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Quantum error correction in the lowest Landau level
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We develop finite-dimensional versions of the quantum error-correcting codes proposed by Albert, Covey,
and Preskill (ACP) for continuous-variable quantum computation on configuration spaces with non-Abelian
symmetry groups. Our codes can be realized by a charged particle in a Landau level on a spherical geometry, in
contrast to the planar Landau level realization of the qudit codes of Gottesman, Kitaev, and Preskill (GKP), or
more generally by spin coherent states. Our quantum error-correction scheme is inherently approximate, and the
encoded states may be easier to prepare than those of GKP or ACP.
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I. INTRODUCTION

What analog information lacks in robustness, it makes
up for in expressiveness. This can be said of both classi-
cal and quantum information. Continuous-variable quantum
information processing represents a promising approach to
quantum computation that is especially suitable for optical
platforms [1,2]. As with analog classical computation, the
implementation of error correction and fault tolerance in the
continuous setting presents an enduring challenge. Twenty
years ago, Gottesman, Kitaev, and Preskill (GKP) put forth a
prototypical scheme for robustly encoding quantum informa-
tion in continuous-variable quantum systems [3]. The simplest
quantum error-correcting codes of GKP encode an n-level
system in the infinite-dimensional Hilbert space of a single
bosonic mode (harmonic oscillator): C* < L*(R). Such codes
can correct sufficiently small errors that act simultaneously
on any pair of canonically conjugate variables on the physical
Hilbert space.

GKP codes are mathematically elegant, and they have stim-
ulated an enormous amount of interest. However, the requisite
codewords are challenging to prepare, leading to a long time
lag between their theoretical proposal and their experimental
implementation [4]. It is natural to ask whether there exist
finite-dimensional, or “discretized,” versions of GKP codes
that retain their desirable property of protecting against small
diffusive errors. Such codes would encode a logical qudit
in a larger, but still finite-dimensional, physical qudit. GKP
themselves gave an affirmative answer to this question and
proposed an appealing physical realization thereof: an elec-
tron on a periodically identified patch of the plane in a uniform
background magnetic field, i.e., in a toroidal Landau level
[5,6]. Rymarz et al. [7] have since proposed a practical im-
plementation of the requisite “grid states” for this setup.
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GKP codes lend themselves to a variety of generalizations,
such as to multiple modes [8,9] or to planar rotors [10], as
already anticipated by GKP [3]. The key requirement is that
the configuration space be an Abelian group, such as the group
of translations of the real line. Recently, Albert, Covey, and
Preskill (ACP) [11] took substantial steps toward generaliz-
ing GKP codes to non-Abelian group or coset configuration
spaces: C" C L*(G), L*(G/H). In doing so, they brought
tools from representation theory and harmonic analysis to bear
on the problem of designing GKP-like codes. In particular,
ACP develop schemes for encoding a qudit in the rotational
states of a rigid body. Examples include the rotational degrees
of freedom of a generic molecule [with configuration space
SO(3)] and a diatomic molecule with a symmetry axis [whose
configuration space is SO(3)/SO(2) = S2]. The associated
codes are known as molecular codes and linear rotor codes,
respectively.

Despite the advances in continuous-variable quantum error
correction afforded by ACP, a simple and natural question
about these codes has remained unanswered: Do there exist
finite-dimensional versions of ACP codes that retain their
desirable properties? Such codes would embed a logical qudit
in a finite-dimensional quantum system whose configuration
space has a non-Abelian symmetry group. We show that the
answer is yes, and we propose an intuitive physical realization
via a spherical Landau level [12,13]. The (re)appearance of
Landau levels in this context both establishes a similar “dis-
cretization” for ACP codes as for GKP codes, and suggests
a role for quantum Hall physics in quantum computation
beyond the already well-appreciated applications to topolog-
ical quantum computation [14]. However, our scheme is not
limited to Landau levels, and can be realized more generally
by spin coherent states.

We begin by reviewing continuous-variable GKP codes
and their generalizations due to ACP in Sec. II. We emphasize
that all of these codes, as well as their finite-dimensional
predecessors, can be described in the unified framework of
Calderbank-Shor-Steane (CSS) codes. Our main results are
presented in Sec. III. After recalling how the qudit codes of
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GKP can be realized in a planar Landau level with periodic
boundary conditions, we construct finite-dimensional analogs
of the linear rotor codes of ACP. Specifically, we show how
to encode a qudit in a spherical Landau level in a way that
protects against certain rotational errors. We also review the
physics of the lowest Landau level (LLL) as necessary, most
notably the fact that the phase space and the configuration
space coincide. The spherical phase space has a different
algebraic structure than the torus, which necessitates a differ-
ent encoding scheme than for GKP qudit codes. Importantly,
angular momentum errors are energetically suppressed in the
LLL limit, which simplifies our task to that of designing codes
that protect only against rotational errors. More abstractly, our
codes rely on using coherent states for the group SU(2) to
construct “smeared” versions of the linear rotor codewords
of ACP. In Sec. IV, we highlight a few open questions and
comment on possible extensions of our codes. Technical for-
mulas are given in the Appendixes, where we spell out our
conventions for Landau levels (Appendix A), derive useful
properties of spin coherent states (Appendix B), elaborate on
the approximation error induced by smearing position eigen-
states to spin coherent states (Appendix C), and present some
additional codes beyond those considered in the main text
(Appendix D).

II. QUANTUM ERROR CORRECTION

A quantum error-correcting code (QECC) is an embedding
(or partial isometry) of a logical Hilbert space into a larger
physical Hilbert space: Hiogical = Hphys. The aim is to per-
form computations on states in Hjogica While using the extra
degrees of freedom from Hpys to monitor the states for errors.
If Hpnys is finite dimensional, then we call the code finite;
otherwise, we call the code continuous.

A. Finite qubit codes

Consider first a finite QECC that encodes k qubits into
n qubits: C2' <> C?'. The standard notion of performance
in this setting is given by the code distance §. In particular,
consider the Pauli group P, on n qubits, consisting of n-fold
tensor products of the Pauli matrices /, X, Y, and Z along
with an overall phase of 1 or =£i. The weight of an operator
Q € P, is the number of tensor factors in Q that differ from /.
Then a code with distance § can correct all errors from P,, with
weight [ (6 — 1)/2] or less. The standard notation for such a
code is [[n, k, &]].

The stabilizer codes (also called additive codes) [15-18]
form the richest class of finite qubit QECCs. Given an Abelian
subgroup S C P, such that —/ & S, a stabilizer code is defined
as the linear subspace of C?" stabilized by S (i.e., the common
+1 eigenspace of the generators of S). If S has r generators,
then the code comprises k = n — r logical qubits. If Z(S) is
the centralizer of S in P,, then the distance of a stabilizer
code is the smallest weight of the operators in Z(S) \ S. Such
a code can correct a set of Pauli errors £ if for any two
errors E1, E; € £, we have ElTEz € Z(S) \ S. The r generators
of the stabilizer S are called check operators, being what
we physically measure to diagnose errors. The operators in
Z(S)\ S are called logical operators because they preserve

the code subspace (but not the individual states within it). In
fact, Z(S)/S = Py, the logical Pauli group.

A special class of stabilizer codes, the CSS codes (cf. [15]),
will underlie the entirety of our presentation. These are stabi-
lizer codes for which there exists a choice of generators such
that each generator is either an “X-type operator” (consisting
of tensor products of only X and ) or a “Z-type operator”
(consisting of tensor products of only Z and 7). One way
to construct CSS codes is to consider a nested sequence of
groups

SclLcgG,

where G is the group of all X -type errors, S is the subgroup of
all X-type check operators (which leaves all states in the code
subspace invariant), and L is the subgroup of all X -type logical
operators (which acts transitively on a basis for the code
subspace). A logical “position basis” for the code is found
by taking a uniform superposition of the operators from each
coset in L/S and applying the sum to some fiducial position
ket. The dimension of the code is the number of cosets |L/S|.

A dual description of CSS codes is afforded by the se-
quence of groups

2.1)

ScLcG
Here, G, thought of as the group of all Z-type errors, is the
Pontryagin dual of the Abelian group G, i.e., the group of all
complex unitary irreps of G.! On the other hand, S and L do
not denote the Pontryagin duals of S and L: rather, SA =Lt
and L = S+, where L' is the subgroup of irreps in G such
that L_is represented trivially and similarly for S+ To be
sure, S is a subgroup of Z-type operators that leaves the code
invariant (the Z-type check operators), while L is a subgroup
of Z-type operators that acts transitively on a basis for the code
(the Z-type logical operators). A logical “momentum basis”
for the code is found by taking a uniform superposition of
the operators from each coset in L/S and applying the sum to
some fiducial momentum ket. The stabilizer of a CSS code is
generated as S = (S, S), ind the logical operators for a CSS
code are generated as (L, L).

2.2)

B. Finite GKP codes

The preceding discussion generalizes readily to other finite
dimensions. Suppose that the physical Hilbert space is CV.
We denote the “position basis” by |x) and the “momentum
basis” by |p) for x, p € Zy. The two bases are related by a
Fourier transform:

1 N—-1 1 N—-1
=— x), =— “Plpy, (23
p) m;“’ ), |x) JN;” Ip),  (2.3)

where w = ¢?™/N . Sylvester’s clock and shift matrices gener-
alize the Pauli matrices Z and X to N dimensions, respectively.

'For an n-letter qubit code, G is isomorphic to Z4, so it is indeed
Abelian and the Pontryagin dual makes sense.

2In other words, Lt is the collection of all trivial restricted (sub-
duced) irreps of L in G, or the collection of all irreps in G that branch
to the trivial irrep of L.
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They act on the aforementioned bases as

X|x) = |x+ 1),
X|p) = o "|p),

Zlx) = o*|x),
Zlp) =|p+1),

(2.4)
2.5)

with addition understood modulo N, and they satisfy the com-
mutation relation

ZX = wXZ. (2.6)
The generalized Pauli group Py consists of all operators
@°X?Z% where a, b, c € Zy (here, we assume N > 2). The
operators X“Z” form a complete and orthonormal set of opera-
tors on CV. For CSS codes, an X -type operator is any operator
in Py with b = 0, and a Z-type operator is any operator in Py
witha = 0.3

Now consider a code that embeds a K-level system into
an N-level system for general K < N: CK < CV. We can
use the CSS subgroup chain S C L C G, where G = Zy is
the collection of all X-type operators (“position errors”) X¢.
A finite cyclic group of order N has exactly one subgroup
for each divisor of N. Suppose that N = Kr;r, and that we
choose S = (XKr) = Z,, and L= (X") = Zg,,. The dual
groups can be showntobe S = (ZK’Z)A% Z,, and L =(Z") =
Zky,. It follows that the stabilizer (S, S) is generated by X Kn
and ZX™, while the logical operators (L, L) are generated by
X=X"andZ =Z".

The logical position and momentum kets, which both form
bases for the K-dimensional code subspace, are as follows:

r—1

X=j)= fgu—(mﬂ)m
rn—1
P =) Ylp=®&n+ ). @7

\/_nO

where j € Zg. These two sets of codewords are related by a
Fourier transform within the code subspace:

K—1 K—
1
p) = —= ) _(@"")"Ix), Ix) ") PIp)
2> FZe
(2.8)
Indeed, the logical operators satisfy
ZX = " X7 = ¥IKX 7. (2.9)

The logical position kets are spaced a distance r; apart and the
logical momentum kets are spaced a distance r, apart, which
suggests that we can correct all errors X and Z with |a| and
|b| sufficiently small relative to r; and r,, respectively.

To formally deduce the properties of this code, it is easier to
examine the stabilizer rather than the states. A general Pauli
operator X“Z" satisfies the following commutation relations

3Sirl\ce G is isomorphic to Zy, an Abelian group, the Pontryagin
dual G still makes sense.

with the stabilizer generators ZX" and X%"1:
ZKrz (Xazb) — eZTria/rl (Xazb)ZKr2
XKr| (Xuzb) — e*2ﬂib/r2 (XaZb)XKrI .

(2.10)
@2.11)

In particular, for any logical state |v/) in the code subspace,
we have

Zkrz(Xuzb|W)) — ezﬂiu/rlxazb|$)’
XKV] (Xazb|w>) — e*Zﬂib/l‘zxazb|J>.

(2.12)
(2.13)

The operators ZX™ and XX commute, so they can be mea-
sured simultaneously.* Measuring ZX"> determines a modulo
r; and measuring X Kn determines » modulo 75, so this code
can correct all errors of the form |y) — X9Z°[y) with®

o< 2
2 2
Assuming that both r; and r, are odd, there are rjr, =
N/K such errors. This is then a “perfect” code in that the
N-dimensional physical Hilbert space contains exactly rir
copies of the K-dimensional code space, one for each possible
error. In addition, we see that r; and r, control the number of
correctable position and momentum shifts, respectively. If we
want them to be equal, r; = rp, then N/K must be a perfect
square.

While the above construction is quite general, we call the
resulting codes finite GKP codes because in a certain limit,
they approach the GKP codes on L?(R) that we discuss next.
We also refer to them as “qudit codes,” as they embed a qudit
in a larger qudit.

(2.14)

lal <

C. Continuous codes: GKP

We now consider the continuous codes constructed by
GKP [3] that embed a d-level qudit into the infinite-
dimensional Hilbert space of a harmonic oscillator: C¢ <
L*(R). The Pauli group on L?(R), which we denote by P,
can be obtained as the d — oo limit of the single-qudit gen-
eralized Pauli group P,. P is also called the Heisenberg-Weyl
group over R. It is generated by “X-type” displacement oper-
ators X, = e~? “Z-type” displacement operators Z;, = e™**,
and an overall phase é“ fora, b, c € R, where x and p are con-
jugate position and momentum operators satisfying [x, p] =i
(we set i = 1 for convenience). X, is a translation operator in
the position basis (X, |x) = |x + a)), while Z, is a translation

“To perform a projective measurement of an observable (which
projects onto eigenspaces), all one needs is a spectral theorem.
Hence, all normal operators, of which Hermitian and unitary oper-
ators are examples, can be regarded as observables. The operators X
and Z are unitary, but not (in general) Hermitian. Their logarithms
are Hermitian, but not single valued on the torus, hence not good
observables.

A general error takes |1/) to a superposition of terms X“Z”|yr).
These measurements collapse the perturbed state to a single such
term in the superposition, which can then be corrected (assuming
sufficiently small |a|, |b|) to recover the original state |/). If errors
act locally, then errors with large |a|, |b| are unlikely to occur.
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operator in the momentum basis (Z,|p) = |p + b)). These op-
erators obey the commutation relation X, 7, = e 'z, X, The
X,Z, form a complete set of operators on L>(R).

A GKP code is simply the result of applying the CSS
subgroup chain construction to the configuration space R.
Consider a chain S C L C G, where G = R is the collection
of all X-type translation operators. We suppose further that
S and L are discrete subgroups, so our only choices are
BZ for some B > 0. We choose S = (Xyo) = daZ and L =
(Xy) = aZ for some o > 0. The d cosets in the quotient group
L/S take the form S; = jo +daZ for j =0,...,d — 1. To
get a logical position basis |x) for the d-dimensional code
subspace, we take a uniform sum of the operators in each
S, and apply them to a fixed position ket, say |x = 0). The
resulting codewords are infinite superpositions of position
eigenstates:
= lx=a(j+dk). d—1.

keZ

x = j) j=0,...

(2.15)

Now consider the dual description Sclc G where G = R
is the collection of all Z-type translation operators. o 1t is
not hard to see that S = L+ = (Z», Ja) = = =7 and L St =

(Zor jda) = fl”Z The d cosets in L/S are S; = J + Z”Z
for j=0,...,d — 1. We get a logical momentum ba51s | P)
by taking a unlform sum of the operators in each S and
applying them to a fixed momentum ket, say |p = 0) The
resulting codewords are infinite superpositions of momentum
eigenstates:

p=i=Y_|p

keZ

,d—1.

27 )
=_(J+dk)>, ji=0,...
do

(2.16)
By Poisson resummation, we obtain the Fourier transform
relations

d—

Z ’cp |f) de—xp|p

x=0 p =0

2.17)

where w; = ¢27/4. Of course, the exact codewords are non-
normalizable (i.e., distributions) and cannot be realistically
constructed. However, one can construct approximate code-
words that belong to L?(R) by smearing out the infinite peaks
and by modulating the would-be Dirac comb by an overall
Gaussian envelope.

__ The stabilizer subgroup of this code is generated by S and
S, so the corresponding check operators are Xy, and Loz ja-
The logical group for this code is generated by L and L so the
logical X and Z operators are X =X, and Z = Zy, Jda- These
logical operators satisfy

ZX = w4XZ, (2.18)

®To be sure, R is Abelian but also locally compact, so the Pontrya-
gin dual still makes sense.

and they act as follows on the logical position and momentum
bases:

Xx)=x+1), ZFx)=awix),
Xp)=w,"Ip), ZIp)=Ip+1).

Note that the logical group is generated by the “dth roots” of
the check operators.

Because operators in the continuous Pauli group P can no
longer be decomposed into tensor products, the notion of code
distance from the finite case must be amended. However, the
same basic idea still applies. The distance of a finite code
measures the minimum weight of any logical operation. In the
present case, distance is an even more natural notion because
X, and Z, are generated by the Lie algebra operators p and x,
and the Lie algebra can be thought of as the tangent space at
the identity. Thus, the distance of a code is dictated by both
la| and |b|. A good code should protect against Pauli errors
X, and Z, where |a| and |b| are as large as possible. Here, we
are tacitly assuming that errors act locally, which is true for
closed systems but is true for open systems only in certain
circumstances. For example, it holds over sufficiently short
time intervals or when the oscillator is only weakly coupled
to its environment.

In position space, the logical codewords are offset from
each other by «, so we can correct position shifts with |a| <
/2. In momentum space, the codewords are set apart by
27 /da, so we can correct momentum shifts with |b| < 7 /da.
We can correct both types of errors simultaneously because
the corresponding check operators commute. In fact, this
conclusion follows directly from examining the stabilizer. A
generic error operator X,Z, satisfies the following commuta-
tion relations with the stabilizer generators Z¢ and X¢:

Z4(X,Zp) = ¥ (X, Z,)Z°,
XX, 2Zp) = e M (X, 72,)X".

(2.19)
(2.20)

2.21)
(2.22)

After X,Z, acts on an encoded state,’ measuring Z% and X¢
simultaneously will reveal @ modulo «Z and b modulo i—ZZ.
Thus, we can correct all combined shifts with
o
lal < =,
2
(so that |ab| < 7). The key insight of GKP here is that while
one cannot measure x and p simultaneously, one can measure
both of them “up to some lattice” without violating the un-
certainty principle. Note also that we left « as an adjustable
parameter. The larger « is, the more position errors we can
correct but the fewer momentum errors we can correct, and
vice versa. When o = /27 /d, we correct position and mo-
mentum errors equally well. This single-oscillator GKP code

T
bl < —~ (2.23)

"More precisely, an arbitrary noise channel £ acting on the state p
of an oscillator can be expanded as

E(p) = / dadbdd dV C(a, b;d . V)X,Z,pZ}, X,

where the coefficients C are such that £ is completely positive and

trace preserving [3]. If p is a state in the code subspace and if C has
support only on sufficiently small values of its arguments, then the
GKP code can recover p from £(p).
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easily extends to the configuration space R”. The Pauli group
there is the Heisenberg-Weyl group on R”, so a and b become
vector valued.

Finally, to see that the finite GKP codes really do approach
these continuous codes on R, note that as N — oo, the X and
Z in (2.6) limit to infinite-dimensional displacement opera-
tors. We may formally write X — ¢~”? and Z — €>"/¢* where
€ = 1/+/N. Setting r; = a/€ and r, = 1/Kae for some o >
0 then shows that as N — oo, the logical operators X =Xxn
andZ = 2" approach X, and Z»; /4o withd = K 8 In brief, a
(finite) GKP code is a CSS-type stabilizer code for which the
stabilizer is a discrete Abelian subgroup of the generalized
Pauli group or the continuous Heisenberg-Weyl group.

D. Continuous codes: Beyond GKP

For GKP codes and their immediate analogs, the configu-
ration space can be identified as an Abelian Lie group: R, R",
or §' = U(1). Elements of these groups label position kets:
{lg) : ¢ € G}. On the other hand, momentum kets are labeled
by elements of the Pontryagin dual G where R = R, R =
R", and U( 1) = Z. For example, the momentum eigenstates
of a planar rotor with G = U(1) are {|£) : £ € Z}.

Can GKP codes generalize to configuration spaces de-
scribed by non-Abelian Lie groups? The main problem is that
Pontryagin duality only works for locally compact Abelian
groups, so it is unclear what the “momentum” space should be
in this setting. This problem was tackled and solved by ACP in
[11]. Given a non-Abelian Lie group G as our configuration
space, the quantum Hilbert space is L?(G). The Peter-Weyl
theorem suggests that we look at the matrix coefficients of G.
Let me(g) denote the (m, n) matrix element of the £th irrep
matrix for the element g € G. The collection of all matrix
coefficients is again denoted by G, but unlike in the Abelian

case, it is no longer a group. We write momentum kets as | an).
They are related to the position kets |g) via

/dg,/ Gl Z!.(9)18),

= 2 \Jigi%m

¢.m,neG

> (2.24)

where d; is the dimension of the £th irrep of G and |G| is the
volume of G with respect to the Haar measure.

Because G is non-Abelian, there exist two natural kinds of
X-type operators on L?(G), generated by the left- and right-
regular actions of G on itself:

— <~ _
X ulg) = |hg), Xiulg) =lgh™").

The choice of Z-type operators is much less clear. A fairly
natural extrapolation from the Abelian case is to consider
Z-type operators that act diagonally in the position basis via
multiplication by the corresponding matrix coefficients:

Zl,lg) =

(2.25)

Zyn(2)l8). (2.26)

8In a different limit, the finite GKP codes approach GKP codes on
the circle S' [3].

The problem is that the X - and Z-type operators taken together
do not form a Pauli group (indeed, the Z-type operators alone
do not even form a group), so we cannot use them to construct
stabilizer codes outright. Notwithstanding, these operators
form an orthonormal basis for operators on L2(G), so we can
proceed analogously to the construction of GKP.

Codes on these spaces can again be constructed using the
S c L c G technique, and will be called generalized GKP
codes. ACP focus primarily on the case G = SO(3). This is
the configuration space of a rigid body pinned to a point,
which serves as the ball-and-stick model for the rotational
degrees of freedom of a molecule. The orientation and angular
momentum of a rigid body, being conjugate variables, are
subject to similar kinds of diffusive errors as x and p for
an oscillator. The corresponding “molecular codes” of ACP
can correct any combination of sufficiently small rotational
and angular momentum errors, subject to the tradeoff that
increasing the magnitude of the correctable angles decreases
the magnitude of the correctable angular momentum kicks
(and vice versa). While not strictly stabilizer codes, these
codes can be described as the degenerate ground space of a
Hamiltonian constructed from a sum of commuting stabilizer
generators.

Details for molecular codes on SO(3), as well as a frame-
work for codes on non-Abelian G, can be found in [11]. While
we will not need the explicit analysis here, a noteworthy point
is that when G is a non-Abelian group, the subgroups S and L
may themselves be non-Abelian. Different choices of S and L
allow for the construction of codewords that protect against a
variety of different sets of errors. Detectable position shifts
correspond to elements of G/L, while logical shift errors
correspond to elements of L/S.

E. Continuous codes: ACP on the sphere

GKP codes and generalized GKP codes are all formulated
for configuration spaces that have a group structure. ACP
[11] consider an even further generalization of GKP codes
in which the configuration space is not a group, but rather a
homogeneous manifold. Like (generalized) GKP codes, these
codes protect against noise that simultaneously affects two
conjugate variables describing the degrees of freedom of a
continuous-variable system.

ACP consider the specific scenario where the configuration
space is the two-sphere S, which describes a heterogeneous
linear molecule fixed to a point (called a linear rotor) as well as
a particle on a sphere. Since S? can be regarded as the quotient
space SO(3)/SO(2), we can essentially take the analysis for
SO(3) as a starting point and branch each irrep of SO(3) down
to SO(2).

The physical Hilbert space is L?(S?). We write |v) = |6, ¢)
for position eigenstates on S, where v is a unit vector on
S? c R? and (0, ¢) are angular coordinates. We write mo-

. ¢ . . .
mentum eigenstates as |, ), where £ is a non-negative integer

and |m| < €. The continuous position basis and the discrete
angular momentum basis are connected via

V)= > Y ’i> ‘ﬁz> = /SZ dv Y (w)v), (2.27)

€0 |m|<L
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where the Y are (complex) spherical harmonics. Note that
(vl,) = Y(0).

Only the left X -type operators from SO(3) survive: a rota-
tion R € SO(3) is represented by a unitary operator Xg, which
acts as

Xg|v) = |Rv). (2.28)
This action has fixed points, as |v) is invariant under any

rotation about the axes £wv. In the angular momentum basis,
we have

Xr (2.29)

14 14
m> =) Dfn,m<R)'m,>,

[m'|<L

where the Df;m are Wigner D-matrix elements. Note that the
Xg operators do not disturb the irrep label £, only the internal
label m.

The Z-type operators

V= / dv YL (v)lv) (], (2.30)
SZ

which are diagonal in the position basis, are called momentum
kicks. They act on position kets as ¥ |v) = Y(v)|v). On the
other hand,

(v

This integral vanishes unless the angular momentum selection
rules are satisfied: |[¢ — ¢/| < L <L+ andM =m+m'.

The X -type operators Xy together with the Z-type operators
Y* morally comprise the “Pauli group” on L?(S?), despite not
forming an actual group. They also form an overcomplete
frame, rather than an orthonormal basis, for operators on
L*(S?). One can think of them as Pauli operators in the sense
that the X translate the position kets whereas the ¥'* translate
the momentum kets, analogously to their namesakes in finite
quantum error correction. Both also act “locally” in the sense
that if R is a small rotation, then Xg|v) is close to |v), and if
£, m are small, then ?,f; |f1,,) is close to |:fl’,).

To construct an ACP code, we again choose a nested se-
quence of groups S C L C G. However, G is now not the
configuration space itself, but rather the largest group of con-
tinuous “translations” (orientation-preserving isometries) of
that space. When the configuration space is a sphere, G =
SO(3) and the corresponding codes are called “linear rotor
codes.” Our focus in this work will be on constructing finite
analogs of these linear rotor codes.

The subgroups of SO(3) are well classified, but to illustrate
the simplest such codes, we restrict our attention to the cyclic
subgroups S = (Xg_2r/v)) = Zy and L = (Xg.x/n)) = Zon.
Here, N is a positive integer and R, (6) denotes a rotation about
the z axis by the angle 6. The quotient group L/S contains two
cosets. If we act with these on a fiducial ket, say |7 /2, 0), and
take a uniform superposition, then we obtain the following

Y44
Yl 2.31)

Z,> = / dv YE) Y )Y ().
SZ

logical states in the position basis:

— 1 T 2mwh
O=_ P T— P
EEP D

1 w 2mh 7w
|>_ﬁ2 > N N> (2.32)

These codewords are equal superpositions of equatorial po-
sition eigenstates. They span a two-dimensional subspace of
L2(S?).

The general logic of GKP tells us that a position shift (rota-
tion) on S? is correctable as long as it keeps every constituent
point of a codeword inside its corresponding Voronoi cell,
which is the set of all points on S? that are closer to that point
than to any other constituent point of a codeword.” From the
explicit expressions (2.32), we see that these Voronoi cells are
spherical lunes bounded by lines of longitude with angular
separation 7 /N. On the other hand, a short computation shows
that in the angular momentum basis, we have

) =VNY_ Y (1Y /2,0

€20 |pN|<t

£
pN> (2.33)

for r € {0, 1}. Hence, the codewords only have support on
. ¢ . .
angular momentum eigenstates |, ) where m is a multiple of N.

This property, together with the angular momentum selection
rules (2.31), implies that the value of m in a momentum shift
error Y can be measured modulo N. The value of m modulo
N determines m if [m| < N/2. Since [m| < £, a momentum
shift is correctable if ¢ < N/2. In summary, increasing N
(analogous to the inverse of the parameter « in the GKP codes
on R) reduces the code’s ability to correct position errors and
increases its ability to correct momentum errors.

However, the fact that Xz and )7,5 eITors are Now over-
complete for operators on L?(S?) turns out to imply that this
code cannot correct combined position and momentum shifts
of the form p > Xg¥!pPLTX!. Tt can correct sufficiently
small position shifts or sufficiently small momentum shifts
individually, but not products of both [11]. The extra sym-
metry of a linear rotor compared to that of a rigid rotor leads
to a smaller configuration space, and hence less “room” for
diagnosing errors. Fortunately, for our eventual goal of con-
structing finite-dimensional linear rotor codes, only rotational
errors will turn out to be relevant.

III. LOWEST LANDAU LEVEL CODES

We now motivate and present our main result: the lowest
Landau level (LLL) codes.

9We are deliberately oversimplifying the argument here. In fact,
to satisfy the quantum error-correction conditions, it is important
that the codewords |0) and |1) be related by a parity transforma-
tion, which acts as Xp|v) = |—v). This condition requires that the
integer N be odd. In addition, the reliance of ACP [11] on this
parity argument restricts their discussion to qubit codes on the sphere
[Zy C Zgn € SO(3) codes with d = 2]. We defer a more careful
discussion to Sec. III.
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A. Motivation: Planar LLL

The physical insight that motivates this work is that the
finite GKP code described in Sec. IIB can be realized by
an electrically charged particle in a uniform magnetic field
in two dimensions [3]. The Hamiltonian H of such a par-
ticle commutes with magnetic translations rather than with
ordinary translations (see Appendix A). The commutator of
two magnetic translation operators 77 and 7, gives rise to
an Aharonov-Bohm phase 2wk, where k is the number of
magnetic flux quanta enclosed by the corresponding path:

) 2 h

TszTvl—lTvz—l — eZnik’ k — (I)O —

= %0
Here, @ is the enclosed flux and g is the particle’s charge.
The two translations commute if k is an integer. Therefore,
T} and T, form a maximally commuting set if the unit cell
of the lattice that they generate encloses one flux quantum.
Suppose that this is the case: then the simultaneous eigenbasis
of the operators H, T, T, furnishes a Landau level of N
degenerate states, where N is the total number of flux quanta.
The operators

3.1

Z=1'% X=n (3.2)

satisfy (2.9). These are the logical operators on a K-
dimensional code space stabilized by the check operators

S, =2=1, Sx=X*=t1FK (3.3)

Suppose further that we impose periodic boundary conditions
so that

" = (T¥)" = 1. (3.4)

Then the number of flux quanta through the resulting torus
is N = Krr,, and the stabilizer generators Sz and Sy tile the
torus with r;r; cells containing K flux quanta each. The wave
function of any state in the code subspace is periodic with
respect to these cells. The error operators

z=1"%*" Xx=1" (3.5)

implement fractional shifts of these periodic wave functions
on a scale smaller than the size of a single cell.

The fundamental principle at work in the above example
is that in the strong-field limit, a system of charged particles
in a background magnetic field is described by a Lagrangian
that is first order in time derivatives. In this limit, the kinetic
terms become negligible, the Hamiltonian vanishes, and the
configuration space becomes an effective phase space. If the
configuration space (hence the effective phase space) is com-
pact, then the associated Hilbert space is finite dimensional.
In the case of the lowest Landau level on a torus T2, magnetic
translations generate a two-dimensional compact phase space.

B. LLL Hilbert space

We have seen that taking an appropriate infinite-dimension
limit of the qudit codes reviewed in Sec. II B reproduces the
continuous-variable GKP codes of Sec. IIC for the phase
space R? [3]. We now show that there likewise exist finite-
dimensional incarnations of the continuous-variable ACP
codes of Sec. ITE.

Additional complications arise when the geometry of the
configuration space is curved. Nonetheless, drawing inspira-
tion from the preceding discussion, a reasonable strategy for
“finitizing” the quantum codes of ACP [11] is to start with a
physical system whose configuration space M admits a sym-
plectic structure. One might then hope that in some LLL limit,
the noncompact phase space 7*M goes to the compact phase
space M and the corresponding infinite-dimensional Hilbert
space goes to a finite-dimensional one. These considerations
rule out the molecular codes based on SO(3) and suggest that
we focus on the linear rotor codes based on S.

The spherical Landau problem thus provides a natural
physical setup for a finite-dimensional ACP-inspired quantum
code. Consider a particle of electric charge g constrained to
move on a sphere S? of radius R around a magnetic monopole
of magnetic charge BR?> with gB > 0. The corresponding
magnetic field and electromagnetic angular momentum are

- BR}%W . , > ).
= L =7 x (=ihV — gA) — gBR“?*, (3.6)

where [L;, L;] = ihe; jkLk. The Hamiltonian is diagonalized by
the simultaneous eigenstates |:fl) of [? and L3, which satisfy

215 = r2ee + 1)) and Ls|‘) = him|'). We read off the

m
spectrum by writing

1 -
H = ——(=ihV — gA)|,—¢
2m

-2 RlE+ 1) - 2 3.7
T 2mR* 2mR? ’ '
where the energy levels ¢ are bounded from below as
exli= P81, (3.8)
VT |52 '

The boxed identification in (3.8) can be viewed as a “corre-
spondence principle” that relates the classical and quantum
Casimirs gBR? and 7, respectively [19]; the fact that j is
a half-integer follows from the Dirac quantization condition
(see Appendix A3 for details). In a suitable longitudinal
gauge that is regular at the north pole, the wave functions are
monopole (or spin-weighted) spherical harmonics:

<9,¢‘,f1>=jxﬁ(0,¢>, =), —e<m<e (39)

These functions are written explicitly in (A77).' By tak-
ing a double-scaling limit of large B and small R with j
fixed, one can make the energy spacing between levels ar-
bitrarily large while preserving the degeneracy of the lowest
Landau level (¢ = j). This projection to the LLL truncates
the infinite-dimensional space of rotational states to a finite-

dimensional subspace of 2j + 1 degenerate states | Ifq ), where

m = —j, ..., j. Theresulting system effectively transforms in
the spin-j representation of SU(2).

19More precisely, monopole spherical harmonics are sections of a
complex line bundle over S2, but we have made a choice of gauge
that turns them into genuine functions.
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A noteworthy feature of this construction is that in the LLL
limit, angular momentum kicks that take states in the LLL
up to states of higher ¢ are energetically disfavored. Thus,
quantum codes constructed in the LLL, unlike those of ACP
[11], should only need to protect against rotational errors that
go between the states with £ = j. Again, the fundamental
reason for this simplification is that in the LLL limit of the
spherical charge-monopole system, the phase space is reduced
from the noncompact cotangent bundle 7*S? to S?. The LLL
on §2, as on any compact surface, then has a finite degeneracy.
We make some additional remarks on the quantization of this
system in Appendix A 3.

Can this finite-dimensional system realize an ACP code?
There are two apparent obstacles. First, magnetic rotations
satisfy a different algebra than magnetic translations due to
the different topologies of the sphere and the torus. Magnetic
translations on the torus are exponentiated versions of the
guiding center operators R, and R,, which satisfy

ih
[R., Rv] = %"

5 (3.10)

However, magnetic rotations on the sphere are exponentiated
versions of the guiding center angular momenta in (3.6),
which satisfy

[Li, L;] = ihe;L*. (3.11)

While (3.10) takes the form of a canonical commutation
relation, (3.11) does not. In particular, unlike magnetic trans-
lations, magnetic rotations are kinematically identical to
ordinary rotations in the absence of a background magnetic
field.!! This fact would seem to stand in the way of extrapo-
lating the framework of GKP to the spherical LLL, as there
is no sense in which the operators in (3.11) are canonically
conjugate. Second, the LLL projection does not preserve the
would-be ACP codewords on S2, which have support on all
Landau levels. Namely, suppose that we modify the linear
rotor analysis of ACP to use monopole spherical harmonics
instead of ordinary spherical harmonics, which comprise a
different basis for L*>(S?). Then the position eigenstates are

0, 0) =D Y ¥n. )

e Iml<t

o) (3.12)

where, in contrast to (2.27), the | 51) are now eigenstates of
the electromagnetic angular momenta in (3.6). A calculation
similar to that producing (2.33) shows that the codewords
(2.32) now take the following form in the angular momentum
basis:

P =VNY > (=D Yk (/2.0

£2j IpN—jIst

o) 313)

(see Appendix D1). Since these codewords involve states
from all Landau levels, the LLL projection is naively incom-
patible with the ACP construction.

""The large-radius limit of the sphere leads to a contraction of the
rotation algebra (3.11), as two generators suffice for translations on
the plane.

Both of these problems can be surmounted by constructing
codewords analogous to those of ACP directly in the finite-
dimensional LLL Hilbert space. But, in attempting to do so,
we immediately confront another obstacle: while the 2j + 1

angular momentum eigenstates | r{l) form a basis for the LLL

Hilbert space, they fall far short of a basis for the space of L?
functions on S2. Therefore, they cannot be used to construct
the position eigenstates that form the backbone of GKP and
ACP codewords.

This final problem has an elegant solution. Consider the
normalized spin coherent states [20,21]

zL_/h
(1 + [z?)

where 7 is a complex parameter related to the angular coordi-
nates (6, @) by stereographic projection: z = tan(9/2)e*. We
write these states with a j subscript to distinguish them from
position eigenstates on the sphere, and we alternatively denote
them by |$2); or |7i) ;, where Q2 = (6, ¢) and ii is the unit vector
(sin @ cos ¢, sin 6 sin ¢, cos ). A more enlightening rewriting
of (3.14) in terms of (6, ¢) variables permits a direct compar-
ison to (2.27) and (3.12):

0, 9); = f

’> (3.14)

J .
L (2! j+m . jem
160, p); = szj\/—(j-i-M)!(j—m)! cos’™(6/2) sin

x (0/2)e"I=m¢

J
m> (3.15)

These spin coherent states are the best possible approxima-
tions to position eigenstates that can be constructed from the

finite collection of states { |,{1)}. They become more sharply

peaked as the dimension of the Hilbert space grows. Indeed,

they form an overcomplete set for the LLL Hilbert space, and
they approach orthogonality in the limit that j — oo:

- L+ 7y - 7in )

|;{n1]i2) ;| = (T) .

Moreover, they are eigenstates of the angular momentum op-
erator in the (6, ¢) direction:

(3.16)

(Lisin6 cosg+Lysinf sing+L3 cos0)|0, ¢);=hjlo, ¢);.
(3.17)

This is the sense in which spin coherent states comprise
the “position basis” dual to the finite-dimensional angular
momentum basis |/ ). We summarize many more of their prop-
erties in Appendix B.

The spin coherent states |0, ¢); form the foundation of our
ACP-type codes. Using these states, we construct approximate
GKP codewords that become exact as j — oo. The fact that
these states are “smeared” relative to true position eigenstates
necessitates approximate quantum error correction (see Ap-
pendix C).

Note that whereas the large-dimension limit of the GKP
qudit codes reproduces the GKP oscillator codes, the cor-
responding limit of our codes is distinct from the ACP
construction. This is because the j — oo limit of the
LLL Hilbert space produces an infinite-dimensional Hilbert
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space in the “horizontal” direction rather than the “vertical”
direction (i.e., a single infinitely degenerate level rather than
an infinite sum of finitely degenerate levels).'? For this reason,
we refer to these “finitized ACP codes” as LLL codes.

C. LLL Pauli group

What is a natural error basis for our codes? We saw in
Sec. [T E that the “Pauli group” in the ACP setting is composed
of X-type operators Xg and Z-type operators Y,ﬁ. In the pres-
ence of a magnetic monopole, the latter are amended to ijZ.
Despite not being a group in the formal sense, it resembles the
Pauli group in many ways [e.g., it spans the set of all operators
on L*(S?) and each operator acts locally]. The Xy act within a
single Landau level [see (2.29)], while the jY,ﬁ relate states in
different Landau levels [see (2.31)].

Projecting this collection of operators down to the LLL
leaves the X-type operators Xz untouched but eliminates the
Z-type operators ij‘z, as momentum kicks are energetically
disfavored. In this way, the Pauli group becomes an actual
group again; it is isomorphic to SU(2) since the X are pro-
jective representations of SO(3).

In fact, the unitary rotation operators Xz form an overcom-
plete set of linear operators within any level of fixed ¢, and
in particular for the LLL Hilbert space, which is isomorphic
to C**! with j = gBR?/h as in (3.8). Indeed, the Xy are
represented by Wigner D matrices on the LLL Hilbert space.
Burnside’s theorem [22] implies that the complex linear span
of the image of any d-dimensional unitary irrep p : G —
U(d) of a compact group G is the set of all d x d complex
matrices. Since the Wigner D matrices comprise the image
of the (2 + 1)-dimensional complex irrep of SO(3), they are
complete.?

The Xg can be expanded in the angular momentum basis as

’

j R
Xg = e_iaLg/ﬁe—iﬂLz/he_iVL3/h = Z Dfnn(a’ ’3’ y)'lj’l><7{l

mn=—j

(3.18)
where the rotation R = R(«, 8, y) € SO(3) is given in terms
of Euler angles. Their action on angular momentum kets fol-
lows straightforwardly. On the other hand, the Xz have an
action on spin coherent states that resembles an actual rota-

2In other words, the limit in which finite GKP codes approach
continuous GKP codes is one in which the compact phase space 7>
becomes the noncompact phase space R2. In the ACP setting, the
analogous limit would take S? to R? rather than to 7*S.

However, being nonorthogonal, the Xz do not form a unitary
error basis in the usual sense. A unitary error basis for C¢ is a set
of d? unitary d x d matrices that are orthonormal with respect to
the normalized Hilbert-Schmidt inner product (A, B) = Tr(A"B)/d.
For example, the d? unitary operators XZ? (a,b=0,...,d — 1),
where X, Z are generalized Pauli matrices, form a unitary error basis.
The Weyl basis e@P+f9/ is obtained from these in the infinite-d
limit. The Z-type operator of GKP is simply the exponential of a
multiple of the operator L3 on the LLL Hilbert space. The X-type
operators of GKP are similar (but not identical) to Ly = L; +iL,,
where [L3, Ly] = £hAL, and [Ly, L_] = 2hL;.

tion, up to a phase factor. This phase factor will be important
for our analysis, so we pause to discuss it.

First note that spin coherent states themselves can be for-
mulated in terms of rotations:

, j ,
A ' J
j>_ E Dfnj(wﬁ,—w)‘m>- (3.19)

m=—j

10, ¢); = Xrp.0.—)

Hence, |0, ¢); is simply a rotated version of the highest-
weight state Ij). The equivalence of (3.19) to (3.14) is shown
in Appendix B 3. The definition (3.14) or (3.19) fixes a phase
convention for spin coherent states, as such states are in one-
to-one correspondence with points on the sphere only up to
a phase. This is a consequence of the fact that the SO(2)
subgroup of SO(3) that preserves a given point on the sphere
acts on the corresponding spin coherent state by a phase.
To illustrate this point, let R(p, 6, —¢) be the “canonical”
rotation in (3.19) that takes the north pole to the point (8, ¢)
on 2. If R(¢1, @2, @3) also takes the north pole to (6, ¢), then
i1, ¢2) = 1i(0, ¢), which implies that ¢, = 6 and ¢; = ¢.
Hence, the corresponding D matrices indeed differ by a phase,

DL, (@1, @2, 93) = e OTODL (9,0, —p),  (3.20)

as do the corresponding states XR(¢1,¢2,¢3)|5> = e W TO)|5) .
Letting R(«, B, ) be an arbitrary rotation, we also check that
Xr@.p.p)l)

J

j ;
=Y | Y. D(.B.¥)D} (9.6, —p) ‘,fl>
j

m=—j | m'=—
(3.21)
i .
m=—j
so rotations compose as expected. In general,
R(a, B, y)R(p.0,—¢) # R(¢'. 0", —¢') (3.23)

for some canonical rotation R(¢’, 8’, —¢’), so a rotation takes
a spin coherent state with a given orientation to the spin
coherent state with the rotated orientation only up to a phase:

Xglii); o |Rii) ;. (3.24)

With these considerations in mind, it will prove convenient to
have a formula for the matrix element of an arbitrary rotation
R = R(a, B, y) between any two spin coherent states:

/

) 0 0
A Xl Q); = [(wwz cos 2 cos 2

. oo . 00
+ € @T)/2610=¢D sin — sin — ) cos 4
2 2 2

!
— [ 71 @YI267 cog 0— sin 9
2 2

A R A AN B &
— i @=y)/2 iy SmECOS —) sin Ei| )

2 2
(3.25)
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where Q = (0, ¢) and Q' = (6’, ¢’). This formula is derived
in Appendix B 2.

We will put (3.25) to use when checking the quantum error-
correction conditions of Knill and Laflamme [23]. Given a d-
dimensional code spanned by the states [0), 1), ..., |d — 1)
within the LLL Hilbert space C%*/*!, these conditions state
that any two correctable rotation errors R and R’ must satisfy

(01Xg-1£10) = (11 Xg-1p|1) = -+ - = (d — 1| Xg-1pld — 1)
3 3 (3.26)
(i.e., (k|Xg-1g'|k) should be independent of k) as well as
(G Xg1glk) =0, j#k. (3.27)

We refer to (3.26) as the “diagonal” quantum error-correction
condition and to (3.27) as the “off-diagonal” one. In writing
these conditions, we have used X, ;XRr = Xp-1 Xp = Xg-1p. For
our application, it will be useful to relax the exact conditions
(3.26) and (3.27) to approximate ones: by demanding that

|1 Xp-117) — (kI Xg-1p k)| < 8, (3.28)
|1 Xp-1r k)| < € (3.29)

(for j # k) where §, € are arbitrarily small, we can still
recover encoded states to arbitrarily good accuracy (see Ap-
pendix C 1).'4

In summary, by projecting L?(S?) down to the lowest-
energy LLL subspace C%*!, we obtain a finite-dimensional
system for which the only physically relevant errors are po-
sition shifts (rotations). We have thus converted a problem of
quantum error correction into one that seems much more clas-
sical. The projected Pauli group is (Xz). Under the assumption
of locality, large rotation errors are less likely to occur than
small ones. While a spin-j Hilbert space admits no true “posi-
tion” eigenstates, spin coherent states provide approximations
thereof. We now proceed to adapt the linear rotor codes of
ACP to spin coherent states in this finite-dimensional Hilbert
space.

D. Spherical LLL codes

To construct an ACP-type code in the LLL on the sphere,
we again pick a CSS subgroup chain S ¢ L C G. Let us first
consider a qubit code based on Zy C Zyy C SO(3) like we

14To understand these conditions more geometrically, recall that for
the linear rotor codes of ACP [11], one of the requisite conditions for
exact quantum error correction is that a correctable rotation R should
keep any constituent point of a codeword inside its corresponding
Voronoi cell. This is precisely equivalent to the condition that for
any two correctable rotations R and R’, the combination R~'R’ cannot
map any constituent point of a codeword onto a constituent point of
another codeword, and therefore that the matrix element of R~'R’
between any two distinct codewords is zero, in accord with the
condition (3.27). For approximate quantum error correction with spin
coherent states in place of infinitely peaked position eigenstates, a
codeword can have nonzero overlap with the result of applying the
rotation R~'R’ to another codeword, even if all correctable rotations
keep all constituent points of codewords inside their own Voronoi
cells. This is because the support of the spin coherent state |6, @) ; is
not limited to the point (8, ¢) on 5.

did in Sec. ITE. For ACP, higher N means better correction
of momentum errors and worse correction of position er-
rors. However, our setup exhibits no similar tradeoff because
momentum kicks between energy levels have already been
suppressed by making the spectral gap arbitrarily large. We
are therefore motivated to take N as small as possible: that
is, we choose N = 1 so that each basis codeword is a single
coherent state. In other words, the principle that guides the
construction of our codes is that the support of the different
codewords on S? should be as far apart as possible. Thus, our
ideal codes are similar to classical error-correcting codes and
spherical designs (equidistributed points on the sphere).

As motivated, the best (and simplest) LLL code is the qubit
code C2 — C2*! for which S £ Z, and L = Z,. The code-
words are spin coherent states localized to antipodal points
on the sphere. It is also arguably the most natural code in this
context since every rotation has two fixed points [furthermore,
only in this situation are the resulting codewords exactly or-
thogonal, by (3.16)]. If we choose our fiducial position ket
to be oriented toward the north pole, then the corresponding
codewords are

10) = 10, go); = m (3.30)
1) = |, @o); = &% _J]> (3.31)

For reasons that will become clear, we have fixed a fiducial
azimuthal angle ¢y whose only effect is on the phase of
the |1) state. Regardless of its value, the points (0, ¢y) and
(7T, o) correspond to (0, 0, 1) and (0, 0, —1) when the sphere
is thought of as embedded in R>.

To determine which rotation errors this code can correct,
we turn to the quantum error-correction conditions (3.26) and
(3.27). We write the composite rotation T = R™'R’ in terms
of Euler angles «, 8, y. As a special case of (3.25), we have

Y cos 9) cos é
2

..«
— 1 S1In

o
j<Q|XT|Q>j = [(COS
| sin 7y
— —
LA

(01X7|0) = e~V cos?

2j
) sin @ sin §:| (3.32)

and therefore

B

(11X7 |T) = V@) cos™ =,

S} e

(3.33)

irrespective of ¢y. The inopportune phase discrepancy in
(3.33) reflects the property of spin coherent states that a rota-
tion about their axis of orientation generally incurs a nontrivial
phase (unlike for position eigenstates). To satisfy the diagonal
condition

(01X710) = (11X7|1) (3.34)

exactly, one can require that « + y = 0 for any correctable
rotation or product thereof. A natural way to do this is to
choose our set of correctable rotations to be all rotations about
any fixed equatorial axis, i.e., the y axis conjugated by a fixed z
rotation. Such rotations are clearly not complete for operators
on the LLL Hilbert space. Specifically, we fix a reference
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angle ¢y, which coincides with the angle ¢y in (3.30) and
(3.31). Then any two correctable rotations take the form

Xz = e~ ipoLs/h o=i8La [N igoLs /i
Xp = e #ols/lig=it'La/h yigoLs /R (3.35)

for some angles 6, 6’. The combined rotation
Xz Xp = e—iwoLg/he—i(e’—G)Lz/hei¢0L3/h (3.36)

is likewise a y rotation conjugated by a z rotation by ¢y,
whereupon (3.33) gives

0 —0

(01Xg-1Xr |0) = (T|1Xg-1 Xp 1) = cos* < ) (3.37)
so that the diagonal condition (3.26) is satisfied exactly. As for
the off-diagonal condition (3.27), suppose that we restrict the
magnitude of the y-rotation angle in all elements of our set of
correctable errors to satisfy |6| < 6y. Then we have by (3.16)
that

1 —cos26,\’
&>, (3.38)

|{01Xg1 Xp T)| < ( >

which can be chosen as small as desired by taking 6 suffi-
ciently small. In other words,

1 —cos®)’
$> , (3.39)

101X7|T)| = ( >

where ©® is the angle between the north pole and its im-
age under T; we can then do approximate error correction
by imposing [(0|X7|1)| < €, or |®] < arccos(l — 2¢'/7) [see
(3.29)].

We now move on to more general qudit LLL codes based
on the cyclic subgroups S = 7Z; and L = Z,. For ease of
generalization, we change the fiducial ket to be the coherent
state |7 /2, 0) ;, so that the codewords are supported along the
equator. The logical position kets for this equatorial qudit code
are then

k) = (3.40)

w 2wk
— —), k=0,...
2 d j

This finite code is analogous to the Zy C Zgy C SO(3)
Abelian linear rotor code of ACP, where we have chosen
N =1 to optimize for position shifts because momentum
shifts play no role.

To examine the error-correction conditions, we again write
T = R~'R’ in terms of Euler angles o, f8, . From (3.32), we

have
y B .. (21k a—y\ . B1¥
COS——I1SIm|{ —— Sin — .
2 d 2 2

(3.41)

&1Xp k) = [cos ot

The diagonal error-correction conditions (3.26) are clearly
satisfied if R, R’ (and hence T') are equatorial rotations (8 =
0), in which case

(k|Xr [k} | p=o = cos™ ((x _; Y )

(3.42)

From our previous discussion of the antipodal qubit code,
we would expect that when d = 2, we have more freedom to
choose the set of correctable rotations. Explicitly, we get

_ 2j

(01X710)|4en = (cos ¢ —; Y cosg +isin2 3 Y sin g) ,
(3.43)

_ 2

(1Xr|T)]4= = <COS ¢ ; Y cosg —isin 2 5 Y sin g) .
(3.44)

In this case, aside from restricting to equatorial rotations
(B = 0), we could also consider rotations such that the con-
dition o = y is preserved under composition. It is not hard
to see that such rotations are arbitrary z rotations conjugated
by a fixed x rotation, where the x axis connects the orienta-
tions of the codewords |0) = | /2,0); and |1) = |7 /2, 7);
(with (0]0) = (1/1) =1 and (0|T) = 0). Now consider the
off-diagonal error-correction conditions. Specializing to equa-
torial rotations (8 = 0, with ® = « + y), we have from (3.16)
that

, 14 cos(® + ¢ — @)\’
|j(77/2a(p|XT|7T/2»‘P>j|=( 5 :
(3.45)

Since the smallest value of |¢ — ¢’| for two distinct codewords

is 27 /d, to enforce

|(G1Xr k)] < € (3.46)

for j#k, it suffices to require that |®| < 2w/d —
arccos(2¢!// — 1). Since this is a restriction on T = R™'R,
the rotation angle ® for a correctable rotation must then take
values in half this range. Further specializing to d = 2, for
which ¢ — ¢’ = £, gives back (3.39).

For truly approximate quantum error correction, it suffices
to demand that the diagonal conditions (3.26) [and not only
the off-diagonal conditions (3.27)] be satisfied approximately,
i.e., that (3.28) hold for some §. One can do so by allowing
for rotations through a bounded angle about an axis that is
perturbed slightly away from the z axis. A general rotation T
will rotate the states |k) by different amounts, depending on
how close they are to the axis of rotation (equatorial rotations
have the property that all codewords |k) are equidistant from
the axis of rotation). Even after relaxing the requirement that
the rotations be exactly equatorial, we would not expect such
rotations to be complete for the LLL Hilbert space. Indeed,
if a set of errors is correctable, then its linear span is also
correctable. To be able to correct arbitrary errors on the entire
Hilbert space, we would need to be able to correct (2 + 1)?
linearly independent rotations, but j can be arbitrarily large.

The fact that the correctable rotations for our code are (ap-
proximately) equatorial makes it more akin to a planar rotor
code [11] than to a linear rotor code. The primary advantage
of the spherical LLL over the planar rotor, or a rigid rotor
more generally, is that it eliminates the need to contend with
momentum kicks. The magnetic field is an adjustable parame-
ter, unlike the moment of inertia of a molecule, so the spectral
gap can in principle be made arbitrarily large. However, to
make the error model of equatorial rotations fully realistic
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within this setup may require an additional electric potential to
confine the charged particle to the equator. Moreover, main-
taining the degeneracy of the LLL requires fine tuning
between the magnetic field strength and the size of the
sphere. !

E. Check operators and logical operators

Having demonstrated that the conditions for approximate
quantum error correction are satisfied (for the specified set of
correctable rotations), we would like to formulate appropriate
logical and check operators for these codes, which inform
the error diagnosis and recovery procedure. Whereas certain
powers of logical X and logical Z furnish convenient com-
muting check operators for ACP codes (assuming that these
two operators commute on the entire Hilbert space and not
just on the code subspace), our codes require only one check
operator. The intuition is that a Z-type operator serves as a
check operator for X -type errors.

Before jumping into the general scenario, let us examine
what happens for the antipodal code described by (3.30) and
(3.31). A reasonable choice for an X-type logical operator
that swaps |0) and |1) is a rotation by 7 about the chosen
equatorial axis:

XR(go70—g0) = e ipoLa/h g=inLa [l jigoLs /Tt (3.47)
It satisfies
Xty = Xrtgo2m, g = (1) = (1%, (3.48)

which can be seen from (B50) or from the fact that the opera-
tors e~ 2L/l = g=2rila/h — o=27ils/h gre gcalar matrices (1)
that depend only on whether j is an integer or half-integer. As
a consequence of Xg(gy +27,—¢y) = (=1)%, the rotation in the
opposite direction satisfies

Xr(go—.—g) = (=1 Xr(go. .~ go)- (3.49)

Therefore, when j is an integer, we have
:;> — eZl‘j(pU —‘]‘]>’ XI%(WO’WV*W)) = 17 (350)

S0 XR(gy,7,—¢) acts like logical X on the states (3.30) and
(3.31).

However, rotations cannot be used to realize a Z-type log-
ical operator. Indeed, among rotations, the only candidate for
such an operator would be a rotation through an angle o about
the z axis: Xgw.0.0) = ¢ *1/". We have

Xr(,0.0)|0) = €77*10),  Xr@,00)/1) = €7*|1),

XR(WO,NY*WO)

(3.51)

so such a rotation would act proportionally to logical Z when
€?/% = —1 (and as long as we take « to be a multiple of 277/,
such a rotation preserves both codewords). But correctable

50One might wonder whether this code can be implemented in
a simpler system, such as a particle on a ring in the presence of
a background magnetic field, in which the equatorial error model
is “built in.” This is not possible, however, because such a system
exhibits no projection to a finite-dimensional space of states in the
large-field limit. Hearkening back to the beginning of this section,
the fundamental reason is that S is not a symplectic manifold.

errors take the codewords to states of the form XR((/,U,@,_%)LJ’:),

which lie along a great circle, and any such “error state”
should be an eigenstate of the Z-type check operator derived
from the desired Z-type logical operator. A full 2w rotation
about the z axis preserves each point on the great circle of
error states (in fact, it preserves every point on the sphere),
but the operator Xg(,.0.0) = e 271/" simply acts as (—1)%/
on the entire Hilbert space.

To solve this problem, we move ahead to discussing the
logical and check operators for the more general Z; C Z,
cyclic subgroup codes. It is helpful to review the correspond-
ing operators for continuous ACP codes. By analogy with the
stabilizer formalism, the X-type and Z-type check operators
of ACP (which do not generate a group) are chosen such that
their mutual eigenspace with unit eigenvalue is precisely the
code subspace. For the Abelian ACP codes, any two operators
satisfying the following criteria are valid X -type and Z-type
check operators:

(i) An X-type check operator should preserve each code-
word.

(i) A Z-type check operator should have unit eigenvalue
at every constituent point of the codewords.

(iii) The two check operators should commute with each

other to ensure that they can be measured simultaneously.
In practice, we construct the check operators from the logi-
cal operators, which ensures that these two sets of operators
commute with each other. The main ingredient missing from
our discussion so far is the construction of a Z-type logical
operator for our codes.

As a point of departure, ACP propose to use angular
momentum kicks as Z-type logical operators. Specifically,
consider the Zy C Z,y linear rotor code (2.32). The spherical
harmonics Y (6, ¢) have ¢ dependence ™, so Y, for any
¢ > N (or more simply, e*™¥%) acts as logical Z. Hence, Y'{,
for any £ > 2N (or more simply, e*?>N?) acts as a Z-type
check operator that reduces to the identity on the code sub-
space.'®

The lesson to draw from the previous paragraph is that Z-
type operators are naturally diagonal in the “position basis.”
Since our codes in the LLL Hilbert space do not have access
to position eigenstates or to a “position operator,” we can only
aim to follow this guideline approximately.

16The disadvantage of using momentum kicks as logical operators
is that they are not unitary on the entire Hilbert space. One option is
to take Hermitian combinations of them instead. For example [11],
one can use

Sz = cos(2N@)sin®™ & oc V2V + 72,

Sy = cos(2mLs/NT) eI [h g i /N)Ls /1

as Hermitian Z-type and X-type check operators. More gen-
erally, we can construct Sz as a linear combination of op-
erators of the form (- w)P = fszdv(v -w)?|v)(v|, where ¥ =
(sin@ cos @, sin 6 sin @, cos ) is the position operator in spherical
coordinates, w is a (generally complex) vector, and p is a non-
negative integer.
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Consider, then, the equatorial qudit code defined in
Sec. III D. Up to phases, we expect the codewords to be

|7 /2, 21k /d) j = XR@nk/d 72,20k /d)

f.>, k=0,....d—1.

J
(3.52)
As our X -type logical operator, we choose

X = e G/ XRr(27/d,0,00 = XR(0,0,27/d)- (3.53)

For this operator to satisfy X¢ = 1, we must take j to be an
integer. We find that

X|7 /2, 2mk/d);

J
j> (3.54)

= XRQr(k+1)/d, 7 /2, ~27k]d)

= XR(Z;T(k-H)/d,n/2.—271(k+l)/d)e_i(zjr/d)LB/h

J
j> (3.55)

= ¢ 2l |7 /2, 27 (k + 1)/d) . (3.56)

Therefore, for X to have the desired action on codewords, we
have two simple options (up to redefining all of the codewords
by an overall phase):

(1) Take

k) = e M\ 12 21k /d);. (3.57)
(2) Take |k) = |7/2, 2mk/d); and assume that j is a mul-
tiple of d.
Both options are compatible with the (approximate) quan-
tum error-correction conditions. In either case, we have

X : k) — |k + 1 (mod d)). (3.58)

Note that these phase conventions differ from those in the
antipodal qubit code of Sec. III D because here, the reference
point (north pole) used in defining spin coherent states no
longer coincides with the orientation of the codeword |0).

For our qudit code, the dth power of the X -type logical op-
erator (or the would-be X -type check operator) is the identity.
Hence, the only constraints on the Z-type check operator are
that it should have the codewords as eigenstates with eigen-
value +1, and it should commute with the logical operators.

Perhaps the simplest candidate for a Z-type logical opera-
tor is

Z= /dQ 1), (9, (3.59)

which satisfies
Zk) ~ & kY, 74 ~ /dsze"dﬂsz)jj(m, (3.60)

so that Z¢ approximates the identity on the code subspace (but
not on the entire Hilbert space since it should serve as a check
operator). These relations are approximate because the states
|€2); are not orthogonal.

Any operator on the LLL Hilbert space has a diagonal
expansion of the form

/dQP(Q)|Q)jj(Q|. (3.61)

For real P(£2), such an operator is Hermitian. Two operators

/dQPl(Q)|Q)jj(Q|, [dQPz(Q)|Q)jj(Q| (3.62)

that are “diagonal in the position basis” do not necessarily
commute, as

/dQdQ/P1(Q)Pz(Q/)lmjj(mQ/>jj<9/|

7&/deQ’PZ(Q)Pl(Q')|S2)jj(§2|§2’)jj(§2’| (3.63)

in general. Only in the limit j — oo do such operators ap-
proach diagonal matrices and thus mutually commute. A
“diagonal” operator (3.61) has an expectation value

/dQ/P(Q’)|_,(Q’|Q>_,~|2 (3.64)
and a nontrivial variance in the state |£2);, which approach
P(Q2) and 0 as j — oo, respectively. These quantities are
computable in the saddle-point approximation for large j.

When does an operator of the form (3.61) commute with
the logical operators? Since X|€2); equals |RS2); up to a
phase, we have the exact equality

Xr|Q); /(X7 = |RQ); (RQ. (3.65)

By rotational invariance of the measure d €2, we therefore have

XR/dQP(Q)|Q)jj(Q| = /dQP(Q)|RQ)jj(RQ|XR

=/dQP(R*152)|Q>,~,-<QIXR-
(3.66)
It follows that

ZX = &™XZ, (3.67)
as desired. In particular, Z¢ commutes with both X and Z.

Note that Z as defined above is only approximately a
logical operator because it only approximately preserves the
code subspace. Therefore, there is nothing distinguished about
using Z¢ as an approximate check operator. We could alterna-
tively use

Zs= /dszefdﬂsz)jj(m (3.68)
directly as a Z-type check operator, which commutes with
X but (unlike Z?) only approximately commutes with Z.
Whichever Z-type check operator we choose should allow us
to approximately measure ¢ modulo 27 /d.

Unfortunately, the operators Z, Z%, Z, are only approxi-
mately unitary, which presents an obstacle to measuring them.
There is a workaround in the case that d = 2: we can replace
them with operators that are exactly Hermitian. For instance,
one can use

/dQ cos p|Q); (L, /dQ cos?p|Q); (R (3.69)

as Z-type logical and check operators, respectively. However,
this solution does not work for d > 2 because in those cases,
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Z must have complex (approximate) eigenvalues rather than
merely +1.

The fact that the operator [ d2e™|S);;(S| is approxi-
mately unitary means that it can be measured approximately
for large j. Equivalently, the Hermitian operators

/dQ cos ¢|Q) (L, /dQ sing|Q); (2 (3.70)

approximately commute at large j, and can be measured si-
multaneously.

Having formulated the check operators, in practice, we
diagnose the error syndrome by transferring the error to an
ancilla using a conditional rotation (this is the scheme, orig-
inally due to Steane [24], used by GKP and ACP [3,11] for
diagnosing rotation errors). The check operators are a mathe-
matical proxy for this procedure. In Appendix C2, we show
that the approximation error in this procedure is exponentially
suppressed as j — oo.

IV. DISCUSSION

In this paper, we have proposed approximate quantum
error-correcting codes in which quantum information is stored
in the orientation of spin coherent states in the finite-
dimensional Hilbert space of a single (large) spin. Such
codes satisfy approximate versions of the Knill-Laflamme
conditions.!” We have discussed logical operators that act as
generalized Pauli X and Z within the code subspace, as well as
check operators that can be measured to diagnose and recover
from certain rotational errors. Many open questions remain:
for instance, one might hope to formulate a universal set of
gates acting on the code subspace, or at least a set that gener-
ates the Clifford group. Further work is also required to make
such a scheme truly practical by enabling fault-tolerant quan-
tum operations on the encoded information (in other words,
coherent information processing of spin coherent states).

While our discussion has used the spherical Landau prob-
lem as a theoretical platform (as often done in studies of the
quantum Hall effect [12]), it may not provide the most prac-
tical implementation of our codes. Indeed, our mathematical
framework extends to any finite-dimensional quantum system
on which rotations constitute the most physically natural set
of error operations. Such a system could be engineered as a
collective spin built from a large number of small spins (see
[11]), in which case it would need to be checked whether
rotational errors acting on the emergent large spin constitute
a realistic error model. More concretely, our codewords could
be realized in atomic ensembles [26]. In this context, the to-
tally symmetric sector of the Hilbert space of 2 j qubits (spin-%
particles) has spin j, and a spin coherent state in this symmet-
ric subspace is constructed by orienting each constituent spin
in the same direction.

Our LLL codes resemble classical spherical codes that
maximize the distance between points on a sphere.'® They

17Somewhat different applications of spin coherent states to ap-
proximate quantum error correction can be found in [25].

I8Exact spherical codes are known for 2, 3, 4, 6, or 12 points,
corresponding to placing the points at the vertices of a diameter, an

are analogous to, but simpler than, ACP codes [11] based
on discrete subgroups of SO(3). However, we have only pre-
sented finite-dimensional realizations of the Abelian linear
rotor codes (cyclic subgroup codes) of ACP, which involve
spin coherent states that are evenly distributed along a great
circle. More general configurations of spin coherent states
may not satisfy the quantum error-correction conditions (due
to the phases that spin coherent states acquire under rotations),
which presents an obstacle to constructing LLL analogs of the
non-Abelian subgroup codes.

A different method for constructing quantum error-
correcting codes in the Hilbert space of a large spin has
been put forward by Gross [27]. That method prioritizes the
construction of a transversal gate set over the correction of
all probable errors. The code subspaces are irreps of discrete
subgroups of SU(2) that appear inside a given irrep of SU(2),
and the corresponding codewords are comparatively simple

linear combinations of | hj1> states. It would be interesting to

explore possible connections between our proposal and that
of [27], and in particular to design codes that combine their
relative advantages.

Finally, contemplating the generalization of our codes to
configuration space geometries beyond S? raises many ques-
tions about their deeper mathematical structure. The quantum
Hall effect has been defined and studied on a variety of com-
pact manifolds in two and higher dimensions, including the
spheres S2, §*, and S? (via division algebras) [12,28,29]; com-
plex projective spaces CIP" [30]; arbitrary even-dimensional
spheres (via Clifford algebras) [31]; and most generally, coset
spaces G/H where G and H are compact Lie groups [32]."
In all of these cases, close connections to generalized co-
herent states [34—37] and to noncommutative geometry [38]
abound.?’ Moreover, the existence of parallels between GKP
codes and Landau levels is no accident. On one hand, the
GKP approach to quantum error correction takes as its guid-
ing principle the noncommutative geometry of phase space.
On the other hand, background magnetic fields induce non-
commutativity between position coordinates, which turns into
noncommutativity of phase-space coordinates in the LLL
limit. All of these considerations hint at richer connections be-
tween GKP-like codes and noncommutative geometry waiting
to be explored.
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APPENDIX A: LANDAU LEVELS

Here, we describe the physical setup and set our con-
ventions for Landau levels. The material is standard; some
accessible references include [41-43]. We make % and other
parameters explicit. We use boldface for differential forms.

Consider a spinless particle of electric charge g and mass m
in a background magnetic field B = V x A (in practice, ¢ =
—e). The classical Lagrangian and Hamiltonian are

| Lo 1 o
L=-mx*+qgi-A, H=—(p—qgA’ (A1)
2 2m
The kinetic momentum mfc. is gauge invariant, while the
canonical momentum p = mX + gA is not. We have the clas-
sical Poisson brackets

(i, piy =8, i xj}={pi, pj}=0, {mi;, mi;}=qe;B*.
(A2)
The quantum Hamiltonian is
1 -
H=—7% #&=p—4A, (A3)
2m

now in terms of operators satisfying the canonical commuta-
tion relations

[7Ti, 7Tj] = ihq&,'jkBk.

(A4)
The distinction between classical phase-space coordinates and
quantum operators is implicit.

[xi, pj1=ihd;;, [xi, x;1=I[pi, pj1=0,

1. Plane

Consider planar motion in a uniform, perpendicular mag-
netic field. We write X = (x, y,0) and B = (0, 0, B), taking
gB > 0. We define the cyclotron frequency and magnetic

length
4B ( A >1/2
wp = —, KB =\ — .
m qB

It is convenient to work in terms of kinetic momenta and
guiding center coordinates rather than canonical momenta and
canonical coordinates. We have [r,, 7,] = ifigB, allowing us
to define the Landau level ladder operators

(AS5)

1 1
a= T +imy), a = T, — ITT A6
2hqB( 2 thB( y) (A0)
satisfying [a, a'] = 1 and in terms of which
H = hwg(a'a+ 1). (A7)

The energy levels are now manifest. We can argue for the de-
generacies as follows. We define the guiding center operators

T, Ty
Ri=x+——, R =y-— R (A8)
mawp mawpg

which classically correspond to the coordinates of the center
of the cyclotron orbit. They commute with the kinetic mo-
menta and are therefore constants of motion:

[, Rj1=0=[H,R] =[H,R)] =0. (A9)
We compute that
(R, R)] = —il3, (A10)
so the guiding center ladder operators
i . i
=——(R,—IR), b = (R, +iR)) (All)
Vaeg Vaeg

satisfy [b, b'1=1 and commute with H. The classical
intuition for the noncommutativity of the guiding center coor-
dinates is that the cyclotron orbits prevent us from localizing
states in both spatial directions simultaneously. The corre-
sponding minimum uncertainty is

AR, AR, ~ 21 (3, (A12)

so a semiclassical estimate of the number of states in each
Landau level within an area A is
A gBA

S . (A13)
ARAR,  27h

The above considerations are independent of gauge.
The unitary magnetic translation operators are defined as

L) =e™%, Try=e ™% (Al4)
They shift the guiding center operators
L)' RT(r) =R+, i=xy (A15)

and they satisfy
T(r)Ty(ry) = &S T (r)T(r) = &7 ST (m )T ().
(A16)

(Recall: if [X, Y]is a c number, then X+ = eXe¥ e=3X¥1 and
Xe ' =X +1[¥,X])

To write the Landau level wave functions in a specific
basis, it is convenient to work in either the Landau (trans-
lationally invariant) gauge, where [H, px] =0 or [H, p,] =
0, or the symmetric (rotationally invariant) gauge, where
[H, J;] = 0. In either case, one can argue semiclassically for
the degeneracy in a finite area of the plane. We consider
the symmetric gauge A = g(—y, x, 0) because it allows us to
introduce complex coordinates. In this gauge, the (canonical,
not kinetic) angular momentum operator J, = xp, — yp, can
be written as

J, = h(b'b—d'a). (A17)
Hence, the Hilbert space is spanned by the Fock states
W (pTM
oy = 4000 g,
N!M!
1

where a0, 0) = b|0,0) = 0 and N, M > 0, which are simul-
taneously eigenstates of J,:

J AN, M) = hm,|N,M), m,=M —N. (A19)
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In particular, m, > —N in the Nth Landau level. In terms of
the coordinate z = x + iy, we have in symmetric gauge that

a= —i\/§<535 + i) at = —z\/i(ega _ i)

405 40y
(A20)
Z - z
b=—iv2(tgo+ =), b =—-iv2|tzd— =),
’f< B +4eB> “/_< B 453)
(A21)

and J, = li(zd — z0). The wave functions of the LLL states
(those annihilated by a) therefore take the form

fz)e /4 (A22)
for holomorphic f (up to normalization). Specifically,
< M 2402
(2,210, M) ~ ([) e I/, (A23)
B

One can construct the overlaps (z, Z|N, M) similarly. Coherent
states centered at z = 7z, obtained by acting on the ground
state with exponentials of a', are eigenstates of a with eigen-
value oxzp; they are linear combinations of states in all Landau
levels, and their time evolution describes cyclotron orbits.

By extending the structure group from U(1) to GL(1, C),
we can regard the gauge field as a connection on a complex
line bundle over C. In symmetric (real) gauge, we have

B iB _ _
A= 5(—ydx +xdy) = —Z(zdz—zdz). (A24)
‘We pass to holomorphic gauge via a complexified gauge trans-
formation:

, iB_ B,
A =A+dA=—7zdz, AE—Z|Z| . (A25)
Since Y — ¢y this changes the inner product as fol-
lows:

/ &z e Py @) () (A26)
(the measure factor compensates). In holomorphic gauge, we
have

a=—iv2033, af = —iﬁ(zBa - %) (A27)
B

b=—iv2e5d, b = —iﬁ(ﬁgé - %) (A28)
B

We see that the ground-state wave functions are precisely
the holomorphic functions. The advantage of this rewrit-
ing is that when passing to a compact Riemann surface,
the exact ground-state degeneracy can be computed as
the number of holomorphic sections of a certain holomor-
phic line bundle. On the plane, we have A = A, dz + A; dZ
and

B = dA = (3.A;: — 3:A,)dz AdZ = Bdz AdZ. (A29)

On a compact surface, we take B to be a multiple of
the volume form, keeping in mind that the total mag-
netic flux must be quantized in units of the magnetic flux

quantum @y =27h/q, or the amount of flux within an
area 27 (2.

Finally, the lowest Landau level is a prototype for
coordinate noncommutativity. When m =0, the classical
Lagrangian and Hamiltonian are L =g%-A and H = 0.
Integrating by parts gives L = —gByx in any gauge. So we
have a reduced phase space with one canonical coordinate x
and its conjugate momentum p = —gBy, giving {x, p} =1
and therefore

il
.yl =—-—.

e (A30)

Note that the guiding center coordinates are noncommutative
in exactly the same way as the ordinary coordinates in the
LLL, by (A10). In this sense, noncommutativity is not specific
to the LLL.

2. Torus

We parametrize the torus 72 by the dimensionless complex
coordinate z where z ~z+ 1 and z ~z+4 7 with Imt > 0.
Equivalently, z = ¥ 4+ ty with¥ ~ ¥ 4+ 1 and j ~ § 4 1. Here,

X Y

Xr=—, y=—,

L L,

(A31)

where x ~ x + L, and y ~ y + L,. The volume form is

‘X

- e Ly ,
w=dxANdy=L/L,d¥ Ndy = — dz A dZ,

f w = L.L,.
T2

T—1
We take

(A32)

N
T—1

B =Bow= dz NdZ, (A33)

where BL,L, = N®; and N is the number of flux quanta.
In holomorphic gauge (A = A;dz and B = —0:A,dz A d2),
invariance under z — z + 1 fixes
N®y(zZ —
_ _o(Z ) dz.
T—1

A= (A34)

Under z — z 4 7, A undergoes the following gauge transfor-
mation:

A — A—Ndydz=A—d(Nboz +ch/q),  (A35)

where ¢ is a dimensionless constant. Correspondingly, wave
functions must transform by a factor of e "?*V:+9) yunder 7 —
7+ 7. The level-N theta functions defined by?!

0, n(z) = Z eN(nin2t+2ninz)
m, = s

neZ+%

m=0,....N—1
(A36)

21 Alternatively, ©,, y(z) = @ [m(/)N] (Nz, NT) where the generalized

elliptic theta functions are

9 [Zi| (z,7) = Z eﬂi(n+u)2reZﬂi(t1+a)(z+b).
nez
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are periodic under z — z 4 1 and quasiperiodic in the desired
manner under z — z 4 T:

Oun(E+1) = Opn(2), (A37)

Oun(z+ 1) = NETETIOG (7). (A38)

They hence furnish a basis of LLL wave functions on the
torus. In real gauge [A =A,dz+ A,dZ and B = (3,A; —
0:A.)dz A d7], invariance under z — z + 1 fixes

_ _N(D()(Z - Z)

dz + d3). A39
2(f_r)(er 2) (A39)
We have the relation
N
Aot = Areal + ————d(z — 2)%, (A40)
41T —1)

so the holomorphic inner product is given by

/ e NTERICy ). (AdD)

This is invariant under bothz — z+ land z — z + 7.

We can obtain the algebra of generalized Pauli operators
(N-dimensional X, Z) from the action of magnetic translations
on these explicit LLL wave functions. In holomorphic gauge,
we compute the guiding center operators to be

i3 ) i3
Ri=Lz— 720 +70), Ry= 20 +03) (A42)
y x

Following GKP [3], we set

Ty = Ty(Ly/n) = e~ 1/, (A43)

T, =T,(L,/Kr) = e—(l/Krz)(iL.rL,‘vz/5§+t3;+f35)_ (A44)

The error operators Z = Tll/ Krand X = Tzl/ " clearly satisfy
ZX = VKN LLG) 7 _ 2MiNY 7 — (X7 (A45)

where N = Krr,. The operators 7} and 7, themselves com-
mute. In the LLL, we can set d; = 0 and write

Z — e—(l/N)B;’ X — e—27riz—(r/N)Bz. (A46)

With respect to the basis ®,, y(z) form =0,...,N — 1, we
compute that

ZOun(@) = 0 "0, N(2), (A47)

XOunGE)=e N0, 1 n(2). (A48)

So the codewords are the (unnormalized) superpositions

rn—1

Z Ownjynn@), Jj=0,...
n=0

as in Sec. II B.

K—1 (A49)

3. Sphere
a. Complex coordinates

For a sphere S? of radius R, stereographic projection from
the south pole yields the map

z = 2R tan(0/2)e"’ (AS0)

between spherical coordinates (8, ¢) and complex coordinates
(z, 7) and hence the volume form
i dz NdzZ

=R*sinfdpndd = — ———
@ = snrae 2 (1 + [2[2/4R2)?

(AS1)

We take B = Bw where 47 RZ2B = N®,. A suitable holomor-
phic gauge (regular at z = 0) is
iBz
2(1 + [z|#/4R%)
Under the coordinate change w = 4R?/z, w is invariant:

i dw Adw

= AS53
2 (1 + |w|?/4R2)? (A53)
On the other hand, we have
A= iB d (A54)
= 2(w/aR)(1 + [wl/arR)
Via a gauge transformation
Bil
A— A—2BRd In(w/2R) = ———2% ___ qu,
2(1 + |w|?/4R?)
(A55)

A is rendered regular at w = 0. Wave functions transform
as ¥ — (w/2R)Nvr. We require LLL wave functions to be
holomorphic, so that ¥ (z) and (w/2R)" ¥ (4R? /w) are regular
at z = 0 and w = 0, respectively. Hence, a basis of LLL wave
functions is given by

lz,....2" (A56)
A suitable real gauge (regular at z = 0) is given by

iB

A= —————+-(zdz—zd?2). AS57
41+ |Z|2/4R2)( ) (A7)
In terms of w = 4R?/z, we have
iBR? d dw
A= (4P _ 40 (A58)
1+ |w|?/4R2\ w w
Via a gauge transformation
A— A—iBR*d In (ﬂ)
W
iB _ _
=—— (bdw —wd), (A59)

4(1 + |w|?/4R?)

A is rendered regular at w = 0. In terms of z, we have the
relation

Anol = Aear — iBR*d In(1 + |z /4R?), (A60)
so the holomorphic inner product is given by
/ @ Y1 ()Y (2) (A61)
P ——— Z Z).
(14 [z]2/4R2N 710 72

This is equivalent to

w N 5 o . ,
/ TrTwp Ay W/R @R [0y’ @/ 2R (4R w),
(A62)

so the inner product is invariant under a change of patch.
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b. Spherical coordinates

To treat the full Landau problem, we work in spherical
coordinates. We consider a particle of electric charge g con-
strained to move on a sphere S? of radius R around a monopole
of magnetic charge BR? [44]. Its Hamiltonian is

1 "
H = —(=ihV — gA)*|,—, (A63)
2m
where we may choose a longitudinal gauge that is regular at
the south or the north pole:

regular at south pole,
—1  regular at north pole.
(A64)
This vector potential is divergenceless and singular along the
positive or the negative z axis, depending on whether ¢ = +1
or ¢ = —1 (z = x3 meaning the Cartesian coordinate, not the
complex coordinate). Away from the singularity, we have

A’:——(/L E =

BR?(g +cos8) _ +1
7 sin6

BR?*?

VxA= 5

(A65)

,
Equivalently, we have

B = BR*sin6d6 Ade.
(A66)

Acal = —BR2(£ + cos6)dey,

This real gauge coincides with (A57) for ¢ = —1. The two
signs ¢ = %1 are related by a gauge transformation, as in
(A59):

Areal|s=+1 = Areal|s=71 - 2BR2 d‘P- (A67)
We compute that
1 i ’B’R? 0)
_ 1 __Asz+q (.sz—l—cos )
2m R? sin“
2ihgB(e + cosB) j|
T s, A68
sin 6 v (468)
where the Laplace-Beltrami operator on S is
A ! 24 18('98) (A69)
= —— ——p(sin ,
S sin20 ¢ sing " ?

whose eigenvalues are —I(/ 4 1) with degeneracies 2/ + 1 for
I > 0. The standard angular momentum operators are

D = — ili(—sin pdy — cos ¢ cot 9, cos pdy

—sin@ cot 69, ). (A70)
They satisfy [D;, D;] = ike; jka and do not commute with H.
The “good” (guiding center) angular momenta, accounting for
the contribution from the electromagnetic field, are

L =7 x (—ihV — gA) — gBR*# (AT1)

— D — £qBR (e +cosb)cosp (etcosf)sing
sin 6 sin @

(A72)

where 7 = 7/r. They satisty [L;, L;] = ihe,-jkL" and commute
with H.22 In fact, we have

[’ — #B’R*  U(t+1)— ¢*B°R*

H =
2mR? 2mR?

, (A73)

where the levels ¢ are constrained by an L selection rule to
satisfy

gBR?
h

(recall that ¢gB > 0 by assumption). Hence, £ is either an
integer or a half-integer according to the quantized value of
j- In the limit m — 0, all states except for those with £ = j
decouple. Note that the gap between the LLL and the first
excited level is

L>j= (A74)

(A75)

so assuming that g and m are fixed, we can alternatively
project to the LLL by taking B large while also taking R small
to keep the LLL degeneracy j fixed.

To obtain the explicit wave functions, we write

. 1
2= —Fz2|:(1 —x2)82 —2x0,— 1_—xz[i3,p—j(8+x)]2—j2],

EZ _ hz 2
H= TRZ]’ (A76)

where x = cos 6. The properly normalized monopole spheri-
cal harmonics are given by

RAMCRIES 2’”/(25 + D = m)!(€ +m)!

4 (€ — I+ )
x (1 = x)""m+D2(] 4 x)=m=D/2

O )—(m—j . .
X PZ(+;51m J),—(m J))(x)el(m+j)tﬂ

(AT7)

for ¢ > jand —¢ < m < £, where the Jacobi polynomials are
defined as

(_1)’1 B B dn
1—x)"°( A
TR e

x (1 —x)"*(1 +x)"*P).

PP (x) =
(A78)

They satisfy

r . . .
- [(1 —x?)3% — 2xd, — 1_—)62[’3«) +j(1 —x)* - ]2i|j

x YO, )=l +1);YL0, ). (A79)

ZIndeed [13], they satisfy [L;, Xl = iheiij" for X =
7, A,L, where we have defined the position operator
7 = (cose sinf, sing sinf, cosf) and the dynamical angular
momenta A =7 x (—iiV — q/i). The commutator with 7 follows
from [L;, #;] = [D;, 7;]. The commutator with A then follows from
writing L = A — gBR*}.
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For j = 0, the monopole spherical harmonics reduce to ordi-
nary spherical harmonics:

(2€ + 1)(€ — m)!

pr ime
ey A

oYi(0,0) =YL, ) :\/

(A80)
for £ > 0 and —¢ < m < ¢, where the associated Legendre
polynomials are given by

iy = CV e dT G e (ast
e(x)—w( —x7) m( —x7)". (A81)
Using PP (—x) = (—1)"P{*F)(x), we obtain

Y —0,9) = (—=1)Mmeiv Y0, 0) (A82)

for £ > |j| and —¢ < m < £ (note that £ + m € Z). Hence,

the simultaneous eigenfunctions of L2 and L3 = —ihd, + ehj
are
Y _ e (_1)€+m872ij<p 8=+1,
<07 w‘m>:]Ym(95 (p)x {1 8:—1, (A83)

with eigenvalues hzé(ﬂ + 1) for 2 and him for L;. In particu-
lar, we have

(2j + D@2))!
4 (j = m)(j + m)!

x (1 — x)(j+m)/2(1 +x)(j*’ﬂ)/2ei(j+mw’ (A84)

i

which gives a basis of LLL wave functions. From (A70) and
(A72), we have the raising and lowering operators

j(d+e€ cose)]

Ly =Ly £il, = he* |:i89 +i cotfd, — —
S

(A85)

For properly normalized wave functions, it follows from the
algebra that

L 4
Li<9, ¢‘m> = IJL + 1) — m(m + 1)<9, go‘m + 1>.
(A86)
The Hilbert space splits into irreps of SU(2) labeled by £. We

now revisit how an L selection rule determines the allowed
levels €. Note that P{#)(1) = ("), so that

Y40, ) = 0 __ m# (A87)
itV @) = % m = _J
Note also that P@A)(—1) = (—1)”(”1:5), so that
' 0 m# j
Y, @)= (1)t /%eﬂjw m— (A88)
Hence, we see explicitly that
201 C1)ie-tiie o —
9=0€= —+8m_'x (=) e e =441,
m 47 o 1 e=—1,
(A89)

and in particular that

<9=0"f1>=0f0rm75—j. (A90)

This implies that (0, (p|fl) =0 unless £ > j. These are the
allowed levels, each occurring once. From the fact that

<9=0 Z>=—hj<9=0‘£>=hm<0=0‘£>, (A91)
m m m

regardless of gauge [as we check using (A89)], we deduce that
Ls10 = 0) = —hjlo = 0). (A92)

L

This L; matrix element is the origin of the selection rule. Note
that the overlap (60 = O|,fl) (and hence the state |0 = 0)) can
have ¢ dependence, depending on the gauge.

It is useful to have some alternative expressions for the ;£
Using Euler angles in the z-y-z convention (¢ and y range
from O to 2w, while 8 ranges from O to 7), we define the
Wigner D matrices and d matrices by

14
n

f;> = D},,(0. . 0). (A%4)

el . .
D!, (@, B,y) = <m eI/ giPla iy Lo/

— e_iamdin(ﬂ)e_iy",

g
= (G

(A93)

In the z-y-z convention, the d,‘;m are real, so

dt (—0)=d

nm

O = d,©).

Therefore, writing |0, ) = e~s¢/fe=120/119 = (), we have

<9, w‘ ,i> - Ze""%zf;m(e)<e - o‘ﬁ>. (A96)

For non-negative m — n and m + n (i.e., m > |n|), we have the
relation [45]

(A95)

(z—m)!(z+m)!< ﬁ)"”"
— | CO

L _ (_1\n—n ~
() = (=1) \/(Z—n)!(€+n)! "2

x <sin g) P (cos B). (A97)
We also have the symmetry relations
dy(B) = (=1)"7"d,, (B) = (=1)""d’,, _(B). (A98)
On the other hand, the Jacobi polynomials satisfy [46]
-8
P;a’ﬁ)(x) _ (n + Oé)'(n + ﬁ)' X + 1 P(i‘ﬁiﬂ)(x)’
nl(n+a+ p)! 2 "
(A99)
Pl ) = LR IR (X 1) pcen)
nl(n+ o+ p)! 2
(A100)

. x—=I\""/x+1\"? . _
P, *‘”(x):( 5 ) (—2 ) Praid (0. (A101)
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The latter two of these relations give

(m—n,m+n) _(_1\m-n € —n)!(£ +n)!
P, (cosB) =(—1) —(Z—m)!(ﬂ—i—m)!

—2(m—n)
x (Sin E) Pz(:r(zm_n)’mﬂ)(cos B).
—2(m—n)
P{(T;n,ern)(C()S :3) = (-1 )m—n (sin E)

,3 —2(m+n)
X (cos E) PZ(;fnm_")’_(”*”))(cos B),

respectively, from which we see that the right side of (A97)
is consistent with the relations (A98) for swapping m, n and

negating m, n. Hence, the identification (A97) in fact holds for
all —¢ < m,n < £. Comparing (A77) and (A97) shows that

20+1 . .
YO, @) = | T emeat )
4 -

20 +1

=V D _,(—¢.0.9).

Using d., (m — B) = (—1)"™™"d!, _,(B), this is equivalent to

mn

NPT
Y@, 9) = (=) —4+ ¢S (r — ). (A103)
- .

In the ¢ = —1 gauge, this is simply (6, <p|fq) [via (A83)].

Finally, how does the LLL Hilbert space arise from the
quantization of a classical phase space? The classical La-
grangian and Hamiltonian of the spherical Landau problem
take the form (A1):

L = imR*(6* + sin® 0¢*) — hj(e + cos )¢,
1 hij 0)\>
|:<7T<p+ j(e + cos )) +n(92:|’ (A105)

= 2mR? sin

(A102)

(A104)

where we have defined the canonical momenta

n, = mR*sin* 0¢ — fij(e +cosf), my =mR*0. (A106)

The classical versions of the standard and guiding center an-
gular momenta are

-

D¢ = (—sin gy — cos ¢ cotOm,, cos gy
— sing cotfm,, m,), (A107)

L= By _Shj<(s+c059)cos<p (e +cos¢9)singo’ _1).

sin 0 ’ sin
(A108)

For finite m, the phase space is (2 4+ 2) dimensional, and we
obtain the Poisson brackets

[(Di)et, (Dj)alp =€ijx (DX)et,  [(Li)ats (Lalpp = €ijx (L )e
(A109)

with respect to (0, mg, ¢, 7,). For m = 0, the phase space is
(1 4 1) dimensional, and there exists a distinguished polariza-
tion in which ¢ is the canonical coordinate. We have

w, = —hj(e +cosh), my=0, (A110)

and the classical guiding center angular momenta reduce to

ch = —hj(cos¢ sin6,sing sinf,cosd) (Alll)

(—cosoy/(7j)> = (L3)3,
—sing,/(hj)? — (L3)}, 7y + €hij). (A112)

The Poisson brackets on the reduced phase space (¢, 7, ) take
the same form as for m > 0. The corresponding quantum
operators satisfying [L3, Ly] = ALy and [Ly, L_] = 2hL3
are
Li = —/hj+ Lye*\/hjF Ly, L3 = —ihd, + ehj,
(A113)
where Ly = L; +il,. We have L? = hzj(j + 1). The normal-
ized wave functions
j _ 1 m i(m—gj)
= —(—1)"e e
<<p m> ’_275( )

are eigenfunctions of L3 and satisfy

(A114)

Li<(p‘,{1> = i/jG+ 1) —m(m = 1)<¢‘mi 1>. (A115)

(For a planar rotor, by contrast, the wave functions are
1

Ee"”“’ for m € Z.) Note that these wave functions are 27
periodic in ¢.

In summary, setting m = 0 in the Lagrangian (A104) re-
sults in the action g f Ajea With Ay as in (A66). The Dirac
quantization condition for a closed trajectory in the compact
phase space S2 then implies that ¢ /52 B/% = 1, which is equiv-
alent to j € %Z. Quantizing this compact phase space yields

a finite-dimensional Hilbert space with 2j + 1 states | r{l).

APPENDIX B: SPIN COHERENT STATES
1. Basic properties

Given a spin-j multiplet {| ,{l)}, one conventional definition
of unnormalized spin coherent states [20,21] is the following:

1D SRS TR
J m—j (G +m)!(j—m)!|m

|Z) = eZL,/ﬁ

>, (B1)
where 7z € C. The Baker-Campbell-Hausdorff (BCH) formula
e'Xe ' =X +[Y, X1+ LY, [Y,X]]+ - implies that
e MLy, Lo, Ly)e™ /"
=(3—zL_,L_,L, +2zL3—7*L_).  (B2)
Consequently, we find that

ZLy +zL- + (1 — |z)L;
1+ |z]2

lz) = hijlz). (B3)
For an S? of unit diameter, stereographic projection from the
south pole yields the map

z = tan(0/2)e' (B4)

between spherical coordinates (8, ¢) and complex coordinates
(z, 7). Hence, (B3) becomes

(L-7)|z) = hjlz), (B5)
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where L = (Li,Lp,L3) and 7 = (sinf cos g, sinf sin g,
cos @) is the unit vector in the (6, ¢) direction determined
by z. (Note that for spin coherent states obtained by rotating
|j, —J), the corresponding map would require stereographic
projection through the north pole.) From (B1), these states
have the overlaps

(a1lz2) = (1 +Z2122)Y. (B6)
The resolution of the identity takes the form

2j+1 d?z L1\
= /(1+|Z|2)2j+2|z)(z|= 3 J><J‘=1, (B7)

mf\m
m=—j

These states are overcomplete for the spin-j Hilbert space.
The geometrical meaning of these states becomes more
apparent if we define their normalized counterparts

- |z)
Q)i=10,¢); = = B8
| >j | (/)>j |7’l)j (1+|Z|2)j ( )
Then we can write

1+ 712]% / 1+ - 7in )’

{7 172) ;| = = .

(14 1z11)(A + |z2/?) 2
(B9)

These states are not orthonormal, but they approach orthonor-
mality (become more sharply peaked) as j — oo. Using these
states, we can construct “approximate” ACP codewords [11]
for finite j. In terms of the normalized states

j
Qj= Y

m=—j

J
m> (B10)

where

¥, 0)*

2)! . . L
= \/ % cos/™™(6/2) sin =0 /2)e! VY|
Jj+m)(j —m)!
(B11)
the inner product becomes
/ 0 o i(p—¢') 6.0 »
H(Q); = coszcosE+e s1n§smE , (B12)

and the completeness relation becomes
2j+1

/dQ [); (R =1, dQ=sin6db Adgp.
‘ (B13)
To invert the expansion of |€2); in terms of | rfl), we use
2j+1
4
and therefore

/dQYi}l(Q, 0V Y20, 9) = Sy (B14)

(B15)

J\_2/+1
m 4

The completeness relation (B14) follows from the beta func-
tion integral

/dﬂy{n((? P)I2);.

()
r (<52

f 7 cos*(0/2)sin”(6/2) = (B16)
0

The yfn are essentially the “lowest” monopole spherical har-
monics ;Y for £ = j:

. . 2
i@, 9) = (=1 J4+ ACHD
T

In terms of Wigner D matrices, we have simply

YhO.0) = (=1))7"D’, (—@.0.¢) =D}, (9.0, —9).
(B18)
where the second equality follows from the symmetry prop-
erty

(B17)

DL (v, B, @)= (—=1)""D. (a, B, y).

Therefore, we have

]_ Z DZnJ((pve —<P)' >

m=—j

(B19)

(B20)

So we see that spin coherent states are simply rotated versions

of |%):

j

Q) = X J\ _ —ioly/h —ibLa/h oLy |
J = R(W,(‘),*w)j =e e e j

— 9 il /B y=iBLa J> (B21)
J
This conclusion also follows from the disentangling formulas
of Appendix B 3.

Finally, given any linear operator O on the spin-j Hilbert
space, the functions P(€2) and Q(£2) defined by

/dQP(QNQ)jj(QL 2(Q) = ;(Q(0I1R);
(B22)

are called the upper and lower symbols. Any O has an ex-
pansion of the form on the left of (B22) [36]. For example,
in the context of Sec. IIIC, one could define the would-be
“momentum kick” operators

o 2j+1 .

I = /deQ(Q)IQ)MQI-

= (B23)

Unlike the momentum kick operators of ACP [11], these act
within the LLL Hilbert space rather than taking states up to
higher Landau levels.

2. Matrix elements

It is convenient to have an expression for the amplitude
i{S'|Xr|€2); [20]. Given a rotation R = R(«, B, ¥), we com-
pute that

(1 XRI2);

J
= > e, <p><

m' ,m=—j

(B24)

>ym(9 ®)*

J
Y. D@, —0, =D, (@ B,y)D) (.0, —¢)

m' ,m=—j

(B25)

=D},((¢', 0", —¢) o (@, B,y) 0 (9,6, —¢)),  (B26)
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where we have used
D, (o, B.y) =D, (—y,—B, —a) =
Y50, 9) =D, (9. 0, —). (B27)
Writing R(«’, B/, ') = R(¢', —0’, —¢")R(«t, B, ¥ )R(p, 0, —¢p), we have

, e (1 "\’
D;-j(()l/, ﬂ/’ )//) — e—z](a +y )djj'j(ﬁ/) — e—z](oc +y )( + (;OS IB ) ) (BZS)
To obtain a more explicit formula, we can write
J
AQIXRIQ) = Y ¥ ¢)DL, e By Y0, ) (B29)

m ,m=—j

J i+m' rn’ s j—m’ -1 s j—m
_ 2)) Z cos/ T (0 /.2) sin’ .(9//2) CO.SH n(&/g) sin/ ~"(6/2) eii(j”"/)‘p’ei(j’m)‘pe’ia’"/ef"y'"dr{;,m(ﬂ), (B30)
VG AmOIG —m)IG+m)!( —m)!

m',m=—j

where D! (o, B, y) = e "d’, (B)e™"". We then use the following expansion of Wigner d-matrix elements (which follows

from an identity for Jacobi polynomials):

dt (B) = (—1)y""J (e LM —m <y (—1)¥(cos %)Mﬂ_m_zs(sin g)m_"HS
(8) = (CD"VEmNE—mE+mie—m! ) e S

S=Smin

(B31)

where the sum extends over all integer values of s for which the arguments of the factorials are non-negative: sy, = max(0, n —
m) and Spax = min(€ + n, £ — m). This gives

J
HQUIXRIQ); = (2))! Z (—=1)" " cos/*™ (0 /2) sin’ ™" (6’ /2) cos’ (6 /2) sin’ (0 /2)
m ,m=—j

s - Qjdtm—m'—2s , . —m2
min(j+m,j—m’) (—1)S(COS g) Jj+m—m S(Slnﬂ)m m+2s

X ¢ I i gien yiym N 2 : (B32)
SOt slG+m—s)lm' —m+)I(j—m —s)!
After some rearranging, we get
o' 9 ,3 J min(j+m, j—m')
(Y 1XRIQ); = 2))!| cos — cos —cos = | e @t
(9 [XR|Q); (J)( 5 cos 2 2) Z >
m',m=—j s=max(0,m—m’)
) , N ) i ! -2
(D (e tan )" (v tan ) an )" ©33)
sl(G+m—s)!m —m+s)I(j—m —s)!
Letting x = —¢'@¢) tan %, y = — @) tan %, and z = tan g, we can write this as
/ B 2j
H|XRIQ); = <cos 7 cos 5 cos 5) e I IS(x, y, 2), (B34)
where

min(j+m, j—m') (_l)sxjfm’yjfmzm’ferZS

S(x,y,2) = (2))! Z 3 TV B F (B35)

m',m=—j s=max(0,m—m’)

To evaluate the sum, we first switch the order of summation by writing the inequalities that ensure that the arguments of the
factorials are non-negative as

j+m>=s5>20, j—s>m >m—s. (B36)
Then, by successive applications of the binomial theorem, we obtain

Jj+m  j=s _l)sxj—m'yj—m m' —m+2s

S(x,y,2) = 2))! Z oy P (B37)

—9)! — 1(7 — —5)!
m=—j s=0 m'=m—s S) (m m +S) (‘] m’ S)

Jjoojtm i—
e (—x2)y(x + P
- (2])!m;j§s!(j+m—s)!(j—m)! (B3%)
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J

(1 —x) "y + 21"

= @2)! - . (B39)
m;j (j +m)l(j — m)!
= (1 +xy +yz —x2)*. (B40)
For instance, to evaluate the innermost sum, we used
Jj—s Jj—m' m' —m+2s s Jj—m
> ~_ < - W T (B41)
' —m - )I(j —m' —)! (j—m)!
Altogether, we find that
. o’ 0 . . , ! 6
A |XR|Q); = 7@t |:<c0s 5 cos 5 + €@ =¢) gin — sin 5) cos g
, o 6 .. ... 6 0 2
— [ 7 cos — sin — — €"*7¥) sin — cos — ) sin p (B42)
2 2 2 2 2

This expression is equivalent to (3.25). It reduces to the inner product (B12) when « = 8 = y = 0. The above logic follows that

of [20], but differs in some details.
We can check explicitly that

-,

| (1 XRIQ) | = | (7

where, as a rotation acting on vectors in R3,

cosacosBcosy —sinasiny
cosa siny + cos Bcosy sina
—cosysinf

R(a, B,y) =

Hence, ;(2'|Xz|S2); coincides with ;(#'|Rii); up to a phase.
This phase becomes important when considering superposi-
tions of coherent states or codes constructed therefrom.

3. Disentangling formulas

The connection between the definition (B1) of spin coher-
ent states via lowering operators and the expression (B21) in
terms of rotations can be seen as follows. A standard trick
is that if we use a faithful representation of the Lie algebra
to derive a group identity, i.e., a relation between exponentials
(as opposed to an identity in the universal enveloping algebra),
then it is valid irrespective of representation. This is essen-
tially the content of the BCH-like “disentangling theorem”
of [21]. For SU(2), the simplest representation is the spin—%

representation in terms of Pauli matrices: L = g&. In our case,

XR((pﬂ,—go) — e—l(pLg/he—lGLz/ﬁel(pL3/h (B45)
. ) . 0 S
< e /20022 giper/2 _ [ €083 m€ TSI
e'%sin coSs =
2 2
(B46)

where “<” indicates “passing to the spin-% representation.”
On the other hand, we have

ex—L—/heXBLs/heX+L+/h P ex,((rl—i(rg)/2ex3z73/26x+(m+i(rg)/2 (B47)

(.

e53/2
_en/?

x+ex3/2
e /2 4 x7x+e)€3/2 :

(B438)

A 1+ -Rit\’
|Rn) ;| = — ) (B43)
—cosysina —cosacosBsiny cosasinf
Cos @ cos Yy — cos B sina sin y sina sin 8 (B44)
sin B sin y cos B
[
Choosing
0 : 0 . 0
e =cos—, x_=e€tan—, x,=—e Ytan—
(B49)
shows that
0 _
Xr(po,—g) = €N (oos%/” §>e_ZL+/h, (B50)
with z as in (B4). This gives
1z) ( 2j9> 7L /hj J
———— = [ cos™ = | ) = X —ol%) =192,
(1 + [z]2)/ 2 j| = Xewo—oj) = 120
(B51)

as claimed. (A canonical rotation has many alternative presen-
tations, such as Xg(, 9,y = € Cineli—cos¢la)/h )

As another application, these disentangling formulas can
be used to determine the set of correctable rotations for the
d = 2 case of the equatorial qudit code [see (3.43) and (3.44)].
To see that a z rotation conjugated by an x rotation has Euler
angles ¢ = y, we note that

e~/ g—iasLs/h jionLi/h  ,—i101/2 p—i303/2 yico1 /2 (B52)
cos % — i cosay sin % sin oy sin %
- ( —sina; sin cos § + i cosa sin%)
(B53)
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and to write this in the form of a generic rotation

e~ iala/h ,=iBla/h =iy L3/l ,=i003/2 ,=iBo2/2 ,~iyo3/2 (B54)
e*i(thV)/Z cos g _efi(otfy)/z sin g
T e gin e/ o b (B55)

requires taking o« = y.

APPENDIX C: APPROXIMATE QUANTUM ERROR
CORRECTION

1. Knill-Laflamme conditions

Let us revisit the quantum error-correction conditions for
a qubit code, which is a choice of two-dimensional subspace
C = span(|0), |1)) in a Hilbert space H (the discussion gener-
alizes easily to qudits). The effect of an error E is to take the
code subspace C to another subspace EC. Certain errors will
not distort C beyond repair; these are called correctable.

The exact quantum error-correction conditions of Knill-
Laflamme [23] state that for any two correctable errors E, F',
we have

(I|FTE|0) =0, (O|FTE|0) = (I|FTE|T). (C1)

These conditions say two things:
(1) Correctable errors act by isometries in the projective
Hilbert space PH:

(1IETE|0) =0, (O|EYE|0) = (1|ETE|T). (C2)

In other words, correctable errors keep orthogonal vectors
orthogonal and either shrink or expand C in a uniform way.

(2) Different but indistinguishable errors act in the same
way on the code subspace:

(TIFTEI0) =0, (O|FTE|0) = (1|FTE|T) (C3)

for E # F. Note that if we further have (0|FE|0) =
(1|FTE|T) = 0, then EC L FC for all E # F . In this case, we
can unambiguously measure the error syndrome and the code
is called nondegenerate. Otherwise, different error spaces
have nontrivial overlap and the code is called degenerate. In
light of (C2), (C3) says that the projector Pr onto FC maps
the basis E|i) to F|i) in P#, so that an E error can be inverted
regardless of whether the syndrome measurement projects
onto EC or FC.

To formulate the approximate error-correction conditions
in a convenient way, we assume only unitary errors, so that
the first condition (C2) is automatically satisfied: E TE=1.To
enforce the second condition (C3) approximately, we define
the projection operator

Pr =F|0)(O|F" + FID)(1|FT (C4)

onto FC and demand that P map E|i) to F|i) up to a constant
¢, but only approximately:

PrE|0) = cF|0) + €00 F|0) + €01 F|1), (C5)

PrE|1) = cF|1) + €10F|0) + €1, F|1), (Co)

where ¢ depends only on £ and F. We can then invert
the error approximately by applying F'; the quality of the
inversion is quantified by the fidelity (for pure states, the
fidelity is simply [{(¥|y'))? where |) is the original state

and |¢') is the recovered state). By solving (C5) and (C6),
we get

(OIFTE|0) = ¢ + €00, (C7)
AIFTET) = ¢ + e, (C8)
(1|FTE[0) = o1 (C9)
(OIFTE|T) = € (C10)

So for approximate quantum error correction, we demand
both

[(OIFTE|0) — (TI|FTE|T)| < 8,
(TIFTE0)| < e,

(C11)
(C12)

for 8, € small. More comprehensive discussions of approxi-
mate quantum error correction can be found in [47-53].

2. Measurement with ancillas

GKP [3] and ACP [11] construct infinitely squeezed code-
words that must be approximated by normalizable states. Our
error-correction scheme, by contrast, is inherently approxi-
mate. We now estimate the error incurred by the finite spread
of spin coherent states. GKP and ACP compute the leakage
error from the projections of their approximate codewords
onto the complementary Voronoi cells. However, we lack a
sharply defined position operator, so we must take a different
approach.

To measure the error syndrome for the equatorial qudit
codes of Sec. III D, which is a U(1) rotation modulo Z,, we
use an ancilla system. Let us first consider an idealized ancilla
that admits an orthonormal set of position states parametrized
by U(1)/Z4. Measuring such an ancilla allows us to perfectly
resolve the error syndrome in one shot.

We first initialize the ancilla in a Zg-invariant state, e.g.,
the uniform superposition of position eigenstates

_ 1 d—1
Oy = — 2,2wk/d). Cl13
10)x ng;w wk/d) (C13)

This is a logical-X eigenstate with eigenvalue 1. To map the
syndrome onto the ancilla, we use the (approximate) con-
trolled rotation (CROT) operator®?

/dsz’(m/),-,(szw ® e WMy, (C14)

where Q' = (0’, ¢’). We omit the overall normalization. This
operator is only approximately unitary because

fdQ’dQ (1), /(QR); (R ® e W =0L/hy  (C15)

23 Note that the CROT gate can also be used for initialization [11].
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is not proportional to the identity (;(€'|$2); is not a delta function). Let |Q2); = e~¢L3/"|k) [with |k) as in (3.40)] be a noisy
logical state, where an equatorial rotation acts on a general spin coherent state as

)

= XR(p+8¢,0,—9p—5¢)€

e N0 0) i = Xrip+50.0,—0)

—ispLy/h

7
J
=e )9, ¢ + 80);. (C16)

Then we act with the approximate CROT gate on |2); ® |0)x, giving the state

d—1
/dQ/ Q1K) ('Q/)j ® Y |m/2,2wk/d + gz/)), (C17)

k=0
where we have dropped the overall normalization. If the coherent states had no spread, then this would simply be a finite
superposition:

d—1
12);® Y |7 /2,21k/d + ¢). (C18)
k=0

In our case, however, this is a continuous superposition. Now we measure the ancilla in the position (|€2), no j subscript) basis.
To determine the unnormalized probability density of measuring the state |7 /2, ¢,,), we first apply the partial projector

I |7/2, o) (7 /2, @l (C19)
to the state, giving
d—1
fdQ’ .,'(Q'IQ),,(IQ/)_/ ® Y 8 — ¢ —2wk/d)\7 /2, <ﬂm>> = |u) ® |7/2, ¢m), (C20)
k=0
where
d-1
lu) = Z/d@’ sin®’ (0, g — 27k /d|2) 10, o — 27k /d);. (C21)
k=0

Up to normalization, (C20) is the post-measurement state. The unnormalized probability density (with respect to dg,,) of
obtaining this state is

d—1
P(gn) =lulu)? = ) /de/sine’fde” sin0" (60, g — 27k /d|Q); (16", g — 27L/d);
k, =0

X (0", om — 21€/d|0', @ — 27k /d);. (C22)
As a consistency check, if there were no spread, then P(¢,) would indeed be nonzero only when ¢, = 2rk/d + ¢ for

some k. Using that the state |2); has & = /2, the above integrals localize to 6’ = 8" = /2 as j — oo (in the saddle-point
approximation). Therefore, again dropping normalization, this becomes

= 2k 2l 2l 2k
P@n) ~ Y (7/2 0w — = |2) (Q|m/2.0m— =) (7/2,0m — == |7/2, 00— —
. d . d [.. d d [.
k,t=0J Jji Jji J
2 4 pmien—2mk/d—p)N\ 2 /] o Gien—2ml/d—@)\ 2T (] 4 om2mitk—0)/d \ 2
= . (C23)
2 2 2
k,£=0
As a further approximation, we keep only the leading k = ¢ terms to get
d-1 2j
1+ cos(gp, — 2mk/d — @)\~
P(py) ~ . C24
(@n) kZo: ( > (C24)

The other terms are exponentially suppressed in j. We can make a rough estimate of the error involved in resolving the error
syndrome using Laplace’s method.
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First recall Laplace’s method: consider the one-dimensional integral

b
= / dx e @ g(x), (C25)

where f(x) has a single critical point at xy € (a, b) with f”(xo) < 0. Taylor expanding gives

I = etf(xo)/ dxeﬂf”(xo)(x x0)2 40t (x—x0)] [g(xo) + 0@ —x)] (C26)
a

11" (x)l
. 2 2 (b—x0)
— Htf(x0) -2 4+003 /1)
=< TG0 / T P [g(x0) + O/ V)] (C27)
~ e’m\/ -tlf”z(xo)l / dy e O 0 [g(xp) + O/ V)] (C28)
=e’f<*°>g(xo>,/t| T )|(1+0<1/f)) (C29)

Specifically, say we take a = xy — € and b = x( + €. Then we have

ey
2 7 € ) ;
[= el TG f /I dy e 00 VD e(x0) + O/ V. (C30)
y e

The asymptotic expansion of the complementary error function is

2

f dte" = e;x 0(1/x2)]. (C31)
So we have
. i
/ dye™ [140(1/V/1)] = / dye™ [14 0(1//1)] (C32)
0" )l 2
e 2 ¢ 1
= m[1 —0(%—2>][1+0(1/«/?)]. (C33)
If we define

2 o0 3
loo = &7, | o / dy e+ D (g(x0) + O/~ (C34)
1" x| J-oo
then we have, to leading order in 1/z,
" o)l 2
I —1 2 e 2 ¢
A C35
e \mieol e 9

(we assume that € is constant and does not scale with ¢). This is the error from dropping the tails of the Gaussians. It is
exponentially suppressed as ¢t — oo.
Returning to (C24), we focus on a single critical point ¢g:

. 1 m =
P(gn) ~ 27@n (@) =1n (M) (C36)
We have
2 27 i
dgn Plym) ~ || =1+ 00/ ). (C37)
0
where the only critical point with a nontrivial contribution is ¢,, = ¢o with " (¢) = — % Hence,
d(pm P((pm) - f/J(Hr: d§0m P((pm) 2 e—jez/2
il = . (C38)
" dow P(om) T] €
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This is the failure probability as j — oo, for a window of radius € about ¢y.

A more realistic ancilla can itself be constructed using spin coherent states rather than position eigenstates [11]. We can again
use the approximate CROT gate to map the error syndrome onto the spin- j,,. ancilla, which is then measured in an overcomplete
set of spin coherent states parametrized by U(1)/Z,. This introduces an additional error in the measurement that becomes
negligible as ja,. — 0.

APPENDIX D: GENERALIZATIONS

In this Appendix, we present three different generalizations of our LLL codes. In Appendix D 1, we study ACP codes in the
physical setting of a charged particle on a sphere in the presence of a magnetic monopole field, without projecting to the LLL. In
Appendix D 2, we formally show that the LLL analogs of the Zy C Zy cyclic subgroup codes of ACP perform optimally when
N = 1. In Appendix D 3, we speculate on how our codes could be adapted to coherent states for arbitrary Lie groups.

1. ACP codes for the spherical Landau problem

The direct Landau level analogs of the Abelian linear rotor codes of ACP, for which both position and momentum errors
are relevant, involve states from all Landau levels. To construct such codes, we work in the full Hilbert space of the spherical
Landau problem. This amounts to modifying the linear rotor analysis of ACP to use monopole spherical harmonics in the place
of ordinary spherical harmonics.?*

Our ;Y. in (A77) form a basis for L?(S?). With our normalization, they satisfy

b 2
[ sinodo [ g i@, 07150.0) = 810 (1)
0 0
Again, we denote position eigenstates on S? by |v). The continuous position basis is dual to the discrete angular momentum
basis:
¢ £ ¢ % b4
) = [ ViY@ ) =0 Y )| ) (D2)
52 .
1)l Im|<e
where (by our normalization)
e e vyl
) = [, 40 Y@ Y (0) = Seedm (D3)
W) =3 > Xy i) = 8w —v). (D4)
£2j] ImI<e
We are working in the e = —1 gauge of Appendix A 3, where?’
L
<v m> _ Y. (D3)
We also have the following resolution of the identity:
/dv|v w=> > >< '_152. (D6)
52 1] Im|<t
We represent rotations R € SO(3) by unitary operators Xk acting as
L ¢ 14
Xelv) = [Rv),  Xg m> = Dmrm(R>‘m,>, (D7)
lm'|<e
where Df,,(R) = (' |Xzl").
We consider the Zy C Zyy qubit code with codewords (2.32):
b4 27rh - T Znh T
= m S5 me SR o9

heZ heZ

%4Given a particle on the sphere §? = SO(3)/SO(2), ACP implicitly branched SO(3) | SO(2) as £ | Ay where A, is the trivial irrep of
SO(2). Indeed, by the Peter-Weyl theorem, L2(SO(3)) = @420 Vi ® V" where V, is the spin-£ irrep of SO(3), and by selecting the trivial irrep
of SO(2) inside each V", we obtain L*(S?) = 69420 V. In the presence of a magnetic monopole, we must instead branch SO(3) | SO(2) using
€ | A;j where A; is the irrep of SO(2) given as /. This results in the Hilbert space €D ¢ We, where the W, are spanned by monopole spherical
harmonics of spin weight j.

5Qur ;Y are precisely the (Yjgn), of [54,55]. However, the (Yjgn ) = €27 (Yo )a of [54,55] differ by signs from our ¢ = +1 wave functions
in (AS83).
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Using ;Y£(0, @) = ;Y£(0, 0)e!™+)% and the expansion for |6, ¢) in (D2), we get

L

D10 27h/N + o) = Y D Y YO, 2wh/N + ) m> (D9)

hely £21j] Im|I<L heZy
_ Z Z YO, 0y et Z 2+ /N Z> (D10)

£21j1 Im|<e heZy "

=N Z D Y (6.0)eT PN pNZ_ j>. (D11)

£2|jl IpN—jI<e

Hence, in the angular momentum basis, we have
- E

=VND . D Y j> (D12)

£21jlIpN—jI<e
for r € {0, 1}.
The analysis of position shifts is the same as on §? without a magnetic monopole: the correctable position shifts are determined
by the Voronoi cells of the codewords’ constituent points, as described in Sec. IIE. As for momentum shifts, the appropriate
momentum kick operator for the spherical Landau problem is

_,-}ﬁ:/ dv ;YL ()|v)(v]. (D13)
SZ
Its action on the codewords is given by
¢
720) = L2 T2 0§ amiont | T —2”h>, (D14)
N heZy 2 N
. Yﬁ(n/z O)em<m+f>/N T 27rh T
_Yf 1 2ﬂl(m+j)h/N - D15

Since the codewords in the angular momentum basis have support only on states such that m 4 j is a multiple of N, we can
determine the value of m + j in an error ]Y,ﬁ modulo N. The value of m 4 j modulo N determines m + j if |m 4 j| < N/2.
Since |m| < €, we need £ + j < N/2 for the shift to be correctable, which is more restrictive for larger j (we take j positive for
simplicity). Indeed, since £ > j, we need N > 4j for any shifts to be correctable. So these “full spherical Landau” codes seem
to suffer from diminished performance compared to ordinary ACP linear rotor codes.

2. More cyclic subgroup codes in the LLL

In the main text, we argued that the antipodal (N = 1) case of the qubit code is optimal in the LLL. Here, we show for
illustrative purposes that LLL codes for larger cyclic subgroups do not perform as well.

In what follows, it will be convenient to have a formula for matrix elements of equatorial rotations X7 = e~"®%/% between
equatorial spin coherent states:

e~10/2 | £i®/2,ilp—¢") 2
(D16)

j(”/2’¢/|XT|7T/27‘P>j=< >

For convenience, we also record here the formula

. [2j/N]
Z(A+B 2min/N2j Az,z( )(B/A)kz 2milk/N _ nrA2i Z <2 >(B/A)kN (D17)

This expression is invariant under B — Be?™'/N,

Consider the Abelian Zy C Zoy C SO(3) (qubit) code, with

0) = Z T 27rh>j’ - Z

heZ heZ

Using the ® = 0 case of (D16) as well as (D17), we deduce the normalization factor A for which 6 6 T|T)

N-1 ' N-1 i LZJ/NJ
1+62n1(h h')/N 1+62n1h/N N2
N=) (— :NZ(T) = % 3 ( (D19)

h,h= h=0

(D18)

n Znh JT>
J
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As j — oo, the states |0, ¢); approach orthonormality and
N = N.

The diagonal error-correction condition (0|X7|0) =
(1|X7|1) holds for equatorial rotations X7.2° To satisfy
the off-diagonal condition approximately, we further
wish to impose [(0|X7|1)| <e€. Again specializing to
equatorial rotations X7, we use (D16) and (D17) to compute

that
- _ . , 2j
_ e NI [ o Lile+2m(h—i)/N+x/N]
(017 |T) = > (
h,l'=0 :
(D20)
Ne—ii© N-1 1 i(©427h/N+m /N)\ 2]
- e/\/ ( te . ) (D21)
h=0
N2e—ii® [2j/N] (2]
= S Z (—1)kekNO <k ) (D22)
k=0

which is (up to an overall phase) invariant under ® — ® +
27 /N. We have

] _ 0 if®+x/N =0 (mod2xw/N),
lim [(0|X7 1) = .
j—o0 1 if®+ /N =0 (mod2x/N).

(D23)

This is easiest to see from the sum over 4 in (D21). From
the above analysis, we see that smaller values of N lead to
fewer values of ® for which |(0|X7[1)| is large as j — oo, in
accord with the error-correction conditions. Thus, taking N >
1 results in codes that are neither as simple nor as effective as
those proposed in the main text.

3. General Lie groups

We now briefly comment on the possibility of formulat-
ing similar codes involving generalized coherent states for a
Lie group G other than SU(2) [34,35]; for an overview, see
[36]. Such states are parametrized by coset spaces G/H. The
following discussion holds for an arbitrary representation of
G, or choice of abstract “LLL Hilbert space.” For the precise
LLL degeneracies on the compact coset space G/H and a
discussion of the Landau problem thereon, see [32].

Suppose that errors are parametrized by a Lie group G. Let
T : G — U(H) be a unitary irreducible representation of G
on the Hilbert space H. Let H be the isotropy subgroup of a
fiducial state |{) € H, i.e., the maximal subgroup of G that
acts on |y) by a phase:

T (W)|Yo) = P [o).

Then we have a system of coherent states |x(g)) given by

T (o) = ¢*9|x(g)), (D25)

(D24)

%6The “parity argument” of ACP no longer implies that it holds for
all rotations when N is odd because spin coherent states transform
differently than position eigenstates under rotations and inversions,
incurring possible phases. See Footnote 9.

where x € X = G/H. Replacing g in (D25) by gh shows that

a(gh) = a(g) + a(h). (D26)
Furthermore, we have
T()lx(g) = e “OT(gg)lyo) = P9 |x(¢g)), (D27)
where
B¢, ) =a(dg) —alg). (D28)

By (D26), the phase (D28) depends only on the equivalence
class x(g) of gin G/H.

Since the representation is unitary, we have by the Cauchy-
Schwarz inequality that

[{x(g)lx(g2))| < 1. (D29)
We readily see that

(x(g1)|x(g2)) = M€~y T (g g2) o),  (D30)

(x(gg1)lx(gga)) = P8~ PEs(x(g)|x(gy)).  (D31)
In particular, we have
x@IT(MIx(8)) = (YolT (g rg)lvo). (D32)

Now suppose we wish to construct a code in ‘H for which the
codewords are generalized coherent states. For any g, ¢’ cor-
responding to distinct codewords, the (approximate) quantum
error-correction conditions require that

(x(@IT (1x(8)) = (x(HIT (r)Ix(g)),
(x(@IT (M)x(g)) ~ 0,

(D33)
(D34)

where the group operation r is a combination of correctable
errors. In view of (D32), one simple way to satisfy the first
condition is to take g, g to be elements of the centralizer of the
set of correctable errors. We may then choose the g, ¢ within
the centralizer so that the second condition is satisfied as well
as possible. It may be the case that all of the r’s belong to
some subgroup of G.

In our case, both the correctable rotations and the codeword
orientations belong to an Abelian subgroup of G = SU(2)
[really SO(3), since we restrict to integer j]. From (B42), we

have when 8 = 0 that
2j
4 cos 9) ,

(D35)

— i sin

o+
H(QUXr Q) = (cos Y

so this matrix element is independent of ¢ (i.e., it is the same
for any states related by an equatorial rotation, regardless of
whether those states lie on the equator). An equatorial rotation
is one that preserves the north pole, which is the reference
point. The key property is that conjugating an equatorial rota-
tion by another equatorial rotation has no effect.
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