’21, pages 227-233, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450382144. doi: 10.1145/3430665.3456367.
URL https://doi.org/10.1145/3430665.3456367.

Wengran Wang, Gordon Fraser, Mahesh Bobbadi, Benyamin T Tabarsi, Tiffany
Barnes, Chris Martens, Shuyin Jiao, and Thomas Price. Pinpoint: A record, replay,
and extract system to support code comprehension and reuse. In 2022 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pages
1-10. IEEE Computer Society, 2022.

Wengran Wang, Audrey Le Meur, Mahesh Bobbadi, Bita Akram, Tiffany Barnes,
Chris Martens, and Thomas Price. Exploring design choices to support novices’
example use during creative open-ended programming. In Proceedings of the 53rd
ACM Technical Symposium on Computer Science Education V. 1, pages 619-625,
2022.

K Yin Robert. Case study research and applications: design and methods, 2017.

https://doi.org/10.1109/VL/HCC50065.2020.9127274
https://doi.org/10.1109/VL/HCC50065.2020.9127274
https://doi.org/10.1145/3159450.3159522
https://doi.org/10.1145/3328778.3366919
https://doi.org/10.1145/3328778.3366919
https://doi.org/10.1145/3430665.3456370
https://doi.org/10.1145/3430665.3456367

	Abstract
	1 Introduction
	2 Related Work
	3 Study Setup
	3.1 System
	3.2 Participants & Procedure

	4 Analysis
	5 Results
	5.1 When do students ask for examples?
	5.2 How do students use examples?
	5.3 An in-depth analysis

	6 Discussion & Conclusion
	7 Acknowledgements
	References

