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Residual torsion-free nilpotence, biorderability
and pretzel knots

JONATHAN JOHNSON

The residual torsion-free nilpotence of the commutator subgroup of a knot group has
played a key role in studying the biorderability of knot groups. A technique developed
by Mayland (1975) provides a sufficient condition for the commutator subgroup
of a knot group to be residually torsion-free nilpotent using work of Baumslag
(1967, 1969). We apply Mayland’s technique to several genus one pretzel knots and
a family of pretzel knots with arbitrarily high genus. As a result, we obtain a large
number of new examples of knots with biorderable knot groups. These are the first
examples of biorderable knot groups for knots which are not fibered or alternating.

57K10

1 Introduction

Let J be a knot in S3. The knot exterior of J is My := S3 —v(J), where v(J) is the
interior of a tubular neighborhood of J, and the knot group of J is w1 (M ). Denote
the Alexander polynomial of J by Aj.

A group T is nilpotent if its lower central series terminates (is trivial) after finitely
many steps. In other words, for some nonnegative integer n,

I'o>I'1>--->Iy =1,

where I'g = " and I'; 41 = [}, '] foreachi =0,...,n —1. A group I is residually
torsion-free nilpotent if, for every nontrivial element x € I, there is a normal subgroup
N < T such that x ¢ N and G/N is a torsion-free nilpotent group. We are concerned
with when the commutator subgroup of a knot group is residually torsion-free nilpotent,
which has applications to ribbon concordance (see Gordon [15]) and the biorderability
of the knot group; see Linnell, Rhemtulla and Rolfsen [25].

Several knots are known to have groups with residually torsion-free nilpotent commuta-
tor subgroups. The commutator subgroup of fibered knot groups are finitely generated

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution
License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.



1788 Jonathan Johnson

free groups, which are residually torsion-free nilpotent; see Magnus [27]. Work of
Mayland and Murasugi [30] shows that the knot groups of pseudoalternating knots,
whose Alexander polynomials have a prime power leading coefficient, have residually
torsion-free nilpotent commutator subgroups; pseudoalternating knots are defined in
Section 3. The knot groups of two-bridge knots have residually torsion-free nilpotent
commutator subgroups; see Johnson [20].

There is also the following obstruction to a knot group having residually torsion-free
nilpotent commutator subgroup:

Proposition 1.1 If J is a knot in S3 with trivial Alexander polynomial, then the
commutator subgroup of w1 (M ) cannot be residually torsion-free nilpotent.

Proof Let G be the commutator subgroup of 71 (My). Let M be the infinite cyclic
cover of M, the covering space of M corresponding to G so that 7y (M *°) = G;
see Rolfsen [36, Chapter 7] for details. Then

H\(M*,Z) = P Z[r, 17"/ {ai (1)),

i=1

where a1(t),...,a,(t) are polynomials such that

n
[[ai®)=2a,0.
i=1
Since the Alexander polynomial of J is trivial G/[G,G] = H{(M®°,Z) = 1, so
G =[G, G]. It follows that every term of the lower central series of G is isomorphic
to G. Suppose N <1 G is a proper normal subgroup of G. For each term of the lower
central series of G/ N,

(G/N)i =Gi/N =G/N #1,

so G/N cannot be nilpotent. Thus, G is not residually torsion-free nilpotent. O

Given the integers k1, k2, ..., ky, define P(ky, k2, ..., k) to be the pretzel knot rep-
resented in the diagram in Figure 1. Mayland [29] describes a technique to examine
the commutator subgroup of the group of a knot bounding an unknotted minimal genus
Seifert surface; see Section 2. In fact, this is the technique Mayland and Murasugi used
to prove their result for pseudoalternating knots [30]. Applying Seifert’s algorithm
to the diagram in Figure 1 yields an unknotted minimal genus Seifert surface (see
Gabai [12]) making pretzel knots ideal candidates for Mayland’s technique.
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e

2k1+1 2k2+1 2kn+1

— - =

Figure 1: A pretzel knot diagram. The integers in the boxes indicate the
number of right-hand half-twist when positive and left-hand half-twist when

negative.

Let J be the P(2p + 1,29 + 1,2r + 1) pretzel knot for some integers p, ¢ and r.
J is a two-bridge knot (possibly trivial) precisely when at least one of p, g and r is
equal to 0 or —1 (see Kawauchi [23, Chapter 2]) so for our purposes, we can assume
that none of p, ¢ and r are 0 or —1. Permuting the parameters 2p + 1, 2¢ + 1 and
2r + 1 yields the same (unoriented) knot. Also, P(—2p —1,—2g —1,—2r — 1) and
P(2p+1,2g 4+ 1,2r + 1) are mirrors of each other. Since 71 (M) is invariant of
reversing orientation and mirroring, we can assume that 1 < g <r.

Theorem 1.2 Given integers p, q and r with 1 < g <r and p # 0 or—1, let J be
the P(2p 4+ 1,2¢q + 1,2r + 1) pretzel knot with Alexander polynomial Aj whose
leading coefficient is a prime power. The commutator subgroup of w1 (M j) is residually
torsion-free nilpotent if

e p=1,
e JisP(2p+1,3,2r+1),
e JisP(-3,2¢q+1,2r +1)and J isnot P(-3,5,5), P(—3,5,7), P(-3,5,9),
P(-3,5,11) or P(—3,7,7), or
e Jis P(=5,2¢g+1,2r +1) and J is not
- P(-5,7,R) when R is 11, 13, 15, 17, 19, 21, 23 or 25,
- P(=5,9,R) when Ris 9, 11,13,150or 17, or
— P(=5,11,R) when R is 11 or 13.

Remark 1.3 Proposition 1.1 is the only known obstruction to the commutator sub-
group of a genus one pretzel knot group being residually torsion-free nilpotent, so
the exceptional cases in Theorem 1.2 with nontrivial Alexander polynomial remain
unresolved and cannot be resolved with the technique used in this paper.
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If p<—2and1<g <r,then PQ2p+ 1,29 + 1,2r + 1) is not a pseudoalternating
knot; see Proposition 3.1. Therefore, all of the examples from Theorem 1.2 where
p < —1 are new examples of knots with residually torsion-free nilpotent commutator
subgroups.

In addition, we also obtain pretzel knots of arbitrarily high genus whose groups have
residually torsion-free nilpotent commutator subgroups. However, we were not able to
determine whether or not these knots are pseudoalternating so it is possible this result
follows from Mayland and Murasugi’s work.

Theorem 1.4 If J isa P(3,-3,...,3,—3,2r + 1) pretzel knot for some integer r,
then the commutator subgroup of w1(M j) is residually torsion-free nilpotent.

1.1 Possible generalizations

The techniques used here have a few limitations. First, while our method can be applied
to many families of genus one pretzel knots on a case by case basis, this method
does not lend itself well to generalizing to all genus one pretzel knots since many of
the details depend on the arithmetic properties of p, g and r. Secondly, Mayland’s
method requires a couple conditions (an unknotted Seifert surface satisfying the free
factor property and an Alexander polynomial with prime power leading coefficient)
which may not be necessary for a knot group to have residually torsion-free nilpotent
commutator subgroup. Nevertheless, we make the following prediction for genus one
pretzel knots.

Conjecture 1.5 If J is a genus one pretzel knot then the commutator subgroup of
m1(M ) is residually torsion-free nilpotent if and only if the Alexander polynomial of
J is nontrivial.

1.2 Application to biorderability

A group is said to be biorderable if there exists a total order of the group’s elements,
invariant under both left and right multiplication. Chiswell, Glass and Wilson proved
the following fact, using work of Linnell, Rhemtulla and Rolfsen [25], and it has
been instrumental in determining the biorderability of several knot groups; see Clay,
Desmarais and Naylor [8], Johnson [20] and Perron and Rolfsen [35].

Theorem 1.6 [7, Theorem B] Let J be a knot in S3. If w{(My) has residually
torsion-free nilpotent commutator subgroup and all the roots of A j are real and positive
then 7r1 (M) is biorderable.
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Furthermore, Ito obtained the following obstruction to a knot group being biorderable
when the knot is rationally homologically fibered; see Section 2 for the definition of
rationally homologically fibered.

Theorem 1.7 [18, Theorem 2] Let J be a rationally homologically fibered knot. If
1(M y) is biorderable then A j has at least one real positive root.

The Alexander polynomial of the pretzel knot P(2p + 1,2¢ + 1,2r 4 1) has the form

Aj(t)=Nt*>+ (1 —2N)t + N,
where

(1-1) N=det(P Tt —a=1)
—q qg+r+1

See Section 3 for details. Note that A y has two positive real roots when N < 0 and
two nonreal roots when N > 0. If N = 0, then A j(¢) = 1. Therefore, we have the
following proposition:

Proposition 1.8 Let J be the P(2p + 1,2q + 1,2r + 1) pretzel knot, and let N be
defined as in (1-1). If the commutator subgroup of w{(My) is residually torsion-free
nilpotent and N < 0, then 71 (M ) is biorderable. If N > 0, then 7w1(My) is never
biorderable, regardless of whether or not the commutator subgroup of w1 (My) is
residually torsion-free nilpotent.

Applying Proposition 1.8 to the results in Theorem 1.2 yields the following corollary.

Corollary 1.9 Given integers p, g and r with 1 <g <r and p # 0 or —1, let J be
the P2p + 1,2q + 1,2r + 1) pretzel knot with Alexander polynomial A .
(1) m1(My) is biorderable if
e Jis P(-3,3,2r+1),
e Jis P(—5,3,2r + 1) and r + 4 is a prime power, or
e JisP(—5,7,7) or P(-5,7,9).
(2) m1(My) is not biorderable if
e p=1,
e Jis P(-3,52r +1) with r > 3,
e Jis P(=3,2q+1,2r+1) with q > 2,
e Jis P(—5,7,2r +1) with r > 9,
e Jis P(—5,9,2r +1) withr > 6, or
e Jis P(—5,2¢+1,2r + 1) with g > 5.
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We also have the following corollary to Theorem 1.4.

Corollary 1.10 If J isthe P(3,-3,...,3,—3,2r + 1) pretzel knot for some integer r,
then w1 (M j) is biorderable.

Details of the proof of Corollary 1.10 are provided in Section 4.

1.3 A possible connection of biorderability to branched covers

Given a knot J in S3, let £, (J) be the n—fold cyclic cover of S3 branched over J ; see
Rolfsen [36, Chapter 10] for the definition and construction of a cyclic branched cover.
Part of the motivation for studying the biorderability of pretzel knots is to investigate
the following questions.

Question 1.11 Do there exist knots with 71 (M ;) biorderable and 1 (3,(J)) left-
orderable for some n?

Question 1.12 Does 71 (M) not being biorderable imply that 71 (2, (J)) is left-
orderable for some n?

Question 1.11 is resolved here.

Theorem 1.13 For each integer g > 3, let J4 be the P(1 —2q,2q + 1, 4q — 3) pretzel
knot. When q — 1 is a prime power, w1(My,) is biorderable and m1(X32(Jg)) is
left-orderable.

Remark 1.14 Question 1.11 is still unanswered for fibered knots and alternating knots.
Question 1.12 remains unresolved as of the writing of this paper. However, some

important remarks can be made about this question.

Suppose J is a pretzel knot P(2p +1,2g + 1,2r + 1) with 1 <g <r. When p > 1,
the signature of J is nonzero which likely means that w1 (X,(J)) is left-orderable for
n sufficiently large; see Gordon [16, Corollary 1.2 and Question 1.3].

Suppose p < —1. By the Montesinos trick [31], the double branched cover of J is the
Seifert fibered space

¥5(J) :M(O;—l

—2p—=2 1 1
’—2p—1’2q+1’2r+1)'

By work of Eisenbud, Hirsch and Neumann [10], Lisca and Stipsicz [26], Jankins
and Neumann [19], Naimi [34] and Boyer, Rolfsen and Wiest [4], X»(J) is left-
orderable if and only if there are positive integers a and m such that the triple
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((=2p—=2)/(—2p—1),1/(2qg + 1),1/(2r + 1)) is less than some permutation of
the triple (a/m, (m —a)/m, 1/m). This happens precisely when 1 < —p <g. In this
case, m = 2q and a = 2q — 1. Therefore, we can state the following proposition.

Proposition 1.15 Suppose J is the P2p+1,2q+1,2r +1) pretzel knot with p < —1
and 1 <q <r. Then 71(X,(J)) is left-orderable if and only if —p < gq.

Thus, if p < —1 and the double branched cover of J does not have left-orderable
fundamental group, then ¢ < —p so N as defined in (1-1) is negative. Therefore, if
Conjecture 1.5 is true, 71 (M y) would be biorderable when ¢ < —p by Proposition 1.8.
In particular, if Conjecture 1.5 is true, it’s not likely that any nonalternating genus one
pretzel knot would be a counterexamples for Question 1.12.

There is some evidence that genus one pretzel knots with no left-orderable cyclic
branched covers do exists. It is conjectured (see Boyer, Gordon and Watson [3]) that
given a prime orientable closed rational homology sphere Y, 1 (Y') is not left-orderable
if and only if Y is an L-space, and Issa and Turner show that the cyclic branched covers
of the P(—3,3,2r + 1) pretzel knots are all L-spaces; see [17].

Outline

In Section 2, we review how Mayland’s technique [29] can be used to analyze when the
commutator subgroup of a knot group is residually torsion-free nilpotent. In Section 3,
we apply this technique to genus one pretzel knots and prove Theorems 1.2 and 1.13.
In Section 4, we prove Theorem 1.4. Appendix A contains the proofs of some key
lemmas. We also provide a chart of our results in Appendix B.
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2 Preliminaries on Mayland’s technique

Mayland used a description of the commutator subgroup of a knot group to investigate
when they are residual finite [29]. In this section, we show how Mayland’s technique
can be used to find a sufficient condition for the commutator subgroup of a knot group
to be residually torsion-free nilpotent.
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2.1 Mayland’s technique

Let J be a knot in S3 and suppose J bounds a minimal genus Seifert surface S such
that S is unknotted; in other words, 71 (S3\S) is a free group. Let S=M;NnS. Let
G be the commutator subgroup of w1 (My).

Let U be the image of a bicollar embedding S x [—1, 1] = M where S is the image of
S x {0}, and let Mg = MJ\§. Denote the images of S x (0,1] and S x [—1,0) in Mg
by U™ and U, respectively. Let X = 1 (M), which is a free group of rank 2g where
g is the genus of J. Consider the inclusion maps i T: Ut — Mg andi~: U~ — M.
Let H be the image of the induced map i}t : 71 (U ) — 71 (My) and K be the image
ofiy :m(U™) = m(Mg).

For each integer n, let X, be a copy of X, H, C X, be acopy of H, and K,, C X}, be
a copy of K. The fundamental groups of U, U™ and U~ are canonically isomorphic,
and since S has minimal genus, i;}% and i are injective. Therefore, H, and K41 are
identified with a rank 2g free group F. By Brown and Crowell [5, Theorem 2.1], G is
an amalgamated free product of the form

(2—1) Gg"'*FX—Z*FX—l*FXO*FXI*FXZ*F"'~

Baumslag provides the following sufficient condition for a group to be residually
torsion-free nilpotent when G is an ascending chain of parafree subgroups; see [1; 2]
for a definition and discussion of parafree groups.

Proposition 2.1 [2, Proposition 2.1(1)] Suppose G is a group which is the union of
an ascending chain of subgroups

00
G0<G1<G2<-~~<Gn<--~<G=UGn.
n=1

Suppose each G, is parafree of the same rank. If, for each nonnegative integer n,
|Gn+1:Gnl[Gn+1, Gn+1]| is finite, then G is residually torsion-free nilpotent.

For each nonnegative integer m, define Z™ as follows:
(2—2) zm :=X—m*FX1—m*F"'*FXm—l*FXm-

The direct limit of the Z™ is isomorphic to G. Furthermore, since i~ and i, are
injective, the natural inclusion Z™ < Z™*1 is an embedding, so G is an ascending
chain of subgroups

o0
Z0< 7V <« 72 <. <cZM <. <G = Uzm.

m=1
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A subgroup A of a free group B is a free factor if B = A* D for some subgroup D of B.
It immediately follows that A is a free factor of B if and only if every (equivalently, at
least one) free basis of A extends to a free basis of B. A theorem of Mayland provides
sufficient conditions for each Z™ to be parafree.

Proposition 2.2 [29, Theorem 3.2] If H and K are free factors of H[X, X] and
K[X, X], respectively, and |X : H[X, X]| = | X : K[X, X]| = p' for some prime p and
nonnegative integer [, then for every nonnegative m, Z™ is parafree of rank 2g.

The knot J is rationally homologically fibered if the induced map on homology,
i};r: Hi(U';Q) — H{(Ms; Q) (or equivalently i Hi(U™;Q) - H1(Ms;Q)), is
an isomorphism. Let S be a Seifert matrix representing i ;r such that S_:= S _{ is a
Seifert matrix representing ,". S+ is also a presentation matrix for the abelian group
X/H[X, X]. Similarly, S_ is a presentation matrix for X /K[X, X]. Thus,

X X
H[X,X] ~ K[X.X]

Denote the standard form of the Alexander polynomial of J by A y. For some nonneg-

(2-3)

ative integer k,
t*Aj(t) = det(tSy — ST) = do + dit + - - + dagt?%.

It is a well-known fact that d; = dpg—;; see [33, Chapter 6].

Proposition 2.3 Suppose J is a knot in S3. The following statements are equivalent:

(a) J is rationally homologically fibered.
(b) |X:HI[X, X]| is finite.

(¢) |X:K[X, X]| is finite.

(d) degAjy=2g.

Proof The equivalence of (b) and (c) follows from (2-3).

Since Sy is a presentation matrix for X /H[X, X], we have that | X : H[X, X]| is finite
if and only if | det(S4+)| # 0. It follows that (a) and (b) are equivalent.

Since drg = do = det(S4), we have deg A ; = 2g if and only if det(Sy) # 0, so (a)
and (d) are equivalent. a

Proposition 2.4 When J is rationally homologically fibered,
| X :H[X, X]| = |X:K[X, X]|=|A;(0)].

Algebraic € Geometric Topology, Volume 23 (2023)
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Proof When J is rationally homologically fibered
|X : H[X, X]| = |det(S+)| = [A s (0)],

so the proposition follows from (2-3). a

For each nonnegative m,
zm+1 X X
= X .
zZm[zm+l zm+1] = H[X, X] K[X,X]

So, when J is rationally homologically fibered,

(2-4)  |zmtlizmizmt zmtY = | X H[X, X]||K : H[X, X]| = A;(0)?
by Proposition 2.4.

The Seifert surface S is said to satisfy the free factor property if H and K are free
factors of H[X, X] and K[X, X], respectively. Note that this property is independent
of the orientation of S. A sufficient condition for the residual torsion-free nilpotence
of G can be summarized as follows.

Proposition 2.5 Suppose J is a rationally homologically fibered knot in S3 with
unknotted minimum genus Seifert surface S. If S satisfies the free factor property and
|A y(0)] is a prime power, then the commutator subgroup G is residually torsion-free
nilpotent.

Proof Suppose J is a rationally homologically fibered with unknotted minimum genus
Seifert surface S satisfying the free factor property, and suppose |A ;7 (0)] is a prime
power.

Define Z™ for each nonnegative integer m as in (2-2). By Proposition 2.4, | X: H[X, X]|
and |K : H[X, X]| are prime powers since J is rationally homologically fibered. Thus,
by Proposition 2.2, each Z™ is parafree of rank twice the genus of J.

By (2_4), |Zm+1 : Zm[Zm+1, Zm+1]| — AJ(o)Z7 SO |Zm+1 : Zm[Zm+1, Zm+1]| is
finite. Therefore, by Proposition 2.1, G is residually torsion-free nilpotent. |

2.2 Pseudoalternating knots

A special alternating diagram is an alternating link diagram in which all of the crossings
have the same sign. Any link with such a diagram is called a special alternating link.
The Seifert surface described by performing Seifert’s algorithm on a special alternating
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diagram is a primitive flat surface. A generalized flat surface is any surface which
can be obtained by combining some number of primitive flat surfaces by Murasugi
sums. See Gabai [11] for a definition and exposition of Murasugi sums. A link which
bounds a generalized flat surface is a pseudoalternating link. Alternating links are
pseudoalternating links. However, all torus links, many of which are not alternating,
are also pseudoalternating links.

Pseudoalternating knots are rationally homologically fibered and bound surfaces sat-
isfying the free factor condition [30, Theorem 2.5]. Therefore, the knot group of
a pseudoalternating knot, whose Alexander polynomial has a prime power leading
coefficient, has residually torsion-free nilpotent commutator subgroup.

3 Genus one pretzel knots

Let J bethe P(2p +1,2¢q + 1, 2r + 1) pretzel knot for some integers p, ¢ and r with
1 <g<rand p# —1or0. Let S be the unknotted genus one surface depicted in
Figure 2, which we refer to as the standard Seifert surface of J. For the genus one
pretzel knots which are not two-bridge knots, the standard Seifert surface is the unique
Seifert surface of minimal genus, up to isotopy [13].

In this section, we analyze when S satisfies the free factor property. When p > 0,
P(2p+1,2¢g 4+ 1,2r + 1) is an alternating knot, and thus P(2p + 1,2 + 1,2r + 1)
is pseudoalternating. However, this is not true when p < —2.

Proposition 3.1 When 1 <g <r and p <-2, the pretzel knot P(2p+1,2¢g+1,2r+1)
is not a pseudoalternating knot.

Proof Suppose P(2p + 1,2 + 1,2r + 1) is pseudoalternating. When 1 < g <r and
p < —2, the diagram in Figure 1 has a minimal number of crossings [24, Theorem 10].

Figure 2: The Seifert surface S of P(2p + 1,2 + 1,2r 4+ 1).

Algebraic € Geometric Topology, Volume 23 (2023)
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Figure 3: Isotopy of basepoints.

Since this diagram is not alternating, P(2p + 1,2q + 1, 2r + 1) cannot be alternating
by a theorem of Kauffman, Murasugi and Thistlethwaite [21; 22; 32; 38]. In particular,
P(2p+1,2g+1,2r 4+ 1) is not special alternating. Thus, P(2p + 1,2 + 1,2r + 1)
must be the boundary of a surface S which is the Murasugi sum of two generalized flat
surfaces, S7 and S,, which are not disks.

By Gabai [11], S must be a minimal genus Seifert surface, so y(S) = —1. Analyzing
the effect of a Murasugi sum on the Euler characteristic yields

—1=x(S) = x(S1) + x(52) — 1.

Since S and S3 are not disks, neither S nor S, has positive Euler characteristic. It
follows that y(S1) = x(S2) =0, so S and S5 are both annuli.

The boundary of a Murasugi sum of two annuli is a double twist knot which is alternating.
Thus P(2p +1,2q + 1,2r + 1) is alternating, which is a contradiction. |

Since J is pseudoalternating when p > 0, we will only need to focus on the case when
p is negative.

3.1 Mayland’s technique for genus one pretzel knots

Define My, Ms, X, H and K as in Section 2. Here we offer a concrete description
of the maps on fundamental groups i} and i, for genus one pretzel knots. This is
the same description used by Crowell and Trotter in [9]. Choose a basepoint z on the
lower part of S, and let x and y be the classes generating 1 (S, z) represented by the
loops indicated in Figure 2. Let z* and z~ be push-offs of z of each side of S. Let z’
be the basepoint of Mg obtained by shifting z tangentially along S through 9. Let
81 and §~ be arcs connecting z’ to zt and z~, respectively; see Figure 3. Finally, let
a and b be the indicated classes generating 71 (Mg, z').
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By slightly isotoping elements of 71(S, z) off of S, w1 (U, z") and 7 (U™, z7) are
canonically identified to 71 (S, z), which is a rank two free group F generated by x
and y. The group X := m1(Mg, z) is a rank two free group generated by a and b. The
map i} : F — X takes aclass [y] in 71 (U™, zT) = F to the class [§ T x y * (=§1)]
in 1 (Mg, z') = X. Likewise, the map i : F — X takes [y] to [§™ xy x (—67)].
With these choices, we define the elements
ag =if(x) =0 o) a?, ag:=i;(x) = (ab )2aPT!,

(3-1)
Bu =i () =b""a b, g =iy (y)=b"(ba”H)T,

so that
H = (lag,fu}) and K = ({ak,Bk}).

Thus, the Seifert matrices for i} and i are
1 —q—1 1 —
32 Sp=(Ptet' 4 and S_=(PT9T 7 .
—q qg+r+1 —q—1 qg+r+1
Let N =det S+ = det S—. Up to multiplication by a signed power of 7, the Alexander

polynomial of J is
Aj(t)=Nt?>+(1—2N)t + N.

When N # 0, J is rationally homologically fibered by Proposition 2.3. Simply
considering the integer N can provide useful information.

Proposition 3.2 When N = 0, G is not residually torsion-free nilpotent.

Proof When N = 0 we have A;(t) = 1, so G cannot be residually nilpotent by
Proposition 1.1. |

Proposition 3.3 If |N| = 1, then the standard Seifert surface S does not satisfy the
free factor property.

Proof Let S be the standard Seifert surface of J, and define X, H, and K as in
Section 2. Each of these are rank two free groups. Suppose S satisfies the free factor
property.

When |N| = 1 we have that X/H[X, X] = X/K[X, X] = 1 by Proposition 2.4, so
X =HI[X, X]=K[X, X]. Since H is a free factor of H[X, X] and both are rank two
free groups, H = H[X, X] = X. Similarly, since K is a free factor of K[X, X] and
both are rank two free groups, K = X. This implies that i) and i, are isomorphisms.
Thus, 7r1 (M) is an extension of Z described by the short exact sequence

l>X—>nm(My)—>7Z—1.
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The Stallings fibration theorem implies that J is a genus one fibered knot [37]. However,
the only genus one fibered knots are the trefoil and the figure eight knot [6; 14], which
is a contradiction since we are assuming J is not a two-bridge knot. O

In light of Proposition 2.5, to prove the commutator subgroup of 71 (M) is residually
torsion-free nilpotent, it is sufficient to show § satisfies the free factor property.

3.2 Outline of the procedure

In each case we use the same basic procedure, outlined below, to analyze whether or
not S satisfies the free factor property.

(1) Find a presentation matrix for X/H[X, X] of the form

u v u 0
0w v ow
using row operations. Note, u and w can always be made positive. Thus, X/H [X, X]

is isomorphic to (Z/uZ) x (Z/wZ). The Z /uZ factor is generated by the class of a,
and the Z /wZ factor is generated by the class of b.

(2) Since X/H[X, X] is abelian, the set C is a set of coset representatives of H[X, X]:
C={a*b' |0<k <u,0<l<w
Given x € X, denote by x the coset representative of x in C. Define
Xe = cx(@x) 7,

where ¢ € C and x € {a, b}. From this we find the following free basis for H[X, X]
using the Reidemeister—Schreier method:

B={xcx|ceC,xela, b} x.x #1}.
See [28] for details.

(3) Use the Reidemeister—Schreier rewriting process to rewrite the generating set of
H from (3-1). A word « € H, where a = o’ ...a;zk with «; € {a,b} and 5; = *1,
can be rewritten as

o =Xp! g e XK s

where
o1...0;—1 Wwhens; =1,
Ci=9__
o1 ...0 when s; = —1.

(4) Determine if the generating set of H can be extended to a free basis of H[X, X].

(5) Repeat this procedure for K.
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When the free bases of H and K can be extended to free bases of H[X, X]and K[X, X],
respectively, S satisfies the free factor property. If the chosen basis of either H or K
fails to extend, then S cannot satisfy the free factor property.

3.3 Knots whose standard Seifert surface satisfies the free factor property
Lemma 3.4 If J is P(—5,7,7) or P(—5,7,9) then S satisfies the free factor property.
Proof Suppose J is P(—5,7,7). From (3-1),

ag = b 'a)*a3, ax = (b H)3a7?,

Bu =b*a'b)?, Bk =0b>ba M)
The abelian group X/H [X, X] has presentation matrix

]
tH

From this we get C = {1, b, b2, b3, b*} as a set of coset representatives of H[X, X].
We apply Reidemeister—Schreier to obtain the following free basis of H[X, X|:

B = {ab,ba,b?ab™ ,b3ab™2 b*ab™3,b°}.

which becomes

after row operations.

Label the basis elements as follows: xj := bkab'=* for 0 < k < 4 and x5:=b°.

Now we can rewrite oy and B in terms of B3, obtaining

ag = (b7)(b*ab™>)(B2ab™ ) (@b)(b>)(b*a " b™H(B*) (b a ™)

—1 —-1_-1 —1
= X5 X4X2X0X5 X4 X5X,

and
B = (B a Y (ba b2 (B3aT T () = xsxg txs  xg xs.
Thus
_p—1_-1 —1

ag =By X4 X5Xy
SO

x4 = xsxq o' By
and

X2 = Bramxofy xsxg .
Therefore, the set
{am. BH, X0, X1, X3, X5}
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is a generating set of six elements for H[X, X], and thus is a free basis. It follows that
H[X,X] = H *{xo, X1, X3, X5},
so H is a free factor of H[X, X].

After row reductions, X/ K[X, X] has presentation matrix

(b 5)

From this we get a free basis of K[X, X]:
bkab=37% foro<k <1,
X = bkab?~k  for2 <k <4,
b> for k =5.

Rewriting ag and g, we get

ag = (ab™)(B%a) (b)) (b*ab™ ) (ba b3 (b3a™ Y = x0x2x5_1x4x;1x61
and

Bx = (b*a b B2a ™) (@ b2 (BPa) = x7 g Tasxs xg L

Thus

—1,—1p-1,—1
X4 =X5X, Xq Bg X1

and

-1 _—1p—1, -1

Therefore, the set
{ak. Bk.X0,X1,Xx2, X5}

is a free basis of K[X, X] so K is a free factor of K[X, X]. Therefore, S satisfies the
free factor property.

Suppose J is P(—5,7,9). X/H[X, X] has presentation matrix

(57
t

By applying Reidemeister—Schreier, we obtain the free basis {xo, X1, X2, X3, X4}, where
x; =blab™ fori =0,...,3 and x4 = b*. Then

ag=b"ta)y*a 3 =B b2ab7?)(b2ab ) (bab Y (@ (@) =x; Txsxaxg xg 2

which becomes

after row operations.
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and
Bu =b>(a"'b)?
= (b (ba b (B2a b2 (B3a b3 (bY)
= x4x1_1x2_1x3_1X4.
Thus
X4 = ,BHoeHx(Z)
and

X3 = Mayx%xl_lxz_l.

Therefore, the set
{am, BH, X0, X1, X2}

is a free basis of H[X, X], so H is a free factor of H[X, X].
A similar argument shows K is a free factor of K[X, X]. Therefore, S satisfies the free

factor property. O

Lemma 3.5 If J is a P(—3,3,2r 4+ 1) pretzel knot then S satisfies the free factor
property.

Proof From (3-1),
ag =b lab a7, ag =abla7l,
,BH — br'Ha_lb, ,BK — br'Ha_lba_l.

The abelian group X/H[X, X] has presentation matrix
10
02
1 -1
0 2

Using C = {1, b} as a set of coset representatives, we apply Reidemeister—Schreier to
obtain B = {x¢, x1, X2}, a free basis of H[X, X].

when r is even and

when r is odd.

When r is even
Xo=4da,x1 = bab™' and x, = b2,
o)
ap = (b~ (bab~")(@a™") = x5 ' x1xg"
and
Br = B (ba™b7H)(0?) = x5 xy " x2,
where r = 2k.

Algebraic € Geometric Topology, Volume 23 (2023)



1804 Jonathan Johnson

When r is odd
X0 = ab™ 1, x1 =ba and xp=b>,
SO
ag = (b (ba)(b*)(ba™") = x5 x1xy Txg !
and
B = B2 @ (0% = x5 i e,
where r =2k + 1.

In either case, the set {ag, By, x2} is a free basis of H[X, X] so H is a free factor of

H[X. X].
1)

X/K[X, X] has presentation matrix
Using C = {1, a} as a set of coset representatives, we get the free basis of K[X, X],
B = {x0, X1, X2}, where
xo=a%, x;=b and x,=aba"'.
Thus,
Qg = x2_1 and Bg = x{“xo_lxz.

The set {ag, Bx,x1} is a free basis of K[X, X] so K is a free factor of K[X, X].
Therefore, S satisfies the free factor property. |

The proofs of the following results can be found in Appendix A.

Lemma 3.6 If J isa P(2p+1,3,2r + 1) pretzel knot with p < —2 then S satisfies
the free factor property.

Lemma 3.7 Suppose J is P(—3,2q + 1,2r + 1) and one of the following conditions
holds:

(1) g=2andr > 6,

2) g=3andr >4,

3) g>3.
Then S satisfies the free factor property.
Lemma 3.8 Suppose J is P(—5,2q + 1,2r + 1) and one of the following conditions
holds:

(1) g=3andr > 13,

2) g=4andr>9,
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3) g=5andr =7,
4) q>>5.

Then S satisfies the free factor property.

3.4 Proof of Theorem 1.13

For each integer g > 3, let J,; be the pretzel knot P(1—2¢,2q +1,4qg—3),50 p =—¢q
and r =2¢q —2.

Lemma 3.9 For all g > 3, the standard Seifert surface S of J, satisfies the free factor
property.

Proof The knot J3 is P(—5,7,9). Thus, for J3, S satisfies the free factor property by
Lemma 3.4.

Assume g > 4. Define X, H and K as above. After row reductions, X/H[X, X] has

presentation matrix
1 —(g+1)
0 -—-N '

Let C = —N = (g — 1)2. Using Reidemeister—Schreier, we obtain the basis

{ab™ 971 pab=172, ... pCI2qp'=C pC—a71g pCagp=t .. HCVab™9, HC Y.

where N = —(q — 1)2.

To simplify computations we modify this basis by multiplying some of the elements
by 5~ on the right, and obtain a free basis B = {xo,...,xc} of H[X, X], where
Xp = bkab=47 1"k fork =0,...,C —1 and Xc = bC.

We can rewrite g and Sy as
ag = (b la)itla™4
-1 -1 _—1
=Xc XC—1XC(Xg—1""Xi(g—2)—1 '"xq(q—z)—l)xCxq—qu_3xC

(@ D ety D) Yty Yo D)
and

— p2q-1.,~13vg _ . —1 —1, —1 e IUIE BN B |
B =0b (a™ b)) =x, 5x¢ (xq(q_z)_1 Xg(g—i)—1 Xg_1)Xc Xc—1XC-
Since g > 4, the generator xo appears once in the expression for ¢y and does not

appear in the expression for g . Also, sinceq —2 < C —1 and gk —1 < C — 1 for all
k=1,...,q9—2, xc—1 only appears once in the expression for S.
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Thus xc—1 isaproduct of Bg, X1, ..., XCc—2, xc and xg is aproduct of ¢ g7, X1, ..., XC.

Therefore, the set {og, By, X1,...,XCc—2,Xc} is a free basis of H[X, X],so H isa
free factor of H[X, X].

After row reductions, X/ K[X, X] has presentation matrix

1 —q
0 CJ°
We obtain a free basis B = {xy,...,xc} of K[X, X], where x; = bkab=@th for
k=0,...,C—1and x¢c = pC.
We can rewrite ag and S as
ag = (ab™1)4q1H!
. (X0Xg—1X2(g-1) "+ X(g-2)(g—1)XCX0XC (X(g_2)Xg(q—3) """ X0 )
an

_ 1,292 —1\g+1 _ _—1 —-1.-—1 —1 —1 —1
P =b"T7"(ba™ )T = x,"1%0 X (Xgm2yg-1)¥(g=3)g-1) " X0 -

The generator x4 appears once in the expression for ag and does not appear in the
expression for Bx. Also, xc only appears once in the expression for Sg. Therefore,
the set {ak, Bk, X0, ..., Xg—1,Xg+1,...,XC—1} is a free basis of K[X, X], so K is a
free factor of K[X, X]. Hence, S satisfies the free factor property. a

Proof of Theorem 1.13 By Lemma 3.9, J,; has a Seifert surface satisfying the free
factor property. The Alexander polynomial of J,; is N t2 4+ (1 =2N)t + N where
N =—(q—1)?,s0 J4 1s rationally homologically fibered and Ay, has two positive
real roots.

When ¢ — 1 is a prime power, |Ay,_(0)] = (¢ — 1)2 is also a prime power. Therefore,
when g —1 is a prime power, 771(Mj,) has residually torsion-free nilpotent commutator
subgroup by Proposition 2.5, and 71(My,) is biorderable by Proposition 1.8. Since
p = —¢q, we have that 35 (Jy) is left-orderable by Proposition 1.15 forall¢g > 3. O

3.5 Knots where the standard Seifert surface does not satisfy the free
factor property

Lemma 3.10 If J is P(1—2q,2q +1,2¢%> +1) or P(1 —2g,2q + 1,29* —3) then
S does not satisfy the free factor property.

Proof If J is P(1 —2q,2q + 1,2¢%> + 1) then p = —q and r = g2, and if J is
P(1—-2¢.,2q +1,2g>—3) then p = —q and r = g> — 2. In both cases [N | = 1, so by
Proposition 3.3 S does not satisfy the free factor property. O
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Lemma 3.11 Suppose J is one of
e P(-3,511),
e P(-3,7,7),
e P(=5,7,R) for R=11,13,21,23 or25,
e P(=5,9,R) forR=09,13,150r17,
e P(=511,11),0r
e P(-5,11,13).

Then S, the standard Seifert surface of J, does not satisty the free factor property.

Proof If J is P(—3,5,11), then X/H[X, X] has presentation matrix

1 —1
0o 2J)°
We have the free basis B = {ab~!, bab=2,b%} of H[X,X]. Then let xo = ab™!,

x1 = bab™2 and x, = b2, so

B =b®(a1h)? = x2x7%x,.

Let
H[X, X] _
I:= — XX =~ (x0, X1, X2 : xi”xl 2),
By )
H[X,X],\ . :
where (B ) is the normal closure of g in H[X, X]. Suppose {ag, Bz} could

be extended to a basis of H[X, X]. Then I is a free group and I" has a subgroup
isomorphic to E := (x1, X2 :x%xl_z). The abelianization of E is Z, but E is not abelian
since x1 and x, do not commute. Thus FE is not free, and I" cannot be free either,
which is a contradiction.

Therefore H is not a free factor of H[X, X], and S does not satisfy the free factor
property.
If J is P(—5,7,25), then H[X, X] has a free basis xo =a, x1 = bab™l, x, =b%ab2,
x3 = b3ab™3 and x4 = b*. Under this basis

Brop =b"%a"% = xjxy>.
We can extend {a g, B} to a free basis of H[X, X] if and only if {og, Bgag} can

be extended to a free basis. However, an argument similar to the previous case shows
that By cannot be extended to a basis of H[X, X].

Therefore, H is not a free factor of H[X, X], and S does not satisfy the free factor
property.
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If J is P(=5,7,13) or P(—5,7,21), then H[X, X] has free basis xo =a, x; =bab™ !,
and x, = b2. Thus, the set {xg, X1, xz_lxlxo} is also a free basis of H[X, X]. Denote
xz_lxlxo by y.

Using the basis {x¢, x1, y},
ag = (b a)*a3 = yixg>.
An argument similar to the previous cases shows that oy cannot be extended to a basis

of H[X, X]. Therefore H is not a free factor of H[X, X], and S does not satisfy the
free factor property.

The proofs of the other cases are similar to the cases above. Here we provide the
elements obstructing the free factor property.

When J is P(—3,7,7),

Bu =b*(a™'h)® = x2x7xa,
where xo = ab~ !, x; = bab™? and x, = b>.
When J is P(—5,7,11),

B = Z96(¢1_1l))3 = x3x2_3X3,
where xo = ab™ !, x; = bab™2, x5 = b%2ab~3 and x3 = b3.
When J is P(—5,7,23),

Br =b'2(a""b)* = x3x;xs,
where xo = ab~ 1, x; = bab™2, x5 = b%ab~3 and x3 = b3.
When J is P(-5,9,9),

Br =b>(a'b)* = x§ (x5 x1x0)2,
where xo = b, x1 = aba™! and x, = a?.
When J is P(-5,9, 13),
B =b"(a""b)* = x{(x3 ' x1x0)*,
where xo = b, x; = aba"! and x5 = a>.
When J is P(-5,9, 15),
Brog = p8a3 = xﬁx0_3,

where xo = a, x; = bab™ !, x, = b%ab™2, x3 = b3ab3 and x4 = b*.
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When J is P(=5,9, 17),

Br =b° (@ 'b)* = (xoxg ' xax2)> (x5 x5x2)2,

1 -3

where xo = ba?, x; = aba, xp = a?b, x3 = a’ba™', x4 = a*ha=2, x5 = a’bha

and x¢ = a®.

When J is P(=5,11,11),

B =b%(a"'b)’ = x3x;°x3,
where xo = ab™!, x; = bab™2, xo = b%ab™3 and x3 = b3.
When J is P(=5,11,13),

Bx = b%(a'h)® = (xox3x6)> (x0x2X4X6)?,

5 7

where xo = ba=3, x1 = aba™*, x5 = a*ba>, x3 = a3ba=®, x4 = a*ba”’,

x5 = a’ba~8 and x¢ = a®. m]
3.6 Proof of Theorem 1.2

Lemma 3.12 If J is P(—3,5,7), P(—=5,7,17) or P(—5,9,11) then w{(My) does
not have a residually torsion-free nilpotent commutator subgroup.

Proof For each of these knots N = 0, so this follows from Proposition 3.2. O

Proof of Theorem 1.2 When p > 1, S is pseudoalternating so S satisfies the free factor
property [30]. Therefore, when p > 1, the knot group of P(2p +1,2¢ +1,2r +1) has
residually torsion-free nilpotent commutator subgroups when |A ;(0)| is a prime power.

The other positive results follow from applying Proposition 2.5 to Lemmas 3.4, 3.5,
3.6,3.7, 3.8, and 3.12. O

4 Higher genus pretzel knots

In this section we prove Theorem 1.4, which presents a family of pretzel knots with
arbitrarily high genus whose groups have residually torsion-free nilpotent commutator
subgroups.

Let k be a positive integer, and let r be any integer. Suppose J is the (2k +1)—parameter
pretzel knot P(3,-3,...,3,—3,2r + 1) with genus k Seifert surface S as shown in
Figure 4. Define X, H and K as in Section 2.
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N BN

3 -3 |az 2r +1
aj azk

Figure 4: Seifert surface for higher genus pretzel knots.

Proof of Theorem 1.4 X is a free group of rank 2k with generating set {ay,...,dax}

as shown in Figure 4. By choosing a suitable free basis for 71 (.5), the subgroup H has

the free basis .
ay = (ay az)ai,

ay = (a3'a2)?(ay'ar)?,

azim1 = (a5 azi) (a5 Hazi—1),

—1 2/ —1 2
o2; = (ay;4qa2i) (ay; azi—1)",

—1 -1
Wok—1 = (azk_laZk)(azk_zaﬂc—l)?
1,.,—1 2
U2k = a;}: (ag azk—1)"-

X/H[X, X] has the presentation matrix

2 0 =2
-1 01
4-1) 20 -2 )
-1 0 1
\ 2 r—1
which after row operations becomes
(o 1
200
00 1
2.0 0
0 01
\ 2 0)
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It follows that
X

k

ji=1
where the j 7 /27 factor is generated by the class of a» jin X/H[X, X], and when
i is odd the class of a; is trivial.

Define

. 01,02 Ok
g :=dq az” ...45 4,

where 0 = (01, . ..,0%) € {0, 1}X. H[X, X] is an index 2X subgroup of X, so the rank
of H[X, X]is 2% +1.

The following set is a set of coset representatives of H[X, X]:

C ={ag | o €10, 1}¥}.
From C, we find a free basis B of elements of the form x; 4 := asards ar L.
We point out a few important examples of basis elements. For i odd,

al-2 =aqja;a;a; ' €B.
For i even,

a; = 1al'1_ai_1 eB.
For i odd and j even,
aiajai_l = aiajaiaj_l epB.
Using the basis B rewrite the o; as
a1 = (a7 ?)(a1az2a7")(a}),

s = (a32)(azaza; (aray a7ty @?),

-2 —1 —1 —1 2
02j—1 = (azi—l)(CZZi—laZi612[_1)(a2i—102i_2a2i_1)(a2i—1),

-2 -1 -1 -1 2
Q2 = (azi+1)(a2i+1a2ia2i+1)(a2i—1a2i azi_l)(azi_1),

-2 -1 -1 -1 2
Wok—1 = (azk_l)(aZk—la2ka2k_1)(azk—1azk_zazk_l)(azk_l)’
1,1 2
ok = Ay (Aog—1d5g Aoy ) (A2 _1)-
which can be extended to the free basis B’ of H[X, X]

B, = (B_(Bl UBZ U{agk_l})) U{O“?' .. ,Olzk},
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where
-1 -1 -1
By ={aiazay ,azasaz ..., ax_104205, 4}
and
-1 -1 -1
By ={aszazaz ,asasas -, ..., dxk_102k—205;_q}-

Thus, H is a free factor of H[X, X].

A similar argument shows K is a free factor of K[X, X]. Thus, S satisfies the free
factor property.

From (4-1) we compute |X : H[X, X]| = 2¥, so by Proposition 2.3 J is rationally
homologically fibered. Thus, S is an unknotted minimal genus Seifert surface, and J is
rationally homologically fibered. It follows from Proposition 2.5 that the commutator
subgroup of J is residually torsion-free nilpotent. O

Proof of Corollary 1.10 From the Seifert matrix (4-1), we compute the Alexander

polynomial
Ay(r) = (t —2)% @2t — ¥,

It follows from Theorems 1.4 and 1.6 that 71 (M) is biorderable. ad

Appendix A Proofs of lemmas

In this appendix, we present the proofs of Lemmas 3.6, 3.7 and 3.8. Let J be a pretzel
knot P(2p +1,2g + 1,2r 4+ 1) with 1 < g <r. Define the Seifert surface S and the
groups X = (a,b), H =~ (g, Bg) and K = {ak, k) as in Section 3.

A.1 Proof of Lemma 3.6

Lemma 3.6 If Jisa P(2p+1,3,2r + 1) pretzel knot with p < —2, then S satisfies
the free factor property.

Proof From (3-1),
ag =b lab 'a?T, ag =ab la?T!,
Bu =b""a1b, Bx =b"Tra Yba .
The abelian group X/H [X, X| has a presentation matrix
(1 —r— 2)
0 —N )’

where N = pr+2p+2r +2 = (p+2)(r +2) — 2, which is negative since p < —2.
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Let C = —N. Using C = {1,b,...,bC} as a set of coset representatives, we apply
Reidemeister—Schreier to obtain a free basis of H[X, X]. Modifying this basis, we get
B={x0,...,xc},

where xj, 1= bkab=""2% when0 <k <C —1 and Xc = bC.
Using the rewriting process, we have that
-1 -1 -1 -1 -1 .—1
aH = Xc XC-1(Xc—y—4XC—2r—6" " ¥C—i(rr2)—2" " Xr42%0 )
and
B =xg'xcl xc.
(Note that C > r 4 2 since p < —2, s0 x4 is defined.) We can extend {ag, Sy} to

the set {ag, BH, X1,...,XC—2,XC}, which is a free basis of H[X, X], so H is a free
factor of H[X, X].

X/K[X, X] has a presentation matrix
-N 0
—-p—=21)

Let/ =—p—2so C =I(r+2)-+2. Note that / is a positive integer. We obtain a free
basis of K[X, X]
B={xo0,...,xXc},

where xj, 1= akba'* when0 <k <C —1 and Xc = aC.

Using the rewriting process,

XK = xl_+11
and
-1
Bk = X0XC X1(r+1)+2XIr +2X1(r—1)+2 " X201 +2X[ +1-
The set {ak, Bk, X1,...,X],X]42,...,XC} is a free basis of K[X, X] so K is a free
factor of K[X, X]. Thus, S satisfies the free factor property. |

A.2 Proof of Lemma 3.7
Lemma 3.7 Suppose J is P(—3,2q + 1, 2r + 1) and one of the following conditions
holds:
(1) g=2andr >6,
2) g=3andr >4,
3) ¢q>3.
Then S satisfies the free factor property.
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Proof This lemma is shown by applying the outline from Section 2 to two cases. First,
we address the case when g =2 and r > 6, then we show the lemma is true when g > 3,
r>4andg <r.

Caseg=2and r > 6 X/H[X, X] has a presentation matrix
1 -3
0 N)°

H|[X, X] has free basis x; = bkab=%3 fork =0,...,N — 1, and x5 = b". Under
this basis

where N =r — 3.

oy = (b_la)zb_la_1 = xX,lxN_lxlexal
and

1 —1\2 -1 -1
Br =b"THba™) =XNX] XNXy_iXN.

Since r > 6, we have N > 3, so xy—1 # x1. Thus, the set {ag, Bg,Xx2,...,xN}isa
free basis of H[X, X] so H is a free factor of H[X, X].

X/K[X, X] has a presentation matrix
1 -2
0 N)’

K[X, X] has free basis x; = bkab=*2fork =0,...,N —1, and Xy = b . Under
this basis

where N =r — 3.

ag = (ab H2a ! = Xoxlx()_l

and

B =b" a7 (ba™")? = xyxy T xg L
The set {ag, Bk, X0, X3,...,xn} is a free basis of K[X, X] so K is a free factor of
K[X, X].

Caseqg >3and r >4 X/H[X, X] has a presentation matrix

1 —r
0 N)°
where N =qr —q—r —1= (g —1)(r — 1) — 2. Note that since ¢ > 3 and r > 4,

N>r—-2>1.
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We then obtain a free basis x; = bkab="k for k = 0,...,N—land xy = bN . Under
this basis

-1 1,3 -1 -1
ag = (') a3 = xy x N1 XN X2 X2r 3 XN_p 42X N X1XG
and
_pr+l@p)? _ -1 _—-1_-1 -1
B =" =y AN—r+2XN-2r43 " Xr—2XN-1-

Since N > r —2 > 1, the set {ay, Bg, X2,...,xN} is a free basis of H[X, X] so H
is a free factor of H[X, X].

For K, we begin by substituting @ = a«bx« and b = b, so that

1 —q—1

ag =albla;' and Pg =bla;

X/K[X, X] has a presentation matrix
N 0
1—q 1)’

Under the basis x; = a*b*ai_q_k fork=0,...,N—land xy =a

where N =gr —q —r — 1.
Y
oK = xl_l
and
Bk = X0Xq—1"""X(g-1)(r—1)XN -

Similarly to H, K is a free factor of K[X, X]. Therefore, S satisfies the free factor
property. O

A.3 Proof of Lemma 3.8

Lemma 3.8 Suppose J is P(—5,2q + 1,2r + 1) and one of the following conditions
holds:

(1) g=3andr > 13,
2) g=4andr > 9,
3) g=5andr>17,
“4) gq>>5.

Then S satisfies the free factor property.

This lemma is shown by applying the outline from Section 2 to several cases.
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Lemma A.1 If J is P(—5,7,2r + 1) with r > 13, then S satisfies the free factor
property.

Proof In this case,q =3 and N =r —8. X/H[X, X] has a presentation matrix

1 —4
0 N/
We use the free basis, x; = bkab=4* fork =0,...,N —1 and XN = M.

When r = 13,
ag = x§1X4X5x2xsx0x5_1lex61
and

_ 2. —1 -1 —1 -1 -1
BH = X5Xy X5 X5 X5 X Xs,

SO
1

—1.-1
BHOH = X5X4 Xq .

The set {ag, BH, X1, X3, X4, X5} is a free basis of H[X, X] so H is a free factor of
H[X, X].

When r > 14,
-1 —1.-1

O = XNy XN_1XNX2X5X4 X,

and
_ —1.-1.-1_-1

BH = XNX5 X5 Xy Xy_1XN.
The set {og, BH,X1,X3,...,XN} is a free basis of H[X, X] so H is a free factor of
H[X, X].

X/K[X, X] has a presentation matrix

1 -3
0 N/
We use the free basis x; = bkab=3 % fork =0,...,N —1 and xy = b".

Using this basis,
ag = xox2x4x3_1x51.

Whenr =13 or r = 14,

BK = XNXe NXN' X3 X3 Xg
and, when r > 15,
Bx = xnxgxyxstxg !t
In both cases, the set {ax, Bk, X0, X1, X4, ..., XN} is a free basis of K[X, X] so K is
a free factor of K[X, X]. O
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Lemma A.2 If J is P(—5,9,2r + 1) with r > 9, then S satisfies the free factor
property.

Proof In this case, g =4 and N =2r —10. X/H[X, X] has a presentation matrix
N O
-2 1

after the substitutions a = bia* and b = b.. We use the free basis x; = aljb*a;z_
fork=0,...,N —1and xy =a*N.

k

When r =9,

1 1

og = x0x3x6x8x1x2_1x§1x7_1x5_1x2_ Xo
and

2 —1.—1,.—1_—1_-1
BH = (X0X2X4X6X8) X0X2X| Xg Xg X3 Xg -

The set {ag, Br. X0, X1, X2, X4, X6, X7, Xg} is a free basis of H[X, X] so H is a free
factor of H[X, X].

When r = 10,

1 1 1

-1.-1.-1_-1_-1_—
OH = X0X3X6X9X10Xy X19 X7 X5 X5 Xp
and

1 1

2. -1 —1_—1_—1_—
BH = (X0X2X4X6X8X10) X0X19 Xg Xg X3 X -
When r > 11,

1 1

—1-1.—1_ -1, .—

and

1 1

1. —-1.-1._.—
BH = X0X2 - XN_2XNX0X2X4X6X8X10Xg Xg X3 Xg .

In both cases, the set {a g, g, Xo, - .., X6, X8, X10, - . . » XN } 18 a free basis of H[X, X].

X/K[X, X] has a presentation matrix

(07")

We use the free basis x; = bkab3 "k fork =0,...,N —1 and Xy = b, Using

this basis,
-1 -1
OK = X0Xr—4XNX2Xr—2X,_3X(
and

_ =1 =1 —1 —1 —1 -1 1
Bk = X4 Xy X, Xy Xy X;_4Xq -
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Since r > 9,
N=r—-84r—-2>r—-2>r—-3>r—4>0,

so the generators x,—», xX,—3 and x,_4 are valid generators.

The set {ag, Bx,X1,.. > Xr—4,Xr—2,...,XN} is a free basis of K[X, X] so K is a
free factor of K[X, X]. ad

Lemma A.3 If J is P(—5,11,2r 4+ 1) with r > 7, then S satisfies the free factor
property.

Proof In this case,g =5and N =3r —12. X/H[X, X] has a presentation matrix

1 r—6

0 N )
We use the free basis x; = bkab™ %% fork=0,...,N—1 and xy =bN.
Using this basis,

oy = x2_r1_6xNxal.
Whenr =7,
B = X9x51x2_1x21x6_1x8_IX9,

and, when r > 8§,

1.-1 -1 _—1
Xp_3X2r—8X3,—13XN -

BH = X3,_sXNXy
Note that, when r > 8,
N >3r—13>0,

N=r—742r—5>2r—5>2r—6>2r—8>0,
and
N=2r—-9+r—-3>r—-3>0,

so the generators x3,—13, X2r—5, X2r—6, X2r—g and x,_3 are valid generators.

In both cases, the set {og7, B, X1, Xx3,..., XN} is a free basis of H[X, X],so H is a
free factor of H[X, X].

After making the substitutions a = b2ay and b = b, X/K[X, X] has a presentation

matrix
N O
31)°
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We use the free basis x; = aXbya2™ fork =0,...,N —1 and xy = bY . Using this
basis,

-1 -1 -1 -1
QK = X1Xpy XN-1XN—3XN—5XN_4XN_rXNX]

and

-1 -1 -1 -1 -1 -1 -1
Since r > 7, we have N > 9, so all the generators used are valid generators.

The set {ag, Bk, X0,... . XN—8, XN—6,XN—5. XN—4, XN—3, XN—1, XN } is a free basis
of K[X, X], so K is a free factor of K[X, X]. O

Lemma A4 If J is P(—5,13,13) or P(—5, 13, 15), then S satisfies the free tactor
property.

Proof If Jis P(—5,13,13),then p=—3andg =r =6. X/H[X, X] has presentation

matrix
10 0
-2 1)

We use the free basis xj := ak¥ba=2k fork =0,...,9 and x1¢9 := a'©.

Using this basis,

1 1 1 1 1

of :xl_olxglx;lxg X5 X4 X3 X5
and
BH = X0X2X4X6X8X10X0X2X3X4X5X6X7X8X10s
SO
BHOH = X0X2X4X6X8X10X0.
The set {ayg, B, X0, X1, X4, X5, X6, X7, X8, X9, X190} is a free basis of H[X, X], so H

is a free factor of H[X, X].

X/K[X, X] has presentation matrix

11
010/
We use the free basis x; 1= ak¥bal* fork =0,...,9and x10 := al®.
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Using this basis,

oK = xoxl_olx8x6X4x2x0x1_01x9_1x10x0_1
and

Br = xg 'x10xg x5 Ty Txg Trg Txpoxg L

The set {ak, Bk, X0, X1, X3, X4, X5, X6, X7, X8, X10} is a free basis of K[X, X] so K is
a free factor of K[X, X].

If J is P(—5,13,15), then p = —3, ¢ = 6 and r = 7. After making the substitutions
a= bia* and b = b, X/H[X, X] has presentation matrix

14 0
4 1)°
We use the free basis x; := aljb*ai_k fork=0,...,13and x4 := ai“.

Using this basis,

-1 -1 -1,—-1._-1_-1 -1
OH = X0X14 X11X8X5X2X14 X13X14Xg X3 X7 X1g X14Xg

and
_ -1 -1 —-1..—-1 -1,.-1._-1_-1 -1

The set {ay, BH, Xo0,...,X5,X8,...,X14} 1s a free basis of H[X, X] so H is a free
factor of H[X, X].

X/K[X, X] has presentation matrix
1 2
014)°
We use the free basis x; := bkab? % fork =0,...,13 and x14 := b14.

Using this basis,

—1 —1 —1
K = X0X14 X11X8X5X2X14 X13X10X14X(

and
Bk = x19 X153 X143 ' x5 xg X7y X1axg
SO
Bron = x14xg .
The set {ox, Bx,X1,X3,...,X14} is a free basis of K[X, X], so K is a free factor of
K[X, X]. a
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Lemma A.5 If J is P(—5,2¢g + 1,2r + 1) with g even, g > 6 and r > 8, then H is
a free factor of H[X, X].

Proof Let ¢ be the integer such that g = 2¢. X/H[X, X] has a presentation matrix
G)
0 w)’
where w =cr —2c—r—1and N =2w.
We have the set of coset representatives
C=1{1,b,b% ....,b" Y a,ab,ab?, ... ab¥"'}.

We apply Reidemeister—Schreier to find a free basis of H[X, X]. In the following
computations we assume that the coset representative a2 of a2 is b”. For this to be
correct, it must be true that » < w, which we verify here.

Since g > 6, we have ¢ > 2, and r > §, so
w=cr—2c—r—1=(=3)(r-2)+F—=7)+r>r.
We apply Reidemeister—Schreier to find x. x = cx(¢x)~! foreachc €Cand x € {a, b}:

o blab~'a™! if0<i<w-—1,
Xpig = babia) =% s TEsl=w

1 ifi =0,
o 1 ifo<i<w-—1

Xpip = BTG = - ’

bi.b G b¥ ifi =w-—1,

L — ablab™i—" if0<i<w-—r,
Xabia = abla(abla) U= i T w—i—r .
ab'ab fw—r<i<w-1,

i1, 1 if 0 <i<w-—1,
Xabi,bzabl+1(abl+1)_1=% =1 <w

ab¥a~! ifi =w-—1.
The nontrivial elements x. » form a basis {x1,..., Xy, Yo,..., Yw}, Where
blab='a™! ifl<i<w-1,
xXi = .
! b¥ ifi =w,
and ) .
ablab™ 7  fO0<i<w-r,
yi = 1ablab¥ 77" ifw—r<i<w,
ab¥a=! if i =w.

Using this basis,
Baam = yy '
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and c—

:BH::yl_lx;1 II(Y§3)+1X§a)+2)YEizx511xw»
i=1
where
S()=w—i(r—2).

We claim that §(i) # 0 for all i. Since w = (¢ — 1)(r —2) —3
si)y=w—i(r—-2)=0F—-2)(c—i—1)-3,

so if §(i) = 0 then (r —2)(c —i — 1) = 3. However, since r > 8, we have that r — 2
does not divide 3.

Thus, y, only appears once in Sz so the set {Bgomg, B, X1,..., Xw, V2,..., Yw} 18
a free basis of H[X, X]. Since {Byam, Py} is a free basis of H, H is a free factor of
HIX, X]. O

Lemma A.6 If J is P(—5,2g + 1,2r + 1) with g odd and g > 7, then H is a free
factor of H[X, X].

Proof Let ¢ be the integer such that g =2c¢ + 1. X/H[X, X] has a presentation matrix

1 v
0ON)’
where v =cr—2c—r—2and N =2cr—4c—r—4=2v+r.

We use the free basis x; = b¥ab? ¥ fork =0,...,N —1 and x5 = b". Using this
basis,
Brom = xy 4, xNxg !

and

2¢—1
ﬂH'::x;ir+1 II Yis
where =
o xe_(}) ife(i)<N—v—1,
= xhxn ife(@=N—v—1,
and

€(i)=2+i(v+1) mod N.
Since g > 7, we have ¢ > 3, and, since r > 7,

v=cr—2c—r—2=(c-2)(r—-2)4+r—-6>1.
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This means that
N=2v+r>v+r+1>v+r>0,

SO Xy+r and Xy 4,41 are valid generators.

We claim that €(i) is distinct for each i = 0,...,2¢ — 1. Suppose that €(i) = €(j)
for some 7 and j. Then (j —i)(v 4 1) is a multiple of N. In particular, N divides
(j —i)ged(N, v+ 1). Applying the Euclidean algorithm to N and v + 1, we have
N=2w+1)+r-2
and
v+1l=(—-1)(r—-2)-3,
o)
ged(N,v+1) = ged(r —2,3) <3.
The maximum value of j —1i is 2¢ — 1. It follows that
N <3Q2c—-1).

However, since c >3 and r > 7,

N=2cr—4c—r—4=Q2c—1D)r—-4)+4c—-8>32c—1)+4>3Q2c—1),
which is a contradiction.

Thus x¢(g) = x2 only appears once in By so the set {Bgay. By, X1,Xx3,....XN}isa
free basis of H[X, X]. Therefore, H is a free factor of H[X, X]. ad

Lemma A.7 If J is P(—5,2q + 1,2r + 1) with g =0 mod 3, ¢ > 6 and r > 8, then
K is a free factor of K[X, X].

Proof Let ¢ be the integer such that ¢ = 3c. X/K[X, X] has a presentation matrix

1 v
0N)’
where v =cr—2c—r—1land N =3cr—6¢c—2r—-2=3v+r+1.

We use the free basis x; = b¥ab ¥ fork =0,..., N —1 and xy = bV . Using this
basis,

BROK = Xyir i1 X2y 4r11XN X
and 32

— 1 -1 .
Pk = Xytr+1X204+r+2 l_[ Vi
i=0
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where

_1 . .
b= X0y %f§(1)<N—v—l,

xg_(})xN if¢@)>N—-v—1,
and
(@) =1+i(v+1) mod N.
Since g > 6, we have ¢ > 2, and, since r > 8,
v=cr—2c—r—1=(c—-1)(r—=5)+3c—6>1.
This means that
N=3v+r+1>2v+r+2>2v+r+1>v+r+1>0,

SO Xy+4r+1, X2v+r+1 and X2y 4,42 are valid generators.

Suppose that (i) = ¢(j) for some i and j. Then N divides (j —i) gcd(N,v + 1).
Applying the Euclidean algorithm to N and v + 1, we have

N=3w+1)+r-2
and
v+l=(c-1D(Fr—-2)-2,
o)
N <2(3c—-2).

However, since ¢ > 2 and r > 8,

N =3cr—6¢c—2r—2=0Bc—2)(r—4)+6c—10>2(3c —2),

so {(i) is distinct for each i =0, ...,3c — 2. Thus x¢() = x1 only appears once in
Bk so the set {Bxak, Pk, X2,...,xn} is a free basis of K[X, X]. Therefore, K is a
free factor of K[X, X]. ad

Lemma A.8 If J is P(—5,2g+1,2r + 1) withg =1 mod 3 and g > 7, then K is a
free factor of K[X, X].

Proof Let ¢ be the integer such that g =3¢ + 1. X/K[X, X] has a presentation matrix

b 5)

where v =cr—2c—1and N =3cr—6¢c—r—4=3v—r—1.
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We use the free basis x; = bkab=""k fork =0,...,N —1 and XN = M. Using this

basis,

—1 1 1

Brak = xy'xyy x5, g
and
3c—1
ﬁK:xlele_le;-il-l 1_[ i,
i=0
where . ) .
b= X0 () ifni) <N —v+1,
i = -1 . .
xxgln(i) ifn@i)>N—v+1,
and

n(i)=2—i(v—1) mod N.
Since ¢ > 7, we have ¢ > 2, and, since r > 7,
v=cr—2c—1=(—-1)(r—-8)+4c—-8+r+1>r+1.

This means that
N=3v—r—-1>2v>v+1>v>0,

SO Xy, Xy+1 and xp, are valid generators.

Suppose that (i) = n(j) for some i and j. Then N divides (j —i) gcd(N,v —1).
Applying the Euclidean algorithm to N and v — 1, we have
N=3w—-1)—(r—2)
and
v—1=c(r—2)—2,
SO
N <2@Bc—-1).

However, since c >2and r > 7,

N =3cr—6c—r—4=0Bc—1)(r—4)+6c—8>2(3c—1),

so n(i) is distinct for each i =0, ..., 3¢ — 2. Thus x, ) = x2 only appears once in
Bk so the set {Bxak, Bk, X1,X3,...,xN} is a free basis of K[X, X]. Therefore, K
is a free factor of K[X, X]. ad

Lemma A9 If J is P(—5,2q + 1,2r + 1) with ¢ =2 mod 3 and g > 8, then K is a
free factor of K[X, X].
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Proof Let c be the integer such that g = 3¢ +2. X/K[X, X] has a presentation matrix

3 -(r+1)
L")

where w = cr —2c¢ —2and N = 3w.
We have the set of coset representatives
C={1,b,b>....0" L a,ab,...,ab¥ ' 4> da?b, ..., a*p" 1.
We apply Reidemeister—Schreier to find a free basis of K[X, X].
Since g > 6wehavec>2,andr >8sor+1 < w:
w=cr—2c—-2=—-2)r-2)+ (-7 +r+1>r+1.

Thus, the coset representative, a3 is b" 1.

We apply Reidemeister—Schreier to find a basis {x1,..., Xy, V1,.-., Yw, Z0, - - -
where ) )
)Cl.:{b’ab_’a_1 ifl<i<w-—1,
Ik ifi =w,
o ablab™ a2 ifl<i<w-—1,
Y= {abwa_l ifi =w,
a’biap—i—T1 if0<i<w-r-—1,
zi =3a?biab® il fw—r—1<i<uw,
a*b®q—? ifi =w.
Using this basis,
Brok =zg"
and c—1
Br=zg'y1'xy! l_[(Z(S_(zl‘)ya_(})ﬂxs_(zl')+2)Z;1—2y1;l—1J’w,
where =

S()=w—i(r—2).
Since w =c(r —2)—2,

Si)—1=w—i(r—-2)—1=0—-2)(c—i)—3,

so if §(i) = 1 then (r —2)(c —i) = 3. However, r — 2 does not divide 3 since r > 7, so

6(i) is never 1, so y; only appears once in fg.

Therefore, the set {Bxax, BK, X1s---sXw> V2s--+»r Yw>Z1,--.,Zw} is a free basis of

K[X, X]. Since {fgak, Bx} is a free basis of K, K is a free factor of K[X, X].
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Appendix B Chart of results

Table 1 summarizes the results we’ve found for the pretzel knots P(—3, Q, R) and
P(=5,0,R) where Q =2g + 1 and R = 2r + 1. The shapes around the cells in
each chart indicate whether or not the knot’s standard Seifert surface S satisfies the

values of R
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Table 1: The results for some P(—3, Q, R) (top) and P(—5, Q, R) (bottom)
pretzel knots where Q = 2¢g + 1 and R = 2r + 1. The integer in each cell is
the value of N. Each cell is in a circle if the knot’s standard Seifert surface
satisfies the free factor property, and in a square if the knot’s standard Seifert
surface does not satisfy the free factor property.
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free factor property. Cells of knots with trivial Alexander polynomial have no shapes.
The integer in each cell is the value of N = det(S4+) = det(S—), which is also the
leading coefficient of the Alexander polynomial. If a pretzel knot’s cell is contained in a

circle and N is a prime power, then the knot group has residually torsion-free nilpotent

commutator subgroup. If in addition N < 0, then the knot group is biorderable.
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