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ABSTRACT

Understanding functional adaptation demands an integrative
framework that captures the complex interactions between form,
function, ecology, and evolutionary processes. In this review, we
discuss how to integrate the following two distinct approaches to
better understand functional evolution: (1) the adaptive landscape
approach (ALA), aimed at finding adaptive peaks for different
ecologies, and (2) the performance landscape approach (PLA),
aimed at finding performance peaks for different ecologies. We
focuson theOrnstein-Uhlenbeckprocessas theevolutionarymodel
for the ALA and on biomechanical modeling to estimate perfor-
mance for the PLA.Whereas both the ALA and the PLA have each
given insight into functional adaptation, separately they cannot
address how much performance contributes to fitness or whether
evolutionary constraints have played a role in form-function evo-
lution. We show that merging these approaches leads to a deeper
understanding of these issues. By comparing the locations of per-
formance and adaptive peaks, we can infer howmuch performance
contributes tofitness in species’ current environments. By testing for
the relevance of history on phenotypic variation, we can infer the
influence of past selection and constraints on functional adaptation.
We apply this merged framework in a case study of tur-tle shell
evolution and explain how to interpret different possible outcomes.
Even though such outcomes can be quite complex, they represent
themultifaceted relations among function, fitness, and constraints.
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Introduction

The striking diversity in organismal design found in naturemust in
part be driven by diversity in function. Evolution of form-function
relationships reflects functional adaptation when changes in eco-
logical conditions lead to changes in selection regimes that favor
different functional demands associated with distinct phenotypes
(Wainwright 2007; Arbour et al. 2019; Moen 2019; Grossnickle
2020; Morinaga and Bergmann 2020; Pigot et al. 2020; Friedman
et al. 2021). Understanding the functional adaptation that has
evolved over long timescales involves studies of morphometrics,
biomechanics, physiology, performance evolution, and evolu-
tionaryecology (Taylor andThomas2014).However,whenapplied
in isolation, these related but diverse scientific fields may be too
narrow to properly understand the complexity of functional ad-
aptationand its effectondiversity inphenotypes.Forexample,most
functional systems are composed of several elements that must
properly interactwitheachother toexecute theirparticular function
(Lauder 1981, 1996; Wainwright et al. 2005; Wainwright 2007;
Collar et al. 2014; Goswami et al. 2016; Rothier et al. 2022).
Therefore, such elements must respond in concert to selection,
highlighting the need for a multivariate approach to understand
functional evolution. Moreover, the same elements may be part of
different functional systems, and evolutionary changes in one sys-
tem may compromise the functions of other systems (Ghalambor
et al. 2003; Walker 2007; Holzman et al. 2011; Bergmann and
McElroy 2014). These complex relations between form and func-
tion make studying functional adaptation a challenging enterprise
that demands an integrative framework to fully understand its un-
derlying processes.

Two such integrative frameworks have been the primary
approaches employed to understand the ecological context of the
long-term evolution of form-function relationships. First, the
adaptive landscape approach (ALA) combines morphological,
physiological, and/or behavioral data (thought to be functionally
relevant) on multiple species; a phylogeny of those species; and a
model of adaptive evolution to estimate a landscape based on
fitness. Second, the performance landscape approach (PLA) com-
bines biomechanicalmodels and a theoretical or empirically derived
morphospace to estimate a landscape based on performance. The
PLA has been increasingly used in recent years, and its advocates
oftenfindresults that contrastwith those foundwhenusing theALA
for studying functional evolution (Stayton 2019a; Olsson et al. 2020;
Polly 2020).Yet understandinghow themodel of adaptive evolution
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(specifically, the model based on the Ornstein-Uhlenbeck [OU]
process) used in the ALAworks is not trivial. Thus, misconceptions
are widespread in evolutionary biomechanics and in related fields
(Hansen2014;Moenet al. 2022;Grabowski et al. 2023).Moreover,
different implementations of the OU process to understand
adaptation, each of which conveys different assumptions, are not
readily comparable. Thus, clarifying how the adaptation model
used in theALAworks and how it relates to functional adaptation
is timely.
In this review, we focus on these two distinct frameworks and

showhowtheycanbe integrated to infer thecomplex interactionsof
morphology and function with selection and evolutionary con-
straints (fig. 1). Although the PLA directly incorporates biome-
chanical constraints, it overlooks other constraints that influence
functional evolution. Conversely, the ALA accommodates genetic
and phylogenetic constraints but only as unmeasured factors that
cause phenotypes to deviate from the inferred adaptive peaks.
Bridging the approacheswill thushelp improvehowweunderstand
the complex nature of the evolution of form-function relationships
(fig. 1). To this end, we first discuss the theoretical bases of both the
ALA and the PLA, highlighting their strengths and limitations.
Focusing on recent papers, we then synthesize what each approach
contributes to understanding functional adaptation. We do not in-
tend to extensively review the literature but to rather exemplify the
insights that each approach gives in isolation. Next, we present the
rationale for combining the PLA and the ALA. We show how to
interpret when performance peaks coincide with adaptive peaks
and when they do not. We also discuss interpretation of when
species’ phenotypes match adaptive peaks and when they do not.
We then use published data to show how the merged framework
works in a case study. Finally, we outline the knowledge gaps that
ournew framework canfillwhen studying functional adaptation, as
well as directions for further integration.
The Adaptive Landscape Approach Based
on the Ornstein-Uhlenbeck Process

The adaptive landscape is a conceptual framework widely used to
understand how different modes of selection (e.g., stabilizing,
directional, and correlated selection) have influenced phenotypic
evolution (Simpson1944;Arnold et al. 2001;Calsbeek andSvensson
2012). When focusing on a single population and on short time-
scales, themajor features of an adaptive (or selection) surface can be
estimated with a quadratic function of the relationship between
phenotypes of individuals (e.g., morphology, physiology, behavior,
and kinematics) and individual relative fitness. Such a function can
detect the slope and curvature of adaptive peaks (Lande 1979; Lande
and Arnold 1983). Alternatively, more complicated functions, such
as a cubic spline function (Schluter 1988) or a projection pursuit
regression (Schluter and Nychka 1994), can be used to analyze
multiple traits.Thequadratic functioncanalsobeusedtoestimatean
adaptive landscape for a single species, linking average phenotypes
with average relative fitness (Lande and Arnold 1983; Arnold et al.
2001; Arnold 2003). When applied at microevolutionary scales,
these methods for estimating adaptive surfaces and landscapes can
characterize evolution over short timescales.
At longer timescales encompassing millions of years and the
emergence of multiple species, adaptive evolution is best charac-
terized by phylogenetic comparative methods (PCMs). With
PCMs, we can understand the evolution of the macroevolutionary
adaptive landscape, which describes shifts in adaptive peaks with
changes in ecological conditions through evolutionary time. PCMs
are often used to test how morphology, physiology, or functional
properties vary as a function of ecology while explicitly accounting
for the phenotypic similarity among species due to shared ancestry
(Garland et al. 2005;O’Meara 2012; Rezende andDiniz-Filho 2012;
Garamszegi 2014). Yet they can also be used to model change in
adaptive landscapes over time (Hansen et al. 2008; Hohenlohe and
Arnold 2008; Hansen 2012). The most appropriate model to study
long-term adaptation is based on the OU process, which describes
the attraction of phenotypes to a central value—the adaptive
optimum (Hansen and Martins 1996; Hansen 1997). Similar to
stabilizing selection, the attraction to the optimum can be viewed
as a rubber band that pulls phenotypes to it, with the strength of
the pull being proportional to the distance of phenotypes from
the optimum (Felsenstein 1988; Butler and King 2004). The OU
process also has a stochastic element analogous to genetic drift
and modeled as a Brownian motion (BM) process (Hansen and
Martins 1996).

Although the OU process can be used in many ways in evolu-
tionary analyses (Hansen andMartins 1996; Hansen 2014; Cooper
et al. 2016), we focus here on what has been called the Hansen
model, named after Hansen’s (1997) original development of a
model of long-term adaptive evolution using the OU process
(Butler and King 2004; Beaulieu et al. 2012). In this model, species’
means tend toevolve towardaprimaryadaptivepeak,definedas the
optimal phenotype for their current (focal) environment. This peak
maybe sharedby the entire clade, or specieswith different ecologies
can each evolve toward an ecology-specific peak (Hansen 1997;
Butler and King 2004). Hence, when using this model, researchers
hypothesize selective regimes for all species analyzed based on
biological factors thought to influence species’ fitness. The idea is
that these factors influence the position of primary adaptive peaks,
causing a systematic effect on species’ phenotypes that adapt to the
factors (Hansen 1997).

The Hansen OU model has been the most used and most
developed application of the OU process in macroevolutionary
studies (see review inMoen et al. 2022). Suchdevelopments include
the ability to estimate different rates of adaptation to the primary
adaptive peak (Beaulieu et al. 2012), to characterize continuous
environments (Hansen et al. 2008), to accommodate multivariate
phenotypes (Bartoszek et al. 2012; Clavel et al. 2015), and to algo-
rithmically detect primary adaptive peaks based on the phenotypic
data (e.g., Ingram and Mahler 2013; Uyeda and Harmon 2014;
Khabbazianet al. 2016;Bastide et al. 2018).All such extensions can
be considered variants on the Hansen OUmodel and are distinct
from other uses of the OU process in comparative methods (e.g.,
to model residual error around a regression line; Hansen 2014;
Cooper et al. 2016).Thus, for brevity, weuse the term “OUmodel”
hereafter to mean using the OU process to study macroevolu-
tionary adaptation.Moreover, for simplicity, we focus on discrete
selective environments explicitly specified by researchers, even



Figure 1. Merged performance-adaptive landscape framework.We integrate the performance and adaptive landscape approaches to address two key open
questions in functional adaptation, which are highlighted in the bottom boxes. The logic is to use variation in phenotypic traits of species differing in ecology
(e.g., different habitats) as inputs for biomechanical or physiologicalmodels to estimate performance peaks and then to use the same phenotypic variation in
Ornstein-Uhlenbeck (OU)models to test for ecology-specific adaptivepeaks. If performance and adaptive peaksmatch,wemay infer that performance in the
studied functions contributes to fitness. To test for a role of constraints, such as past selective regimes influencing current phenotypes, we suggest quantifying
the contributions of history and species-specific factors to phenotypic variation across species.
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thoughmost extensions of Hansen’s (1997) original development
of this model can be incorporated into our framework.
Likewise, we do not focus here on OU models that algorith-

mically search for shifts in adaptive peaks (e.g., Ingram andMahler
2013; Uyeda and Harmon 2014; Khabbazian et al. 2016; Bastide
et al. 2018). These methods obviate the need for hypotheses of
selective regimes. However, these implementations generally find
several adaptive peaks that may not be easily related to the ecology
(or functional properties) of species that share them (e.g., Mahler
et al. 2013; Stayton 2019a). The interpretation of such results in
the context of Hansen’s (1997) original derivation is also unclear,
given that such peaks may include phenotypic distinctiveness
because of historical contingency (Moen et al. 2016). Moreover,
having (sometimesmany) hypotheses of selection regimes can be
a stronger test of adaptation (Scales and Butler 2016a, 2016b;
Swiderski andZelditch2022).Therefore, as statedabove,we focus
on Hansen’s (1997) original OU model for the ALA framework,
as it is firmly grounded on a deep understanding of how adap-
tation proceeds over long evolutionary timescales. That said, we
could imagine future analyses leveragingmethods that search for
peaks or even combining algorithmic peak searching with eco-
logical hypotheses (e.g., Swiderski and Zelditch 2022).
Adaptation toward theprimarypeakdependsonabalance among

selective pressures (e.g., ecological or functional trade-offs) and
constraints (e.g.,developmental,genetic,andmechanicalconstraints)
simultaneously acting on the focal traits (Hansen 1997, 2014). These
factors are often unmeasured but usually shared by closely related
species, causing the observed phenotypes of such species to deviate
similarly (i.e., in similardirectionsandmagnitudes) fromtheprimary
peak. This shared deviation emphasizes the importance of PCMs to
properly study adaptation. The balance of evolutionary forces may
change over longperiods of time, as ecological changes shift selection
pressures related to specific functional demands on traits. Such
changes can shift the location of the primary peak in phenotypic
space. Changes in constraints on evolutionmay also occur because
of shifts in thepatternof selection, influencinghowfastphenotypes
can track shifts in adaptive peaks (Hansen 2012). Therefore, the
OU model is best described as representing the long-term dy-
namics of adaptive peaks on the evolutionary landscape rather
than the movement of species among fixed peaks (Hansen 1997,
2012; Butler and King 2004; Hohenlohe and Arnold 2008).
Benefits and Limitations of Ornstein-Uhlenbeck
Adaptation Models

The OU model provides many distinct advantages to studying
phenotypic evolution. First, it simultaneouslymodels adaptation to
selective optima and accounts for deviations from such optima
based on other (unmeasured) factors influencing phenotypes
(Hansen 1997, 2014). Such joint modeling allows researchers to
understand the relevance of past and current adaptations for
promoting phenotypic and functional diversity in long-term evo-
lution while also accounting for evolutionary constraints that may
limit diversity. Such constraints may stem from limited genetic
variation in traits, conserved allometric patterns across species,
or other factors that limit evolutionary change (Hansen 1997).
Therefore, the interplay between selection and constraints on trait
evolution is an essential part of the OU model.

Second, the OU model accounts for the time that a lineage has
adapted toward primary optima of both past and current envi-
ronments. OtherPCMs implicitly assume that lineages have always
been evolving in their present environments, thus failing to account
for imperfect convergence due to history among lineages (cur-
rently) in the same environment (Hansen 2014). The explicit
modeling of historical environmental changes in the OU model
reflects the idea that although species’ phenotypes can track these
adaptive shifts, they may take time to fully adapt to a new envi-
ronment. Thus, speciesmaynot be at the primary optimumof their
current environmentbecause of this lag in adaptation (Hansen et al.
2008; Moen et al. 2016; Toljagić et al. 2018). Consequently, even
though the current phenotype of a species may not be the same as
the primary optimum of a study’s focus, that phenotype repre-
sents a species-specific optimal value given all factors affecting
the focal trait’s evolution (Hansen 1997, 2014). That is, species’
phenotypes reflect the best possible phenotypes, in terms of
average fitness, considering all influences on their evolutionary
trajectory. For example, species-specific optima may be influ-
enced by other functional demands that are relevant to fitness,
and these demands are likely shared by closely related species
(Hansen 2014; Moen et al. 2022).

Third, OUmodels are flexible. One can test the evidence for one
or multiple optima (Butler and King 2004; Beaulieu et al. 2012)
associated with different environments or selective regimes (e.g.,
different diets or habitats). Multivariate versions of themodel have
also been developed (Bartoszek et al. 2012, 2023; Clavel et al. 2015,
2019), so that several traits can be analyzed simultaneously, ac-
counting for interactions among traits that may constrain adap-
tation. These extensions have rarely been leveraged by researchers
studying functional adaptation, despite the potential advantages
that they have overmore commonBM-based approaches (Hansen
et al. 2008; Clavel and Morlon 2020).

OU models also have limitations. First, they demand a more
complex interpretation thanmanyotherPCMsbecause themodel
has more parameters (e.g., the strength of pull toward the opti-
mum [a], the phenotypic optimum [v]). Although v can be ro-
bustly estimated even with few taxa (Martins 2000; Ho and Ané
2014; Cressler et al. 2015), a can be hard to estimate at any
phylogeny size (Beaulieu et al. 2012; Ho and Ané 2013, 2014).
However, the consequences for model selection associated with a
estimation are overemphasized in general (Moen et al. 2022; Gra-
bowski et al. 2023). The stationary variance—a compound pa-
rameter of the BM variance and the pull toward optima (j2/2a)—
can be more reliably estimated than a alone (Ho and Ané 2013,
2014). More importantly, accurately estimating a primarily af-
fects model selection when comparing constant-rate BM to a
single-optimum OU model (Boettiger et al. 2012; Cooper et al.
2016; Grabowski et al. 2023), as a is the primary parameter that
differs between these models in most software implementations
(O’Meara and Beaulieu 2014). In contrast, amattersmuch less for
distinguishing multioptimum OU models, given that statistical
power in this context depends on species number and difference
in locations of adaptive optima (Cressler et al. 2015). Our emphasis
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here is on estimating peak location using multioptimum OU
models, such that tens of species may be enough to achieve good
statistical power (Moen et al. 2022). Still, a good practice is to use
parametric bootstrapping to estimate confidence intervals (CIs)
of the parameters (Boettiger et al. 2012; Cressler et al. 2015) or
even tomake only qualitative statements about differences in the
rate of adaptation (Beaulieu et al. 2012).
As a second potential limitation, models that specify discrete

selective regimes (e.g., herbivorous vs. carnivorous diet) require an
estimation of ancestral regimes at internal nodes, and these es-
timates can be inaccurate (Cunningham 1999; Losos 1999, 2011).
However, such inaccuracy affects analyses less if values of a are
high (Moen et al. 2022), and uncertainty in ancestral states may
be incorporated into the analysis using Bayesian approaches (e.g.,
Price et al. 2015; Corn et al. 2021). Finally, multivariate OU
methods have shown poor statistical performances when ana-
lyzing considerably fewer species than traits (Adams and Collyer
2018). Recent methods may remove such limitations in single-
peakOUmodels (Clavel andMorlon 2020), but no such solution
yet exists for the multioptimum approach that we describe here.
Overall, even though the OU model of adaptation has clear
strengths, use of these models demands adequate implementa-
tion and careful interpretation of their parameters (see review in
Moen et al. 2022).
The Performance Landscape Approach
Based on Biomechanical Models

Almost 40 years ago, Arnold (1983) introduced a framework in
which the effects of phenotypes on fitness are mediated by func-
tional performance, the level of executing an ecologically relevant
task innature (e.g., capturingpreyor escaping frompredators).This
paradigmplacedperformance in the centerof evolutionary biology.
It proposed partitioning the action of selection into the following
two parts: the effects of phenotypes on performance (the perfor-
mance gradients) and the effects of performance on fitness (the
selection gradients). Then 20 years later, Arnold (2003) formalized
the idea of a performance landscape—the relation between average
trait values and performance of species—whose peaks can be es-
timated similarly to those of the phenotypic adaptive landscape
(Lande 1979; Arnold 2003). However, quantifying Arnold’s (2003)
performance landscape at a macroevolutionary scale poses great
logistical challenges, demanding the measurement of phenotypes
and performance in many species.
The PLA proposes reducing the challenge of large-scale data

collection with two key practices. First, hypothetical phenotypic
spaces are created by systematically varying trait values so as to
mimicor evengobeyondobservedvariation across species. Second,
biomechanical or functional modeling is used to estimate perfor-
manceacross thishypothetical trait space.Hence, thePLAestimates
a performance landscape, based on hypothetical phenotypes and
modeled performance, that is different fromArnold’s performance
landscape, which is based on empirical phenotypes and perfor-
mancevalues (e.g., Simonet al. 2019).Moreover, thePLA landscape
differs fromArnold’s performance adaptive landscape,whichmaps
empirical performance to fitness. Consequently, even though maxi-
mal performance values are estimated in the PLA performance
landscapes, performance gradients are more realistic in Arnold’s
performance landscape, which reflects the empirical landscape.
Nonetheless, if a biomechanical model has been validated empiri-
cally, the estimated performance landscapemay be close to Arnold’s
performance landscape.

With the PLA, one systematically varies phenotypes (e.g.,
link lengths in lever systems) to create a phenotypic space that
reflects mechanical properties of organismal design that are known
to be relevant to functional performance (e.g., Hulsey and Wain-
wright 2002; Tseng 2013; Martinez and Wainwright 2019; Olsson
et al. 2020). One can also use geometric morphometrics to produce
hypothetical body shapes (Stayton 2011, 2019a; Tseng 2013;
Dumont et al. 2014) and even to measure traits directly from the
hypothetical shapes (e.g., linear measurements and bone curvature
measured on hypothetical shape warps; Dickson and Pierce 2019)
to construct morphospaces. Functional traits, such as mechanical
advantage (transmission efficiency of input to output force) and
frontal area (reflectinghydrodynamics;Dumont et al. 2014;Dickson
and Pierce 2019), can then be estimated from these trait spaces.
Moreover, performance of hypothetical shapes can be estimated by
using biomechanical models, such as using the suction-induced
force-field model to estimate prey capture success in fishes (e.g.,
Olsson et al. 2020). In the specific case ofmechanical load and stress,
a reference finite-element (FE) model of one shape (e.g., a focal
species) can be warped to correspond to the shape of other speci-
mens, avoiding the time-intensive development of a separate FE
model for each specimen (Stayton 2009; Polly et al. 2016).

Because performancemodels in the PLAcanbe computationally
intensive, trait dimensionality is often reduced by projecting traits
and shapes onto principal components (PCs), which are then used
as axes in the performance landscape. Hence, the development of
geometric morphometrics and the increased power of computers
have made the PLA recently flourish as an approach to study
biomechanical and performance evolution at a macroevolutionary
scale. That said, the PLA could also be extended to accommodate
physiological models to estimate performance, including complex
relations between physiology, performance, and behavior (Careau
and Garland 2012).
Benefits and Limitations of the Performance
Landscape Approach

Some features unique to the PLA may enhance understanding of
functional adaptation over long temporal scales. First, the ap-
proachcanfindmultipleperformancepeaks, eachassociatedwitha
distinct phenotype (e.g., Stayton 2019a; Olsson et al. 2020). These
performance peaks may relate to differing ecologies, such as dis-
tinct prey types (Olsson et al. 2020) orhabitats (Stayton 2011; Polly
et al. 2016), as in OUmodels. Unique to the PLA, however, is that
multiple performance peaks may also be estimated for the same
ecological niche (e.g., cluster of peaks for the same prey type;
Olsson et al. 2020). Such findings suggest amany-to-onemapping
of phenotype to similar performance for the same ecological state.
Finding that species occupy thesemultiple peaksmay indicate that
phenotypic diversification has been driven by other aspects of
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ecology that also affect the focal phenotypic traits (Wainwright
2007). Alternatively, evolutionary history—such as different evo-
lutionary trajectories—may partly determine which strategy a spe-
cies adopts (Alfaro et al. 2004, 2005). In these cases of multiple
performance peaks for the same ecological state, a single highest
performance optimummayexist, but local performancepeaks also
occur, each with (somewhat) lower levels of performance for the
same functional task (Olsson et al. 2020).
A second key advantage of the PLA is that it does not require

extensive phenotypic data to estimate the landscape. Instead,
biomechanical principles may be used to estimate performance of
phenotypes in all regions of morphospace, even those unoccupied
by extant or extinct organisms (Stayton 2009, 2011; Olsson et al.
2020). The PLA can also characterize performance valleys that
suggest biomechanical constraints limiting morphological and
functional diversity (Martin et al. 2019; Stayton 2019a). These
valleysmay be harder tofindwhen using phenotypes of only extant
species, as such poor performance regions potentially result in low
fitness and thus represent phenotypes unexpected in nature.
A final strength of the PLA is that performance landscapes for

different functionaldemandscanbecombinedusingasetofweights
for functions that reflects their expected relative contribution to
fitness. These weights are not estimated using fitness. Instead, they
mostly have been estimated in one of three ways. First, weights
for a given ecology have been estimated as the average weights
for species with that ecology, with each species’ weights corre-
sponding to those that produce peak estimated performance for
that species (Stayton 2019a). Second, maximum likelihood has
been used to calculate theweights thatmaximize the height of the
peak that species occupy on the combined performance land-
scape (Polly et al. 2016; Dickson and Pierce 2019; Polly 2020).
Third, one can calculate all possible combinedperformancepeaks
by simulating all combinations of relative weights and then
finding performance peaks that are closest to observed pheno-
types (Stayton 2019a). Overall, these combined performance
landscapes can be used to explore evolutionary changes in the
relative importance of different functions as a change in the
relative weights associated with each function.
ThePLAalsohas clear limitations.Most obviously, the approach

can be applied only to systems for which a strong biomechanical
understanding of specific functional traits exists (e.g., Olsson et al.
2020). This limitationmay be alleviated by using FE analysis, given
that the technique is well established in engineering, relies on easily
tested biological assumptions (e.g., bone material properties), and
has been validated in different biological systems (Dumont et al.
2009; Bright and Rayfield 2011; Stayton 2018). More generally, if a
modeled function depends on complex sets of quantitative traits,
extracting performance data for all theoretical shapes across the
morphospacemaydemand intensive computational effort (Stayton
2019a). The biomechanical model itself can also be quite compli-
cated and influenced by multiple factors that vary across species
(e.g., suction-induced force-field model; Holzman et al. 2011).
Therefore, applying the PLA to a broad range of organismsmay be
feasible for only simple functions determined by a few easily
measuredmorphological traits. Yet studying simple functions may
exclude other functions that are relevant to fitness, which also may
limit the utility of the PLA because of the widespread existence of
functional trade-offs (Wainwright 2007; Garland et al. 2022).

Another complication of the PLA is its current reliance on PCs
to represent the phenotypic space, which is a technique commonly
used to reduce computational burden (e.g., Dickson and Pierce
2019; Stayton 2019a; Olsson et al. 2020). PC analysis is a technique
for reducing dimensionality in a dataset. It reorders variation to
produce a new set of axes of decreasing variation; these axes are
composed of combinations of the original traits weighted by their
correlation with the specific PC axis (Jolliffe and Cadima 2016).
By eliminating many of these PC axes, researchers can reduce
dimensionality (e.g., from hundreds of dimensions to a few di-
mensions in geometric morphometric studies). However, these
combinations of traits may actually explain little performance
variation across species (e.g., Stayton 2019a), and higher perfor-
mancepeaksmayexist alongunanalyzedmorphologicaldimensions
(i.e., those dropped in the PC analysis). This means that the link
could be quite weak between performance as estimated by the PLA
and actual performance for a given (original) phenotype. In turn,
such a mismatch could hinder interpretation of macroevolutionary
patterns. Still, it is reasonable to assume that axes of higher phe-
notypic variance will relate to axes of higher functional diversity,
such that we expect phenotypic PCs to often show high functional
relevance.
Comparing the Contributions of the ALA and the PLA
to Understand Functional Adaptation

In the context of functional adaptation, the ALA based on the OU
model hasmainly been used to test for the existence of one ormore
optima across species that share similar selective regimes (e.g.,
Anderson et al. 2014; Dumont et al. 2014; Hagey et al. 2017;
Kilbourne and Hutchinson 2019; Moen 2019; Rader et al. 2020;
Swiderski and Zelditch 2022). Most studies have found that a
multiple-peak OU model is the best fit for the evolution of mor-
phological, kinematic, and performance traits in a diverse array of
ecological contexts andorganisms (e.g., feedingmechanics infishes
[Hulsey et al. 2019], swimming-associated morphology in fishes
[Friedman et al. 2021], foraging-associated morphology in pi-
scivorous birds [Eliason et al. 2020]). This general pattern suggests
that long-term functional evolution is driven by shifts in selective
regimes associated with specific functional demands that become
relevant when species differ in diet, behavior, or habitat, among
other factors.

The OU model has also been applied to directly test whether
functional trade-offs have an adaptive basis, in which conflicting
selection pressures have optimized different functional properties
in species that use distinct kinematic strategies (e.g., Arbour and
López-Fernández 2013; Anderson et al. 2014; Corn et al. 2021;
Burress and Muñoz 2023). For instance, bottom-feeding fishes
show different optima for morphology and kinematic traits com-
pared to species that feed in the water column (Arbour and López-
Fernández 2013). The same pattern was also found when con-
trasting the feeding kinematics of fishes that use suction to capture
prey with those of fishes that bite to capture prey (Corn et al. 2021).
However, some expected functional trade-offs may be alleviated
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by many-to-one mapping of divergent morphologies occupying
the same kinematic (e.g., Friedman et al. 2021), functional (e.g.,
Dumont et al. 2014; Pigot et al. 2020), or performance peak (e.g.,
Moen 2019). These results indicate that conflicting selective
pressures do not always result in different optima related to
functional trade-offs, especially if the functions are underlain by
many traits whose influence on various functions differs.
Similar to the ALA, the PLA has been used to understand

the complexity of form-function relationships in terms of
number and height of performance peaks over a wide range of
theoretical phenotypic variation (Tseng 2013; Stayton 2019a;
Olsson et al. 2020). However, the PLA also focuses on the occur-
renceofperformancevalleys,whichmaybound functionaldiversity
by limiting the full occupation of trait space (Hulsey and Wain-
wright 2002; Tseng 2013). Beyond describing the major features of
the performance landscape, practitioners use the PLA to test
whether the distribution of species is centered around the theo-
retical performance peaks. They do this by projecting phenotypes
of species onto the performance landscape (Stayton 2011, 2019a;
Tseng 2013; Polly et al. 2016; Dickson and Pierce 2019; Dickson
et al. 2021; Holzman et al. 2022). A match between distributions
of observed phenotypes and performance peaks favors a role of
natural selection on the functions studied in shaping pheno-
types in long-term evolution (Stayton 2019a). Yet most studies
have found an incomplete match (Tseng 2013; Polly et al. 2016;
Dickson and Pierce 2019; Stayton 2019a; Holzman et al. 2022).
This lack of correspondence suggests that functional perfor-
mance is not always maximized by selection in all species. Other
unstudied functional demands (Dickson and Pierce 2019; Stay-
ton 2019a) or other factors beyond functional optimization likely
also influence current phenotypes. These latter factors include
genetic and phylogenetic constraints (Polly et al. 2016; Holzman
et al. 2022).
The PLA has also been used to elucidate the link between

conflicting functional demands andfitness by the estimationof the
combined performance landscape (Polly et al. 2016; Dickson and
Pierce 2019; Stayton 2019a; Polly 2020). These studies have found
that the relativeweights forperformanceofdifferent functionsvary
among specieswith different ecologies, which suggests shifts in the
strength of selection for each function with changes in the balance
of functional demands. For example, Polly et al. (2016) combined
performance landscapes for turtle shell shape based on shell
strength and hydrodynamic efficiency. They found that perfor-
mance peaks always occurred along a single line, called the Pareto
front, indicating optimization of a trade-off (Farnsworth and
Niklas 1995; Shoval et al. 2012). In this case, the same shape cannot
be highly resistant to crushing stress and also hydrodynamically
efficient. Moreover, Polly et al. (2016) showed that only about half
of the variation in turtle shell shape was explained by the line
defining the Pareto front, indicating that other factors cause shell
shape to deviate from the optimal trade-off values.
From this synthesis of the general inferences on functional

adaptation drawn from the ALA and the PLA, we can infer that
different selective regimes shape some diversity in form, as evi-
denced by the empirical support for multiple adaptive peaks (in
the ALA). Yet optimization of specific functions is not enough to
fully explain this diversity, as shown by the partial mismatches
betweenextantphenotypesandperformancepeaks (in thePLA).A
key unresolved issue is understanding how much selection to
optimize functional performance is able to influence diversity in
form whenmultiple constraints are at play. As we delineate in the
next section, merging performance and adaptive landscapes can
give insights into this issue by indicating whether past selection
from ancestral regimes and constraints has caused species’ phe-
notypes to deviate from the predicted adaptive peaks based on
ecological factors thought to influence performance.

A Merged Performance-Adaptive Landscape Framework

A conceptual framework combining performance and adaptive
landscapes is not anew idea.Arnold (2003) discussed the intriguing
scenario inwhich the long-termdynamicsof theadaptive landscape
are constrained by the shape of the performance landscape. In this
scenario, theadaptivepeakswouldmovealongperformance linesof
least resistance, multivariate directions in which changes in phe-
notypes would not result in reduced performance and therefore
reduced fitness (Arnold 2003). This scenario is consistent with
many-to-onemappingof phenotype toperformance,withdifferent
phenotypes occupying different performance peaks that match
adaptive peaks. However, this scenario seemsmore likely when the
relative importance of functions for fitness does not change over
time.Alternatively, the balanceof functional demandsmay itself be
dynamic, changing when selective regimes change (Hansen 1997
Butler and King 2004). For example, the balance could change if a
specific function thathad lowrelevance tofitness inanenvironment
(e.g., swimming in a terrestrial species) becamemore relevant with
the invasion of a new environment (e.g., aquatic environment)
Hence, an alternative hypothesis is that the (combined) perfor-
mance landscape also changes over evolutionary time, potentially
causing shifts in adaptive peaks if the new functions are relevant to
fitness.

The performance landscape is generally interpreted as a func-
tional manifestation of the adaptive landscape (Tseng 2013)
bridging variation in biomechanical systems and fitness (Martin
andWainwright 2013; Martin et al. 2019; Muñoz 2019). However
attempting to compare the peaks inferred from the combined
performance landscape with adaptive peaks estimated using OU
models has been challenging (Stayton 2019a; Olsson et al. 2020
Polly 2020). Any divergence between the performance peaks and
the adaptive peaks has been interpreted as evidence that the latter
is not well suited to study the evolution of biomechanics and per-
formance (Stayton2019a, 2019b; Polly2020;Olssonet al. 2020).Yet
this interpretation overlooks differences between primary and
species-specific adaptive peaks in theOU framework. For example
advocates of thePLAstate thatwhereas thePLAcandetectmultiple
performance peaks for a given ecological niche (Olsson et al. 2020)
OU models can detect only a single adaptive peak for that niche
Although this is true, this property of the OU method is not an
intrinsic flaw. Rather, it stems from using coarse ecological states
(e.g., arboreal, aquatic, and terrestrial states) that may poorly
capture the ecological complexity found among multiple species
assigned to a single state (Leroi et al. 1994). In some cases, more
finely defining ecological states can improve the fit of primary
adaptive peaks to species (e.g., finding that semiaquatic and aquatic
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species each have their own primary adaptive peaks; Moen et al.
2016). Moreover, combining multiple ecological axes (e.g., diet,
habitat; Swiderski andZelditch 2022) when comparingmodels can
be fruitful.
More generally, other factors beyond those influencing perfor-

mance in focal regime states and functions will always affect the
phenotypes of species to some extent (Hansen 1997). The OU
model accommodates this complexity by design through adopting
the concept of species-specific optima that are determined by myr-
iad demands (Hansen 1997), not just those examined in a given
study. Thus, thesemodels were not developed to findmultiple peaks
for the same ecological niche. Rather, they find a single primary
peak that species’ phenotypes would match if (1) the focal trait
was under long-term selection for only the specific functional de-
mands associated with this primary peak and (2) no constraints
or trade-offs affected the phenotypes in question (Hansen 1997,
2014). Therefore, in contrast to the PLA, the ultimate goal of OU
models is not to find all possible peaks associated with a specific
ecological state. Instead, OU models test whether that state in-
fluences the position of a primary optimum in the adaptive land-
scape. In other words, the key goal of the OU model is to uncover
ecological factors that have influenced phenotypes through fitness
by using species as replicates of evolution in that environment
while taking their similarity due to history into account.
In contrast to previous work attempting to combine perfor-

mance andadaptive landscapes, themergedperformance-adaptive
landscape framework that we propose takes advantage of this key
distinction between primary adaptive peaks and species-specific
peaks to infer the role of constraints on functional adaptation to
current environments (fig. 1). We also capitalize on the OU pa-
rameter a to infer whether adaptation to ancestral environments
influences phenotypes of species adapting to current environments
(this includes the related concept of phylogenetic half-life, the time
over which half of the ancestral influence is lost during adaptive
evolution; Hansen et al. 2008). With this new conceptual frame-
work, we can address the following two key open questions: (1) Do
phenotypes that maximize performance always maximize fitness?
(2) How widespread are constraints on functional adaptation,
particularly ancestral constraints related to past selective envi-
ronments? The first question can be answered by comparing the
locations of performance and adaptive peaks. This comparison can
reveal whether adaptive peaks are mostly linked to the specific
functional demands directly studied in the PLA (if peaksmatch) or
whether other functions are relevant to fitness (if peaks do not
match). The second question can be answered by comparing
species’ phenotypeswith inferred primary adaptive optima. Below,
we describe the rationale behind the merged framework. We also
provide a case study to exemplify how our approach works in
practice.
Comparing the Locations of Performance and Adaptive Peaks

To infer whether performance in the studied function is relevant to
fitness, we propose comparing the hypothetical phenotypes that
maximize performance in the PLA with the observed species’
phenotypes that maximize fitness in the ALA. This peak com-
parison can be done in three steps. First, one selects phenotypic
traits that can be used as inputs in biomechanical (or physiological)
models for estimating the performance landscape. Such landscapes
can be different landscapes for different functions or a combined
performance landscape that integrates performance across func-
tions (Stayton 2019a, 2019b; Polly 2020). The modeling then
translates variation in phenotypes to variation in performance. To
find the performance peaks for the different ecological factors
thought to have shaped phenotypes, more than onemethod can be
used. A performance peak can be estimated in a combined per-
formance landscape, as we described above when introducing the
PLA. Another method is to use an algorithm, such as a gradien
ascent analysis, to find local performance optima (Olsson et al
2020). Bothmethods canfindmore than one performance peak for
a given ecological state.

Whencomparingpeaks,onenext estimates statistical support for
various OUmodels with the same phenotypic traits but uses mean
values of real species.At least oneof thesemodelsmust use the same
ecological factors (e.g., omnivore vs. herbivore vs. carnivore) as the
PLA to define selective regimes. TheOUmodel showing the best fi
to the phenotypic data (i.e., highest Akaike information criterion
weight) should include estimates of the primary adaptive optima
specific to at least some of the ecological states in the PLA to com-
pare performance and adaptive peaks. This optimal model may
have separate primary peaks for each state of the ecological factor
analyzed in thePLA, or itmay lumpsome levels into the samepeak
(e.g., omnivore with carnivore). The latter scenario could happen
if performance in one of the studied functions is most relevant to
fitness for multiple states of the ecological factor, such as cutting
force foromnivoresandcarnivoresorcrushing force foromnivores
and herbivores. In such a scenario, because other functions tha
contribute less to fitness can be used to estimate a combined
performance landscape, different performance peaks may stil
occur for different ecologies, even though these other functions
contribute less information for inferring distinct primary adaptive
peaks.

Thefinal step is to compare the locations of the performance and
primary adaptive peaks for a specific ecological state. If the number
of peaks differs between types, we suggest comparing all sets o
comparable peaks, even if more than one performance peak would
be compared with a single adaptive peak (e.g., one performance
peak each for two ecological states comparedwith a single adaptive
peak for those states combined). Because the PLA assumes that
performance is directly proportional to fitness, the simplest ex-
pectation is that performance peaks will match primary adaptive
peaks. Alternatively, if performance peaks are far from the primary
adaptive peak, it would suggest that phenotypic diversity may be
associated with diversity in performance but that performance in
the studied functions contributes little to fitness, at least in species
current environments. For example, this scenario could have oc-
curred when performance in the studied functions was relevant in
past selective environments, such that past selection actually drove
the current phenotypic diversity. Performance peaks estimated
whenusing just one or a few functionsmay also notmatch adaptive
peaks, because the latter would reflect trade-offs that were no
considered in the performance landscape. When estimating a
combined performance landscape, in which weights determine the
relative importance of multiple functions, a mismatch between
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performance and adaptive peaks may indicate error in the esti-
mation of the weights.
In practice, even when maximum performance maximizes fit-

ness, the locations of both peaks will likely differ because of es-
timationerror.Thus,wecanuse95%CIs to statistically compare the
peak locations inphenotypic space. For theprimary adaptive peaks,
one can use standard errors or a bootstrap approach (for more
details, see the case study below). In the current PLA framework, no
explicit measure of uncertainty is produced for performance peak
location, so we see no way to calculate 95% CIs for these peaks.
However, we suggest also testing whether the region that encom-
passes the peak performance and 5% lower performance (i.e., a
region of highest performance instead of just a single point; Stay-
ton 2019b) overlaps the 95% CI of the primary adaptive peak.
Overlap in the 95% CI for these two peaks would mean that the
phenotype that maximizes performance and fitness is likely the
same (or at least very similar).
This comparison of peaks can then be used to test the following

key assumption of the PLA: the fitness driving evolution of the focal
phenotypes depends on the modeled performance in the studied
functions, such that changes in performance in those functions will
impact fitness. If the performance peak does not overlap the 95%CI
of the relevant adaptive peak, we would conclude that this key as-
sumption may not hold. Such a result could be driven by three
reasons. First, the biomechanical modeling could produce incorrect
estimates of performance (e.g., the models include unrealistic as-
sumptions or parameter values). Second, performance in the focal
function(s) could have a limited impact on fitness, and this impact
may vary across species. Instead, other functions unaccounted for
in a given analysis may be more relevant to mean fitness for that
specific ecology.Third, suboptimal performance, at least for some
functions, may suffice to guarantee survival and reproduction.
These last two possibilities, moreover, may stem from trade-offs
with performance in functions unexamined in a study. Thus,
several observedphenotypes,which could still be close to primary
adaptive peaks, may not be optimal for maximizing performance
of the studied functions. This latter possibility brings us to the
comparison of observed species’ phenotypes to primary adaptive
peaks.
Comparing Species’ Phenotypes with
Primary Adaptive Optima

To test the role of historical constraints on functional adaptation,
we suggest comparing observedphenotypesof extant species to the
inferred primary adaptive peaks. Here, it is worth reemphasizing
that theOUframeworkdistinguishes betweenprimarypeaks (i.e.,
the phenotype maximizing fitness only if that specific ecological
state influenced the peak location and if no constraints existed)
and species-specificpeaks (i.e., as indicated by the species’ current
phenotypes, which reflect other selective environments and
constraints; Hansen 1997). Hence, observed phenotypes that
deviate from the primary peak are inferred to be under the
influence of constraints that hinder functional adaptation to their
current (focal) environment. This logic applies to only the ALA
because deviations of observed phenotypes from performance
peaks would not directly inform us about constraints, given that
performance peaks are not inferred using phylogenetic infor-
mation and that nonbiomechanical constraints are not modeled
in the PLA framework.

To study constraints, we recommend using two related analyses
developed by Moen et al. (2016). The first analysis compares the
proportion of variance in observed phenotypes around primary
adaptive optima that is due to history of adaptation to ancestral
environments versus due to species-specific factors (e.g., drift,
measurement error, and myriad selective factors affecting the
phenotype). The variance due to history is based on deviation of
themeanphenotype (i.e., across species) of a specific ecology from
the inferred primary adaptive optimum for that ecology. The
variance explained by species-specific factors is based on the
deviations of individual species’ phenotypes from their ecology-
specific mean (i.e., the average phenotype of species with a given
ecology; for calculations, see Moen et al. 2016). Note that Moen
et al. (2016) called these random factors because their collective
effect on phenotypes across species was expected to be random
with respect to the focal factors affecting phenotypes (Hansen
1997). We expect a higher proportion of phenotypic variance
due to history if most species recently changed selective regime.
However, an effect of history on current phenotypes could still
exist even if species have spent more time in their current en-
vironments, particularly if the rate of adaptation is low (e.g., as a
high half-life would suggest) because of many constraints (Moen
et al. 2016). Such constraints may be genetic (e.g., low genetic
variation in the direction of selection) or associated with func-
tional trade-offs. For instance, the adaptive peakmaynot be easily
reached because it was not aligned with directions of high genetic
variance, in which the response to selection is faster and of greater
magnitude (genetic lines of least resistance; Schluter 1996; Arnold
et al. 2001; Melo et al. 2016).

However, we expect a higher proportion of phenotypic variance
due to species-specific factors if species have been evolving in their
current regimes for a long time and if the rate of adaptation is high
(Moen et al. 2016). In such a scenario, the mean phenotype for a
specific ecology would be close to the primary adaptive optimum,
but individual species’ adaptive optima (i.e., their current phe-
notypes) would differ from that primary optimum. Several factors
may contribute to differences in species that evolved in a similar
selective regime. Examples include other (unstudied) ecological
factors thatmay influence some speciesmore than others (Hansen
and Bartoszek 2012), lumping of diverse ecological states into a
single selective regime (Leroi et al. 1994), anddifferent responses to
selection due to different strengths of developmental and genetic
constraints (Melo et al. 2016).

The second analysis of historical constraints tests whether
species that have spent less time in their current environment show
a higher deviation from their primary adaptive peak (Moen et al.
2016).Anegative relationshipbetween timeanddeviation fromthe
peakwould suggest a lag of adaptation.Thefirst step in this analysis
is to use the phylogeny to quantify how long species have been
evolving in their current selective regimes (e.g., ecological states).
The second step is to calculate distances of species’ phenotypes to
the inferred primary adaptive optimum of their current regime.
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The final step is to use a phylogenetic least squares regression
(Martins and Hansen 1997; Revell 2010) to test whether the time
for adaptation explains variation in distance from the optimum.
Using a phylogenetic method for this regression is important to
account for nonindependence between species that share com-
mon ancestors and a common regime origin.We recommend log
transforming time because the relevance of past selective regimes
ismodeledasdecreasing exponentially over time in theOUmodel
(Hansen 1997; Moen et al. 2016).

Merging Frameworks to Investigate Turtle Shell Evolution

We applied the merged framework to examine functional adap-
tation of the turtle shell, building on a recent study by Stayton
(2019a). We tested whether aquatic and terrestrial lifestyles have
influenced the position of both performance and adaptive peaks.
Moreover, we examined how much evolution toward these peaks
has influenced the phenotypic distribution of extant species.
Stayton (2019a) compared several performance and adaptive peaks
that were not based on these states. Therefore, our approach of
using only two performance and primary adaptive peaks (one of
each for aquatic and terrestrial lifestyles) was thus fundamentally
different from the analysis of these data by Stayton (2019a). We
provided the code and analysis tutorial (using Rmarkdown) for all
analyses described in this section in the supplemental files. All
analyses were conducted in the R programming environment (R
Core Team 2022).
We analyzed the 237 turtle species sampled on the ultrametric

time-calibrated consensus phylogeny of McLaughlin and Stayton
(2016) that was previously used by Stayton (2019a). Following that
study and Stayton et al. (2018), we used 53 three-dimensional shell
landmarks, aligned those coordinates using a generalized Pro-
crustes analysis (Zelditch et al. 2012), projected them into a Eu-
clidean tangent space, and then projected each specimen onto the
first two PCs (PC1 and PC2) of those coordinates. To calculate the
samePCscoresasStaytonet al. (2018)andStayton(2019a),weused
all 274 species in the landmark dataset for these initial operations.
PC1 separated turtles with more flattened shells from turtles with
taller shells, whereas PC2 separated turtles by bridge length and
plastron size (Stayton 2019a). For the PLA analysis, we used es-
timated performance in three functions (shell strength, hydro-
dynamic drag, and a metric of self-righting ability) to construct
performance surfaces that were then combined into a single per-
formance landscape by using a set of relative weights for each
function (for further details, see Stayton 2019a). We estimated
performance peaks on the combined performance landscape for
aquatic and terrestrial species separately with the average relative
weights provided by Stayton (2019a) for each type.
For the ALA analysis, we first estimated ancestral states of the

ecological states (aquatic vs. terrestrial states) using maximum
likelihood(Schluter et al. 1997) via the ace functionof theRpackage
ape (ver. 5.0; Paradis and Schliep 2019). The aquatic state was the
most likely state for nearly all the deep ancestral nodes, except the
node giving rise to the family Testudinidae, a family of all terrestrial
species (fig. A1). We next compared a series of multivariate OU
models forPC1andPC2using theRpackageouch (Butler andKing
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2004). We found that the shell data best supported a two-peak
model (separate primary optima for aquatic and terrestrial species;
table 1). However, the peaks were clearly separated for only PC1
(table A1). We obtained the 95% CIs of the two primary adaptive
peak positions by parametric bootstrapping with 1,000 iterations
(Scales et al. 2009).

We next examined whether these 95% CIs included their re-
spective performance peaks.Whereas the aquatic performance and
adaptive peaks matched (fig. 2A), the terrestrial performance peak
was displaced to PC1 and PC2 values that were greater than the
95% CI of the terrestrial adaptive peak (fig. 2B). However, if we
consider the region of highest performance as being within 95%
of maximum performance (Stayton 2019b), the terrestrial perfor-
mance and adaptive peaks matched (table A1), given that a large
portion of the performance landscape showed high performance
(fig. 2B). These results indicated that all three functions (shell
strength, hydrodynamic drag, and self-righting ability) were rele-
vant to fitness in aquatic and terrestrial species, although the con-
tribution of the first function has been more relevant to fitness in
terrestrial species, whereas hydrodynamics have been more re-
levant in aquatic species.

Although performance and adaptive peaks matched, the phe-
notypes of several species were far from inferred primary adaptive
peaks (fig. 3A). This discord suggests lags in adaptation and/or
constraints. The phylogenetic half-lives inferred by the two-peak
OU model were 0.136 and 0.104 for PC1 and PC2, respectively,
suggesting fast adaptation given the unit length of the phylogeny.
We acknowledge, however, that adaptation could be slower, es-
pecially for PC1, because of high uncertainty ina values, leading to
uncertainty in half-lives (see table A1). Yet because several ter-
restrial lineages recently transitioned from aquatic ancestors
(fig. A2), past selective regimes may still be reflected in current
phenotypes.

We tested this latter hypothesis by quantifying the importance of
history versus species-specific factors for phenotypes (Moen et al.
2016). We tested such effects separately for aquatic and terrestrial
lineages. We first performed this test with all species included and
then performed it with species from the family Testudinidae ex-
cluded, given that the common ancestor of this family changed
habitats much earlier than other terrestrial lineages (around
57mya; see fig. A2).We found that the proportion of phenotypic
able 1: Model comparison of turtle shell evolution
odel
 k
 logLik
 AICc
 Weight
M
 5
 1,120
 22,229
 .00

U1
 8
 1,139
 22,262
 .00

U2
 10
 1,154
 22,288
 1.00
Note. We compared the following three models: constant-rate Brownian
otion (BM), single-peak Ornstein-Uhlenbeck (OU1; one peak for all spe-
ies), and two-peak Ornstein-Uhlenbeck (OU2; one peak for aquatic species
nd another peak for terrestrial species) models. All models examined mul-
variate evolution (with both principal components being used as a combined
henotype) across 237 turtle species. OU2 was the most highly supported
odel. AICc p corrected Akaike information criterion; k p number of
arameters; logLik p log likelihood; weight p AICc model weight.



314 M. N. Simon and D. S. Moen
l

variation explained by history was much lower in aquatic lineages
than in terrestrial lineages, but only when excluding Testudinidae
(table 2). This result is consistent with extant turtles being ances-
trally aquatic (fig. A2), as lineages that have been aquatic for their
entire history have had nearly 10 half-lives to approach the
aquatic primary adaptive peak.
In contrast, most terrestrial lineages have been terrestrial

for little of their total evolutionary history (fig. A2). Even
Testudinidae, the oldest terrestrial lineage, had only around
2.5 half-lives to approach the terrestrial primarypeak. This suggests
that the observed phenotypes of terrestrial lineages are still
influenced by past adaptation to an aquatic environment. Hence,
we next tested whether lineages farther from the primary opti-
mum of their current habitat have spent less time in that habitat.
Surprisingly, time did not explain variation in distance from the
optimum (fig. 3B; table A2). Thus, the strong effect of history that
we found for terrestrial lineages (table 2) is not generally related to
too little time for adaptation after transitioning from an aquatic
ancestor (consistent with Stayton 2019b). Instead, other con-
straints (e.g., genetic or developmental constraints) may have
limited movement to the primary adaptive peak, or other niche
aspects could be influencing terrestrial species’ phenotypes. One
possibility is that terrestrial species may have higher genetic
integration of phenotypic traits that are relevant to performance
in the functions measured, consequently showing high genetic
variance accumulated in only one or a few directions. Because the
response to selection depends on both the location of the opti-
mum and the distribution of genetic variance (Lande 1979), if
selection toward the optimum is not alignedwith these directions
of high genetic variance, the response to selection may have
deviated from the direction of selection, causing a lag in adap-
tation (Arnold et al. 2001; Melo et al. 2016).

Our worked example demonstrates the new knowledge that is
possible as a result of using the merged framework. First, we showed
that the different positions of adaptive peaks between aquatic and
terrestrial species are related to terrestrial species having a higher
relative contribution of shell strength and lower relative contri-
bution of hydrodynamic drag than aquatic species. This inference
of which specific functions are essential to each selective regime
can be done only by merging the PLA and the ALA. Second, we
found evidence that constraints unrelated to biomechanical lim-
itations or adaptations to past environments influenced terres-
trial lineages that have recently transitioned to the terrestria
environment. This inference of which types of constraints may
limit functional evolution couldonlybe achievedwith themerged
framework.
Using Theoretical or Real Performance as a Trait
in Ornstein-Uhlenbeck Models

Part of the logic behind the merged framework can also be used by
directly analyzing performance in anOU framework. Some studies
carry out such analyses with modeled performance (as is typically
done in the PLA) but then test for multiple adaptive optima in the
ALA framework (e.g., Dumont et al. 2014; Rader et al. 2020). For
example, Dumont et al. (2014) studied functional adaptation of the
skulls of bat species with distinct diets. The authors used a refer-
ence skull of a single species and then used computer-aided design
Figure 2. Combined performance landscapes of turtle shell shape for aquatic and terrestrial habitats. The aquatic landscape (A) and the terrestrial
landscape (B) were estimated using a specific set of average weights estimated for the functions measured in hypothetical shell shapes (Stayton
2019a; aquatic landscape: shell strength p 0.47, hydrodynamic drag p 0.38, self-righting ability p 0.15; terrestrial landscape: shell strength p
0.68, hydrodynamic drag p 0.18, self-righting ability p 0.16). Red dots mark the position of the performance peak. Orange dots and bars
represent the position of primary adaptive peaks and their 95% confidence intervals, respectively. ALA p adaptive landscape approach; PC1 p
principal component 1; PC2 p principal component 2; PLA p performance landscape approach.
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software tomorph the reference to have a similar palate width and
length as the skulls of other extant species. They then estimated
mechanical advantage and von Mises stress using FE analysis on
these hypothetical skulls. Diet hardness (hard or soft), which
should determine the importance of force transmission and/or
breaking resistance of the skull, dictated their expectation of
where each species should be located in the performance land-
scape. Dumont et al.’s (2014) results indicated that even though
some of the dietary zones (e.g., nectivore, frugivore, and short-
faced bats) imposed distinct selection regimes on biomechanical
r
.
t
,

Figure 3. Speciesphenotypes and inferredprimaryadaptiveoptima for aquatic and terrestrial habitats.A, Eachpoint is thephenotypeof an individual species
in shape space, and largecircles correspond to thepositionsofestimatedprimaryadaptiveoptima.Several terrestrial species (triangles) are closer to theaquatic
optimum (large gray circle) than to the terrestrial optimum (large black circle). Aquatic species are represented by the small circles. B, Relationship between
time spent in current habitat andmultivariate distance from the primary adaptive optimum for that habitat. Time is plotted in original units (mya) but on a
logged scale.Multivariatedistance is inprincipal component (PC) space, so it hasnounits.This analysiswasdoneonly for lineages that switchedhabitats since
the rootof the tree; such transitionsweremostly fromaquatic to terrestrialhabitats (triangles), but somesecondary transitionsback toaquatichabitats (circles)
are included. The accumulated points on the far right of the plot correspond to species in the family Testudinidae. Note that analyses with phylogenetic
generalized least squares account for this (and all other) nonindependence.
Table 2: Variance partitioning of turtle shell shape into history and species-specific factors
Lineages
 History

Species-specific

factors
 Total
 Prop. history

Prop. species-specific

factors
Aquatic lineages:

PC1
 .0002
 .0010
 .0012
 .18
 .82

PC2
 .0000
 .0019
 .0019
 .02
 .98

Multivariate
 .0003
 .0029
 .0032
 .08
 .92
Terrestrial lineages:

PC1
 .0000
 .0028
 .0028
 .00
 1.00

PC2
 .0001
 .0009
 .0010
 .14
 .85

Multivariate
 .0001
 .0037
 .0038
 .04
 .96
Terrestrial lineages
(excluding Testudinidae):
PC1
 .0026
 .0007
 .0034
 .79
 .21

PC2
 .0000
 .0009
 .0009
 .00
 1.00

Multivariate
 .0026
 .0016
 .0043
 .61
 .39
Note. Estimated variance for history is based on deviations of aquatic or terrestrial mean phenotypes from their respective inferred adaptive optimum. Variance fo
species-specific factors is based on deviations of individual species from ecology-specific mean phenotypes. Total variance is the sum of the first two variances
Proportions of phenotypic variance due to history (prop. history) and to species-specific factors (prop. species-specific factors) are each based on componen
variance divided by the total variance for each row. Prop. history is much higher for terrestrial lineages for principal component 1 (PC1) when excluding Testudinidae
which can be seen in figure 3A, as many terrestrial species fall between the aquatic and terrestrial primary adaptive peaks. PC2 p principal component 2.
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skull traits, some species with divergent diets were under similar
selection regimes.
These results advancedknowledgeonselection fordiet-associated

performance. Yet an explicit interpretation of OU parameters,
such as the phylogenetic half-life, can give further insight into
the functional adaptation of bat skulls. For example, phylogenetic
half-life values in the optimal OU models were all below 1 myr,
which corresponds to only 2.85% of the tree length, when using a
values in Dumont et al.’s (2014) table 2. Such low half-lives
indicate that functional adaptation has been very fast and under
very low or no constraints (Hansen 1997), despite some diet types
(namely, frugivores) not showing distinct peaks for functional
traits such asmechanical advantage. Thus, by combining the PLA
and ALAmodeling, we can infer that functional adaptation of bat
skulls was driven by divergence in diet but that it was also fast and
under low ancestral constraints. Such an interpretation is only
possible when using the ALA at its full potential (e.g., examining
half-lives to understand the rate of adaptation).
We also recognize that good biomechanical or physiological

models are often unavailable for estimating the performance
landscape. Indeed, this was a key motivation for our analysis of the
well-developed turtle shell system of Stayton (2009, 2011, 2018,
2019a, 2019b; see also Polly et al. 2016; Stayton et al. 2018; Polly
2020). However, when such models are lacking, one can combine
morphology, physiology, observed (rather than hypothetical) per-
formance, and OU models to better understand functional adap-
tation. In contrast to the approach that we outlined above, primary
adaptive peaks here are estimated for both morphology/physiology
and performance, and the concordance of these peaks (or lack
thereof ) can be compared. In the case of swimming and jumping
performances in frogs, distinct morphological phenotypes associ-
ated with each of six microhabitats can produce a similar (maxi-
mum) jumping performance (Moen 2019). In contrast, swimming
performance varies according to the importance of swimming in
different microhabitats (i.e., there is one OU peak for species that
rarely swim and another peak for species that regularly swim).
Hence, Moen (2019) showed that morphological peaks do not
always match performance peaks, emphasizing the relevance of
including performance in analyses of functional adaptation, be it
hypothetical or real performance.
Conclusions

We have shown that integrating the PLA with the ALA leads to a
deeper understanding of functional adaptation by filling important
gaps. First, the merged framework clarifies whether maximizing
performance of specific functions has resulted in increased fitness.
Given that the same phenotypic traits may be involved in different
functions, it is essential to know which functions affect fitness the
most. Yet this knowledge is possible only because uncertainty in the
position of adaptive peaks can be measured, allowing comparisons
of the locations of performance and adaptive peaks. Incorporating
uncertainty in the position of performance peaks would be an
interesting avenue for future developmentof thePLA. For example,
instead of a single set of weights, one can use a range of relative
weights tocombinedifferentperformancesurfaces (Stayton2019a).
Moreover, awider rangeof theperformance landscape (e.g., 3%–5%
lower performance than the highest value; Stayton 2019b) can be
used for estimating performance peaks, which we found to be
important in terrestrial turtle shells.Onecanalsoconsidera rangeof
parameter values for biomechanical and physiological models to
produce uncertainty in the output performance.

Second, by considering the historical perspective of evolution in
OU modeling, we can infer the frequency of limits to functional
adaptation that are due to constraints and past selection in ancestral
environments. Species’ phenotypes may deviate from the primary
optimum for a variety of reasons, and the merged framework can
explicitly test for some of those factors (e.g., history vs. species-
specific factors). However, we acknowledge that performance and
adaptive landscapes may also change because of functional in-
novations (Wainwright 2007). How much functional innovations
can alleviate constraints on functional adaptation is an important
questionunincorporatedin themergedframework.Nonetheless, the
use of the merged framework in a wider range of taxa may better
elucidate howmuch selection on performance actually translates to
shifts in adaptive peaks and to phenotypic diversity when multiple
constraints are at play. Most functional systems are complex and
composed ofmany interrelated traits, which are subjected to diverse
evolutionary processes themselves. Thus, our integrative framework
can contribute to elucidating this multifaceted nature of adaptation
in form and function.
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