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Residual torsion-free nilpotence, biorderability
and pretzel knots

JONATHAN JOHNSON

The residual torsion-free nilpotence of the commutator subgroup of a knot group has
played a key role in studying the biorderability of knot groups. A technique developed
by Mayland (1975) provides a sufficient condition for the commutator subgroup
of a knot group to be residually torsion-free nilpotent using work of Baumslag
(1967, 1969). We apply Mayland’s technique to several genus one pretzel knots and
a family of pretzel knots with arbitrarily high genus. As a result, we obtain a large
number of new examples of knots with biorderable knot groups. These are the first
examples of biorderable knot groups for knots which are not fibered or alternating.
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1 Introduction

Let J be a knot in S3. The knot exterior of J is MJ WD S
3� �.J /, where �.J / is the

interior of a tubular neighborhood of J , and the knot group of J is �1.MJ /. Denote
the Alexander polynomial of J by �J .

A group � is nilpotent if its lower central series terminates (is trivial) after finitely
many steps. In other words, for some nonnegative integer n,

�0 B �1 B � � �B �n D 1;

where �0 D � and �iC1 D Œ�i ; �� for each i D 0; : : : ; n� 1. A group � is residually
torsion-free nilpotent if, for every nontrivial element x 2 � , there is a normal subgroup
N C � such that x …N and G=N is a torsion-free nilpotent group. We are concerned
with when the commutator subgroup of a knot group is residually torsion-free nilpotent,
which has applications to ribbon concordance (see Gordon [15]) and the biorderability
of the knot group; see Linnell, Rhemtulla and Rolfsen [25].

Several knots are known to have groups with residually torsion-free nilpotent commuta-
tor subgroups. The commutator subgroup of fibered knot groups are finitely generated
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1788 Jonathan Johnson

free groups, which are residually torsion-free nilpotent; see Magnus [27]. Work of
Mayland and Murasugi [30] shows that the knot groups of pseudoalternating knots,
whose Alexander polynomials have a prime power leading coefficient, have residually
torsion-free nilpotent commutator subgroups; pseudoalternating knots are defined in
Section 3. The knot groups of two-bridge knots have residually torsion-free nilpotent
commutator subgroups; see Johnson [20].

There is also the following obstruction to a knot group having residually torsion-free
nilpotent commutator subgroup:

Proposition 1.1 If J is a knot in S3 with trivial Alexander polynomial , then the
commutator subgroup of �1.MJ / cannot be residually torsion-free nilpotent.

Proof Let G be the commutator subgroup of �1.MJ /. Let M1 be the infinite cyclic
cover of MJ , the covering space of MJ corresponding to G so that �1.M1/ D G;
see Rolfsen [36, Chapter 7] for details. Then

H1.M
1;Z/Š

nM
iD1

ZŒt; t�1�=hai .t/i;

where a1.t/; : : : ; an.t/ are polynomials such that
nY
iD1

ai .t/D�J .t/:

Since the Alexander polynomial of J is trivial G=ŒG;G� Š H1.M
1;Z/ D 1, so

G D ŒG;G�. It follows that every term of the lower central series of G is isomorphic
to G. Suppose N CG is a proper normal subgroup of G. For each term of the lower
central series of G=N ,

.G=N/i ŠGi=N ŠG=N ¤ 1;

so G=N cannot be nilpotent. Thus, G is not residually torsion-free nilpotent.

Given the integers k1; k2; : : : ; kn, define P.k1; k2; : : : ; kn/ to be the pretzel knot rep-
resented in the diagram in Figure 1. Mayland [29] describes a technique to examine
the commutator subgroup of the group of a knot bounding an unknotted minimal genus
Seifert surface; see Section 2. In fact, this is the technique Mayland and Murasugi used
to prove their result for pseudoalternating knots [30]. Applying Seifert’s algorithm
to the diagram in Figure 1 yields an unknotted minimal genus Seifert surface (see
Gabai [12]) making pretzel knots ideal candidates for Mayland’s technique.
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2k1C 1 2k2C 1 � � � 2knC 1

Figure 1: A pretzel knot diagram. The integers in the boxes indicate the
number of right-hand half-twist when positive and left-hand half-twist when
negative.

Let J be the P.2p C 1; 2q C 1; 2r C 1/ pretzel knot for some integers p, q and r .
J is a two-bridge knot (possibly trivial) precisely when at least one of p, q and r is
equal to 0 or �1 (see Kawauchi [23, Chapter 2]) so for our purposes, we can assume
that none of p, q and r are 0 or �1. Permuting the parameters 2pC 1, 2qC 1 and
2r C 1 yields the same (unoriented) knot. Also, P.�2p � 1;�2q � 1;�2r � 1/ and
P.2pC 1; 2q C 1; 2r C 1/ are mirrors of each other. Since �1.MJ / is invariant of
reversing orientation and mirroring, we can assume that 1� q � r .

Theorem 1.2 Given integers p, q and r with 1 � q � r and p ¤ 0 or �1, let J be
the P.2p C 1; 2q C 1; 2r C 1/ pretzel knot with Alexander polynomial �J whose
leading coefficient is a prime power. The commutator subgroup of �1.MJ / is residually
torsion-free nilpotent if

� p � 1,

� J is P.2pC 1; 3; 2r C 1/,

� J is P.�3; 2qC 1; 2r C 1/ and J is not P.�3; 5; 5/, P.�3; 5; 7/, P.�3; 5; 9/,
P.�3; 5; 11/ or P.�3; 7; 7/, or

� J is P.�5; 2qC 1; 2r C 1/ and J is not

– P.�5; 7;R/ when R is 11, 13, 15, 17, 19, 21, 23 or 25,

– P.�5; 9;R/ when R is 9, 11, 13, 15 or 17, or

– P.�5; 11;R/ when R is 11 or 13.

Remark 1.3 Proposition 1.1 is the only known obstruction to the commutator sub-
group of a genus one pretzel knot group being residually torsion-free nilpotent, so
the exceptional cases in Theorem 1.2 with nontrivial Alexander polynomial remain
unresolved and cannot be resolved with the technique used in this paper.
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If p � �2 and 1 � q � r , then P.2pC 1; 2qC 1; 2r C 1/ is not a pseudoalternating
knot; see Proposition 3.1. Therefore, all of the examples from Theorem 1.2 where
p < �1 are new examples of knots with residually torsion-free nilpotent commutator
subgroups.

In addition, we also obtain pretzel knots of arbitrarily high genus whose groups have
residually torsion-free nilpotent commutator subgroups. However, we were not able to
determine whether or not these knots are pseudoalternating so it is possible this result
follows from Mayland and Murasugi’s work.

Theorem 1.4 If J is a P.3;�3; : : : ; 3;�3; 2r C 1/ pretzel knot for some integer r ,
then the commutator subgroup of �1.MJ / is residually torsion-free nilpotent.

1.1 Possible generalizations

The techniques used here have a few limitations. First, while our method can be applied
to many families of genus one pretzel knots on a case by case basis, this method
does not lend itself well to generalizing to all genus one pretzel knots since many of
the details depend on the arithmetic properties of p, q and r . Secondly, Mayland’s
method requires a couple conditions (an unknotted Seifert surface satisfying the free
factor property and an Alexander polynomial with prime power leading coefficient)
which may not be necessary for a knot group to have residually torsion-free nilpotent
commutator subgroup. Nevertheless, we make the following prediction for genus one
pretzel knots.

Conjecture 1.5 If J is a genus one pretzel knot then the commutator subgroup of
�1.MJ / is residually torsion-free nilpotent if and only if the Alexander polynomial of
J is nontrivial.

1.2 Application to biorderability

A group is said to be biorderable if there exists a total order of the group’s elements,
invariant under both left and right multiplication. Chiswell, Glass and Wilson proved
the following fact, using work of Linnell, Rhemtulla and Rolfsen [25], and it has
been instrumental in determining the biorderability of several knot groups; see Clay,
Desmarais and Naylor [8], Johnson [20] and Perron and Rolfsen [35].

Theorem 1.6 [7, Theorem B] Let J be a knot in S3. If �1.MJ / has residually
torsion-free nilpotent commutator subgroup and all the roots of �J are real and positive
then �1.MJ / is biorderable.
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Furthermore, Ito obtained the following obstruction to a knot group being biorderable
when the knot is rationally homologically fibered; see Section 2 for the definition of
rationally homologically fibered.

Theorem 1.7 [18, Theorem 2] Let J be a rationally homologically fibered knot. If
�1.MJ / is biorderable then �J has at least one real positive root.

The Alexander polynomial of the pretzel knot P.2pC 1; 2qC 1; 2r C 1/ has the form

�J .t/DNt
2
C .1� 2N/t CN;

where

(1-1) N D det
�
pC qC 1 �q� 1

�q qC r C 1

�
:

See Section 3 for details. Note that �J has two positive real roots when N < 0 and
two nonreal roots when N > 0. If N D 0, then �J .t/ D 1. Therefore, we have the
following proposition:

Proposition 1.8 Let J be the P.2pC 1; 2qC 1; 2r C 1/ pretzel knot , and let N be
defined as in (1-1). If the commutator subgroup of �1.MJ / is residually torsion-free
nilpotent and N < 0, then �1.MJ / is biorderable. If N > 0, then �1.MJ / is never
biorderable , regardless of whether or not the commutator subgroup of �1.MJ / is
residually torsion-free nilpotent.

Applying Proposition 1.8 to the results in Theorem 1.2 yields the following corollary.

Corollary 1.9 Given integers p, g and r with 1� q � r and p ¤ 0 or �1, let J be
the P.2pC 1; 2qC 1; 2r C 1/ pretzel knot with Alexander polynomial �J .

(1) �1.MJ / is biorderable if
� J is P.�3; 3; 2r C 1/,
� J is P.�5; 3; 2r C 1/ and r C 4 is a prime power , or
� J is P.�5; 7; 7/ or P.�5; 7; 9/.

(2) �1.MJ / is not biorderable if
� p � 1,
� J is P.�3; 5; 2r C 1/ with r > 3,
� J is P.�3; 2qC 1; 2r C 1/ with q � 2,
� J is P.�5; 7; 2r C 1/ with r � 9,
� J is P.�5; 9; 2r C 1/ with r � 6, or
� J is P.�5; 2qC 1; 2r C 1/ with q � 5.

Algebraic & Geometric Topology, Volume 23 (2023)
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We also have the following corollary to Theorem 1.4.

Corollary 1.10 If J is the P.3;�3; : : : ; 3;�3; 2rC1/ pretzel knot for some integer r ,
then �1.MJ / is biorderable.

Details of the proof of Corollary 1.10 are provided in Section 4.

1.3 A possible connection of biorderability to branched covers

Given a knot J in S3, let †n.J / be the n–fold cyclic cover of S3 branched over J ; see
Rolfsen [36, Chapter 10] for the definition and construction of a cyclic branched cover.
Part of the motivation for studying the biorderability of pretzel knots is to investigate
the following questions.

Question 1.11 Do there exist knots with �1.MJ / biorderable and �1.†n.J // left-
orderable for some n?

Question 1.12 Does �1.MJ / not being biorderable imply that �1.†n.J // is left-
orderable for some n?

Question 1.11 is resolved here.

Theorem 1.13 For each integer q � 3, let Jq be the P.1�2q; 2qC1; 4q�3/ pretzel
knot. When q � 1 is a prime power , �1.MJq

/ is biorderable and �1.†2.Jq// is
left-orderable.

Remark 1.14 Question 1.11 is still unanswered for fibered knots and alternating knots.

Question 1.12 remains unresolved as of the writing of this paper. However, some
important remarks can be made about this question.

Suppose J is a pretzel knot P.2pC 1; 2qC 1; 2r C 1/ with 1� q � r . When p � 1,
the signature of J is nonzero which likely means that �1.†n.J // is left-orderable for
n sufficiently large; see Gordon [16, Corollary 1.2 and Question 1.3].

Suppose p < �1. By the Montesinos trick [31], the double branched cover of J is the
Seifert fibered space

†2.J /DM

�
0I �1;

�2p� 2

�2p� 1
;

1

2qC 1
;

1

2r C 1

�
:

By work of Eisenbud, Hirsch and Neumann [10], Lisca and Stipsicz [26], Jankins
and Neumann [19], Naimi [34] and Boyer, Rolfsen and Wiest [4], †2.J / is left-
orderable if and only if there are positive integers a and m such that the triple
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..�2p � 2/=.�2p � 1/; 1=.2q C 1/; 1=.2r C 1// is less than some permutation of
the triple .a=m; .m� a/=m; 1=m/. This happens precisely when 1 < �p � q. In this
case, mD 2q and aD 2q� 1. Therefore, we can state the following proposition.

Proposition 1.15 Suppose J is the P.2pC1; 2qC1; 2rC1/ pretzel knot with p<�1
and 1� q � r . Then �1.†2.J // is left-orderable if and only if �p � q.

Thus, if p < �1 and the double branched cover of J does not have left-orderable
fundamental group, then q < �p so N as defined in (1-1) is negative. Therefore, if
Conjecture 1.5 is true, �1.MJ / would be biorderable when q <�p by Proposition 1.8.
In particular, if Conjecture 1.5 is true, it’s not likely that any nonalternating genus one
pretzel knot would be a counterexamples for Question 1.12.

There is some evidence that genus one pretzel knots with no left-orderable cyclic
branched covers do exists. It is conjectured (see Boyer, Gordon and Watson [3]) that
given a prime orientable closed rational homology sphere Y , �1.Y / is not left-orderable
if and only if Y is an L-space, and Issa and Turner show that the cyclic branched covers
of the P.�3; 3; 2r C 1/ pretzel knots are all L-spaces; see [17].

Outline

In Section 2, we review how Mayland’s technique [29] can be used to analyze when the
commutator subgroup of a knot group is residually torsion-free nilpotent. In Section 3,
we apply this technique to genus one pretzel knots and prove Theorems 1.2 and 1.13.
In Section 4, we prove Theorem 1.4. Appendix A contains the proofs of some key
lemmas. We also provide a chart of our results in Appendix B.
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2 Preliminaries on Mayland’s technique

Mayland used a description of the commutator subgroup of a knot group to investigate
when they are residual finite [29]. In this section, we show how Mayland’s technique
can be used to find a sufficient condition for the commutator subgroup of a knot group
to be residually torsion-free nilpotent.
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2.1 Mayland’s technique

Let J be a knot in S3 and suppose J bounds a minimal genus Seifert surface S such
that S is unknotted; in other words, �1.S3nS/ is a free group. Let yS DMJ \S . Let
G be the commutator subgroup of �1.MJ /.

Let U be the image of a bicollar embedding yS� Œ�1; 1� ,!MJ where yS is the image of
yS �f0g, and let MS DMJ n

yS . Denote the images of yS � .0; 1� and yS � Œ�1; 0/ in MS

by UC and U�, respectively. LetX D�1.MS /, which is a free group of rank 2g where
g is the genus of J . Consider the inclusion maps iC W UC!MS and i� W U�!MS .
Let H be the image of the induced map iC� W �1.U

C/! �1.MS / and K be the image
of i�� W �1.U

�/! �1.MS /.

For each integer n, let Xn be a copy of X , Hn �Xn be a copy of H , and Kn �Xn be
a copy of K. The fundamental groups of U , UC and U� are canonically isomorphic,
and since S has minimal genus, iC� and i�� are injective. Therefore, Hn and KnC1 are
identified with a rank 2g free group F . By Brown and Crowell [5, Theorem 2.1], G is
an amalgamated free product of the form

(2-1) G Š � � � �F X�2 �F X�1 �F X0 �F X1 �F X2 �F � � � :

Baumslag provides the following sufficient condition for a group to be residually
torsion-free nilpotent when G is an ascending chain of parafree subgroups; see [1; 2]
for a definition and discussion of parafree groups.

Proposition 2.1 [2, Proposition 2.1(i)] Suppose G is a group which is the union of
an ascending chain of subgroups

G0 <G1 <G2 < � � �<Gn < � � �<G D

1[
nD1

Gn:

Suppose each Gn is parafree of the same rank. If , for each nonnegative integer n,
jGnC1 WGnŒGnC1; GnC1�j is finite , then G is residually torsion-free nilpotent.

For each nonnegative integer m, define Zm as follows:

(2-2) Zm WDX�m �F X1�m �F � � � �F Xm�1 �F Xm:

The direct limit of the Zm is isomorphic to G. Furthermore, since iC� and i�� are
injective, the natural inclusion Zm ,!ZmC1 is an embedding, so G is an ascending
chain of subgroups

Z0 <Z1 <Z2 < � � �<Zm < � � �<G D

1[
mD1

Zm:

Algebraic & Geometric Topology, Volume 23 (2023)
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A subgroup A of a free group B is a free factor if BDA�D for some subgroupD of B .
It immediately follows that A is a free factor of B if and only if every (equivalently, at
least one) free basis of A extends to a free basis of B . A theorem of Mayland provides
sufficient conditions for each Zm to be parafree.

Proposition 2.2 [29, Theorem 3.2] If H and K are free factors of HŒX;X� and
KŒX;X�, respectively , and jX WHŒX;X�j D jX WKŒX;X�j D pl for some prime p and
nonnegative integer l , then for every nonnegative m, Zm is parafree of rank 2g.

The knot J is rationally homologically fibered if the induced map on homology,
iC
h
WH1.U

CIQ/!H1.MS IQ/ (or equivalently i�
h
WH1.U

�IQ/!H1.MS IQ/), is
an isomorphism. Let SC be a Seifert matrix representing iC

h
such that S� WD STC is a

Seifert matrix representing i�
h

. SC is also a presentation matrix for the abelian group
X=HŒX;X�. Similarly, S� is a presentation matrix for X=KŒX;X�. Thus,

(2-3)
X

HŒX;X�
Š

X

KŒX;X�
:

Denote the standard form of the Alexander polynomial of J by �J . For some nonneg-
ative integer k,

tk�J .t/D det.tSC�STC/D d0C d1t C � � �C d2g t
2g :

It is a well-known fact that di D d2g�i ; see [33, Chapter 6].

Proposition 2.3 Suppose J is a knot in S3. The following statements are equivalent :

(a) J is rationally homologically fibered.

(b) jX WHŒX;X�j is finite.

(c) jX WKŒX;X�j is finite.

(d) deg�J D 2g.

Proof The equivalence of (b) and (c) follows from (2-3).

Since SC is a presentation matrix for X=HŒX;X�, we have that jX WHŒX;X�j is finite
if and only if j det.SC/j ¤ 0. It follows that (a) and (b) are equivalent.

Since d2g D d0 D det.SC/, we have deg�J D 2g if and only if det.SC/¤ 0, so (a)
and (d) are equivalent.

Proposition 2.4 When J is rationally homologically fibered ,

jX WHŒX;X�j D jX WKŒX;X�j D j�J .0/j:

Algebraic & Geometric Topology, Volume 23 (2023)
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Proof When J is rationally homologically fibered

jX WHŒX;X�j D j det.SC/j D j�J .0/j;

so the proposition follows from (2-3).

For each nonnegative m,

ZmC1

ZmŒZmC1; ZmC1�
Š

X

HŒX;X�
�

X

KŒX;X�
:

So, when J is rationally homologically fibered,

(2-4) jZmC1 WZmŒZmC1; ZmC1�j D jX WHŒX;X�jjK WHŒX;X�j D�J .0/
2

by Proposition 2.4.

The Seifert surface S is said to satisfy the free factor property if H and K are free
factors of HŒX;X� and KŒX;X�, respectively. Note that this property is independent
of the orientation of S . A sufficient condition for the residual torsion-free nilpotence
of G can be summarized as follows.

Proposition 2.5 Suppose J is a rationally homologically fibered knot in S3 with
unknotted minimum genus Seifert surface S . If S satisfies the free factor property and
j�J .0/j is a prime power , then the commutator subgroup G is residually torsion-free
nilpotent.

Proof Suppose J is a rationally homologically fibered with unknotted minimum genus
Seifert surface S satisfying the free factor property, and suppose j�J .0/j is a prime
power.

DefineZm for each nonnegative integerm as in (2-2). By Proposition 2.4, jX WHŒX;X�j
and jK WHŒX;X�j are prime powers since J is rationally homologically fibered. Thus,
by Proposition 2.2, each Zm is parafree of rank twice the genus of J .

By (2-4), jZmC1 WZmŒZmC1; ZmC1�j D�J .0/2, so jZmC1 WZmŒZmC1; ZmC1�j is
finite. Therefore, by Proposition 2.1, G is residually torsion-free nilpotent.

2.2 Pseudoalternating knots

A special alternating diagram is an alternating link diagram in which all of the crossings
have the same sign. Any link with such a diagram is called a special alternating link.
The Seifert surface described by performing Seifert’s algorithm on a special alternating

Algebraic & Geometric Topology, Volume 23 (2023)
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diagram is a primitive flat surface. A generalized flat surface is any surface which
can be obtained by combining some number of primitive flat surfaces by Murasugi
sums. See Gabai [11] for a definition and exposition of Murasugi sums. A link which
bounds a generalized flat surface is a pseudoalternating link. Alternating links are
pseudoalternating links. However, all torus links, many of which are not alternating,
are also pseudoalternating links.

Pseudoalternating knots are rationally homologically fibered and bound surfaces sat-
isfying the free factor condition [30, Theorem 2.5]. Therefore, the knot group of
a pseudoalternating knot, whose Alexander polynomial has a prime power leading
coefficient, has residually torsion-free nilpotent commutator subgroup.

3 Genus one pretzel knots

Let J be the P.2pC 1; 2qC 1; 2rC 1/ pretzel knot for some integers p, q and r with
1 � q � r and p ¤ �1 or 0. Let S be the unknotted genus one surface depicted in
Figure 2, which we refer to as the standard Seifert surface of J . For the genus one
pretzel knots which are not two-bridge knots, the standard Seifert surface is the unique
Seifert surface of minimal genus, up to isotopy [13].

In this section, we analyze when S satisfies the free factor property. When p > 0,
P.2pC 1; 2qC 1; 2r C 1/ is an alternating knot, and thus P.2pC 1; 2qC 1; 2r C 1/
is pseudoalternating. However, this is not true when p � �2.

Proposition 3.1 When 1�q�r and p��2, the pretzel knot P.2pC1; 2qC1; 2rC1/
is not a pseudoalternating knot.

Proof Suppose P.2pC 1; 2qC 1; 2rC 1/ is pseudoalternating. When 1� q � r and
p � �2, the diagram in Figure 1 has a minimal number of crossings [24, Theorem 10].

x y

2pC 1 2qC 1 2r C 1
a b

z

z0

Figure 2: The Seifert surface S of P.2pC 1; 2qC 1; 2r C 1/.
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zC
z

z�

ıC ı�

z0

Figure 3: Isotopy of basepoints.

Since this diagram is not alternating, P.2pC 1; 2qC 1; 2r C 1/ cannot be alternating
by a theorem of Kauffman, Murasugi and Thistlethwaite [21; 22; 32; 38]. In particular,
P.2pC 1; 2qC 1; 2rC 1/ is not special alternating. Thus, P.2pC 1; 2qC 1; 2rC 1/
must be the boundary of a surface S which is the Murasugi sum of two generalized flat
surfaces, S1 and S2, which are not disks.

By Gabai [11], S must be a minimal genus Seifert surface, so �.S/D�1. Analyzing
the effect of a Murasugi sum on the Euler characteristic yields

�1D �.S/D �.S1/C�.S2/� 1:

Since S1 and S2 are not disks, neither S1 nor S2 has positive Euler characteristic. It
follows that �.S1/D �.S2/D 0, so S1 and S2 are both annuli.

The boundary of a Murasugi sum of two annuli is a double twist knot which is alternating.
Thus P.2pC 1; 2qC 1; 2r C 1/ is alternating, which is a contradiction.

Since J is pseudoalternating when p � 0, we will only need to focus on the case when
p is negative.

3.1 Mayland’s technique for genus one pretzel knots

Define MJ , MS , X , H and K as in Section 2. Here we offer a concrete description
of the maps on fundamental groups iC� and i�� for genus one pretzel knots. This is
the same description used by Crowell and Trotter in [9]. Choose a basepoint z on the
lower part of S , and let x and y be the classes generating �1.S; z/ represented by the
loops indicated in Figure 2. Let zC and z� be push-offs of z of each side of S . Let z0

be the basepoint of MS obtained by shifting z tangentially along S through @S . Let
ıC and ı� be arcs connecting z0 to zC and z�, respectively; see Figure 3. Finally, let
a and b be the indicated classes generating �1.MS ; z

0/.
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By slightly isotoping elements of �1.S; z/ off of S , �1.UC; zC/ and �1.U�; z�/ are
canonically identified to �1.S; z/, which is a rank two free group F generated by x
and y. The group X WD �1.MS ; z

0/ is a rank two free group generated by a and b. The
map iC� W F ! X takes a class Œ
� in �1.UC; zC/D F to the class ŒıC � 
 � .�ıC/�
in �1.MS ; z

0/DX . Likewise, the map i�� W F !X takes Œ
� to Œı� � 
 � .�ı�/�.

With these choices, we define the elements

(3-1)
˛H WD i

C
� .x/D .b

�1a/qC1ap; ˛K WD i
�
� .x/D .ab

�1/qapC1;

ˇH WD i
C
� .y/D b

rC1.a�1b/q; ˇK WD i
�
� .y/D b

r.ba�1/qC1;

so that
H D hf˛H ; ˇH gi and K D hf˛K ; ˇKgi:

Thus, the Seifert matrices for iC� and i�� are

(3-2) SC D

�
pC qC 1 �q� 1

�q qC r C 1

�
and S� D

�
pC qC 1 �q

�q� 1 qC r C 1

�
:

Let N D detSC D detS�. Up to multiplication by a signed power of t , the Alexander
polynomial of J is

�J .t/DNt
2
C .1� 2N/t CN:

When N ¤ 0, J is rationally homologically fibered by Proposition 2.3. Simply
considering the integer N can provide useful information.

Proposition 3.2 When N D 0, G is not residually torsion-free nilpotent.

Proof When N D 0 we have �J .t/ D 1, so G cannot be residually nilpotent by
Proposition 1.1.

Proposition 3.3 If jN j D 1, then the standard Seifert surface S does not satisfy the
free factor property.

Proof Let S be the standard Seifert surface of J , and define X , H , and K as in
Section 2. Each of these are rank two free groups. Suppose S satisfies the free factor
property.

When jN j D 1 we have that X=HŒX;X� Š X=KŒX;X� Š 1 by Proposition 2.4, so
X DHŒX;X�DKŒX;X�. Since H is a free factor of HŒX;X� and both are rank two
free groups, H DHŒX;X�D X . Similarly, since K is a free factor of KŒX;X� and
both are rank two free groups, K DX . This implies that iC� and i�� are isomorphisms.
Thus, �1.MJ / is an extension of Z described by the short exact sequence

1!X ! �1.MJ /! Z! 1:
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The Stallings fibration theorem implies that J is a genus one fibered knot [37]. However,
the only genus one fibered knots are the trefoil and the figure eight knot [6; 14], which
is a contradiction since we are assuming J is not a two-bridge knot.

In light of Proposition 2.5, to prove the commutator subgroup of �1.MJ / is residually
torsion-free nilpotent, it is sufficient to show S satisfies the free factor property.

3.2 Outline of the procedure

In each case we use the same basic procedure, outlined below, to analyze whether or
not S satisfies the free factor property.

(1) Find a presentation matrix for X=HŒX;X� of the form�
u v

0 w

�
or

�
u 0

v w

�
using row operations. Note, u and w can always be made positive. Thus, X=HŒX;X�
is isomorphic to .Z=uZ/� .Z=wZ/. The Z=uZ factor is generated by the class of a,
and the Z=wZ factor is generated by the class of b.

(2) Since X=HŒX;X� is abelian, the set C is a set of coset representatives of HŒX;X�:

C D fakbl j 0� k < u; 0� l < wg:

Given x 2X , denote by Nx the coset representative of x in C. Define

xc;x WD cx.cx/
�1;

where c 2 C and x 2 fa; bg. From this we find the following free basis for HŒX;X�
using the Reidemeister–Schreier method:

B D fxc;x j c 2 C; x 2 fa; bg; xc;x ¤ 1g:
See [28] for details.

(3) Use the Reidemeister–Schreier rewriting process to rewrite the generating set of
H from (3-1). A word ˛ 2H , where ˛ D ˛s11 : : : ˛

sk
k

with ˛i 2 fa; bg and si D˙1,
can be rewritten as

˛ D xs1c1;˛1
: : : xskck ;˛k

;

where
ci D

�
˛1 : : : ˛i�1 when si D 1;
˛1 : : : ˛i when si D�1:

(4) Determine if the generating set of H can be extended to a free basis of HŒX;X�.

(5) Repeat this procedure for K.
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When the free bases ofH andK can be extended to free bases ofHŒX;X� andKŒX;X�,
respectively, S satisfies the free factor property. If the chosen basis of either H or K
fails to extend, then S cannot satisfy the free factor property.

3.3 Knots whose standard Seifert surface satisfies the free factor property

Lemma 3.4 If J is P.�5; 7; 7/ or P.�5; 7; 9/ then S satisfies the free factor property.

Proof Suppose J is P.�5; 7; 7/. From (3-1),

˛H D .b
�1a/4a�3; ˛K D .ab

�1/3a�2;

ˇH D b
4.a�1b/3; ˇK D b

3.ba�1/4:

The abelian group X=HŒX;X� has presentation matrix�
1 �4

�3 7

�
;

which becomes �
1 1

0 5

�
after row operations.

From this we get C D f1; b; b2; b3; b4g as a set of coset representatives of HŒX;X�.
We apply Reidemeister–Schreier to obtain the following free basis of HŒX;X�:

B D fab; ba; b2ab�1; b3ab�2; b4ab�3; b5g:

Label the basis elements as follows: xk WD bkab1�k for 0� k � 4 and x5 WD b5.

Now we can rewrite ˛H and ˇH in terms of B, obtaining

˛H D .b
�5/.b4ab�3/.b2ab�1/.ab/.b�5/.b3a�1b�4/.b5/.b�1a�1/

D x�15 x4x2x0x
�1
5 x�14 x5x

�1
0

and
ˇH D .b

5/.b�1a�1/.ba�1b�2/.b3a�1b�4/.b5/D x5x
�1
0 x�12 x�14 x5:

Thus
˛H D ˇ

�1
H x�14 x5x

�1
0 ;

so
x4 D x5x

�1
0 ˛�1H ˇ�1H

and
x2 D ˇH˛Hx0ˇ

�1
H x5x

�1
0 :

Therefore, the set
f˛H ; ˇH ; x0; x1; x3; x5g
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is a generating set of six elements for HŒX;X�, and thus is a free basis. It follows that

HŒX;X�DH � fx0; x1; x3; x5g;

so H is a free factor of HŒX;X�.

After row reductions, X=KŒX;X� has presentation matrix�
1 �3

0 5

�
:

From this we get a free basis of KŒX;X�:

xk WD

8<:
bkab�3�k for 0� k � 1;
bkab2�k for 2� k � 4;
b5 for k D 5:

Rewriting ˛K and ˇK , we get

˛K D .ab
�3/.b2a/.b�5/.b4ab�2/.ba�1b�3/.b3a�1/D x0x2x

�1
5 x4x

�1
3 x�10

and

ˇK D .b
4a�1b�1/.b2a�1b�4/.b5/.a�1b�2/.b3a�1/D x�11 x�14 x5x

�1
2 x�10 :

Thus
x4 D x5x

�1
2 x�10 ˇ�1K x�11

and
x3 D x

�1
0 ˛�1K ˇ�1K x�11 :

Therefore, the set
f˛K ; ˇK ; x0; x1; x2; x5g

is a free basis of KŒX;X� so K is a free factor of KŒX;X�. Therefore, S satisfies the
free factor property.

Suppose J is P.�5; 7; 9/. X=HŒX;X� has presentation matrix�
1 �4

�3 8

�
;

which becomes �
1 0

0 4

�
after row operations.

By applying Reidemeister–Schreier, we obtain the free basis fx0; x1; x2; x3; x4g, where
xi D b

iab�i for i D 0; : : : ; 3 and x4 D b4. Then

˛H D .b
�1a/4a�3D .b�4/.b3ab�3/.b2ab�2/.bab�1/.a�1/.a�1/Dx�14 x3x2x1x

�2
0
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and
ˇH D b

5.a�1b/3

D .b�4/.ba�1b�1/.b2a�1b�2/.b3a�1b�3/.b4/

D x4x
�1
1 x�12 x�13 x4:

Thus
x4 D ˇH˛Hx

2
0

and
x3 D x4˛Hx

2
0x
�1
1 x�12 :

Therefore, the set
f˛H ; ˇH ; x0; x1; x2g

is a free basis of HŒX;X�, so H is a free factor of HŒX;X�.

A similar argument shows K is a free factor of KŒX;X�. Therefore, S satisfies the free
factor property.

Lemma 3.5 If J is a P.�3; 3; 2r C 1/ pretzel knot then S satisfies the free factor
property.

Proof From (3-1),

˛H D b
�1ab�1a�1; ˛K D ab

�1a�1;

ˇH D b
rC1a�1b; ˇK D b

rC1a�1ba�1:

The abelian group X=HŒX;X� has presentation matrix�
1 0

0 2

�
when r is even and �

1 �1

0 2

�
when r is odd.

Using C D f1; bg as a set of coset representatives, we apply Reidemeister–Schreier to
obtain B D fx0; x1; x2g, a free basis of HŒX;X�.

When r is even
x0 D a; x1 D bab

�1 and x2 D b
2;

so
˛H D .b

�2/.bab�1/.a�1/D x�12 x1x
�1
0

and
ˇH D .b

2k/.ba�1b�1/.b2/D xk2x
�1
1 x2;

where r D 2k.
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When r is odd
x0 D ab

�1; x1 D ba and x2 D b
2;

so
˛H D .b

�2/.ba/.b�2/.ba�1/D x�12 x1x
�1
2 x�10

and
ˇH D .b

2kC2/.a�1b�1/.b2/D xkC12 x�11 x2;

where r D 2kC 1.

In either case, the set f˛H ; ˇH ; x2g is a free basis of HŒX;X� so H is a free factor of
HŒX;X�.

X=KŒX;X� has presentation matrix �
2 0

0 1

�
:

Using C D f1; ag as a set of coset representatives, we get the free basis of KŒX;X�,
B D fx0; x1; x2g, where

x0 D a
2; x1 D b and x2 D aba

�1:

Thus,
˛K D x

�1
2 and ˇK D x

rC1
1 x�10 x2:

The set f˛K ; ˇK ; x1g is a free basis of KŒX;X� so K is a free factor of KŒX;X�.
Therefore, S satisfies the free factor property.

The proofs of the following results can be found in Appendix A.

Lemma 3.6 If J is a P.2pC 1; 3; 2r C 1/ pretzel knot with p < �2 then S satisfies
the free factor property.

Lemma 3.7 Suppose J is P.�3; 2qC 1; 2r C 1/ and one of the following conditions
holds:

(1) q D 2 and r � 6,

(2) q D 3 and r � 4,

(3) q > 3.

Then S satisfies the free factor property.

Lemma 3.8 Suppose J is P.�5; 2qC 1; 2r C 1/ and one of the following conditions
holds:

(1) q D 3 and r � 13,

(2) q D 4 and r � 9,
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(3) q D 5 and r � 7,

(4) q > 5.

Then S satisfies the free factor property.

3.4 Proof of Theorem 1.13

For each integer q � 3, let Jq be the pretzel knot P.1�2q; 2qC1; 4q�3/, so pD�q
and r D 2q� 2.

Lemma 3.9 For all q � 3, the standard Seifert surface S of Jq satisfies the free factor
property.

Proof The knot J3 is P.�5; 7; 9/. Thus, for J3, S satisfies the free factor property by
Lemma 3.4.

Assume q � 4. Define X , H and K as above. After row reductions, X=HŒX;X� has
presentation matrix �

1 �.qC 1/

0 �N

�
;

where N D�.q� 1/2.

Let C D�N D .q� 1/2. Using Reidemeister–Schreier, we obtain the basis

fab�q�1; bab�q�2; : : : ; bC�q�2ab1�C ; bC�q�1a; bC�qab�1; : : : ; bC�1ab�q; bC g:

To simplify computations we modify this basis by multiplying some of the elements
by b�C on the right, and obtain a free basis B D fx0; : : : ; xC g of HŒX;X�, where
xk D b

kab�q�1�k for k D 0; : : : ; C � 1 and xC D bC .

We can rewrite ˛H and ˇH as

˛H D .b
�1a/qC1a�q

D x�1C xC�1xC .xq�1 � � � xi.q�2/�1 � � � xq.q�2/�1/xCxq�2x
�1
q�3x

�1
C

.x�1.q�3/.qC1/x
�1
.q�4/.qC1/ � � � x

�1
.q�i/.qC1/ � � � x

�1
0 /

and

ˇH D b
2q�1.a�1b/q D x�1q�2x

�1
C .x�1q.q�2/�1 � � � x

�1
q.q�i/�1 � � � x

�1
q�1/x

�1
C x�1C�1xC :

Since q � 4, the generator x0 appears once in the expression for ˛H and does not
appear in the expression for ˇH . Also, since q� 2 < C � 1 and qk� 1 < C � 1 for all
k D 1; : : : ; q� 2, xC�1 only appears once in the expression for ˇH .
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Thus xC�1 is a product of ˇH , x1; : : : ; xC�2; xC and x0 is a product of ˛H , x1; : : : ; xC .

Therefore, the set f˛H ; ˇH ; x1; : : : ; xC�2; xC g is a free basis of HŒX;X�, so H is a
free factor of HŒX;X�.

After row reductions, X=KŒX;X� has presentation matrix�
1 �q

0 C

�
:

We obtain a free basis B D fx0; : : : ; xC g of KŒX;X�, where xk D bkab�.qCk/ for
k D 0; : : : ; C � 1 and xC D bC .

We can rewrite ˛K and ˇK as

˛K D .ab
�1/qa�qC1

D .x0xq�1x2.q�1/ � � � x.q�2/.q�1//xCx0x
�1
C .x�1q.q�2/x

�1
q.q�3/ � � � x

�1
0 /

and

ˇK D b
2q�2.ba�1/qC1 D x�1q�1x

�1
0 x�1C .x�1.q�2/.q�1/x

�1
.q�3/.q�1/ � � � x

�1
0 :

The generator xq appears once in the expression for ˛K and does not appear in the
expression for ˇK . Also, xC only appears once in the expression for ˇK . Therefore,
the set f˛K ; ˇK ; x0; : : : ; xq�1; xqC1; : : : ; xC�1g is a free basis of KŒX;X�, so K is a
free factor of KŒX;X�. Hence, S satisfies the free factor property.

Proof of Theorem 1.13 By Lemma 3.9, Jq has a Seifert surface satisfying the free
factor property. The Alexander polynomial of Jq is Nt2 C .1 � 2N/t CN where
N D �.q � 1/2, so Jq is rationally homologically fibered and �Jq

has two positive
real roots.

When q� 1 is a prime power, j�Jq
.0/j D .q� 1/2 is also a prime power. Therefore,

when q�1 is a prime power, �1.MJq
/ has residually torsion-free nilpotent commutator

subgroup by Proposition 2.5, and �1.MJq
/ is biorderable by Proposition 1.8. Since

p D�q, we have that †2.Jq/ is left-orderable by Proposition 1.15 for all q � 3.

3.5 Knots where the standard Seifert surface does not satisfy the free
factor property

Lemma 3.10 If J is P.1� 2q; 2qC 1; 2q2C 1/ or P.1� 2q; 2qC 1; 2q2� 3/ then
S does not satisfy the free factor property.

Proof If J is P.1 � 2q; 2q C 1; 2q2 C 1/ then p D �q and r D q2, and if J is
P.1�2q; 2qC1; 2q2�3/ then pD�q and r D q2�2. In both cases jN j D 1, so by
Proposition 3.3 S does not satisfy the free factor property.
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Lemma 3.11 Suppose J is one of

� P.�3; 5; 11/,
� P.�3; 7; 7/,
� P.�5; 7;R/ for RD 11; 13; 21; 23 or 25,
� P.�5; 9;R/ for RD 9; 13; 15 or 17,
� P.�5; 11; 11/, or
� P.�5; 11; 13/.

Then S , the standard Seifert surface of J , does not satisfy the free factor property.

Proof If J is P.�3; 5; 11/, then X=HŒX;X� has presentation matrix�
1 �1

0 2

�
:

We have the free basis B D fab�1; bab�2; b2g of HŒX;X�. Then let x0 D ab�1,
x1 D bab

�2 and x2 D b2, so

ˇH D b
6.a�1b/2 D x22x

�2
1 x2:

Let
� WD

HŒX;X�

hˇ
HŒX;X�
H i

Š hx0; x1; x2 W x
3
2x
�2
1 i;

where hˇHŒX;X�H i is the normal closure of ˇH in HŒX;X�. Suppose f˛H ; ˇH g could
be extended to a basis of HŒX;X�. Then � is a free group and � has a subgroup
isomorphic to E WD hx1; x2 Wx32x

�2
1 i. The abelianization of E is Z, but E is not abelian

since x1 and x2 do not commute. Thus E is not free, and � cannot be free either,
which is a contradiction.

Therefore H is not a free factor of HŒX;X�, and S does not satisfy the free factor
property.

If J is P.�5; 7; 25/, thenHŒX;X� has a free basis x0Da, x1D bab�1, x2D b2ab�2,
x3 D b

3ab�3 and x4 D b4. Under this basis

ˇH˛H D b
12a�2 D x34x

�2
0 :

We can extend f˛H ; ˇH g to a free basis of HŒX;X� if and only if f˛H ; ˇH˛H g can
be extended to a free basis. However, an argument similar to the previous case shows
that ˇH˛H cannot be extended to a basis of HŒX;X�.

Therefore, H is not a free factor of HŒX;X�, and S does not satisfy the free factor
property.
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If J is P.�5; 7; 13/ or P.�5; 7; 21/, thenHŒX;X� has free basis x0D a, x1D bab�1,
and x2 D b2. Thus, the set fx0; x1; x�12 x1x0g is also a free basis of HŒX;X�. Denote
x�12 x1x0 by y.

Using the basis fx0; x1; yg,

˛H D .b
�1a/4a�3 D y2x�30 :

An argument similar to the previous cases shows that ˛H cannot be extended to a basis
of HŒX;X�. Therefore H is not a free factor of HŒX;X�, and S does not satisfy the
free factor property.

The proofs of the other cases are similar to the cases above. Here we provide the
elements obstructing the free factor property.

When J is P.�3; 7; 7/,

ˇH D b
4.a�1b/3 D x2x

�3
1 x2;

where x0 D ab�1, x1 D bab�2 and x2 D b2.

When J is P.�5; 7; 11/,

ˇH D b
6.a�1b/3 D x3x

�3
2 x3;

where x0 D ab�1, x1 D bab�2, x2 D b2ab�3 and x3 D b3.

When J is P.�5; 7; 23/,

ˇH D b
12.a�1b/3 D x33x

�3
2 x3;

where x0 D ab�1, x1 D bab�2, x2 D b2ab�3 and x3 D b3.

When J is P.�5; 9; 9/,

ˇH D b
5.a�1b/4 D x50.x

�1
2 x1x0/

2;

where x0 D b, x1 D aba�1 and x2 D a2.

When J is P.�5; 9; 13/,

ˇH D b
7.a�1b/4 D x70.x

�1
2 x1x0/

2;

where x0 D b, x1 D aba�1 and x2 D a2.

When J is P.�5; 9; 15/,

ˇK˛K D b
8a�3 D x24x

�3
0 ;

where x0 D a, x1 D bab�1, x2 D b2ab�2, x3 D b3ab�3 and x4 D b4.
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When J is P.�5; 9; 17/,

ˇH D b
9.a�1b/4 D .x0x

�1
6 x4x2/

3.x�16 x5x2/
2;

where x0 D ba2, x1 D aba, x2 D a2b, x3 D a3ba�1, x4 D a4ba�2, x5 D a5ba�3

and x6 D a6.

When J is P.�5; 11; 11/,

ˇH D b
6.a�1b/5 D x3x

�5
2 x3;

where x0 D ab�1, x1 D bab�2, x2 D b2ab�3 and x3 D b3.

When J is P.�5; 11; 13/,

ˇK D b
6.a�1b/6 D .x0x3x6/

3.x0x2x4x6/
2;

where x0 D ba�3, x1 D aba�4, x2 D a2ba�5, x3 D a3ba�6, x4 D a4ba�7,
x5 D a

5ba�8 and x6 D a6.

3.6 Proof of Theorem 1.2

Lemma 3.12 If J is P.�3; 5; 7/, P.�5; 7; 17/ or P.�5; 9; 11/ then �1.MJ / does
not have a residually torsion-free nilpotent commutator subgroup.

Proof For each of these knots N D 0, so this follows from Proposition 3.2.

Proof of Theorem 1.2 When p�1, S is pseudoalternating so S satisfies the free factor
property [30]. Therefore, when p � 1, the knot group of P.2pC1; 2qC1; 2rC1/ has
residually torsion-free nilpotent commutator subgroups when j�J .0/j is a prime power.

The other positive results follow from applying Proposition 2.5 to Lemmas 3.4, 3.5,
3.6, 3.7, 3.8, and 3.12.

4 Higher genus pretzel knots

In this section we prove Theorem 1.4, which presents a family of pretzel knots with
arbitrarily high genus whose groups have residually torsion-free nilpotent commutator
subgroups.

Let k be a positive integer, and let r be any integer. Suppose J is the .2kC1/–parameter
pretzel knot P.3;�3; : : : ; 3;�3; 2r C 1/ with genus k Seifert surface S as shown in
Figure 4. Define X , H and K as in Section 2.
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3 �3 2r C 1
a1

a2 : : :
a2k

Figure 4: Seifert surface for higher genus pretzel knots.

Proof of Theorem 1.4 X is a free group of rank 2k with generating set fa1; : : : ; a2kg
as shown in Figure 4. By choosing a suitable free basis for �1.S/, the subgroup H has
the free basis

˛1 D .a
�1
1 a2/a1;

˛2 D .a
�1
3 a2/

2.a�12 a1/
2;

:::

˛2i�1 D .a
�1
2i�1a2i /.a

�1
2i�2a2i�1/;

˛2i D .a
�1
2iC1a2i /

2.a�12i a2i�1/
2;

:::

˛2k�1 D .a
�1
2k�1a2k/.a

�1
2k�2a2k�1/;

˛2k D a
rC1
2k

.a�12k a2k�1/
2:

X=HŒX;X� has the presentation matrix

(4-1)

0BBBBBBBBB@

0 1

2 0 �2

�1 0 1

2 0 �2
: : :

: : :
: : :

�1 0 1

2 r � 1

1CCCCCCCCCA
;

which after row operations becomes0BBBBBBBBB@

0 1

2 0 0

0 0 1

2 0 0
: : :

: : :
: : :

0 0 1

2 0

1CCCCCCCCCA
:
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It follows that
X

HŒX;X�
Š

kM
jD1

.Z=2Z/;

where the j th Z=2Z factor is generated by the class of a2j in X=HŒX;X�, and when
i is odd the class of ai is trivial.

Define
a� WD a

�1

1 a
�2

3 : : : a
�k

2k�1
;

where � D .�1; : : : ; �k/ 2 f0; 1gk . HŒX;X� is an index 2k subgroup of X , so the rank
of HŒX;X� is 2kC 1.

The following set is a set of coset representatives of HŒX;X�:

C D fa� j � 2 f0; 1g
k
g:

From C, we find a free basis B of elements of the form xk;� WD a�aka�ak
�1.

We point out a few important examples of basis elements. For i odd,

a2i D aiaiaiai
�1
2 B:

For i even,
ai D 1ai1ai

�1
2 B:

For i odd and j even,
aiaja

�1
i D aiajaiaj

�1
2 B:

Using the basis B rewrite the ˛i as

˛1 D .a
�2
1 /.a1a2a

�1
1 /.a21/;

˛2 D .a
�2
3 /.a3a2a

�1
3 /.a1a

�1
2 a�11 /.a21/;

:::

˛2i�1 D .a
�2
2i�1/.a2i�1a2ia

�1
2i�1/.a2i�1a

�1
2i�2a

�1
2i�1/.a

2
2i�1/;

˛2i D .a
�2
2iC1/.a2iC1a2ia

�1
2iC1/.a2i�1a

�1
2i a
�1
2i�1/.a

2
2i�1/;

:::

˛2k�1 D .a
�2
2k�1/.a2k�1a2ka

�1
2k�1/.a2k�1a

�1
2k�2a

�1
2k�1/.a

2
2k�1/;

˛2k D a
r
2k.a2k�1a

�1
2k a
�1
2k�1/.a

2
2k�1/;

which can be extended to the free basis B0 of HŒX;X�

B0 D .B� .B1[B2[fa22k�1g//[f˛1; : : : ; ˛2kg;
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where
B1 D fa1a2a�11 ; a3a4a

�1
3 ; : : : ; a2k�1a2ka

�1
2k�1g

and
B2 D fa3a2a�13 ; a5a4a

�1
5 ; : : : ; a2k�1a2k�2a

�1
2k�1g:

Thus, H is a free factor of HŒX;X�.

A similar argument shows K is a free factor of KŒX;X�. Thus, S satisfies the free
factor property.

From (4-1) we compute jX WHŒX;X�j D 2k , so by Proposition 2.3 J is rationally
homologically fibered. Thus, S is an unknotted minimal genus Seifert surface, and J is
rationally homologically fibered. It follows from Proposition 2.5 that the commutator
subgroup of J is residually torsion-free nilpotent.

Proof of Corollary 1.10 From the Seifert matrix (4-1), we compute the Alexander
polynomial

�J .t/D .t � 2/
k.2t � 1/k :

It follows from Theorems 1.4 and 1.6 that �1.MJ / is biorderable.

Appendix A Proofs of lemmas

In this appendix, we present the proofs of Lemmas 3.6, 3.7 and 3.8. Let J be a pretzel
knot P.2pC 1; 2qC 1; 2r C 1/ with 1� q � r . Define the Seifert surface S and the
groups X Š ha; bi, H Š h˛H ; ˇH i and K Š h˛K ; ˇKi as in Section 3.

A.1 Proof of Lemma 3.6

Lemma 3.6 If J is a P.2pC 1; 3; 2r C 1/ pretzel knot with p < �2, then S satisfies
the free factor property.

Proof From (3-1),

˛H D b
�1ab�1apC1; ˛K D ab

�1apC1;

ˇH D b
rC1a�1b; ˇK D b

rC1a�1ba�1:

The abelian group X=HŒX;X� has a presentation matrix�
1 �r � 2

0 �N

�
;

where N D pr C 2pC 2r C 2D .pC 2/.r C 2/� 2, which is negative since p � �2.
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Let C D �N . Using C D f1; b; : : : ; bC g as a set of coset representatives, we apply
Reidemeister–Schreier to obtain a free basis of HŒX;X�. Modifying this basis, we get

B D fx0; : : : ; xC g;

where xk WD bkab�r�2�k when 0� k � C � 1 and xC WD bC .

Using the rewriting process, we have that

˛H D x
�1
C xC�1.x

�1
C�r�4x

�1
C�2r�6 � � � x

�1
C�i.rC2/�2 � � � x

�1
rC2x

�1
0 /

and
ˇH D x

�1
C x�1C�1xC :

(Note that C > r C 2 since p < �2, so xrC2 is defined.) We can extend f˛H ; ˇH g to
the set f˛H ; ˇH ; x1; : : : ; xC�2; xC g, which is a free basis of HŒX;X�, so H is a free
factor of HŒX;X�.

X=KŒX;X� has a presentation matrix�
�N 0

�p� 2 1

�
:

Let l D�p� 2 so C D l.rC 2/C 2. Note that l is a positive integer. We obtain a free
basis of KŒX;X�

B D fx0; : : : ; xC g;

where xk WD akbal�k when 0� k � C � 1 and xC WD aC .

Using the rewriting process,
˛K D x

�1
lC1

and
ˇK D x0x

�1
C xl.rC1/C2xlrC2xl.r�1/C2 � � � x2lC2xlC1:

The set f˛K ; ˇK ; x1; : : : ; xl ; xlC2; : : : ; xC g is a free basis of KŒX;X� so K is a free
factor of KŒX;X�. Thus, S satisfies the free factor property.

A.2 Proof of Lemma 3.7

Lemma 3.7 Suppose J is P.�3; 2qC 1; 2r C 1/ and one of the following conditions
holds:

(1) q D 2 and r � 6,

(2) q D 3 and r � 4,

(3) q > 3.

Then S satisfies the free factor property.
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Proof This lemma is shown by applying the outline from Section 2 to two cases. First,
we address the case when qD 2 and r � 6, then we show the lemma is true when q � 3,
r � 4 and q � r .

Case q D 2 and r � 6 X=HŒX;X� has a presentation matrix�
1 �3

0 N

�
;

where N D r � 3.

HŒX;X� has free basis xk D bkab�k�3 for k D 0; : : : ; N � 1, and xN D bN . Under
this basis

˛H D .b
�1a/2b�1a�1 D x�1N xN�1xNx1x

�1
0

and
ˇH D b

rC1.ba�1/2 D xNx
�1
1 xNx

�1
N�1xN :

Since r � 6, we have N � 3, so xN�1 ¤ x1. Thus, the set f˛H ; ˇH ; x2; : : : ; xN g is a
free basis of HŒX;X� so H is a free factor of HŒX;X�.

X=KŒX;X� has a presentation matrix�
1 �2

0 N

�
;

where N D r � 3.

KŒX;X� has free basis xk D bkab�k�2 for k D 0; : : : ; N � 1, and xN D bN . Under
this basis

˛K D .ab
�1/2a�1 D x0x1x

�1
0

and
ˇK D b

rC1a�1.ba�1/2 D xNx
�1
2 x�11 x�10 :

The set f˛K ; ˇK ; x0; x3; : : : ; xN g is a free basis of KŒX;X� so K is a free factor of
KŒX;X�.

Case q � 3 and r � 4 X=HŒX;X� has a presentation matrix�
1 �r

0 N

�
;

where N D qr � q � r � 1 D .q � 1/.r � 1/� 2. Note that since q � 3 and r � 4,
N > r � 2 > 1.
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We then obtain a free basis xk D bkab�r�k for kD 0; : : : ; N �1 and xN D bN . Under
this basis

˛H D .b
�1a/qC1a�3 D x�1N xN�1xNxr�2x2r�3 � � � xN�rC2xNx1x

�1
0

and
ˇH D b

rC1.a�1b/q
D x�11 x�1N x�1N�rC2x

�1
N�2rC3 � � � xr�2xN�1:

Since N > r � 2 > 1, the set f˛H ; ˇH ; x2; : : : ; xN g is a free basis of HŒX;X� so H
is a free factor of HŒX;X�.

For K, we begin by substituting aD a�b� and b D b� so that

˛K D a
q
�b
�1
� a�1� and ˇK D b

r
�a
�q�1
� :

X=KŒX;X� has a presentation matrix�
N 0

1� q 1

�
;

where N D qr � q� r � 1.

Under the basis xk D a�b�a
1�q�k
� for k D 0; : : : ; N � 1 and xN D aN� ,

˛K D x
�1
1

and
ˇK D x0xq�1 � � � x.q�1/.r�1/xN :

Similarly to H , K is a free factor of KŒX;X�. Therefore, S satisfies the free factor
property.

A.3 Proof of Lemma 3.8

Lemma 3.8 Suppose J is P.�5; 2qC 1; 2r C 1/ and one of the following conditions
holds:

(1) q D 3 and r � 13,

(2) q D 4 and r � 9,

(3) q D 5 and r � 7,

(4) q > 5.

Then S satisfies the free factor property.

This lemma is shown by applying the outline from Section 2 to several cases.
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Lemma A.1 If J is P.�5; 7; 2r C 1/ with r � 13, then S satisfies the free factor
property.

Proof In this case, q D 3 and N D r � 8. X=HŒX;X� has a presentation matrix�
1 �4

0 N

�
:

We use the free basis, xk D bkab�4�k for k D 0; : : : ; N � 1 and xN D bN .

When r D 13,
˛H D x

�1
5 x4x5x2x5x0x

�1
5 x�14 x�10

and
ˇH D x

2
5x
�1
0 x�15 x�12 x�15 x�14 x5;

so
ˇH˛H D x5x

�1
4 x�10 :

The set f˛H ; ˇH ; x1; x3; x4; x5g is a free basis of HŒX;X� so H is a free factor of
HŒX;X�.

When r � 14,
˛H D x

�1
N xN�1xNx2x5x

�1
4 x�10

and
ˇH D xNx

�1
5 x�12 x�1N x�1N�1xN :

The set f˛H ; ˇH ; x1; x3; : : : ; xN g is a free basis of HŒX;X� so H is a free factor of
HŒX;X�.

X=KŒX;X� has a presentation matrix�
1 �3

0 N

�
:

We use the free basis xk D bkab�3�k for k D 0; : : : ; N � 1 and xN D bN .

Using this basis,
˛K D x0x2x4x

�1
3 x�10 :

When r D 13 or r D 14,

ˇK D x
2
Nx
�1
6�Nx

�1
N x�14 x�12 x�10 ;

and, when r � 15,
ˇK D xNx

�1
6 x�14 x�12 x�10 :

In both cases, the set f˛K ; ˇK ; x0; x1; x4; : : : ; xN g is a free basis of KŒX;X� so K is
a free factor of KŒX;X�.
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Lemma A.2 If J is P.�5; 9; 2r C 1/ with r � 9, then S satisfies the free factor
property.

Proof In this case, q D 4 and N D 2r � 10. X=HŒX;X� has a presentation matrix�
N 0

�2 1

�
after the substitutions aD b2�a� and b D b�. We use the free basis xk D ak�b�a

�2�k
�

for k D 0; : : : ; N � 1 and xN D aN� .

When r D 9,
˛H D x0x3x6x8x1x

�1
2 x�18 x�17 x�15 x�12 x�10

and
ˇH D .x0x2x4x6x8/

2x0x2x
�1
1 x�18 x�16 x�13 x�10 :

The set f˛H ; ˇH ; x0; x1; x2; x4; x6; x7; x8g is a free basis of HŒX;X� so H is a free
factor of HŒX;X�.

When r D 10,
˛H D x0x3x6x9x10x

�1
0 x�110 x

�1
7 x�15 x�12 x�10

and
ˇH D .x0x2x4x6x8x10/

2x0x
�1
10 x

�1
9 x�16 x�13 x�10 :

When r � 11,
˛H D x0x3x6x9x

�1
10 x

�1
7 x�15 x�12 x�10

and
ˇH D x0x2 � � � xN�2xNx0x2x4x6x8x10x

�1
9 x�16 x�13 x�10 :

In both cases, the set f˛H ; ˇH ; x0; : : : ; x6; x8; x10; : : : ; xN g is a free basis ofHŒX;X�.

X=KŒX;X� has a presentation matrix�
1 3� r

0 N

�
:

We use the free basis xk D bkab3�r�k for k D 0; : : : ; N � 1 and xN D bN . Using
this basis,

˛K D x0xr�4xNx2xr�2x
�1
r�3x

�1
0

and
ˇK D x

�1
4 x�1N x�1r�2x

�1
2 x�1N x�1r�4x

�1
0 :
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Since r � 9,
N D r � 8C r � 2 > r � 2 > r � 3 > r � 4 > 0;

so the generators xr�2, xr�3 and xr�4 are valid generators.

The set f˛K ; ˇK ; x1; : : : ; xr�4; xr�2; : : : ; xN g is a free basis of KŒX;X� so K is a
free factor of KŒX;X�.

Lemma A.3 If J is P.�5; 11; 2r C 1/ with r � 7, then S satisfies the free factor
property.

Proof In this case, q D 5 and N D 3r � 12. X=HŒX;X� has a presentation matrix�
1 r � 6

0 N

�
:

We use the free basis xk D bkabr�6�k for k D 0; : : : ; N � 1 and xN D bN .

Using this basis,
˛H D x

�1
2r�6xNx

�1
0 :

When r D 7,
ˇH D x9x

�1
0 x�12 x�14 x�16 x�18 x9;

and, when r � 8,

ˇH D x
�1
2r�5xNx

�1
2 x�1r�3x

�1
2r�8x

�1
3r�13xN :

Note that, when r � 8,

N > 3r � 13 > 0;

N D r � 7C 2r � 5 > 2r � 5 > 2r � 6 > 2r � 8 > 0;

and
N D 2r � 9C r � 3 > r � 3 > 0;

so the generators x3r�13, x2r�5, x2r�6, x2r�8 and xr�3 are valid generators.

In both cases, the set f˛H ; ˇH ; x1; x3; : : : ; xN g is a free basis of HŒX;X�, so H is a
free factor of HŒX;X�.

After making the substitutions aD b2�a� and b D b�, X=KŒX;X� has a presentation
matrix �

N 0

3 1

�
:
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We use the free basis xk D ak�b�a
3�k
� for k D 0; : : : ; N � 1 and xN D bN� . Using this

basis,

˛K D x1x
�1
N xN�1xN�3xN�5x

�1
N�4x

�1
N�2xNx

�1
1

and

ˇK D x0x
�1
N xN�3xN�6 � � � x3x0x

�1
N xN�3xN�6x

�1
N�7x

�1
N�5x

�1
N�3x

�1
N�1xNx

�1
1 :

Since r � 7, we have N � 9, so all the generators used are valid generators.

The set f˛K ; ˇK ; x0; : : : ; xN�8; xN�6; xN�5; xN�4; xN�3; xN�1; xN g is a free basis
of KŒX;X�, so K is a free factor of KŒX;X�.

Lemma A.4 If J is P.�5; 13; 13/ or P.�5; 13; 15/, then S satisfies the free factor
property.

Proof If J is P.�5; 13; 13/, then pD�3 and qD rD6. X=HŒX;X� has presentation
matrix �

10 0

�2 1

�
:

We use the free basis xk WD akba�2�k for k D 0; : : : ; 9 and x10 WD a10.

Using this basis,

˛H D x
�1
10 x

�1
8 x�17 x�16 x�15 x�14 x�13 x�12

and

ˇH D x0x2x4x6x8x10x0x2x3x4x5x6x7x8x10;

so

ˇH˛H D x0x2x4x6x8x10x0:

The set f˛H ; ˇH ; x0; x1; x4; x5; x6; x7; x8; x9; x10g is a free basis of HŒX;X�, so H
is a free factor of HŒX;X�.

X=KŒX;X� has presentation matrix �
1 1

0 10

�
:

We use the free basis xk WD akba1�k for k D 0; : : : ; 9 and x10 WD a10.
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Using this basis,
˛K D x0x

�1
10 x8x6x4x2x0x

�1
10 x

�1
9 x10x

�1
0

and
ˇK D x

�1
8 x10x

�1
0 x�12 x�14 x�16 x�18 x10x

�1
0 :

The set f˛K ; ˇK ; x0; x1; x3; x4; x5; x6; x7; x8; x10g is a free basis of KŒX;X� so K is
a free factor of KŒX;X�.

If J is P.�5; 13; 15/, then p D�3, q D 6 and r D 7. After making the substitutions
aD b2�a� and b D b�, X=HŒX;X� has presentation matrix�

14 0

4 1

�
:

We use the free basis xk WD ak�b�a
4�k
� for k D 0; : : : ; 13 and x14 WD a14� .

Using this basis,

˛H D x0x
�1
14 x11x8x5x2x

�1
14 x13x14x

�1
0 x�13 x�17 x�110 x14x

�1
0

and

ˇH D x0x
�1
14 x10x6x2x

�1
14 x12x8x4x0x

�1
14 x

�1
13 x14x

�1
2 x�15 x�18 x�111 x14x

�1
0 :

The set f˛H ; ˇH ; x0; : : : ; x5; x8; : : : ; x14g is a free basis of HŒX;X� so H is a free
factor of HŒX;X�.

X=KŒX;X� has presentation matrix �
1 2

0 14

�
:

We use the free basis xk WD bkab2�k for k D 0; : : : ; 13 and x14 WD b14.

Using this basis,

˛K D x0x
�1
14 x11x8x5x2x

�1
14 x13x10x14x

�1
0

and
ˇK D x

�1
10 x

�1
13 x14x

�1
2 x�15 x�18 x�111 x14x

�1
0 ;

so
ˇH˛H D x14x

�1
0 :

The set f˛K ; ˇK ; x1; x3; : : : ; x14g is a free basis of KŒX;X�, so K is a free factor of
KŒX;X�.
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Lemma A.5 If J is P.�5; 2qC 1; 2r C 1/ with q even , q � 6 and r � 8, then H is
a free factor of HŒX;X�.

Proof Let c be the integer such that q D 2c. X=HŒX;X� has a presentation matrix�
2 �r

0 w

�
;

where w D cr � 2c � r � 1 and N D 2w.

We have the set of coset representatives

C D f1; b; b2; : : : ; bw�1; a; ab; ab2; : : : ; abw�1g:

We apply Reidemeister–Schreier to find a free basis of HŒX;X�. In the following
computations we assume that the coset representative a2 of a2 is br . For this to be
correct, it must be true that r < w, which we verify here.

Since q � 6, we have c � 2, and r � 8, so

w D cr � 2c � r � 1D .c � 3/.r � 2/C .r � 7/C r > r:

We apply Reidemeister–Schreier to find xc;xDcx.cx/�1 for each c2C and x2fa; bg:

xbi ;a D bia.bia/�1 D

�
biab�ia�1 if 0 < i � w� 1;
1 if i D 0;

xbi ;b D biC1.biC1/�1 D

�
1 if 0� i < w� 1;
bw if i D w� 1;

xabi ;a D abia.abia/�1 D

�
abiab�i�r if 0� i < w� r;
abiabw�i�r if w� r � i � w� 1;

xabi ;b D ab
iC1.abiC1/�1 D

�
1 if 0� i < w� 1;
abwa�1 if i D w� 1:

The nontrivial elements xc;x form a basis fx1; : : : ; xw ; y0; : : : ; ywg, where

xi D

�
biab�ia�1 if 1� i � w� 1;
bw if i D w;

and

yi D

8<:
abiab�i�r if 0� i < w� r;
abiabw�i�r if w� r � i < w;
abwa�1 if i D w:

Using this basis,
ˇH˛H D y

�1
0
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and

ˇH D y
�1
1 x�12

c�2Y
iD1

.y�1ı.i/C1x
�1
ı.i/C2/y

�1
w�2x

�1
w�1xw ;

where
ı.i/D w� i.r � 2/:

We claim that ı.i/¤ 0 for all i . Since w D .c � 1/.r � 2/� 3

ı.i/D w� i.r � 2/D .r � 2/.c � i � 1/� 3;

so if ı.i/D 0 then .r � 2/.c � i � 1/D 3. However, since r � 8, we have that r � 2
does not divide 3.

Thus, y1 only appears once in ˇH so the set fˇH˛H ; ˇH ; x1; : : : ; xw ; y2; : : : ; ywg is
a free basis of HŒX;X�. Since fˇH˛H ; ˇH g is a free basis of H , H is a free factor of
HŒX;X�.

Lemma A.6 If J is P.�5; 2qC 1; 2r C 1/ with q odd and q � 7, then H is a free
factor of HŒX;X�.

Proof Let c be the integer such that qD 2cC1. X=HŒX;X� has a presentation matrix�
1 v

0 N

�
;

where v D cr � 2c � r � 2 and N D 2cr � 4c � r � 4D 2vC r .

We use the free basis xk D bkabv�k for k D 0; : : : ; N � 1 and xN D bN . Using this
basis,

ˇH˛H D x
�1
vCrxNx

�1
0

and

ˇH D x
�1
vCrC1

2c�1Y
iD0

yi ;

where

yi D

(
x�1
�.i/

if �.i/ < N � v� 1;

x�1
�.i/
xN if �.i/�N � v� 1;

and
�.i/D 2C i.vC 1/ modN:

Since q � 7, we have c � 3, and, since r � 7,

v D cr � 2c � r � 2D .c � 2/.r � 2/C r � 6 > 1:
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This means that
N D 2vC r > vC r C 1 > vC r > 0;

so xvCr and xvCrC1 are valid generators.

We claim that �.i/ is distinct for each i D 0; : : : ; 2c � 1. Suppose that �.i/ D �.j /
for some i and j . Then .j � i/.vC 1/ is a multiple of N . In particular, N divides
.j � i/ gcd.N; vC 1/. Applying the Euclidean algorithm to N and vC 1, we have

N D 2.vC 1/C r � 2

and
vC 1D .c � 1/.r � 2/� 3;

so
gcd.N; vC 1/D gcd.r � 2; 3/� 3:

The maximum value of j � i is 2c � 1. It follows that

N � 3.2c � 1/:

However, since c � 3 and r � 7,

N D 2cr � 4c � r � 4D .2c � 1/.r � 4/C 4c � 8� 3.2c � 1/C 4 > 3.2c � 1/;

which is a contradiction.

Thus x�.0/ D x2 only appears once in ˇH so the set fˇH˛H ; ˇH ; x1; x3; : : : ; xN g is a
free basis of HŒX;X�. Therefore, H is a free factor of HŒX;X�.

Lemma A.7 If J is P.�5; 2qC 1; 2rC 1/ with q � 0 mod 3, q � 6 and r � 8, then
K is a free factor of KŒX;X�.

Proof Let c be the integer such that q D 3c. X=KŒX;X� has a presentation matrix�
1 v

0 N

�
;

where v D cr � 2c � r � 1 and N D 3cr � 6c � 2r � 2D 3vC r C 1.

We use the free basis xk D bkabv�k for k D 0; : : : ; N � 1 and xN D bN . Using this
basis,

ˇK˛K D x
�1
vCrC1x

�1
2vCrC1xNx

�1
0

and

ˇK D x
�1
vCrC1x

�1
2vCrC2

3c�2Y
iD0

yi ;
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where

yi D

(
x�1
�.i/

if �.i/ < N � v� 1;

x�1
�.i/

xN if �.i/�N � v� 1;
and

�.i/D 1C i.vC 1/ modN:

Since q � 6, we have c � 2, and, since r � 8,

v D cr � 2c � r � 1D .c � 1/.r � 5/C 3c � 6 > 1:

This means that

N D 3vC r C 1 > 2vC r C 2 > 2vC r C 1 > vC r C 1 > 0;

so xvCrC1, x2vCrC1 and x2vCrC2 are valid generators.

Suppose that �.i/ D �.j / for some i and j . Then N divides .j � i/ gcd.N; vC 1/.
Applying the Euclidean algorithm to N and vC 1, we have

N D 3.vC 1/C r � 2

and
vC 1D .c � 1/.r � 2/� 2;

so
N � 2.3c � 2/:

However, since c � 2 and r � 8,

N D 3cr � 6c � 2r � 2D .3c � 2/.r � 4/C 6c � 10 > 2.3c � 2/;

so �.i/ is distinct for each i D 0; : : : ; 3c � 2. Thus x�.0/ D x1 only appears once in
ˇK so the set fˇK˛K ; ˇK ; x2; : : : ; xN g is a free basis of KŒX;X�. Therefore, K is a
free factor of KŒX;X�.

Lemma A.8 If J is P.�5; 2qC 1; 2r C 1/ with q � 1 mod 3 and q � 7, then K is a
free factor of KŒX;X�.

Proof Let c be the integer such that qD 3cC1. X=KŒX;X� has a presentation matrix�
1 �v

0 N

�
;

where v D cr � 2c � 1 and N D 3cr � 6c � r � 4D 3v� r � 1.
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We use the free basis xk D bkab�v�k for k D 0; : : : ; N � 1 and xN D bN . Using this
basis,

ˇK˛K D x
�1
N x�12v x

�1
v x�10

and

ˇK D x
�1
N x�12v x

�1
vC1

3c�1Y
iD0

yi ;

where

yi D

(
x�1
�.i/

if �.i/ < N � vC 1;

x�1
x�1

N �.i/
if �.i/�N � vC 1;

and
�.i/D 2� i.v� 1/ modN:

Since q � 7, we have c � 2, and, since r � 7,

v D cr � 2c � 1D .c � 1/.r � 8/C 4c � 8C r C 1 > r C 1:

This means that
N D 3v� r � 1 > 2v > vC 1 > v > 0;

so xv, xvC1 and x2v are valid generators.

Suppose that �.i/ D �.j / for some i and j . Then N divides .j � i/ gcd.N; v � 1/.
Applying the Euclidean algorithm to N and v� 1, we have

N D 3.v� 1/� .r � 2/

and
v� 1D c.r � 2/� 2;

so
N � 2.3c � 1/:

However, since c � 2 and r � 7,

N D 3cr � 6c � r � 4D .3c � 1/.r � 4/C 6c � 8 > 2.3c � 1/;

so �.i/ is distinct for each i D 0; : : : ; 3c � 2. Thus x�.0/ D x2 only appears once in
ˇK so the set fˇK˛K ; ˇK ; x1; x3; : : : ; xN g is a free basis of KŒX;X�. Therefore, K
is a free factor of KŒX;X�.

Lemma A.9 If J is P.�5; 2qC 1; 2r C 1/ with q � 2 mod 3 and q � 8, then K is a
free factor of KŒX;X�.
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Proof Let c be the integer such that qD 3cC2. X=KŒX;X� has a presentation matrix�
3 �.r C 1/

0 w

�
;

where w D cr � 2c � 2 and N D 3w.

We have the set of coset representatives

C D f1; b; b2; : : : ; bw�1; a; ab; : : : ; abw�1; a2; a2b; : : : ; a2bw�1g:

We apply Reidemeister–Schreier to find a free basis of KŒX;X�.

Since q � 6 we have c � 2, and r � 8 so r C 1 < w:

w D cr � 2c � 2D .c � 2/.r � 2/C .r � 7/C r C 1 > r C 1:

Thus, the coset representative, a3 is brC1.

We apply Reidemeister–Schreier to find a basis fx1; : : : ; xw ; y1; : : : ; yw ; z0; : : : ; zwg,
where

xi D

�
biab�ia�1 if 1� i � w� 1;
bw if i D w;

yi D

�
abiab�ia�2 if 1� i � w� 1;
abwa�1 if i D w;

zi D

8<:
a2biab�i�r�1 if 0� i < w� r � 1;
a2biabw�i�r�1 if w� r � 1� i < w;
a2bwa�2 if i D w:

Using this basis,
ˇK˛K D z

�1
0

and

ˇK D z
�1
0 y�11 x�12

c�1Y
iD1

.z�1ı.i/y
�1
ı.i/C1x

�1
ı.i/C2/z

�1
w�2y

�1
w�1yw ;

where
ı.i/D w� i.r � 2/:

Since w D c.r � 2/� 2,

ı.i/� 1D w� i.r � 2/� 1D .r � 2/.c � i/� 3;

so if ı.i/D 1 then .r �2/.c� i/D 3. However, r �2 does not divide 3 since r � 7, so
ı.i/ is never 1, so y1 only appears once in ˇK .

Therefore, the set fˇK˛K ; ˇK ; x1; : : : ; xw ; y2; : : : ; yw ; z1; : : : ; zwg is a free basis of
KŒX;X�. Since fˇK˛K ; ˇKg is a free basis of K, K is a free factor of KŒX;X�.
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Appendix B Chart of results

Table 1 summarizes the results we’ve found for the pretzel knots P.�3;Q;R/ and
P.�5;Q;R/ where Q D 2q C 1 and R D 2r C 1. The shapes around the cells in
each chart indicate whether or not the knot’s standard Seifert surface S satisfies the

values of R

3 5 7 9 11 13 15

3 �2 �2 �2 �2 �2 �2 �2

5 �1 0 1 2 3 4

7 2 4 6 8 10

va
lu

es
of

Q

9 7 10 13 16

11 14 18 22

values of R

3 5 7 9 11 13 15 17 19 21 23 25 27

3 �5 �6 �7 �8 �9 �10 �11 �12 �13 �14 �15 �16 �17

5 �6 �6 �6 �6 �6 �6 �6 �6 �6 �6 �6 �6

7 �5 �4 �3 �2 �1 0 1 2 3 4 5

9 �2 0 2 4 6 8 10 12 14 16

va
lu

es
of

Q

11 3 6 9 12 15 18 21 24 27

13 10 14 18 22 26 30 34 38

15 19 24 29 34 39 44 49

Table 1: The results for some P.�3;Q;R/ (top) and P.�5;Q;R/ (bottom)
pretzel knots where QD 2qC 1 and RD 2r C 1. The integer in each cell is
the value of N . Each cell is in a circle if the knot’s standard Seifert surface
satisfies the free factor property, and in a square if the knot’s standard Seifert
surface does not satisfy the free factor property.
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free factor property. Cells of knots with trivial Alexander polynomial have no shapes.
The integer in each cell is the value of N D det.SC/ D det.S�/, which is also the
leading coefficient of the Alexander polynomial. If a pretzel knot’s cell is contained in a
circle and N is a prime power, then the knot group has residually torsion-free nilpotent
commutator subgroup. If in addition N < 0, then the knot group is biorderable.
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