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1 Introduction

The Deep Underground Neutrino Experiment (DUNE) [1] will employ several particle detectors
in a beam of neutrinos produced at Fermi National Accelerator Laboratory in Batavia, IL. The
near detectors will be located on the Fermilab site, and the far detectors will be located at the
Sanford Underground Research Facility in Lead, SD. One of the three primary purposes of the
experiment is to measure the properties of neutrinos as they travel 1300 km through the earth. They
are expected to oscillate from one flavor of neutrino to another and back as they travel. Measuring
the flavor transition probabilities will tell us about the masses, mixings, and charge-parity (CP)
symmetry violating properties of neutrinos. CP violation is a necessary ingredient to explain why
there is more matter in the universe than there is antimatter. The second primary purpose is to detect
neutrinos from supernova bursts within the Milky Way galaxy and nearby dwarf galaxies such as the
Magellanic Clouds. The third purpose is to search for nucleon decay, which is predicted by some
grand unified theories. Before building the large far detector modules, each of which will contain
10 kt of fiducial mass of liquid argon, prototypes have been built and additional prototypes will
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be built in order to test the design and the robustness of the components. Two large prototypes,
ProtoDUNE-SP [2] and ProtoDUNE-DP [3, 4] are located at CERN in a test beam.

1.1 Liquid argon time projection chamber

The primary particle detection technology chosen for the large far detector modules is the liquid
argon time projection chamber (LArTPC). A LArTPC contains a volume of highly purified liquid
argon (LAr) in a strong electric field, provided by a planar cathode and a planar anode. High-speed
charged particles such as cosmic rays or particles produced in neutrino interactions will ionize argon
atoms along the particle trajectories. Some of the electrons that are freed in the ionization drift in
the electric field, scattering from the argon atoms but they are not absorbed. Other electrons freed by
ionization recombine with the positive argon ions, producing flashes of scintillation light. If the
argon is sufficiently free of electronegative impurities such as oxygen and water, then the drifting
electrons will travel to the anode.

This paper focuses on the ProtoDUNE-SP geometry. In this detector, two anode planes are on
the outside faces of the detector, facing the cryostat, and one vertically hung cathode plane is in the
middle, while the far detector contains additional planes [5]. The distance between the cathode plane
and the nearest anode plane is 3.6 m in both the far detector and in ProtoDUNE-SP. The nominal
electric field strength is 500 V/cm. The potential on the cathode is �180 kV, and the anode plane
contains elements at ground potential. A field cage consisting of an array of metal profiles that are
held at electrical potentials that linearly vary with their position between the cathode and the anode
shape the field, providing as close to a uniform field as possible within the volume of liquid argon (cf.
figure 1). Ten photon detectors are located between the grounded mesh planes inside each APA frame.

The anode plane is made up of charge-sensing elements. In a single-phase LArTPC, it consists
of four planes of wires — a grid plane, two induction planes (U and V), and a collection plane
(X). A grounded mesh lies behind the collection plane. The potentials are set on the wire planes
so that charge drifts past the grid wires and the wires in the two induction planes but collects on
the collection plane. Sensitive amplifiers and digitizers are attached to each induction-plane wire
and each collection-plane wire. The wires are attached to frames called Anode Plane Assemblies
(APAs). Wire anode planes are strung on both sides of the APA. The collection-plane wires run
the lengths of the APA, while the induction-plane wires are arranged at ±35.7� from the vertical
collection-plane wires. Induction-plane wires are wrapped around the sides of the APA frames, held
in place with FR-4 wire boards. The grid wires are not instrumented for readout, but they provide
signal shaping and electrostatic protection.

The general operating principle of the single phase LArTPC is as follows. Negatively charged
ionization electrons produced in interactions between energetic charged particles and the argon in
the detector drift horizontally through the LAr in the direction opposite to the electric field and are
collected on the anode. Photon detectors will provide the C0 of the interaction. The drifting charges
induce bipolar signals on the U and V wires and unipolar signals on the X wires (cf. figure 2). The
arrival time of the drifting charge, together with knowledge of the drift velocity of the electrons in
the applied field, allows the determination of the distance from the ionization point to the anode,
provided that the time of the original ionization is known. This time can be known either from the
timing of the beam pulse from Fermilab, or, in the case of natural sources such as comic rays, the
time of the scintillation light flashes.
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Figure 1. Sketch of the cryostat interior (left) and the field cage (right) of the ProtoDUNE-SP detector.
Reproduced from [5]. © 2020 CERN. CC BY 4.0.

Figure 2. The general operating principle of the single phase LArTPC. Negatively charged ionization
electrons from the neutrino interaction drift horizontally opposite to the E field in the LAr and are collected
on the anode, which is made up of the U, V and X sense wires. The right-hand side represents the time
projections in two dimensions as the event occurs. Photon detectors (not shown) will provide the C0 of the
interaction. Reproduced from [1]. © 2020 CERN. CC BY 4.0.
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1.2 The effect of space charge

For LArTPCs located the Earth’s surface, such as ProtoDUNE-SP, cosmic rays constantly impinge on
the detector. While the drifting electrons are quickly swept away by the applied electric field, the re-
maining positively charged argon ions drift very slowly, on the order of several centimeters per second.
This speed is comparable to the fluid flow speed. Positive ions therefore may accumulate somewhere
in the active volume of the LArTPC, and cause distortions of the electric potential from its nominal
form [6]. Negatively-charged ions created when electrons attach to impurities (oxygen or water
molecules) also are expected to drift slowly, though their concentrations are small if the LAr is very
pure. The resulting distortions in the electric field cause drifting electrons to arrive at different places
and at different times on the anode plane than they would had there been no distortions. The distorted
electric field also changes the fraction of electrons that recombine with the argon ions. Measurements
of the positions of track endpoints can help constrain space-charge distortion effects [7, 8].

The liquid argon flow velocity distribution can be obtained by solving incompressible Navier-
Stokes equations using a Computational Fluid Dynamics solver. For example, various commercial
Computational Fluid Dynamics (CFD) packages including ANSYS CFX and Star-CCM+ have been
used to calculate the flow motion [9–11]. However, this paper focuses on the development of a
separate numerical solver for simulating the interaction between the space charge distribution and
the electric field. The flow velocity field is one of the inputs to the current solver.

1.3 Mathematical modeling

The transport of ions can be modeled as

md2

mC

+ r · [(u + u3)d2] = r · (⇡rd2) + ( (1.1)

where d2 is the charge density of the positive ion. In this paper, we consider positive ions only as this
paper aims to demonstrate the capability in simulating the interaction between the ion distribution
and the electric field. Negative ions due to electron attachment to impurities will be considered in
our future work.

u in eq. (1.1) is the background flow velocity vector, ⇡ is the diffusion coefficient, + is the
electrostatic potential and ( is the source/sink term (for example, charge injection due to cosmic rays,
electron-ion production in high-energy interactions, electron-ion recombination, electron-impurity
attachment and ion-ion neutralization). Electrons drift with a velocity of roughly 1.6 mm/�s and
thus do not contribute significantly to the accumulated space charge. The drift velocity of the ions,
u3 , due to the electric field is obtained via

ud = `E (1.2)

with ` being the mobility of the ions and E the electric field. Note that there is an uncertainty in
the value of the mobility of the ions. The measured value of the mobility depends on experimental
conditions such as the impurity level and temperature. In this paper we choose the value adopted in
ref. [12], namely, ` = 1.6 ⇥ 10�7m2V�1s�1.

The diffusion coefficient ⇡ in eq. (1.1) can be determined from the Einstein relation

⇡ =
`:B)

@

(1.3)
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Figure 3. 3D element types that can be handled by the current solver: tetrahedron, pyramid, prism and
hexahedron.

where :B is the Boltzmann constant (= 1.380649⇥10�23J ·K�1), @ is the electric charge of a positive
ion (= 1.602 ⇥ 10�19C) and ) is the temperature in Kelvin (K).

The electric field E is related to the electric potential + via

E = �r+ . (1.4)

The electrostatic potential + satisfies the following Poisson equation according to Gauss’s law

�r · (r+) = d2

Y

(1.5)

where Y is the permittivity of the medium which is defined as follows:

Y = YAY0, (1.6)

with YA the relative permittivity (i.e., the dielectric constant, YA = 1.504 for liquid argon) for the
medium and Y0 = 8.854 ⇥ 10�12 F/m the permittivity of free space (a vacuum).

In this paper, we describe a numerical package we have developed to solve the space charge
transport equation (1.1) coupled with the electrostatic potential equation (1.5) in an arbitrary spatial
domain. The resulting package can be used to investigate the space charge effect on the electric field
in the LArTPC detectors.

This paper is organized as follows. Section 2 briefly describes the numerical methodology used
to solve eqs. (1.1) and (1.5). In section 3, several numerical test cases are presented to demonstrate i)
the space charge effect on the electric field and ii) the accuracy of current numerical methods by
comparing the numerical results with analytical solutions. Finally section 4 provides the summary
of this work and discussions about future work.

2 Numerical methodology

The present numerical methodology is adapted from our in-house incompressible flow solver [13, 14]
where a hybrid finite volume/element method is used. The resulting numerical solver is able to
solve both 2-D and 3-D problems with the computational domain discretized by hybrid elements (cf.
figure 3). In addition, since the solver is parallelized using the Message Passing Interface (MPI)
library, the solver is able to solve large-scale problems on parallel computing systems. This section
briefly describes the methodology in developing the current numerical solver.
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2.1 Nondimensionalization of equations

The actual values of the physical quantities in eqs. (1.1) and (1.5) vary a lot in magnitude in SI
units. It is desirable to use an appropriate set of reference values to nondimensionalize and scale
the dimensional values such that all dimensionless values are within a magnitude range close to 1.
Independent primary reference values are as follows:

• dref: reference charge density.

• !ref: reference length.

• Dref: reference velocity.

• +ref: reference electric potential.

Other derived reference values include

• Cref = !ref/Dref: reference time scale,

• ⇢ref = +ref/!ref: reference electric field,

• `ref = Dref/⇢ref: reference positive ion mobility,

• ⇡ref = !refDref: reference diffusivity,

• (ref = drefDref/!ref: reference source term and

• Yref = dref!
2
ref/+ref: reference permittivity.

It can be easily shown that the resulting dimensionless equations are mathematically identical to the
original ones.

2.2 Finite volume method for the space charge transport equation

The space charge transport equation (1.1) is a linear advection-diffusion equation. Here an implicit
cell-centered finite volume method (FVM) is used to discretize this equation. The backward Euler
difference formula (BDF) is adopted for the time integration. For each cell 8, the finite volume
discretization leads to

21d
=+1
2

+ 20d
=

2
+ 2�1dc

=�1

4C + '

⇣
d
=+1
2

⌘
= 0 for each cell (2.1)

where d2 is the cell average of the unknown at cell 8. Here the spatial subscript 8 is omitted for
notational simplicity. The superscript = denotes the time level. Therefore, d=+1

2
represents the

solution at the new time level = + 1. �C is the time step. ' contains the advective, diffusive and the
source terms as follows:

' =
1���⌦8

���
π
m⌦8

H · nd� + 1���⌦8

���
π
⌦8

(d⌦.

Here H includes both advective and diffusive fluxes, n is the outward unit normal of the faces m⌦8

surrounding cell 8 and |⌦8 | is the volume of cell 8. The detailed implementation of the second-order
accurate advective and diffusive fluxes can be found in ref. [13] and is not repeated here.
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The coefficients 21, 20 and 2�1 in eq. (2.1) depend on whether first order (BDF1) or second

order (BDF2) time integration is used. For BDF1, 21 = 1.0, 20 = �1.0 and 2�1 = 0.0. For BDF2,
21 = 1.5, 20 = �2.0 and 2�1 = 0.5.

The system of eq. (2.1) for all cells can be written in vector form as

G(1=+1
2

) = 0 (2.2)

where the bold symbol 1
2

contains all unknowns at each of the cells. Instead of solving eq. (2.2)
directly, the following system is solved for the solution increment X1

2

JX1
2
= �G(1=+1

2
) (2.3)

where J is the Jacobian matrix and can be computed as

J ⌘ mG

m1c

=
21
4C I +

mR

m1
2

=
21
4C I + J̃ (2.4)

where J̃ represents the contribution to J from the spatial flux terms and the source term R, and I is
the identity matrix.

For large-scale problems with discretization based on compact schemes, the resulting linear
system is usually huge, sparse and ill-conditioned. The Generalized Minimal RESidual method
(GMRES) [15] has been widely used to solve this kind of linear systems. As a Krylov subspace method,
the GMRES algorithm involves only matrix-vector multiplication. Therefore, it is unnecessary
to form the Jacobian matrix explicitly. The matrix-vector product can be approximated using a
matrix-free technique [13, 16]. The convergence performance of the GMRES algorithm is highly
related to the preconditioning. The Lower-Upper Symmetric Gauss Seidel (LU-SGS) preconditioning
explained in [13, 16] is employed to significantly improve the convergence performance.

2.3 Finite element method for the electrostatics Poisson equation

The nodal Galerkin finite element method (FEM) is chosen to discretize the electrostatics Poisson
equation. The unknown +8 is placed at each of the mesh vertices. With the help of nodal basis
functions, one can express+ at any location in the computational domain using the solutions at vertices

+ =
nv’
9=1

q 9+ 9 (2.5)

where {q 9}nv
9=1 are the nodal basis functions and nv is the number of vertices of the mesh. The basis

function is Lagrangian defined in each element. Therefore, the solution is arbitrarily continuous
inside each element and has ⇠0 continuity on element borders.

The variational form of eq. (1.5) is obtained by multiplying eq. (1.5) with each of the shape
functions and integrating over the entire domain ⌦ by parts as followsπ

⌦
rq8 · r+d⌦ =

π
⌦
q8

d2

Y

d⌦ +
π
�
q8 (n · r+) d� 8 = 1, · · · , nv (2.6)

Substituting eq. (2.5) into eq. (2.6) results in a sparse and symmetric linear system. The
preconditioned conjugate gradient method is employed to solve this system. The coefficient matrix
(stiffness matrix) is explicitly formed using the compressed sparse row format. The preconditioning
is based on the Incomplete Lower-Upper (ILU(0)) decomposition.
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Inter-process boundary

Figure 4. Mesh partitioning.

Figure 5. Inter-process communication. Left: element communication. Middle: face communication. Right:
vertex communication.

2.4 Parallelization of the numerical solver

To solve large scale problems, the current numerical solver is parallelized using the Message Passing
Interface (MPI) library to access multiple processors simultaneously and speed up computation. The
choice of the MPI parallel paradigm is due to its standardization, excellent platform-independent
portability and flexibility on both distributed-memory and shared-memory machines. Parallelism
is achieved via the Single Program Multiple Data (SPMD) principle. The computational mesh is
first partitioned across certain number of processes using the ParMETIS library [17] (cf. figure 4).
The partitioning ensures the number of elements is roughly the same on each of the processes
for the purpose of balancing the load. In addition, ParMETIS also minimizes the inter-process
communication overhead. The same numerical solver program is then executed on each of the
processes on its portion of the mesh simultaneously. Inter-process communication occurs to
synchronize the computation. Since the current cell-centered finite volume and nodal finite element
solvers are constructed on compact computational stencils, the inter-processor communication
involves only nodes, faces and elements on the partition boundaries (cf. figure 5). This compactness
makes it trivial to attain high parallelizability using MPI for fixed-topology meshes. Very efficient
non-blocking MPI functions can be called to set up the inter-processor “gather” and “scatter” routines
in the pre-processing stage [16, 18]. The communication overhead has been minimized thanks to
these routines.

3 Numerical tests and discussions

In this section, a simplified 3-D chamber of rectangular shape is used to model the geometry of a
LArTPC detector. More specifically, the dimension data (3.6m ⇥ 6m ⇥ 6m) of the ProtoDUNE-SP
geometry [2] is used to construct the computation domain [�3.6, 0] ⇥ [�3, 3] ⇥ [�3, 3], namely,
!G = 3.6 m and !H = !I = 6 m. The anode plane is located at G = 0 m and the cathode plane is at
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Figure 6. Computational domain and mesh.

G = 3.6m. The remaining boundaries are the field cage walls. Even though the current numerical
solver is developed to handle unstructured meshes, a structured hexahedral mesh is used to discretize
the current simple geometry. The mesh resolution is 30 ⇥ 50 ⇥ 50 with 75,000 hexahedral elements,
as shown in figure 6.

The following input parameters are given for the simulation:

• source term ( = 2 ⇥ 10�10Cm�3s�1,

• nominal electric field: ⇢� = 500V/cm,

• dielectric constant YA = 1.504 and permittivity of free space Y0 = 8.854 ⇥ 10�12 F/m,

• mobility ` = 1.6 ⇥ 10�7m2V�1s�1, and

• diffusion coefficient ⇡ = 1.2134543 ⇥ 10�9m2/s.

Based on the above input parameters, the dimensionless parameter defined in eq. (A.7) U = 0.69758.
The time needed for ions to travel from the anode plane to the cathode plane ) = !G/(`⇢�) = 450s.
In all current simulations, the time step is chosen as �C = 7.5s. Six CPU cores are used in parallel
for this relatively small mesh.

The simulation continues until the steady state has been reached. In the plots shown in
this section, the space charge density is normalized by d� which is defined by d� ⌘ Y⇢�/!G =
1.8495 ⇥ 10�7Cm�3, and the electric field is normalized by ⇢�.

3.1 Simulations without diffusion

We first consider the cases where the diffusive effect in space charge transport is neglected.
Equation (1.1) then becomes

md2

mC

+ r · [(u + u3)d2] = ( (3.1)

Results obtained will be compared with the 1-D analytical solutions, if available. In the derivation
of 1-D analytical solutions, the diffusion term was omitted.
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Figure 7. Case I: normalized space charge density distribution along the line defined by H = 0 and I = 0 in
the case of uniform electric field.

3.1.1 Case I: space charge transport under uniform electric field

We first consider a case where the electric field is assumed not distorted by the space charge
distribution, i.e. the electric field takes the uniform nominal value in G-direction across the chamber.
This is the case considered in Reference [8]. Therefore, only the space charge transport equation (3.1)
is solved. The space charge is expected to be linearly distributed along the G-direction. The boundary
conditions are set as follows: Dirichlet condition d2 = 0 at the anode plane and open boundary
condition at the cathode plane and at field cage walls. Figure 7 shows the normalized space charge
density along the line defined by H = 0 and I = 0. The analytical solution, which is given in
eq. (A.3), is a linear function of G, and it is also shown in figure 7. The numerical solution matches
the analytical solution. Please be aware that in all the figures presented within this section, the
horizontal axis of the numerical solution has been adjusted to fit within the range of [0, 1].

3.1.2 Case II: interaction between the space charge transport and the electric field

This case couples the space charge transport equation (3.1) and the electric potential Poisson
equation (1.5) in each time step in the simulation. Since the space charge density appears in the
source term of the potential Poisson equation and the electrical potential can be used to derive the
electric field which in return appears in the calculation of the drift velocity in the space charge
transport equation, the coupled simulation is expected to demonstrate the interaction between the
space charge distribution and the electric field.

Figure 8 shows the normalized space charge density distribution. Not much can be seen from
the distribution map. However, from the line plot given in figure 8(b), one can clearly see the space
charge distribution along the G-direction is no longer linear. The space charge distribution is slightly
curved up towards the top of the detector. Figure 8(b) also shows the 1-D analytical solution (cf.
eq. (A.3). A slight discrepancy between the 3-D numerical solution and the 1-D analytical solution
occurs in the middle section of the chamber.

The plots in figure 9 show the field maps of the three components of the electric field at various
planes of the detector. Compared to the uniform nominal electric field, the distortion of the electric
field is obvious. The distortion is caused by the space charge distribution. ⇢G is strengthened near the
cathode plane and weakened near the anode plane. ⇢G is symmetric in both the H- and I-directions.
⇢H and ⇢I are nonzero. ⇢H is antisymmetric in the H-direction while ⇢I is antisymmetric in
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(b)

Figure 8. Case II: space charge density distribution in the G � H plane at I = 0 (a) and d2/d� vs. G/!G (b).

(a) ⇢G (b) ⇢H (c) ⇢I

Figure 9. Case II: electric field maps in the center G � H plane, the center G � I plane and the field cage walls
in the case of no background flow field. (a): G-component, (b): H-component and (c): I-component. The
anode plane is the near plane perpendicular to the G-axis and the cathode plane is the far plane parallel to the
anode plane. Red color and blue color indicate strong and weak electric field, respectively.

the I-direction. The (anti)symmetry is due to the geometric symmetry of the detector in H- and
I-directions.

The line plots shown in figure 10 reveal the quantitative information of the distorted electric
field components in three representative center lines in the detector. Figure 10(a) shows ⇢G/⇢� vs.
G/!G along the center line in the center G-H plane. The 1-D analytical solution derived in ref. [12]
(cf. eq. (A.8)) is also shown in figure 10(a). The G-component of the 3-D electric field differs quite
noticeably from the 1-D analytical solution especially near the anode and the cathode planes. This
is expected, since the electric field is a vector field. The other two line plots in figure 10 show
⇢H/⇢� vs. H/!H and ⇢I/⇢� vs. I/!I whose magnitudes are not negligible. At the anode plane, the
weakened ⇢G is about 94% of the nominal value while at the cathode plane ⇢G is strengthened to be
about 113% of the nominal value. The antisymmetry of the ⇢H and ⇢I components are verified in
the line plots.
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Figure 10. Case II: electric field line plots. (a): ⇢G/⇢� vs. G/!G along the line defined by H = 0 and I = 0,
(b): ⇢H/⇢� vs. H/!H along the line defined by G = 1.8 and I = 0, and (c): ⇢I/⇢� vs. I/!I along the line
defined by G = 1.8 and H = 0. The electric field is normalized by the nominal electric field ⇢� = 500 V/cm.

3.1.3 Case III: the effect of the background flow field

Since the drift velocity of ions is comparable in magnitude to the liquid argon flow field in typical
LArTPC detectors, the background flow field is expected to carry the ions around causing the local
accumulation of space charges which further distorts the electric field. To simulate this effect, an
artificial stationary flow velocity field is constructed. The magnitude of the artificial flow velocity
field is intentionally constructed to be twice as large as that of the electric field induced drift velocity.
The artificial velocity field is confined in the G � H plane with the following velocity components:

D1 =
1

180
(G � G;)2(GA � G)2(H � H1) (HC � H) (H1 + HC � 2H) (3.2a)

D2 = � 1
180

(H � H1)2(HC � H)2(G � G;) (GA � G) (G; + GA � 2G) (3.2b)

D3 = 0 (3.2c)

where G; = �3.6, GA = 0.0, H1 = �3.0 and HC = 3.0 which define the G � H dimensions of the detector
chamber.

Figure 11 shows the drift velocity field induced by the electric field (a), artificial flow velocity
field (b) and the combined velocity field (c). As can be seen, the electric field induced drift velocity
field is horizontally directed from the anode plane to the cathode plane. The artificial flow velocity
field defined by eqs. (3.2c)–(3.2a) is a counterclockwise vortex circling in the G � H cross section
plane of the chamber. From the combined velocity field, it can be noticed that the velocity near the
bottom of the detector is strengthened while the velocity near the top of the detector is weakened.
The velocity field indicates that the ions will be carried toward the center of the vortex until balance
is reached, which is verified by the space charge distribution shown in figure 12.

Figure 13 shows the resulting electric field at various planes and field cage walls of the detector.
Comparison between the current electric field with that shown in figure 9 clearly reveals the
difference. The distorted electric becomes nonsymmetric in its H- and I-components. ⇢H and ⇢I are
strengthened near the top of the detector where space charge is accumulated.
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(a) (b) (c)

Figure 11. Case III: velocity field in the center G � H plane at the beginning of the simulation. (a): drift
velocity field induced by the electric field, (b): artificial flow field, and (c): combined velocity field.

Figure 12. Case III: space charge density distribution in the G � H plane at I = 0 in the presence of an artificial
background flow velocity field.

(a) ⇢G (b) ⇢H (c) ⇢I

Figure 13. Case III: electric field in the center G � H plane, the center G � I plane and the field cage walls in the
presence of an artificial background flow field. (a): G-component, (b): H-component, and (c): I-component.
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Figure 14. Case II re-run considering the charge recombination.

3.2 Effect of charge recombination

The charge recombination effect can be modeled by multiplying the source term in eq. (1.1) by a
recombination function [12, 19] given as follows:

'(E) = 1.15/(1 + 72.9/|E|) (3.3)

which is a function of the electric field. Here |E| is the magnitude of the electric field in V/cm. We
re-run Case II with the above recombination function included. Our numerical result (cf. figure 14)
show that the difference in the space charge distribution from that without considering recombination
is negligible for the current U = 0.69758. The difference in the electric field is also negligible (not
shown here) for this small U value. The conclusion is consistent with that given in [12].

3.3 Effect of diffusion

Case III is re-run with the diffusion term included to investigate its effect on the space charge
distribution. The diffusion coefficient takes the vale of ⇡ = 1.2134543 ⇥ 10�9m2/s according to the
Einstein relation (1.3). The computed space charge distribution along the line defined by H = 1.5 and
I = 0 is given in figure 15(a). As indicated in figure 12, the chosen line roughly passes the region
where the space charge varies the most. As can be seen in figure 15(a), diffusion has a negligible
effect on the space charge distribution.

Figure 15(b) shows the convergence history toward the steady state, which is typical in all
simulations presented in this paper.

4 Conclusions and discussions

In this paper, a hybrid finite volume/finite element numerical solver that simulates the interaction
between space charge distribution and the electric field in liquid Argon time projection chamber
(LArTPC) detectors is described. A cell-centered finite volume method is used to solve the ion
transport equation and the finite element method is used to solve the electric potential equation.
The interaction between the space charge distribution and the electric field is numerically simulated
within each physical time step. The simulation continues until the steady-state has been reached.
The comparison with the 1-D analytical solution verifies the accuracy of the current 3-D solver.
Several 3-D numerical tests show that the space charge effect on the electric field is noticeable
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Figure 15. Case III re-run with diffusion included.

and cannot be neglected in the calculation of the space charge density distribution itself. With the
presence of a background flow field, which is comparable in magnitude with the positive ion drift
velocity, the distortion of the electric field is more significant. Together with a Computational Fluid
Dynamics (CFD) calculation of the background flow velocity, the current solver can serve as a
computational tool to investigate the space charge effect on the electric field in particle detectors.
A high-accuracy calculation of the space-charge distribution is important in the simulation of the
detector performance.

It is worth mentioning the potential impact of uncertainties in the parameters assumed as inputs
to the calculation using the current numerical solver. These include the magnitude of the source
term, the recombination rate, the Ar+ ion mobility, the negative ion mobilities (separately for oxygen
and water), and the possible variations in the flow field. The flow field calculation, to be described
in a future paper, depends on the temperature and flow rate of LAr in the input pipes, the heat leak
in the cryostat walls as a function of position, and the porosities of the various detector elements.
Data collected by the LArTPC from drifting electrons can be compared with predictions from the
space-charge model and the values of uncertain parameters adjusted to maximize the agreement,
in a procedure similar to that followed by MicroBooNE [6], but with the detailed model presently
described. Residual uncertainties on these parameters after the data-driven fit may be used in models
of detectors for which the effect of space charge is difficult to measure, such as the DUNE far detector.
Future work will explore the impact of parameter uncertainties on the results.

Furthermore, negatively-charged ions created when electrons attach to impurities (oxygen or
water molecules) also are expected to drift slowly, it might be needed to simulate negative ion
buildup. In our future work, we will model the O�

2 and H2O� ions separately as they have different
mobilities and concentrations.

Ongoing work includes simulating the liquid Argon flow using an in-house CFD solver to obtain
a realistic flow velocity field. The total electrostatic force on the accumulated space charge in the
fluid will be evaluated. The computed realistic flow field will be added to the drift velocity of ions to
calculate the distorted electric field using the current space charge solver.
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A Analytical solutions of one-dimensional space charge transport and the electric

field

For completeness, the analytical solutions of space charge distribution and electric field in one
dimension (1-D) is provided in this appendix. The derivation is adapted from ref. [12]. Attention
has been paid to the notational consistency with the current paper.

Ignoring the diffusion term, one has the following steady-state continuity equation for space
charge:

r · (d2u3) = ( (A.1)

where d2 is the space charge density, u3 is the drift velocity induced by the electric field and ( is the
source term.

In 1-D, eq. (A.1) becomes
d(d2D3)

dG
= (

which has the following analytical solution

d2D3 = (G + � (A.2)

after integration. The integration constant � can be determined as follows. Without loss of generality,
assume the anode is located at G = 0. Since positive ions drift away from the anode, there should be
no accumulation of space charge at the anode at steady state, i.e. d2 = 0 at G = 0. Therefore, the
integration constant � = 0.

Substituting the drift velocity D3 = `⇢ where ` is the mobility and ⇢ is the electric field into
eq. (A.2) to obtain

d =
(G

`⇢

(A.3)

Note that d can be normalized by d� which is defined as d� ⌘ Y⇢�/! where L is the distance
between the anode and the cathode. In addition, d is often expressed as a function of G/!.
Equation (A.3) can be written as

d

d�
=
✓

!(

d�`⇢

◆
G

!

(A.4)

Gauss’s law in 1-D states that
d⇢
dG

=
d

Y

(A.5)

Combining eqs. (A.3) and (A.5) yields

⇢d⇢ =
(

`Y

GdG
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which can be integrated on both sides, namely,

π
⇢d⇢ =

(

`Y

π
GdG

The above indefinite integral results in

⇢
2 =

(

`Y

G
2 + ⌫

where ⌫ is the integration constant to be determined.
Let the electric field at the anode (G = 0) be ⇢0. Then the integration constant ⌫ = ⇢

2
0

where
⇢0 remains to be determined. As a result, the electric field, as a function of G, is given by

⇢ (G) =
s

(

`Y

G
2 + ⇢

2
0

(A.6)

Define a dimensionless parameter U as

U =
!

⇢�

s
(

`Y

(A.7)

where ⇢� is the nominal value of the electric field. Using U, ⇢ in eq. (A.6) can be expressed as

⇢ (G)
⇢�

=

s
U

2
⇣
G

!

⌘2
+
✓
⇢0

⇢�

◆2
(A.8)

⇢ (G) can be used to determine the electric potential distribution along G. Ref. [12] gives the
analytical expression for + (G) as follows

+ (G) = �
π

G

0
⇢ (G0)dG0 = �G

2
⇢ (G) � !⇢

2
0

2U⇢�
ln

✓
⇢ (G)
⇢0

+ UG⇢�
!⇢0

◆
(A.9)

With the boundary condition + (G = !) = �⇢�!, one can determine the values of ⇢0 at the
anode by combining eqs. (A.8) and (A.9) to form a nonlinear equation for ⇢0/⇢�. The nonlinear
equation can be solved by the Newton-Raphson iterative method.
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