

1 Hydrodynamic trade-offs in potential swimming efficiency of planispiral ammonoids

2

3 Kathleen Ritterbush¹

4 Nicholas Hebdon¹

5 ¹University of Utah, Department of Geology and Geophysics

6 115 S 1460 E Salt Lake City UT 84112

7 k.ritterbush@utah.edu

8 nicholas.hebdon@utah.edu

9

10 **Abstract**

11 Ammonoid cephalopods were Earth's most abundant oceanic carnivores for hundreds of
12 millions of years, yet their probable range of swimming capabilities are poorly constrained. We
13 investigate potential hydrodynamic costs and advantages provided by different conch geometries
14 using Computational Fluid Dynamics simulations. Simulations of raw drag demonstrate expected
15 increases with velocity and conch inflation, consistent with published experimental data.

16 Analysis at different scales of water turbulence (via Reynolds number) reveals dynamic trade-
17 offs between conch shape, size, and velocity. Among compressed shells, the cost of umbilical
18 exposure makes little difference at small size (and/or low velocity), but is profound at large sizes
19 (and/or high velocity). We estimate that small ammonoids could travel one-to-three diameters-
20 per-second (i.e., a typical ammonoid with a 5-cm-diameter shell could travel 5-15 cm/s), but that
21 large ammonoids faced greater discrepancies (a 10 cm serpenticone likely traveled <30 cm/s,
22 while a 10 cm oxycone might achieve >40 cm/s). All of these velocities are proposed only for
23 short bursts of jet propulsion, lasting only a few seconds, in the service of dodging a predator or

24 conspecific rival. These analyses do not include phylogeny, taxonomy, second-order conch
25 architecture (ribs, ornament, etc.), or hydrostatic consequences of internal anatomy (soft body;
26 suture complexity). For specific paleoecological context, we consider how these results inform
27 our reconstruction of Jurassic ammonite recovery from end-Triassic mass extinction. Greater
28 refinements will come with additional simulations that measure how added mass is influenced by
29 individual shape trait variations, ornament, and subtle body extensions during a single jet motion.

30 **Introduction**

31 The fundamental differences in swimming ability of ammonoids remain a central puzzle
32 of cephalopod paleobiology. A practical approach is to observe the first-order costs of pushing
33 the shell through the water, then compare the challenges presented by different shell shapes (e.g.,
34 Chamberlain, 1976; Jacobs 1992). The actual swimming ability of the animal would depend on
35 many variables, including muscular strength and placement (Doguzhaeva and Mapes 2015),
36 volume of jettable water, jet behavior (Packard et al. 1980; Chamberlain 1990, 1991; Neil and
37 Askew 2018), and soft-tissue arrangement (Chamberlain 1980; Jacobs 1992; Jacobs and
38 Chamberlain 1993; Parent et al. 2014; Klug et al. 2021). Many ammonoid shells produced
39 ornamentation, from subtle ribs to audacious spines (Arkell et al. 1957; Moulton et al. 2015),
40 subject to varied interpretations and evidence of their impact on locomotion (i.e., Chamberlain
41 and Westermann 1976; Ward 1981). Here, we examine only the first-order costs introduced by
42 the primary conch geometry. Assessing fundamental motility challenges (or advantages)
43 introduced by basic conch shape will allow refined study of relative benefits (or disadvantages)
44 added by secondary variations such as ornament (see Chamberlain and Westermann 1976), soft
45 tissue manipulation behavior (O'Dor 2002; Staaf et al. 2014), etc. To the first order, the basic
46 costs of pushing a shell through the water are relevant to a range of biological realities, including

47 the animals' possible swimming speeds (Jacobs 1992; Seki et al. 2000), and relative metabolic
48 demand (relative to contemporaneous sea life). An independent analysis will allow us a means to
49 return to longstanding hypotheses about specific transitions observed in the ammonoid fossil
50 record and develop more intricate hypotheses building on these outcomes.

51 Current views of ammonoid ecology hinge on comparison to extant relatives, and results
52 from hydrostatic and hydrodynamic analyses. All ammonoids are extinct, and their extant
53 relatives demonstrate the enormous range of biotic traits present among cephalopods generally:
54 body types (shelled or soft; torpedo or round; muscular or flimsy, etc.), sizes (squid hatchlings
55 swim freely at sizes < 2mm, Staaf et al. 2014; Roura et al. 2019; colossal squids reaching six
56 meters length, Rosa et al. 2017), locomotory habits (jet propulsion, fin swimming, and arm
57 swimming; Chamberlain 1993), and metabolic rates (Seibel et al. 1997; Seibel 2007; Seibel and
58 Drasen 2007). These combined variations are so great that size does not predict metabolic
59 demand (Fig. 1): comparing a squid, octopus, and vampire squid, each with a mass of 10 g, will
60 involve metabolic demands spanning two orders of magnitude (Seibel et al. 1997; Seibel 2007;
61 Seibel and Drasen 2007). Some interpretations suggest that ammonoid metabolic rates were, on
62 the whole, higher than those of extant *Nautilus* (Tajika et al. 2020). Thus, relying on body size
63 and metabolic relationships among extant relatives alone are insufficient for constraining the
64 potential metabolic rates and ecological capabilities of extinct ammonoids.

65 Previous experiments, simulations, and analyses on fossils and models do establish
66 guidelines for constraining ammonoid ecology by estimating energy demands in relation to
67 potential locomotion strategies. Hydrostatic analyses conclude that ammonoids attained near-
68 neutral buoyancy with their gas-filled chambered shell (Lemanis et al. 2015; Naglik et al. 2015;
69 Hoffmann et al., 2015; Tajika et al., 2015; Naglik et al., 2016; Peterman et al., 2019, 2020a;

70 Morón-Alfonso et al., 2020) which adds importance to the animal's potential propulsion for
71 lateral movement or lift (Peterman et al. 2020b). While swimming initiated by fins or limbs is
72 difficult to constrain, jet propulsion would generally force an ammonoid to swim shell-first
73 through the water, which allows a simple way to estimate locomotion cost (Chamberlain 1991;
74 Naglik et al. 2015).

75 Because jet propulsion is extremely energy-intensive (O'Dor and Webber 1991;
76 Chamberlain 1993), the great variation in ammonoid shell size and shape should have presented
77 a fundamental influence on energy demands for individuals, which would scale up to ecosystem-
78 level nutrient processing (as in modern systems: Gonzalez et al., 2004). Hydrodynamic analyses
79 show critical relationships between conch shape and cost of locomotion by jet propulsion, but the
80 direction, magnitude, and pattern of these trends does not always agree between studies (e.g.,
81 Chamberlain 1976; Chamberlain 1980; Jacobs 1992; Seki et al. 2000; see discussion in
82 Ritterbush 2015). This suggests that, between some well-established first-order associations
83 between shape and drag, there are additional second-order features of shape, size, or velocity that
84 cause greater dynamism than previously expected. For example, it is well-established that a
85 higher area pushed through the water, via a conch with greater inflation, should result in greater
86 drag, particularly at larger sizes or higher speeds (i.e., Jacobs 1992). But among compressed
87 conch morphologies, what second-order features influence drag, and at what ranges of size and
88 speed are these relevant?

89 The most common ammonoid conch shapes leave central whorls partially exposed along
90 the umbilicus (Raup, 1967); this trait is exaggerated by Early Jurassic clades which mostly
91 produced distinct serpenticone shapes (namely the Psilocerataceae, Lytocerataceae, Arietitaceae;
92 Guex 1995; Ritterbush and Bottjer 2012). Early study found reduced drag for this evolute

93 geometry (Chamberlain 1976), but refined experiments showed that evolute shells generated
94 more drag than other shells of similar thickness ratio (Chamberlain 1980; Jacobs 1992). The
95 preliminary data are still applied to ecological reconstructions and analyses of selective pressures
96 on shell evolution (Smith et al. 2014; Tendler et al. 2016), leading to some confusion about the
97 hydrodynamic merits of these shells. Further, it can be difficult to directly compare past studies
98 that employed different methods (test specimens made from fossil replicas, vs. from idealized
99 coils; a stationary model in moving water, vs. a moving model in still water) or reported different
100 result metrics (e.g., raw measures of drag force, alternate calculations of coefficient of drag and
101 Reynolds number).

102 We present a conservative approach to compare ammonoid swimming potential: our
103 main objective is to rank the relative apparent propulsion efficiency of very different conch
104 shapes. We do not suggest that our results will constrain the only viable ecologic mode for a
105 given conch geometry. These analyses deliberately set aside phylogeny, to taxonomy, to second-
106 order conch architecture (ribs, ornament, etc.), and to hydrostatic consequences of internal
107 anatomy (soft body; suture complexity). Our null hypothesis must assume that such
108 specializations would interact with gross conch shape, whatever its first-order challenges, or
109 advantages. To ground our analysis in a particular paleoecological setting related to gross conch
110 geometry, we hypothesize that evolute, serpenticone shells present distinct advantages for
111 practical swimming: either motility efficiency, or an individual's potential maximum propulsion
112 velocity. If supported, one might interpret that the great abundance and species richness of Early
113 Jurassic serpenticone ammonites relate to selective pressure for efficient or fast locomotion. If
114 serpenticone conch shapes do not present these hydrodynamic advantages, we would reject our

115 hypothesis, and interpret that selective pressure for swimming ability was not a primary driver of
116 this morphological ubiquity.

117 **Methods**

118 Models

119 We produced synthetic models of ammonoid conchs in open-source 3D modeling
120 software (Blender v 2.79c; Unreal v 4.22) by altering a torus spiral to fit geometric coiling
121 parameters, following Ritterbush and Bottjer (2012): thickness ratio (Th), whorl expansion (w),
122 and umbilical exposure (U) (see Fig. 2). We prepared the models for integration with the fluid
123 simulation software by smoothing them and removing internal features in Zbrush (v. 2019.1.2).
124 We follow the protocol of Jacobs (1992) and add a simple conical body extension to each shell,
125 limited to 1 cm length (20% of shell diameter) from the aperture as a conservative estimate of a
126 tucked body like *Nautilus*. Emulations of Jacobs' shells were fitted with soft body
127 approximations to match his published images (Jacobs 1992). Physical models were 3D-printed
128 in medical resin at the University of Utah Hospital library, with the aperture oriented at 30
129 degrees and a tear-drop shaped shaft rising from the center of the shell to anchor it to a force
130 transducer (Fig. 3). Simulations also used the 30 degree orientation for consistency across
131 between and across the dataset. We employ this aperture angle to: provide consistency across all
132 simulations; remove a variable of iteration to simplify the study; and to provide a baseline from
133 which additional studies might vary. We choose the 30 degree aperture angle as the mid-range of
134 Chamberlain's (1976) experimental settings; to align with Jacobs (1992) settings; and as a mid-
135 range value for the aiming of the imagined hyponome (midway between vertical and
136 perpendicular to the shell coiling axis). This choice makes our data applicable to the broadest

137 range of prior experiments while maintaining the dataset as a unified whole that can be directly
138 repeated, used, or discussed by future investigations.

139 Physical Measurements of Drag

140 We measured the drag force that moving water exerted on different shell shapes
141 (sphaerocone, oxycone, morphospace center, serpenticone) by attaching models to a force
142 transducer mounted above a flow chamber (100 x 15 x 15 cm) on a flume tank (Fig. 3C). Models
143 were attached to the force transducer at a 90 degree angle on a shaft with a teardrop-shaped cross
144 section and length of ~7 cm long, to suspend them in the center of flow 20 cm from the inlet and
145 80 cm from the outlet. Once attached and stabilized, the force transducer was reset to read at
146 zero, and force in the direction of water flow was recorded at 20 Hz. Stream flow speeds were
147 calibrated using a pygmy meter over 5 iterations at each target speed, then were controlled by
148 setting the rotation rate on the flume's water pump. The orthogonal force transducer
149 measurement offers +/- 0.002 N accuracy, which limits its functional measurement range to a
150 minimum of 2,000 dyne. We set test fluid flow velocities between 10 and 25 cm/s for each conch
151 model. Speeds of 10, 15, 20, and 25 cm/s represent the moderate-to-upper end of previous
152 experiments (i.e., Chamberlain 1976; Jacobs 1992), while fitting within the signal capacity of the
153 force transducer. Each model was (1) placed in quiet water, (2) given a five minute rest period
154 after setting the transducer to zero, then (3) subjected to three 90-second durations at each target
155 speed in sequence. We turned the pump control to zero hertz for 30 seconds between each
156 velocity test, providing a rapid fluid acceleration at the start of each velocity test interval (rather
157 than a monotonic step-wise increase in velocity). Forces were recorded continuously via a cable
158 from the force transducer to a bench-top notebook computer (Fig. 3C). From these data, we
159 observed the magnitude of drag force change between zero hertz and the test velocity, providing

160 three replicates per velocity, per model, per experimental run. We repeated this protocol entirely
161 seven times, providing 21 total replicates per velocity, per model. Water temperature varied
162 dramatically from the source depending on the day and time of day; and warmed throughout
163 flume operation by running through the pump cycle. Instead of factoring temperature into our
164 analyses as an additional variable, we calculated the mean and standard deviation of the least-
165 noisy velocity tests for each model (thus including a broad range of temperatures, without
166 accounting for the role of temperature in this variance). This experimental design and analysis
167 represent an order-of-magnitude benchmark to compare the rank of different conch performance
168 on the target models, rather than a comprehensive assessment rivalling past work (i.e.,
169 Chamberlain 1976; Jacobs 1992).

170

171 Numerical Simulation of Drag

172 We created a digital water flow simulation using ANSYS FLUENT (v 18) as a standard
173 space in which to place each ammonoid conch model. The test space was a rectangular prism
174 with dimensions 182.5 cm long, 105 cm wide, and 105 cm deep. In each case, the digital
175 ammonoid model (rendered at a 5 cm conch diameter) was positioned 30 cm from the inlet,
176 according to methods established by Hebdon et al. (2020a). Prism space surrounding the shell
177 models was discretized into approximately one million elements for flow calculations. Wall
178 effects, turbulence models, and mesh settings follow best practices from Hebdon et al. (2020a),
179 and are shown in Table 1. We initiated each simulation with a fluid inlet velocity ranging from 1
180 cm/s to 50 cm/s, and each drag estimate was refined by the software until simulation residuals
181 were stable below $1e^{-3}$.

182

183 Analysis of Drag

184 New experiments and simulations were organized to verify, or reject, the basic rank-order
185 of drag forces on the different conch shapes, following interpretations of results from Jacobs
186 (1992) and Chamberlain (1976) (Ritterbush, 2015; see also Seki et al. 2000, though we eschew
187 the slightly heteromorphic forms in this work for simplicity). Comparing drag forces estimated
188 from different methods (here: experiments; CFD simulation), differently-sized models (i.e.,
189 Chamberlain 1976; Jacobs 1992; this study), and different velocities of fluid flow, requires
190 simplified index values. First, we consider an index to compare drag forces. Coefficient of drag
191 is a dimensionless empirical value, which attempts to isolate the influence of shape on drag
192 force, after accounting for size and velocity. Specifically,

193

194 (1) Drag Force = $0.5 \times C_d \times A \times \rho \times U^2$

195

196 In Equation 1: U is velocity, ρ is density of the fluid, and A is area to account for size.
197 Size of an ammonoid can here be assessed as a cross-section, a surface area, or approximation
198 from volume ($volume^{2/3}$; i.e., Jacobs 1992). Our analyses represent size from the model surface
199 area. In short, C_d represents shape contribution to drag.

200 Next, we must consider the flow behavior inherent to any hydrodynamic test: will fluid
201 flow be smooth or rough? Re is a dimensionless value that contrasts initial force and viscous
202 force. Generally, Re can be used to track transitions between laminar (Stokes flow, very low Re),
203 normal (Newtonian flow, moderate Re), and turbulent flow (break-away flow, at high Re) (Barati
204 et al. 2014; Yang et al. 2015). As with C_d (Eq. 1), calculation of Re acknowledges both velocity
205 and size.

206

207 (2) $Re = l \times U / kv$

208

209 In Equation 2, kv is kinematic viscosity; U is velocity; and l is a characteristic length to
210 account for size. Throughout this work we set density at $1.027 \text{ g}^* \text{cm}^{-3}$ and kinematic viscosity at
211 $0.01 \text{ m}^2/\text{s}$. Kinematic viscosity (kv) and density (ρ) can both vary in seawater, so in the
212 discussion we present a simple fan diagram to compare these interactions. In Equation 2, length
213 is a single-dimensional value included to estimate size contribution to flow regime. Essentially,
214 Re controls how C_d are compared: one must correctly assess the system of experimentation (or
215 simulation) in order to compare the results. We have options in how to measure the size
216 component of Re . When Re is standardized to describe fluid motion through a closed system
217 (i.e., a pipe), the size of the chamber is factored as a characteristic linear measure. Typically, this
218 places Newtonian flow between Re values of 100 and 10,000. Our analyses, however, choose a
219 different framework to represent size.

220 To assess the flow regime from the perspective of the ammonoid animal, we calculate Re
221 with a geometrical approach. To consider flow interaction with the ammonoid, we assess size in
222 relationship to the modeled conch (rather than the chamber itself). This is consistent with Jacobs'
223 (1992) use of ammonoid model length-in-flow as the characteristic length in Re calculations
224 (which we also employed in Hebdon et al. 2020a). Here, we linearize volume ($\text{volume}^{1/3}$) as the
225 characteristic length in Equation 2. This serves two direct purposes. First, linearized volume
226 presents a more generalized assessment of a conch's potential interruption of, or interaction with,
227 flow. Second, framing all experiments and simulations around the volume of the test subject
228 allows us to directly compare C_d results across the full range of Re .

229 These refined Cd and Re values allow us to compare our results to those of previous
230 work. Generally, drag caused by shape alone will decrease as the object is larger and/or faster,
231 because viscous drag acting along the whole surface is proportionally lower relative to the while
232 pressure drag acting on the cross-sectional, or frontal, area (Barati et al., 2014; Yang et al.,
233 2015). For each conch model, we fit simple functions to describe changes in Cd with increasing
234 Re. We also view the relative contributions of viscous and pressure drag coefficients, as a
235 function of the increase in Re.

236

237 *Growth Assessments.* – We modeled a series of basic ammonoid shapes, then removed a
238 slice of newest-accreted shell from the aperture-end of the final whorl (Fig. 5). This portion of
239 shell removed can represent an aliquot of biomineralized material. Using this biomineralized
240 material as a currency, we measure how each morphotype changes volume, surface area,
241 diameter, and venter length (similar to circumference) per unit of added material.

242

243 *Models of Ammonoid Shell Motion.* – Data published for *Nautilus* (Neil and Askew,
244 2018) show that the motion across a single mantle contraction differs from the animal’s
245 corresponding mantle extension. In contrast, our methods approximate the drag force from a
246 stable, constant flow of fluid at a fixed velocity. To interpret our results in the context of an
247 ammonoid swimming against the resistance of its shell, we calculate a “compensation velocity”.
248 Jet propulsion generates punctuated motion, causing complex relationships between energy
249 expense and forward motion (see recent demonstrations with live *Nautilus* by Neil and Askew
250 2018; and squid, Bartol et al. 2016). Here we simplify the problem to postulate a single jet over a
251 single second, with the animal starting at a velocity of zero. For each shell model, we determine

252 the maximum acceleration at which forward force from swimming will be greater-or-equal to the
253 negative force from drag. This is a dynamic problem, because both factors change with
254 acceleration. Thus, we solve the problem to a reasonable resolution with a numerical solution in
255 the open-source statistical language R (R Core Development Team 2020). From this, we report
256 the maximum acceleration, maximum velocity, maximum power, and, finally, maximum
257 distance traveled in a single second. Note that this approach deliberately does not address added
258 mass (impacts from vortex formation in the umbilicus and wake as the animal moves) or aspects
259 of the soft tissues (musculature, jet rhythm, etc.). Our only goal is to estimate the challenge
260 produced by the conch itself.

261 **Results**

262 Drag Measurements

263 Flume measurements are shown in Figure 6. As expected, a moderate sphaerocone
264 generates more drag than a moderate serpenticone, and both shells generate drag consistent with
265 expectations from previous experiments (Jacobs, 1992; Neil and Askew, 2018). The force
266 transducer has an accuracy of +/- 0.002 Newton, or 200 dyne, which makes measurements at
267 velocities below 10 cm/s impractical.

268 Measurements of Drag and Calculations of Drag Coefficients

269 Coefficient of drag (C_d) generally decreases with higher Reynolds number (Re), but
270 different ammonoid shell shapes present substantial variation in the magnitude of this decrease.
271 Generally, decrease of C_d with Re is well-represented by a simple exponential decay.

272

273 Equation 3. $C_d \sim a * Re^{-1} + b$

274

275 A polynomial function (Eq. 4) provides greater fit.

276

277 Equation 4. $C_d \sim a * Re^{-1} + b + c * \log(Re) + d * Re$

278

279 Variation in overall drag relates to underlying trends in both viscous and pressure drag.

280 Figure 9 shows results for three shells. The coefficient of viscous drag decreases continuously, as

281 water gains turbidity and breaks away from friction with the shell surface. Pressure drag,

282 however, relates more to the flow resistance presented by the cross-sectional area of an object,

283 and the coefficient of pressure drag remains stable over orders of magnitude of turbulent Re .

284 Figure 9 also shows the exponential and polynomial fits to the viscous and pressure drag

285 components.

286

287 Velocity and Power

288 Maximum velocities for ammonoid swimming speed are estimated at two to three times

289 the shell diameter per second. Compensation velocity is the speed at which the force of the

290 accelerated ammonite, at one second, is equal to the opposing force of drag on the shell. At a

291 diameter of five centimeters, each shell presents a similar compensation velocity, but pronounced

292 differences emerge at larger shell sizes. At diameters of ten centimeters and above, serpenticonic

293 shells produce the lowest compensation velocity (Fig. 12A). Maximum swimming velocity can

294 also be estimated by invoking an effective power per gram of animal soft tissue. Here we apply

295 the 660 erg/g estimate from Jacobs (1992) to body tissue estimates modeled after the

296 observations of *Nautilus* from Ward et al. (1977). Figure 11 shows a logistic regression of body

297 mass from total animal mass from 26 specimens of *Nautilus* reported by Ward et al. (1977). The
298 non-linear least squares function in R (R core development team) fit the data to Equation 5.

299

300 Equation 5. $\log(mass_{body}) = -2.676 + 1.370 \times \log(mass_{total})$

301

302 We applied this function to estimate the body mass of each specimen: total mass is
303 volume of each 3D ammonoid model, multiplied by seawater density (1.027 g/mL). The equal-
304 power approach produces higher potential velocities for the inflated sphaerocone due to its
305 greater volume at a given diameter (Fig. 16B, compared to Fig. 16A). The serpenticone conch
306 still produces the lower range of velocity above diameters of 15 cm. Values for both velocity
307 estimates are presented for shells of five and ten centimeter diameters in Table 2 (Fig. 13 shows
308 only four key morphotypes for ease of comparison). Another comparison of shell hydrodynamic
309 efficiency is the power required to push the shell at a higher velocity. We calculated the power
310 required to overcome drag force while traveling one half-diameter per second, one diameter per
311 second, or two diameters per second. The increase in power required for each step is shown as a
312 power of ten in Figure 12. At small sizes, the power increase is more severe for the inflated
313 sphaerocone shell, but above ten centimeter diameter, the serpenticone shell shows the greatest
314 increase in power required to go a single diameter per second (Fig. 12C). To move two diameters
315 per second, the serpenticone shell is less efficient at diameters above seven centimeters (Fig.
316 12D).

317

318 Growth Assessments

319 The first-order growth assessments consider only the trends associated with adult shell
320 growth, not growth from the juvenile stage. Each of the three end-member shell shapes of
321 Westermann Morphospace emphasize a particular growth characteristic (Fig. 14). For a given
322 budget of surface area (to represent biomineralization effort) sphaerocones produce the most
323 volume of newly added body chamber (in keeping with the greater volume-to-surface area ratio
324 of spheres in general, and sphaerocones specifically, as in Tendler et al., 2015). For the same
325 surface area budget, oxycones produce the greatest addition to the whole-shell diameter.
326 Serpenticones, finally, produce the greatest addition of body chamber perimeter measured along
327 the venter.

Discussion

329 Simulated drag measurements reported here uphold some expectations based on previous
330 work, and considerably refine our understanding of the ranking, and orders of magnitude, of
331 hydrodynamic efficiency of different conch shape attributes. As anticipated (Jacobs, 1992;
332 Ritterbush, 2015; Hebdon et al., 2020b), shells with greater inflation typically cause higher drag,
333 and have greater C_d for a given Re . Among compressed shells, the umbilical exposure on
334 serpenticones leads to greater drag overall (compared to an oxycone), though this appears to be
335 most influential at larger sizes and/or higher speeds. The results yield new insight on the
336 dynamic drag states of serpenticonic shells. Among the shapes examined, small serpenticone
337 conchs may accommodate the fastest acceleration, but at the cost of very low efficiency (contrast
338 possible velocity shown in Fig. 12A, compared to the power required to achieve that velocity
339 shown in Fig. 12C). Larger serpenticone conchs could probably not reach such high velocities, in
340 terms of shell-lengths-per-second, but may have afforded relatively moderate efficiency (Fig.

341 12B and 12C). The results invite speculation on ammonoid paleoecology, some aspects of which
342 can be tested through further analyses.

343 We present first-order estimates of the compensation velocity for each shell shape: the
344 speed at which forward force would match drag force, ignoring added mass. These calculations
345 demonstrate how drag on the shell presents different challenges to different ammonoid animals,
346 depending on their size and velocity. For now, we ignore added mass on the shell for two
347 reasons. First, soft-tissue behavior is a second-order influence on whole-body drag, but may
348 prevent, shed, or collect added mass during a single jet. Rather than assessing the soft-tissue
349 mitigation of added-mass in our minimalistic fixed-shape 3D ammonite models, we anticipate
350 that relevant results will continue to emerge from ongoing biomechanics experiments on living
351 cephalopods.

352 Emerging techniques to observe and measure fluid dynamics in live-animal experiments
353 and simulations are transforming biomechanical concepts of swimming efficiency in
354 cephalopods. New work presents greater attention to pressure zones (Gemmell et al. 2015; Dabiri
355 et al. 2013); wakes and eddies (Peng and Dabiri 2008); and spiral vortices (Godoy-Diana 2014;
356 Bartol et al. 2016; Neil and Askew 2018; Xiang et al. 2018). Cephalopod jet propulsion, long
357 regarded as woefully inefficient (e.g., Wells 1990; O'Dor 2002), is now shown to induce vortex
358 fields that increase efficiency at increasing velocity for both squid (*Lolliguncula brevis*; Bartol et
359 al. 2016) and *Nautilus* (Neil and Askew 2018). For squid, vortex dynamics make jet propulsion
360 even more efficient than fin swimming (Bartol et al. 2016), overturning a longstanding paradigm.
361 New experiments with live *Nautilus* (Neil and Askew 2018) demonstrated two efficient modes of
362 transportation: slow anterior swimming (arms-first, 0.5 body length per second), or fast posterior
363 swimming (shell first, 1.5 body lengths per second). Jet propulsion can generate distinct or

364 elongated vortices (Neil and Askew 2018). In squid, Bartol et al. (2016) observed positive
365 associations between velocity, jet period, vortex elongation, and efficiency across both
366 swimming orientations. In contrast, Neil and Askew (2018) show that faster *Nautilus* used
367 shorter jet periods, particularly in the posterior-first direction. *Nautilus* achieved their highest
368 thrust with elongated jet vortices, but did not clearly favor this mode in either swimming
369 orientation. Vortex structures may relate to maneuverability, in which case one must consider the
370 experimental designs in these very different studies: squid traveling along a flow channel vs.
371 *Nautilus* pursuing an offered shrimp around a cuboid aquarium.

372 These recent experiments show that living animals' behavior can mitigate the innate
373 challenges of their body plan, but that this body plan still drives the order-of-magnitude
374 differences in their motility costs, range of reasonable swimming speeds, and metabolic
375 demands. *Nautilus* apparently spend most of their time traveling slowly and efficiently, and
376 move quickly with brief, rapid jets at the expense of some efficiency (Neil and Askew, 2018).
377 Interestingly, preliminary results show opposite effects in squids and *Nautilus*. Bartol et al.
378 (2016) observed positive associations between squid speed, jet period, and efficiency across both
379 swimming orientations. Niel and Askew (2018) observed a tiered system, with the most efficient
380 travel as long-period jets in slow anterior-first locomotion, and the most powerful thrust coming
381 from short-jet posterior-first locomotion. This final case matches the behavior we are modeling
382 for ammonoids. Here we quantify challenges presented by the ammonoid conch shape, as a
383 foundation for future work to assess the selective pressures and mitigating innovations at play in
384 ammonoid evolution. Crucial, too, all ammonoids were born as small hatchlings, and many
385 changed their overall conch form throughout ontogeny. Indeed, trends in conch shape through
386 ontogeny are one of the primary features illustrated by Westermann in the 1996 diagram that

387 inspired a quantification of Westermann Morphospace. Thus, any large-sized ammonoid needed
388 first to survive as a small-sized ammonoid, and may have done so using a very different conch
389 morphology.

390 Our first-order compensation velocity results present the possibility that small
391 serpenticone ammonoids had the potential to move farther in a single second than ammonoids
392 with different shell shapes, but at a high cost (requiring a hefty jet action). We speculate that this
393 degree of maximum motion would be used only rarely, as an escape from a predator, and for a
394 very limited duration. For even casual locomotion, the cost of propulsion for serpenticones is
395 higher than for more streamlined shells, so these animals probably did not move swiftly very
396 often. Based on this, we further speculate that these animals might have had fairly low baseline
397 metabolic rates. An ammonoid with an oxycone shell, in contrast, would require far less energy
398 to propel at a maximum acceleration each second. Moving forward, these interpretations must be
399 subject to further scrutiny. One tactic is to estimate the power that an ammonoid could generate
400 from within a serpenticonic shell. Jacobs (1992) took the approach of estimating the power an
401 animal in each shell shape could generate, then calculating the velocity that it could reach.
402 Newer 3D models allow estimation of ammonoid soft tissue distribution and potential water jet
403 chamber volume with greater nuance. Calculations of the potential power generated within the
404 body chambers of ammonoid shells should help to constrain whether the animals could take
405 advantage of their shell shapes that would withstand greater accelerations. Dramatic advances in
406 recognizing ammonoid soft-body form (i.e., Klug et al. 2021) are likely to revise estimations of
407 their range of muscle and jet capacity.

408 Trade-offs between maximum acceleration and energy requirement differ when conch
409 size is increased. Large serpenticone conchs would allow the lowest acceleration, and would

410 move the shortest distance during a single second, compared to other conch shapes. Our broad
411 interpretation of this result is simply that large serpenticonic shells did not provide advantages
412 for rapid locomotion. When these shells appear in the fossil record, we favor ecological and
413 evolutionary interpretations that do not invoke a selective pressure for rapid swimming in these
414 species at sizes greater than ~5 cm. In the specific case of the Early Jurassic diversification of
415 ammonoid after the end-Triassic mass extinction, we speculate that large serpenticonic species
416 (i.e., *Psiloceras pacificum*, *P. polymorphum*, *Arietites lyra*) could have sized out of predation
417 pressure from species with smaller, more efficient shells, e.g., the moderate platycone of
418 *Nevadaphyllites compressus*. Only a very small percentage of an ammonoid reproductive cohort
419 should be expected to have reached these great sizes, and most may have fallen prey to
420 conspecific predation (e.g., Bucher et al. 1996; Klug et al. 2015; Kerr and Kelley 2015). In this
421 scenario, ammonoid individuals with very large serpenticonic shells were abundant not because
422 of superior swimming speed or selective pressure favoring that shell shape. In contrast, it appears
423 some individuals survived to large sizes and then faced little selective pressure against this
424 cumbersome shell. Many species of earliest Jurassic ammonites may have been “successful
425 slackers”; gaining abundance, cosmopolitan distribution, and species-level diversity in spite of,
426 not driven by, their sometimes-large serpenticonic shells.

427 Exterior ornament is also controversial. Spines may have served as defense, or may have
428 held a sensory role (Ifrim et al. 2018); in either case spines would be expected to alter wake
429 dynamics. Ribbing has been interpreted as primarily responding to anti-predatory defense
430 escalation (Ward 1980; Kerr and Kelley 2015) or hydrodynamic streamlining (Chamberlain
431 1980; Lukeneder 2015). Covariation of rib ornament intensity and coiling parameters occurs in
432 many ammonoid species (Naglik et al. 2015; Guex et al. 2014). The significance of ribs as

433 hydrodynamic mitigation or augmentation will depend first on the challenges introduced by the
434 smooth shell in each morphotype.

435 This interpretation of ecological structure is speculative and can be tested by further
436 examinations of shell hydrodynamics and size-abundance in the fossil record. First, external
437 ribbing ornament became very prominent during the next few million years of the Sinemurian
438 stage (199.3-198 Ma; Franceschi et al. 2019), and additional flow simulations can determine if
439 these ribs would increase acceleration, efficiency, breakage resistance, or all of the above. Kerr
440 and Kelley (2015) include Early Jurassic ribbed species as part of the Mesozoic Marine
441 Revolution, while Moulton et al. (2015) present a first-order mechanical framework for the rise
442 of ribbing intensity on serpenticones specifically. The repeated evolution of oxyconic forms,
443 particularly from lineages that previously yielded serpenticonic forms, is a well-recognized trend
444 in ammonoid natural history (Westermann 1996; Monnet et al. 2011), including specific cases of
445 umbilical occlusion (Klug and Korn 2002; Brockwinkel et al. 2017). Continued focus on
446 morphological and size dynamics in specific ammonoid fossil assemblages or intraspecies
447 variation (i.e., Yacobucci, 2004; Hammer and Bucher, 2006; Klug et al., 2016) presents test
448 cases to contrast size, form, and abundance: we might expect that oxycone conchs reach larger
449 sizes, while small serpenticonic forms are more abundant. Both forms are compressed, but the
450 trade-offs in their drag profiles are expressed only at larger sizes or higher speeds.

451 If we speculate that the earliest Jurassic ammonoids, particularly large species, did not
452 have shells selected by intense top-down predation, we must present reasonable alternatives for
453 the ecological structure and selective framework. Tendler et al. (2015) presented shell features in
454 the context of pareto optimality, wherein each shape represented a compromise between different
455 functionally valuable traits, which can be applied to distinct fossil assemblages (Klug et al.

456 2016). In our simplified growth analyses, each basic conch type excels at producing some aspect
457 of shell geometry: sphaerocones produced the greatest volume; oxycones produced the greatest
458 shell profile diameter, and serpenticones produced the greatest length of whorl extension along
459 the venter. Indeed, advanced analyses of conch growth patterns (Parent et al. 2020; Tajika et al.
460 2020) emphasize the importance of volume as a first-order consequence of, and perhaps
461 important ecological selective pressure for, specific morphotype development and ontogenetic
462 trends. Ammonoids, of course, produce odd shapes throughout history; and juveniles of species
463 with planispirally-coiled conchs are no exception (Klug et al. 2016). But serpenticone conches
464 produce the least volume per unit of added shell material in our growth calculations, which
465 stands out from the other conch features. Production of a longer venter (relative to other growth
466 patterns) is neither a typical target of measurement, nor frequently invoked as a functional
467 advantage, but it may be important in relationship to hydrodynamic trade-offs for serpenticonic
468 conch shapes.

469 Serpenticones typically have long body chambers (exceeding a 365 degree whorl;
470 Saunders and Shapiro, 1986; Kröger 2002a). A propulsive advantage to this shape seems
471 unlikely; higher-volume conch shapes would be expected to benefit from added musculature and
472 water jet volume. A fecundity advantage is plausible, particularly in large serpenticone
473 ammonites: rather than a wholesale volume increase, the territory allotted to a particular portion
474 of soft tissue (gonad, egg production, etc.) could be lengthened. Increasing the body chamber
475 length would be a possible alternative to decreasing egg size despite maintaining a narrow
476 aperture opening (Laptikhovsky et al. 2018; DeBaets et al. 2015), emphasizing the need to
477 observe more than overall conch size in ammonoids generally (Monnet et al. 2015). Two

478 advantages might result: storing reproductive material far from the aperture, and little adjustment
479 needed laterally for other soft tissue systems when the reproductive materials are deployed.

480 Finally, one possible ecological advantage of enhanced ventral length is relevant to the
481 food web structure and is readily tested on additional fossils. We speculate that serpenticone
482 shells produced longer body chambers, but that an animal's body did not fill the chamber, in
483 contrast to the tight fit of a living *Nautilus*. We speculate that the animal within a serpenticone
484 conch could withdraw their body fully within the chamber, thereby hiding from predators. This
485 interpretation has been presented independently to explain healed sub-lethal injuries deep in the
486 body chamber of serpenticonic ammonoids (Kröger, 2002a,b). Indeed, Doguzhaeva and Mapes
487 (2015) conclude from muscle attachment scars that ammonoids with long body chambers may
488 have better suited a slower life mode. This may not protect the ammonoid from the crushing jaws
489 of some coleoids (e.g., Klompmaker et al. 2009; Klug et al. 2021) or vertebrates (very large fish;
490 marine reptiles), but it would be sufficient to avoid direct attack on the soft parts by the jaws or
491 beak of a similarly-sized ammonoid (e.g., Kröger 2002a,b; Keupp 2006; Kerr and Kelley 2015).
492 The interpretation would predict that ammonoids in serpenticone shells could survive attacks that
493 broke substantial portions of the aperture or body chamber, by the animal withdrawing inside
494 and repairing the shell later with a mantle tissue that could extend far back-and-forth within the
495 body chamber (as in Kröger 2002a,b). Particular hypotheses might be drawn for soft body
496 behaviors, to be tested against detailed fossil observations (muscle attachment scars, healed shell
497 from sub-lethal injuries, etc.). Hydrostatic stability and orientation are very sensitive to
498 distribution of the soft body relative to the center of buoyancy (Kröger 2002b; Peterman et al.,
499 2020a,c). Retracting the body would certainly have hydrostatic consequences, that-might
500 intensify how ill-suited these animals would be for continuous swimming. And last, Early

501 Jurassic species with serpenticone conch shapes flourished in the first global take-over by
502 Ammonitina. Their iconic suture complexity may have aided hydrostatic adjustments (Peterman
503 et al., 2021) to compensate for, or ultimately enable, widespread success as low-metabolism,
504 high-fecundity, risk-avoidant animals.

505 **Conclusions**

506 We present hydrodynamic flow analyses, growth features, and apparent maximum
507 acceleration values for a variety of common ammonoid shell shapes. The maximum acceleration
508 calculations consider only the top rate at which the shells can move to balance their forward and
509 drag forces. These accelerations were not necessarily achieved, and could be limited by the
510 animals' soft body components: muscular distribution; propulsive water volume; and metabolic
511 rate. Indeed, the high power requirements of small serpenticones may suggest that the animals
512 only rarely used such top accelerations, if at all. The acceleration values show trade-offs with
513 size in serpenticone shells, where the top acceleration speeds are limited to the smaller
514 specimens. We speculate on predator-prey dynamics among earliest Jurassic Hettangian
515 ammonoids as an example of how these new data can be brought to bear on specific ecological
516 contexts: we suggest that small specimens of *Psiloceras* could dodge more streamlined predatory
517 *Nevadaphyllites* in an emergency, but that the larger specimens effectively sized out of predation
518 by most ammonoids. Post-extinction ammonoid shell shape in the earliest Jurassic is unlikely to
519 have been shaped by selective pressures favoring the fastest locomotion across ammonoids
520 generally.

521

Acknowledgments

522

523

524

525

526

527

This work is dedicated to J. Guex and to D. Taylor for their work on Hettangian and

Sinemurian ammonoids of North America. We thank S. Naleway, Alexi P, M Metzger, for

assistance with equipment and helpful discussions. We thank D. Trentman and C. Cazedessus for

tireless computing support. Y. Choi and D. Peterman provided helpful edits to the text. We thank

the Editor and Reviewers, including C. Klug and K. DeBaets, for greatly improving the quality

of the manuscript. This work is supported by NSF 1945597.

528

Literature Cited

529 Arkell, W. J., W. M. Frunish, B. Kummel, A. K. Miller, R. C. Moore, O. H. Shindewolf, P. C.

530 Sylvester-Bradley, and W. C. Wright. 1957. Mollusca 4, Cephalopoda, Ammonoidea.

531 Geological Society of America, New York, pp.

532 Barati, R., S. A. A. S. Neyshabouri, and G. Ahmadi. 2014. Development of empirical models
533 with high accuracy for estimation of drag coefficient of flow around a smooth sphere: An
534 evolutionary approach. Powder Technology 257:11–19.535 Bartol, I. K., P. S. Krueger, R. A. Jastrebsky, S. Williams, and J. T. Thompson. 2016. Volumetric
536 flow imaging reveals the importance of vortex ring formation in squid swimming tail-first
537 and arms-first. Journal of Experimental Biology 219:392–403.538 Bockwinkel, J., Becker, R.T., Aboussalam, Z. S. 2017. Ammonoids from the late Givetian
539 Taouzites Bed of Ouidane Chebbi (eastern Tafilalt, SE Morocco). N. Jb. Geol. Paläont. Abh.
540 284: 307-354.541 Bucher, H., Landman, N. H., Klofak, S. M., & Guex, J. 1996. Mode and rate of growth in
542 ammonoids. In Ammonoid paleobiology (pp. 407-461). Springer, Boston, MA.

543 Chamberlain, J. 1976. Flow patterns and drag coefficients of cephalopod shells. *Palaeontology*
544 19:539–563.

545 Chamberlain, J. A. 1980. The role of body extension in cephalopod locomotion. *Palaeontology*
546 23:445–461.

547 Chamberlain, J. A. J. 1990. Jet propulsion of *Nautilus*: a surviving example of early Paleozoic
548 cephalopod locomotor design. NRC Research Press 68:806–814.

549 Chamberlain, J. A. 1991. Cephalopod locomotor design and evolution: the constraints of jet
550 propulsion. In *Biomechanics and Evolution* (eds J. M. V. Rayner & R. J. Wootton), pp. 57–
551 98.

552 Chamberlain, J. A., Jr, and G. Westermann. 1976. Hydrodynamic properties of cephalopod shell
553 ornament. *Paleobiology* 2:316–331.

554 Chamberlain, J. A., Jr. 1993. Locomotion in ancient seas: Constraint and opportunity in
555 cephalopod adaptive design. *Geobios* 26:49–61.

556 Dabiri, J. O., S. Bose, B. J. Gemmell, S. P. Colin, and J. H. Costello. 2014. An algorithm to
557 estimate unsteady and quasi-steady pressure fields from velocity field measurements. *Journal*
558 of Experimental Biology 217:331–336.

559 Doguzhaeva, L. A., & Mapes, R. H. 2015. The body chamber length variations and muscle and
560 mantle attachments in ammonoids. In C. Klug, D. Korn, K. De Baets, I. Kruta, and R. H.
561 Mapes (Eds.), *Ammonoid paleobiology: From anatomy to ecology. Topics in Geobiology*
562 43:545–584. Dordrecht: Springer Netherlands.

563 Franceschi, M., J. D. Corso, M. Cobianchi, G. Roghi, L. Penasa, V. Picotti, and N. Petro. 2019.
564 Tethyan carbonate platform transformations during the Early Jurassic (Sinemurian–

565 Pliensbachian, Southern Alps): Comparison with the Late Triassic Carnian Geological
566 Society of America Bulletin 131:1255–1275.

567 Gemmell, B. J., S. P. Colin, J. H. Costello, and J. O. Dabiri. 2015. Suction-based propulsion as a
568 basis for efficient animal swimming. *Nature Communications* 6:1–8.

569 Gonzalez, H., Giesecke, R., Vargas, C., Paves, M., Iriarte, J., Santibanez, P., Castro, L.,
570 Escribano, R. & Pages, F. 2004. Carbon cycling through the pelagic foodweb in the northern
571 Humboldt Current off Chile (23°S). *ICES Journal of Marine Science* 61, 572–584.
572 (doi:10.1016/j.icesjms.2004.03.021)

573 Guex, J. 1995. Ammonites hettangiennes de la Gabbs Valley Range (Nevada, USA). *Mémoires*
574 de Géologie Lausanne 27:1–131.

575 Hammer, O., and H. Bucher. 2006. Generalized ammonoid hydrostatics modelling, with
576 application to *Intornites* and intraspecific variation in *Amaltheus*. *Paleontological Research*
577 10:91–96.

578 Hebdon, N., K. A. Ritterbush, and Y. Choi. 2020a. Computational fluid dynamics modeling of
579 fossil ammonoid shells. *Palaeontologia Electronica* 23:2–20.

580 Hebdon, N., K. Ritterbush, Y. Choi. 2020b. Assessing the morphological impacts of ammonoid
581 shell shape through systematic shape variation. *Integrative and Comparative Biology*
582 60:1320–1329.

583 Hoffmann, R., Lemanis, R., Naglik, C. and Klug, C. 2015. Ammonoid buoyancy. *In* Klug, C.,
584 Korn, D., De Baets, K., Kruta, I. and Mapes, R. H. (eds.): *Ammonoid paleobiology, Volume*
585 *I: from anatomy to ecology. Topics in Geobiology*, 43: 621–656, Springer, Dordrecht.

586 Ifrim, C., Bengston, P., Schweigert, G. 2018. Growth and function of spines in Jurassic and
587 Cretaceous ammonites. *Cretaceous Research* 88:62–78.
588 <https://doi.org/10.1016/j.cretres.2017.05.003>.

589 Jacobs, D. 1992. Shape, drag, and power in ammonoid swimming. *Paleobiology* 18:203–220.

590 Jacobs, D.K., and Landman, N.H. 1993. *Nautilus*—a poor model for the function and behavior of
591 ammonoids? *Lethaia* 26(2):101-111. <https://doi.org/10.1111/j.1502-3931.1993.tb01799.x>

592 Kerr, J. P., and Kelley, P. H. 2015. Assessing the influence of escalation during the Mesozoic
593 Marine Revolution: shell breakage and adaptation against enemies in Mesozoic ammonites.
594 *Palaeogeography, Palaeoclimatology, Palaeoecology*, 440:632-646.

595 Keupp, H. 2006. Sublethal punctures in body chambers of Mesozoic ammonites (forma aegra
596 fenestra nf), a tool to interpret synecological relationships, particularly predator-prey
597 interactions. *Paläontologische Zeitschrift*, 80(2):112-123.

598 Klug, C. and Korn, D. 2002. Occluded umbilicus in the Pinacitinae (Devonian) and its
599 palaeoecological implications. *Palaeontology* 45: 917-931.

600 Klug, C., De Baets, K., Kröger, B., Bell, M. A., Korn, D., and Payne, J. L. 2015. Normal giants?
601 Temporal and latitudinal shifts of Palaeozoic marine invertebrate gigantism and global
602 change. *Lethaia*, 48(2):267288.

603 Klug, C., De Baets, K. and Korn, D. 2016. Exploring the limits of morphospace: ontogeny and
604 ecology of Late Viséan ammonoids from the Tafilalt (Morocco). – *Acta Palaeontologica
605 Polonica* 61(1): 1-14

606 Klug, C., Schweigert, G., Tischlinger, H. and Pochmann, H. 2021. Failed prey or peculiar
607 necrolysis? Isolated ammonite soft body from the Late Jurassic of Solnhofen (Germany). –

608 Swiss Journal of Palaeontology, 140(3):15 pp., Basel. <https://doi.org/10.1186/s13358-020-00215-7>.

609

610 Kröger, B. 200a2: Antipredatory traits of the ammonoid shell—indications from Jurassic

611 ammonoids with sublethal injuries. *Paläontologische Zeitschrift* 76:223–234.

612 Kröger, B. 2002b: On the efficiency of the buoyancy apparatus in ammonoids: evidences from

613 sublethal shell injuries. *Lethaia* 35:61–70.

614 Lemanis, R., S. Zachow, F. Fusseis, and R. Hoffmann. 2015. A new approach using high-

615 resolution computed tomography to test the buoyant properties of chambered cephalopod

616 shells. *Paleobiology* 41:313–329.

617 Lukeneder, A. 2015. Ammonoid habitats and life history. In C. Klug, D. Korn, K. De Baets, I.

618 Kruta, and R. H. Mapes (Eds.), *Ammonoid paleobiology: From anatomy to ecology. Topics*

619 in *Geobiology* 43:689–791. Dordrecht: Springer Netherlands.

620 Morón-Alfonso, D.A., Peterman, D.J., Cichowski, M., Hoffmann, R., and Lemanis, R.E. 2020.

621 Virtual 3D modeling of the ammonoid conch to study its hydrostatic properties. *Acta*

622 *Palaeontologica Polonica* 65(3): 467–480. <https://doi.org/10.4202/app.00776.2020>.

623 Moulton, D. E., A. Goriely, and R. Chirat. 2015. The morpho-mechanical basis of ammonite

624 form. *Journal of Theoretical Biology* 364:220–230.

625 Naglik, C., F. Rikhtegar, and C. Klug. 2015. Buoyancy of some Palaeozoic ammonoids and their

626 hydrostatic properties based on empirical 3D-models. *Lethaia* 49:3–12.

627 Naglik, C., Rikhtegar, F. N. and Klug, C. 2016. Buoyancy in Palaeozoic ammonoids from

628 empirical 3D-models and their place in a theoretical morphospace. *Lethaia* 49:3–12, DOI:

629 10.1111/let.12125

630 Neil, T. R., and G. N. Askew. 2018. Swimming mechanics and propulsive efficiency in the
631 chambered nautilus. Royal Society Open Science 5:170467–170469.

632 O'Dor, R. 2002. Telemetered cephalopod energetics: swimming, soaring, and blimping.
633 Integrative and Comparative Biology 42:1065–1070.

634 Packard, A., Bone, Q., and Hignette, M. 1980. Breathing and swimming movements in a captive
635 Nautilus. Journal of the Marine Biology Association of the United Kingdom 60: 313–327.

636 Parent, H., Westermann, G. E., and Chamberlain Jr, J. A. 2014. Ammonite aptychi: Functions
637 and role in propulsion. Geobios 47:45-55.

638 Parent, H., M. Bejas, and A. Greco. 2020. Shell Area–To-Volume Ratio in Ammonoids.
639 Palaeontological Research Society of Japan 24:216–225.

640 Peterman, D.J., Ciampaglio. C., Shell, R.C., and Yacobucci, M.M. 2019. Mode of life and
641 hydrostatic stability of orthoconic ectocochleate cephalopods: hydrodynamic analyses of
642 restoring moments from 3D-printed, neutrally buoyant models of a baculite. Acta
643 Palaeontologica Polonica 64(3):441-460. <https://doi.org/10.4202/app.00595.2019>.

644 Peterman, D.J., Mikami, T., and Inoue, S. 2020a. The balancing act of *Nipponites mirabilis*
645 (Nostoceratidae, Ammonoidea): managing hydrostatics throughout a complex ontogeny.
646 PLoS ONE 15(8): e0235180. <https://doi.org/10.1371/journal.pone.0235180>.

647 Peterman, D.J., Shell, R.C., Ciampaglio, C.N., Yacobucci, M.M. 2020b. Stable hooks:
648 biomechanics of heteromorph ammonoids with U-shaped body chambers. Journal of
649 Molluscan Studies 86(4): 267–279. <https://doi.org/10.1093/mollus/eyaa018>.

650 Peterman, D.J., Hebdon, N., Ciampaglio, C.N., Yacobucci, M.M., Landman, N.H., and Linn, T.
651 2020c. Syn vivo hydrostatic and hydrodynamic properties of scaphitid ammonoids from the
652 U.S. Western Interior. Geobios 60:79-98. <https://doi.org/10.1016/j.geobios.2020.04.004>.

653 Peterman, D., K. A. Ritterbush, C. N. Ciampaglio, E. H. Johnson, S. Inoue, T. Mikami, and T. J.
654 Linn, 2021. Buoyancy control in ammonoid cephalopods refined by complex internal shell
655 architecture. *Scientific Reports* 11:8055. <https://doi.org/10.1038/s41598-021-87379-5>.

656 Ritterbush, K. A. 2015. Interpreting drag consequences of ammonoid shells by comparing
657 studies in Westermann Morphospace. *Swiss Journal of Palaeontology*: 135:125–138.

658 Ritterbush, K. A., and D. J. Bottjer. 2012. Westermann Morphospace displays ammonoid shell
659 shape and hypothetical paleoecology. *Paleobiology* 38:424–446.

660 Roura, Á., M. Amor, A. F. González, A. Guerra, E. D. Barton, and J. M. Strugnell. 2019.
661 Oceanographic processes shape genetic signatures of planktonic cephalopod paralarvae in
662 two upwelling regions. *Progress in Oceanography* 170:11–27.

663 Saunders, W. B. & Shapiro, E. A. 1986. Calculation and simulation of ammonoid hydrostatics.
664 *Paleobiology* 12:64–79.

665 Seibel, B. A. 2007. On the depth and scale of metabolic rate variation: scaling of oxygen
666 consumption rates and enzymatic activity in the Class Cephalopoda (Mollusca). *Journal of*
667 *Experimental Biology* 210:1–11.

668 Seibel, B. A., and J. C. Drazen. 2007. The rate of metabolism in marine animals: environmental
669 constraints, ecological demands and energetic opportunities. *Philosophical Transactions of*
670 *the Royal Society B: Biological Sciences* 362:2061–2078.

671 Seibel, B. A., E. V. Thuesen, J. J. Childress, and L. A. Gorodezky. 1997. Decline in pelagic
672 cephalopod metabolism with habitat depth reflects differences in locomotory efficiency. *The*
673 *Biological Bulletin* 192:262–278.

674 Seki, K., K. Tanabe, N. Landman, and D. Jacobs. 2000. Hydrodynamic analysis of Late
675 Cretaceous desmoceratine ammonites. *Revue de Paléobiologie, Genève* 8:141–155.

676 Smith, P. L., L. M. Longridge, M. Grey, J. Zhang, and B. Liang. 2014. From near extinction to
677 recovery: Late Triassic to Middle Jurassic ammonoid shell geometry. *Lethaia* 47:337–351.

678 Staaf, D. J., W. F. Gilly, and M. W. Denny. 2014. Aperture effects in squid jet propulsion.
679 *Journal of Experimental Biology* 217:1588–1600.

680 Tajika, A., Naglik, C., Morimoto, N., Pascual-Cebrian, E., Hennhöfer, D. K. and Klug, C. 2015.
681 Empirical 3D-model of the conch of the Middle Jurassic ammonite microconch
682 Normannites, its buoyancy, the physical effects of its mature modifications and speculations
683 on their function. *Historical Biology* 27:181-191.

684 Tajika, A., Landman, N. H., Hoffmann, R., Lemanis, R., Morimoto, N., Ifrim, C. and Klug, C.
685 2020. Chamber volume development, metabolic rates, and selective extinction in
686 cephalopods. *Scientific Reports* 10:2950. <https://doi.org/10.1038/s41598-020-59748-z>.

687 Tajika, A., N. H. Landman, R. Hoffmann, R. Lemanis, N. Morimoto, C. Ifrim, and C. Klug.
688 2020. Chamber volume development, metabolic rates, and selective extinction in
689 cephalopods. *Biogeosciences* 10:1–11.

690 Tendler, A., A. Mayo, and U. Alon. 2015. Evolutionary tradeoffs, Pareto optimality and the
691 morphology of ammonite shells. *BMC Systems Biology* 9:1–12.

692 Ward, P., R. Stone, G. Westermann, and A. Martin. 1977. Notes on animal weight, cameral
693 fluids, swimming speed, and color polymorphism of the cephalopod *Nautilus pompilius* in
694 the Fiji Islands. *Paleobiology* 3:377–388.

695 Wells, M.J. 1990. Oxygen extraction and jet propulsion in cephalopods. *Canadian Journal of*
696 *Zoology* 68(4):815-824. <https://doi.org/10.1139/z90-117>

697 Xiang, Y., S. Qin, and H. Liu. 2018. Patterns for efficient propulsion during the energy evolution
698 of vortex rings. *European Journal of Mechanics - B/Fluids* 71:47–58.

699 Yang, H., M. Fan, A. Liu, and L. Dong. 2015. General formulas for drag coefficient and settling
700 velocity of sphere based on theoretical law. International Journal of Mining Science and
701 Technology 25:219–223.

702 Yacobucci, M. M. 2004. Neogastropolites meets Metengonoceras: morphological response of an
703 endemic hoplitid ammonite to a new invader in the mid-Cretaceous Mowry Sea of North
704 America. Cretaceous Research 25:927–944.

705

706 FIGURE 1. The metabolic rates of modern cephalopods (lines and points) expand above
707 and below the typical ranges of ocean typical fish (right-most shaded polygon), benthic
708 invertebrates (crustaceans and echinoderms, dark polygon), and gelatinous invertebrates (left-
709 most shaded polygon). The largest squids (Loliginidae, filled blue triangles, Ommastrephidae,
710 open blue triangles) have a similar range of metabolic rates, with decreasing rates found among
711 the Gonatidae (crosses), Octopodidae (inverted triangles), Cranchidae (open circles),
712 Histioteuthidae (dots), Vampyroteuthidae (open squares), and Bolitaenidae (filled squares).
713 Modified from Seibel (2007) and Seibel and Drasen (2007).

714

715 FIGURE 2. Gross shape of a planispiral ammonoid conch can be represented through three
716 ratios of measurements on a figured specimen: whorl expansion (increase in aperture height over
717 180 degrees of shell accretion); umbilical exposure (ratio of umbilical diameter to whole conch
718 diameter); and thickness ratio (ratio of conch width to diameter). Each trait is exemplified by
719 morphotypes oxycone, sphaerocone, and serpenticone, respectively (see Ritterbush and Bottjer,
720 2012).

721 FIGURE 3. Schematic for physical experiments.

722 FIGURE 4. Comparison between computational fluid dynamics methods (see text) and
723 published benchmarks for water-tank experiments using both live (*Nautilus*) and replica
724 (ammonoids *Oppelia*, *Sphenodiscus*) specimens. Live *Nautilus* data are taken from Neil and
725 Askew (2018; for consistency, showing only drag for animals swimming posteriorly with a Type
726 1 jet at a low angle). Experimental ammonoid replica data are taken from Jacobs (1992). See
727 Hebdon et al. (2020a) for method details.

728 FIGURE 5. Ammonoid conch models as tested (left; sans soft body extension), and with
729 one aliquot of external shell biomineralization removed (right). Septa are ignored. (“Cap” on
730 aperture is shown for clarity, excluded from measurements.)

731 FIGURE 6. Experimental results for flume tank experiments with 3D printed ammonoid
732 shells. A. Velocity calibration on equipment. See text. B. Drag force measurements for each of
733 three models: sphere (black dots), sphaerocone shell (red squares), and serpenticone shell (blue
734 triangles). Each point shows the mean value with bars showing the standard deviation. Open blue
735 circles are data from Jacobs’ experiments with a cast of the serpenticonic *Lytoceras* (Jacobs,
736 1992). C. Flume channel at the University of Utah College of Engineering (water chamber is
737 transparent acrylic). D. Experimental model of an idealized serpenticone shell printed in medical
738 resin at the University of Utah Hospital Libraries.

739 FIGURE 7. Drag measurements from water flow simulated around ammonoid shell
740 models. Left, full range of values, axes in log scale. Right, focus on velocities of one shell-
741 diameter per second (all included models are 5 cm-diameter shells) for the same range of shapes,
742 with axes in linear scale.

743 FIGURE 8. Comparison of drag coefficients with Re for a range of ammonoid shell shapes.
744 Lines between data points are for ease of viewing and do not represent calculated functions.

745 FIGURE 9. Trends in coefficients of drag for three shell shapes: sphaerocone (top),
746 serpenticone (center), and oxycone (bottom). Each plot shows the coefficient for overall drag
747 (open circles), as well as coefficients for pressure drag (dots) and viscous drag (squares). Light-
748 colored lines represent a simple exponential decay fit to the data (Eq. 3), and dark lines represent
749 a polynomial fit (Eq. 4). Grey shaded region marks the Re for which friction drag is greater than
750 pressure drag.

751 FIGURE 10. Comparison of coefficient of drag with parameters of shell shape. Top row:
752 Cd increases for inflated shells. Bottom row: Increases of Cd with greater umbilical exposure is
753 only clear at higher Re. At Re = 9000, Cd relates to both inflation and umbilical exposure.
754 Dashed lines are not significant, and are shown for easy comparison between plots.

755 FIGURE 11. Total mass (including shell) and body mass (soft tissues) of 26 specimens of
756 *Nautilus pompilius*, from measurements in Ward et al. (1977) (note log scale on both axes). The
757 line represents a fit to log-log regression (see text).

758 FIGURE 12. Potential ranges of swimming velocity and power requirements for four
759 idealized ammonoid shell shapes, across a range of shell diameters. A. Velocity at which the
760 force from acceleration of the ammonite (after one second) would match the opposing drag force
761 on the shell. This compensation velocity ignores added mass. B. Estimated maximum velocity
762 attainable if each animal exerted 400 ergs of power per gram of soft tissue (see text). C. Contrast
763 in power required for the ammonite to combat drag forces at one shell-diameter per second, vs.
764 power required at one half shell diameter per second. D. Contrast in power required to overcome
765 drag at two diameters per second, vs. one diameter per second.

766 FIGURE 13. Interactions between gross conch morphology and power trade-offs in
767 generalized ammonoids. The top panel visualizes results from Figure 12D. The illustration
768 contrasts an ammonoid moving 2x diameter per second, vs the same animal moving only 1x
769 diameter per second. Top center: Isopachs in Westermann Morphospace contour the increased
770 power required for an ammonoid of 5 cm diameter conch to double velocity from 5 cm/s to 10
771 cm/s. (Values written in log-base-10, as in figure 12D: a value of 1 would denote 10x power
772 demand to double velocity.) Top right: An ammonoid of 10 cm conch diameter, doubling
773 velocity from 10 cm/s to 20 cm/s. The bottom panel visualizes results from Figure 12C. Bottom

774 left: consider the ammonoid increasing from one-half a diameter per second, to one diameter per
775 second. Bottom center: Increased power demand of an ammonoid with a 5cm conch going 5
776 cm/s instead of 2.5 cm/s. Bottom right: increased power demand of an ammonoid with a 10cm
777 conch going 10 cm/s instead of 5 cm/s.

778

779 FIGURE 14. Heatmap tables compare growth aspects of four idealized shell shapes. The
780 top table compares aspects of growth during each shell's most recent 10 cm² of added shell
781 surface (see text). Each column represents a single aspect of growth (vener length, diameter,
782 etc.), and the highest values are marked with the lightest shading. Compared to the other shells,
783 the serpenticone shows the least gain in diameter, but the greatest gain in venter length. The
784 lower graph shows the percent of shell growth that was attained during the last application of 10
785 cm² of surface area. The serpenticone gained 3.34 cm of ventral length during its recent growth,
786 which is over 20% of its ventral margin; both the absolute value and the relative value are greater
787 than that shown for the other shapes.

788 FIGURE 15. Comparison of growth values (Fig. 14) and morphospace parameters. All
789 growth values are normalized to the most recent application of 10 cm² of outer shell surface (see
790 text). A. Four shells are compared in Westermann Morphospace. Diameter gain is greatest for
791 the oxycone shell. B. Diameter gain is associated with the coupled increase of whorl expansion
792 and decrease in inflation (both axes in log scale). C. Venter length gain compared in Westermann
793 Morphospace. D. Venter length gain is associated with a coupled increase in umbilical exposure
794 and decrease in inflation (both axes in log scale).

795

796 FIGURE 16. Comparison of volume increase across Westermann Morphospace. A. The
797 serpenticone model showed the lowest increase in volume. B. Volume increase has a negative
798 association with umbilical exposure (both axes in log scale). C. Relative volume increase was
799 greatest in the oxycone model. D. Relative volume increase is positively associated with whorl
800 expansion (both axes in log scale).

801

802 Table 1. Computational fluid dynamics settings.

803

804 Table 2. Velocity estimates for ammonoids with shell diameters of 10 cm.

805