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Abstract—In-network caching and flexible routing are two of the most celebrated advantages of next generation network
infrastructures. Yet few solutions are available for jointly optimizing caching and routing that provide performance guarantees for
networks with arbitrary topology. We take a holistic approach towards this fundamental problem by analyzing its complexity in all the
cases and developing polynomial-time algorithms with approximation guarantees in important special cases. We also reveal the
fundamental challenge in achieving guaranteed approximation in the general case and propose an alternating optimization algorithm
with good empirical performance and fast convergence. Our algorithms have demonstrated superior performance in both routing cost
and congestion compared to the state-of-the-art solutions in evaluations based on real topology and request traces.
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1 INTRODUCTION

S two of the most well-studied topics in computer
Acommunication networks, caching and routing play
complementary roles: caching brings content closer to the
users, and routing optimizes the performance of the com-
munication paths. It is thus natural to explore the benefits of
combining these control options via joint caching and routing.

While joint caching and routing applies to many net-
work scenarios, it is particularly relevant in next generation
networks which provide services beyond data transfer. For
example, Information-Centric Network (ICN) promises to
offer pervasive content caching at routers [2], [3], [4], and
next generation cellular network proposes to offer content
caching at various types of base stations [5], [6], [7], [8], [9],
[10]. The challenge, however, is in solving the optimization
problem designed to jointly optimize content placement and
routing, which has received significant attention.

To this end, many tailor-made solutions have been de-
veloped for specific systems, e.g., a hierarchical IPTV sys-
tem [11] or a heterogeneous cellular network with small-
cell and macro-cell base stations [5], [6]. The hierarchical
structure of these systems offers very limited routing op-
tions involving only a couple of hops, greatly simplifying
the routing problem but making the solutions inapplicable
in general networks.

Meanwhile, few works have addressed the fundamental
problem of joint content placement and multi-hop routing in
networks with arbitrary topology. Due to the huge solution
space, most existing solutions either relied on heuristics or
resorted to the generic branch-and-bound method with an
exponential worst-case complexity [12]. Polynomial-time al-
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gorithms with approximation guarantees were not available
until recently, when [3] proposed an approximation algo-
rithm for minimizing the routing cost in the underloaded
regime and [12] proposed an approximation algorithm for
maximizing the number of served requests in the over-
loaded regime.

In this work, we address joint caching and routing in
arbitrary topology, with the objective of minimizing the
routing cost as in [3]. However, our work differs from [3]
in that: (i) while [3] ignored link capacity constraints, we
consider both limited and unlimited link capacities, where
the limited link capacities significantly complicate the rout-
ing problem; (ii) while [3] only optimized routing among a
limited set of candidate paths (e.g., k-shortest paths to origin
servers), we optimize routing among all possible paths
while maintaining a polynomial complexity. As shown later
(Section 6), these differences allow our solutions to achieve
substantially lower routing cost and link congestion.

1.1 Related Work

As caching and routing were each studied extensively with
large numbers of related works, we will only review works
addressing their joint optimization below.

Joint caching and routing: The problem of joint caching
and routing has been studied in a number of network
scenarios: ICN [2], [3], [4], Content Delivery Network (CDN)
[13], [14], [15], [16], content provider networks [11], [17],
cellular networks [5], [6], [7], [8], [9], [10], and IoT net-
works [12]. Majority of existing works focused on specific
topologies, e.g., a 3-tier hierarchical topology [8], [9], [11],
or a 2-tier hierarchical topology [5], [6], [7]. These special
topologies have very limited routing options, thus simplify-
ing the problem.

Among works considering general network topology,
only a few provided performance guarantees [3], [10], [12].
However, [3], [10] did not consider link capacity constraints,
which greatly simplifies the routing problem as it suffices to



route each request to the nearest replica of the requested
content. While [12] considered link capacity constraints, it
assumed an overloaded regime where not all requests can
be served, and focused on maximizing the number of served
requests. In contrast, we consider routing cost minimization
in the underloaded regime as in [3], which represents the
normal operation state of most networked systems, but
we tackle a much more general problem than [3] and also
improve it in the special case of unlimited link capacities.
Other related joint optimizations: Besides caching and
routing, other joint optimizations have also been studied,
e.g., joint content placement, server selection, and storage
capacity allocation [18], and joint cache deployment, request
routing, and content placement [14]. The content placement
problem is also similar to the placement of virtual network
functions, which is usually jointly optimized with routing
[19], [20]. However, due to the high complexity of these
problems, existing solutions are mostly based on heuristics.
The few existing solutions that provide performance guar-
antees [21], [22], [23] address optimization problems that
are very different from ours, and are thus not comparable
with our work. Specifically, [21] optimized request rates and
content placement, but assumed predetermined routes; [22]
optimized VM allocation, content placement, and request
routing, but ignored link capacities; [23] optimized request
routing and content retention time, but only provided per-
formance bounds in the case of uncapacitated caches.

1.2 Summary of Contributions

We consider the problem of joint caching and routing for
minimizing the total routing cost under cache and link
capacity constraints. After formulating the problem as
a comprehensive optimization that covers both simple
content replication (integral caching) with single-path
routing (integral routing) and caching fractions of coded
content (fractional caching) with multi-path routing (fractional
routing), we make the following contributions:

1) We analyze the complexity of the optimization in all
the cases through connections to known NP-hard problems.

2) We develop efficient algorithms, with focus on the
hardest case of integral caching and integral routing. In
the special case of unlimited link capacities, we develop a
truly polynomial-time algorithm based on pipage rounding
that achieves the same constant-factor approximation as the
pseudo polynomial-time algorithm in [3]. In another special
case of binary cache capacities, we reduce our problem
to the minimum-cost single-source unsplittable flow
problem (MSUFP) and develop a polynomial-time bicriteria
approximation algorithm that improves the state-of-the-art
MSUFP algorithm when each demand is much smaller than
link capacities. We then apply the ideas from these special
cases to develop a heuristic algorithm for the general case
that alternatingly optimizes caching and routing.

3) We further extend the above solutions developed for
equal-sized content items to the case of heterogeneous-sized
items. While caching items of heterogeneous sizes can no
longer be solved by pipage rounding, we show that the
problem still has the desirable properties of submodular
objective and p-independence constraints, which allows the
greedy algorithm to achieve a constant approximation.
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4) We evaluate our solutions against state-of-the-art
benchmarks in the practical application scenario of edge
caching. Our results based on real topology and request
traces show that: (i) when given perfect knowledge of the
demand, our algorithms can significantly improve the state-
of-the-art solutions in both routing cost and congestion, (ii)
the advantage remains when the decisions are based on pre-
dicted demand produced by a realistic prediction method,
and (iii) dividing files into equal-sized chunks can signifi-
cantly improve the performance of caching and routing.

Roadmap. Section 2 formulates our optimization prob-
lem, Section 3 analyzes its complexity, Section 4 presents
our algorithms and approximation analysis, Section 5 ad-
dresses the extension to heterogeneous item sizes, Section 6
provides evaluation results, and finally Section 7 concludes
the paper. All the proofs can be found in Appendix A of
the supplementary file.

2 PROBLEM FORMULATION
2.1 Network Model

We model the cache network as a directed graph G =
(V, E), where V is the set of nodes, and FE the set of links.
Collectively, the nodes serve a catalog C' of content items
(e.g., file chunks), which are assumed to be of equal size as
in [3], [12], [21]; this assumption will be relaxed later (see
Section 5). To serve the content, each node v is equipped
with a cache, which can store up to ¢, content items (c, = 0
if v has no cache). A node that does not store a content
item can request it from other nodes. Each link (u,v) € E
can transfer c,, content items per unit time (assuming that
the size of a request is negligible). We model each type of
requests by a pair (i,s) € C x V, meaning that node s
requests a content item i. Let R C C' x V denote the set of
all types of requests, and A(; 5) (unit: requests per unit time)
denote the arrival rate of requests of type (i, ).

In this work, we consider the under-loaded regime,
where there are generally multiple ways to place and route
content items such that all the requests can be satisfied.
Our objective is to find a feasible solution that minimizes
the total routing cost. To this end, we associate each link
(u,v) € E with a routing cost wy, > 0 (w,, may not
equal w,,), denoting the cost of transferring a content item
over this link. The routing cost can model any additive
metric. For example, if w,,, denotes monetary cost (e.g., for
leasing bandwidth), then minimizing the total routing cost
minimizes the monetary cost in serving the requests; if w,
denotes — log(link reliability), then under the assumption
of independent link failures, minimizing the total routing
cost minimizes the average of — log(path reliability), which
maximizes the success rate of content retrieval. The specific
choice of routing costs is not our focus; instead, our focus
is on designing the caching strategy and the routing strategy
based on a given cost per link such that the total routing cost
can be minimized subject to the above resource constraints.

2.2 Model of Caching

We use z,,; to denote the caching decision regarding storing
content item ¢ at node v. If a content item can only be
replicated as a whole, we require integral caching x,,; € {0,1}



(1: storing the item, 0: not storing the item). If a cache can
store (a coded version of) a fraction of an item, we allow
fractional caching x,; € [0, 1]. For example, using random
linear code, we can divide each item into small chunks and
store linear combinations of these chunks at caches such that
the original item can be recovered with high probability as
long as sufficiently many coded chunks are retrieved [24],
where x,; denotes the fraction of coded chunks for content
item 7 that are stored at node v.

2.3 Model of Routing

Due to the possibility of multiple nodes storing a requested
item, the routing decision contains both source selection that
selects the source(s) to retrieve the content from, and routing
that selects the path(s) to retrieve the content through. De-
pending on how items are cached, we may require integral
source selection r"*) € {0, 1}, where ri"*) = 1 indicates that
v is selected as the only source for serving request (i, s), or
we may allow fractional source selection 5" € [0, 1], where
7"1(}1’5) is the fraction of item 7 served from node v to node s.
Depending on whether multi—(path routing is supported, we
may require integral routing fuy®) € {0, 1}, where f{5* =1
indicates that link (u,v) is on the only path serving request
(i, s), or we may allow fractional routing £ e [0, 1], where

{59 is the fraction of the flow serving request (4, s) that
traverses link (u, v).

2.4 Problem: Optimal Joint Caching and Routing

We now formally define the joint caching and routing prob-
lem we want to solve in the form of an optimization:

i . (4,5)
;nal:,ri' Z )‘(z,s) Z wuvfuv (1a)
(i,s)ER (u,v)EE
st Y Ao fls? < cuw, Y(u,0) €E, (1b)
(i,8)ER
Z fyuf) - Z fl(uiﬁs) = Tz(j7s) — Ly=s,
w:(u,w)eEE w:(w,u)EE
V(i,s) e Ru eV, (1c)
e =1, V(i,s) €R, (1d)
ueV
rf)i’s) < Ty, V(i,s) € Ryv eV, (le)
Z Ty < Cy, Yo eV, (1f)
eC
‘ {0, 1} if integral caching, .
Tvi € {[0, 1]  if fractional caching, VweVied,
(1g)
£ i) {0, 1} if integral routing,
uwv 7T [0, 1]  if fractional routing,
Y(i,s) € R, (u,v) € E,v e V. (1h)
The decision variables are f := (féiﬁs))(i,s)eR,(u’v)eE

(routing), = := (Tyi)veviec (caching), and r :=
(rq(f’s))(i7s)6R71)€V (source selection).

The objective (la) is to minimize the total routing cost
(per unit time). Constraints (1b) and (1c) are the link ca-
pacity and the flow conservation constraints as in the mul-

ticommodity flow problem. In our context, each commodity
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(i, ) represents the responses to requests of type (i, s), and
i) —1,_, is the fraction of commodity (4, s) emitted from
node u (1. denotes the indicator function). Constraint (1d)
ensures that each request is served by sufficient sources,
and constraint (1e) ensures that each selected source stores
(a sufficient fraction of) the requested content. Constraint
(1f) models the cache capacity constraint at each node. Con-
straints (1g) and (1h) specify the allowable caching/routing
decisions. Note that integral routing implies integral source
selection, as modeled by (1c). While the reverse is not strictly
true, we only consider cases that routing and source selec-
tion are simultaneously integral /fractional, as they can often
be combined into a pure routing problem in an auxiliary
graph as shown later.

Based on the choices in constraints (1g) and (1h), (1)
models the joint optimization of caching and routing in
three cases:

1) fractional caching and fractional routing (FC-FR),
2) integral caching and fractional routing (IC-FR), and
3) integral caching and integral routing (IC-IR).

In theory, there is a fourth case, fractional caching and integral
routing (FC-IR). However, under integral routing, the source
selection must also be integral, which means that there is
no value for caching partial content items. Therefore, there
must be an optimal solution for FC-IR that is feasible (and
optimal) for IC-IR, and thus it suffices to consider the above
three cases.

Clearly, IC-IR is the most constrained case with the worst
routing cost (under the optimal solution) among the three
cases, but it also has the least requirement on implemen-
tation, by storing uncoded content and performing single-
path routing. Meanwhile, FC-FR is the least constrained
case with the best routing cost, but its solution is the
most complicated to implement, requiring content encod-
ing/decoding and support of multi-path routing. It is thus
of interest to investigate all three cases to understand the
tradeoff among computational complexity, routing cost, and
implementation requirements.

3 COMPLEXITY ANALYSIS

The optimization (1) is a linear programming (LP), integer
linear programming (ILP), or mixed integer linear program-
ming (MILP) problem, depending on the choices in con-
straints (1g) and (1h)). We start by analyzing the complexity
in solving (1) optimally in various cases.

Complexity of IC-IR: It is easy to see that the optimization
(1) incorporates the multicommodity flow problem as a
subproblem, as even if the optimal caching and source
selection decision (x, r) is given, the remaining problem
is still a multicommodity flow problem. Specifically, each
commodity corresponds to a type of request (i, s), with a
source v such that 7"®) = 1, a destination s, and a demand
A(i,s), and we need to find a single path for each commodity
such that all the demands can be satisfied at the minimum
cost within the link capacities, which is the minimum-cost
unsplittable flow problem that is NP-hard [25], [26]. Therefore,
(1) under IC-IR is NP-hard.

Complexity of IC-FR: It has been shown that integral
caching is already NP-hard. Specifically, in the special case



IC-FR:
1C-IR: NP-hard
NP-hard

FC-FR: P

Fig. 1. Complexity analysis for the joint caching and routing problem (1).

of ¢ypy = 00 (V(u,v) € E), (1) reduces to the MinCost-SR
problem in [3], which is known to be NP-hard due to a
reduction from the 2-Disjoint Set Cover Problem. Therefore,
(1) under IC-FR remains NP-hard.

Complexity of FC-FR: In this case, (1) becomes an LP,
which is polynomial-time solvable by existing LP algo-
rithms (e.g., Karmarkar’s algorithm [27]).

Summary: Fig. 1 summarizes the complexity of the joint
caching and routing problem (1) in all the cases. Except for
the case of FC-FR, the problem is always NP-hard, which
motivates our search for efficient approximation algorithms.

4 ALGORITHM DESIGN

We now study efficient algorithms for solving (1) approxi-
mately. Since FC-FR is polynomial-time solvable, we will fo-
cus on the cases of integral caching and/or integral routing.

4.1 Approximation under Unlimited Link Capacities

If the network is lightly loaded, i.e., each link has suffi-
cient capacity to serve all the demands (3_; jep Ais) <
min(, .)eE Cuv), then the routing decision becomes easy.
Specifically, given the content placement in caches, we
should always serve each request (4, s) from the nearest (i.e.,
least-cost) node storing the requested content. If the nearest
node only stores a fraction of (the coded sub-chunks of) the
content, then we should also retrieve from the second near-
est node storing the content and so on, until the request is
fully satisfied. This is a generalization of the route-to-nearest-
replica (RNR) strategy in ICN [3], and will be referred to as
RNR in the sequel. The focus is therefore on finding a good
content placement. As explained in Section 2.4, if either
routing or caching is limited by integer constraints, then the
optimal caching solution is integral. We thus consider the
problem of finding the optimal integral content placement
under RNR.

This problem has been considered in [3], which
developed a pseudo polynomial-time algorithm that
achieves a constant-factor approximation to the optimal
solution. However, the algorithm’s complexity is
polynomial in the total number of possible routing
paths, which is generally exponential in the network size'.
Below, we will develop a truly polynomial-time algorithm
that achieves the same constant-factor approximation.

4.1.1 Equivalent Formulation

The key in circumventing the high complexity for consid-
ering all possible paths is to recognize that only the least-
cost paths between nodes may be used under the optimal
solution. Let w,_,; denote the minimum routing cost from

1. The issue was addressed in [3] by heuristically selecting a polyno-
mial number of candidate paths (e.g., k shortest paths to the server),
but the loss of optimality due to ignoring the other possible paths was
not addressed.
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node v to node s, and wmax be an upper bound on the
maximum w,_,s over all v,s € V. It is well-known that
(Wy—s)v,sev and the associated paths can be computed in
polynomial time by shortest path algorithms (e.g., Dijkstra).
Given a content placement x and a source selection r, we
define a proxy objective function:

Cre(T,T) 1= Z )‘(i,s)zrg’s)(xviwv%fr(1*xvi)wmax)a
(i,s)ER  vEV

based on which we formulate the following optimization:

min  Crg(z,T) (2a)
x,r
sty r{ =1, V(i,s) € R, (2b)
veV
Z Tyi < Cy, Yv eV, (20)
ieC
Ty, v € {0, 1}, YoeV,(i,s)e R (2d)

As requesting content item ¢ from a node v not storing it (i.e.,
Zy; = 0) will incur a large cost wax, the optimal solution
to » must only select the source for each request among
the nodes storing the requested content, and must select
the source with the least routing cost to the requester (i.e.,
RNR). Thus, the optimal solution to (2) will minimize the
cost in serving all the requests (due to (2b)) subject to cache
capacity constraints (2c) and integer constraints (2d), which
makes (2) a special case of (1) under IC-IR when ¢, = o0
V(u,v) € E).

Next, we convert the problem into an equivalent maxi-
mization problem. Define a complementary objective func-
tion

FRNR(wv 7") = Crgglz - CRNR(wv 7') 3)

that represents the “cost saving” due to content place-

ment « and source selection 7, where Cég.% =
|V wmax =i s)er Ais) 18 @ constant. It is easy to see
that minimizing Crw(x,7) is equivalent to maximizing
Fowx(z, 7). As will be shown below, the maximization prob-
lem accepts a constant-factor approximation.

4.1.2 Submodularity of Objective

As an explanation of why the maximization of Fi(x, ) is
easier to solve, we will show that Fy can be written as a
monotone submodular function [28] of content placement. To

this end, we rewrite Fyy as a set function: for any X C
V x C,

Fow(X) = max  Fug(z,7), 4)

r s.t. (2b),(2d)

where x,; = 1 if (v,4) € X and x,; = 0 otherwise (Vv €
V, i € C). This function has the following properties.

Lemma 4.1. The function ﬁRNR(X ) is monotone increasing
and submodular in X.

Under the set function representation, the maximization
of Fi(, 7) subject to (2b)—(2d) is equivalent to

Xglé/%}; c Frw(X) (5a)
st. {ieC:(v,i)eX}<e,, VYveV, (5b)



where the optimization of r has been incorporated into
Fow(X). It is easy to see that the cache capacity constraint
(5b) is a matroid constraint [28].

There are generic polynomial-time approximation
algorithms for maximizing a monotone submodular
function under matroid constraints. Specifically, the greedy
algorithm of iteratively expanding the set X by adding an
element (v,7) that maximally increases the objective value
achieves a 1/2-approximation [29]. A better approximation
ratio of (1 — 1/e) is achieved by the randomized algorithm
in [28], which cannot be further improved under the
value oracle model [30]. However, this randomized
algorithm has a complexity of O(n®) where n is the rank
of the matroid [28]. In our case, n = ZvEV ¢, (total cache
capacity), which can be large, making this generic algorithm
computationally expensive.

Remark: Contrary to the claim in [3] that jointly opti-
mizing caching and routing decisions is not a submodular
maximization problem subject to matroid constraints, we
have proved that under proper formulation (i.e., (5)), the
problem is a submodular maximization problem under ma-
troid constraints. Note that our problem is equivalent to the
(offline) joint caching and routing problem in [3] in that the
optimal content placement according to (5) together with
RNR solves the joint caching and routing problem in [3]
optimally.

4.1.3 Approximation Algorithm

Below, we will develop a tailor-made algorithm for maxi-
mizing Frg(z, r) subject to (2b)-(2d) that achieves the same
approximation ratio as the generic algorithm in [28] at a
much lower complexity. The idea is to use pipage round-
ing [31]. Generally, to apply pipage rounding, we need to
answer two questions: (i) how to efficiently compute a frac-
tional solution that achieves a guaranteed approximation to
the optimal, and (ii) how to round the fractional solution to
an integral solution without degrading the objective value.
We now answer these questions in detail.

Auxiliary LP: We compute a fractional approximate
solution by replacing the non-concave objective function
Fux(,7) by a concave function that is easier to maximize.

Lemma 4.2. For any « and r satisfying xq,,-,rgi’s) e [0, 1]
Vv € Vi € C,(i,s) € R), (1 — 1/e)Lpw(z,7) <

FRNR(SC7 T') < LRNR(ili, T‘), where

LRNR(w;T) = Z )\(i,s) Z Wmax

(i,s)ER veV

. min (1’ 1 _ T,gi7s) + xvi(wmax - w’u—)s)) ) (6)

Wmax

The new objective function Lgw(x,r) is concave and
piecewise linear. By introducing an auxiliary variable 2",
we can formulate the maximization of Ly (i, ) subject to

(2b), (2¢), and the relaxation of (2d) as an LP:

. (i.5)

5711?;}75 Z )\(1,5) Z WmaxZy (7a)
(i,s)ER veV

st 209 <1, V(i,s) € R,u €V, (7b)

Tys (wmax - wv—m)
9

Zq()i,s) <1-— Tgi,s) +

wmax

Algorithm 1: Integral Caching and Source Selection
under RNR
input : Network topology G = (V, E), link costs
(Wuw) (u,0)e B, cache capacities (c,)vev, content
catalog C, request rates (A\(; s))(i,s)cR
output: Integral caching decision « and source selection
r
1 compute pairwise least costs (wy—s)v,sev and the
maximum pairwise cost Wmax;
2 solve the LP (7) for a fractional solution (&, 7);
3 round & to an integral solution x by (8)—(9);
4 compute an integral r based on x using RNR;

V(i,s) € RyveV, (7c
(2b), (20), (7d)
yi, TS0 € [0, 1], VeV, (i,s) ER. (7e)

Due to the maximization and the constraints (7b)—(7c), zf,i’s)

must equal min (1, 1— i) 4 %) under the
optimal solution, making the objective function (7a) equal
to Lpw(z, 7). As an LP, (7) is polynomial-time solvable.
Solving (7) gives a fractional solution (&, 7) that maximizes
Ly and hence achieves a (1 — 1/e)-approximation in max-
imizing Fr\z by Lemma 4.2.

Pipage rounding: Given the fractional solution (&, 7), we
round it to an integral solution while preserving Fiw by
repeating the following step: As long as 3%.;, Z,; € (0,1),
we will update their values by

Ty; = min(l, Ty; + Toj), Zoj = Toi + Toj — Twi (8)

if Zs:(i,s)eR A(z,s)ﬂ(f?) (wmax wv%s) >

Zs:(j,s)eR )‘(j,s)fi(fj“g) (U}max - w’u—}s)/ and
Lyj = min(liji + jvj)a Toi = Tui + «%vj — Tyj (9)

otherwise. This rounding scheme has the following prop-
erty.

Lemma 4.3. Given a possibly fractional solution (&,7)
satisfying (2b), (2c), and (7e), repeatedly applying (8)-(9)
will construct an integral solution z in O(|V'|?|C|) time that
satisfies (2¢), (2d), and Fie (@, 7) > Fron(&E, 7).

Proposed algorithm: The entire algorithm is summarized
in Algorithm 1, where line 1 prepares parameters for the
auxiliary LP (7), line 2 solves the LP for a fractional solution,
line 3 applies pipage rounding, and line 4 computes the
corresponding source selection by serving each request from
the nearest node storing the requested content, i.e., RNR.
The performance of Algorithm 1 is guaranteed as follows.

Theorem 4.4. Algorithm 1 has a complexity of O(|V||E| +
|R|??|V|?>?) and produces a feasible solution (x,r) such
that Fiw(x,r) > (1 — 1/€)Fw(x*, 7*), where (x*,r*) is
the optimal solution to (2).

Remark: Although a similar approach was taken in [3],
the solution therein enumerates candidate paths and thus
can only consider a subset of all possible paths to achieve
a polynomial complexity. In contrast, our algorithm effec-
tively optimizes over all possible paths (while maintaining
a polynomial complexity), and can thus significantly out-
perform [3] (see Fig. 5).



4.1.4 A Special Case

Consider now the special case where a subset U of nodes are
pure requesters (not caching anything), and another subset
H of nodes are pure caches (not requesting anything). In this
case, it suffices to model the network as a bipartite graph
G = (H,U, E), where the logical link (h,u) € E represents
the least-cost path from h to u, with cost wp—,. We can
ignore how these least-cost paths traverse the underlying
network as the links have unlimited capacities.

This reduces our problem to the FemtoCaching problem in
wireless networks [32], where nodes generating requests are
one-hop away from caches deployed at the network edge. In
the further special case where except for one node hy € H
(that denotes the origin server), all the cache—requester
paths have equal cost wy with w; < min,ey Wny—w, [32]
developed a pipage-rounding-based algorithm with an ap-
proximation ratio of* (1 — 1/¢), and a complexity similar to
solving an LP with (|U| + |H|)|C| variables and constraints.
In this sense, we have shown that the same performance
guarantee can be achieved for a general cache network with
arbitrary routing costs, as long as the links are uncapaci-
tated. The cost we pay for such generality is complexity:
instead of solving an LP with (|U| + |H|)|C| = O(|V||C))
variables and constraints as in [32], Algorithm 1 needs to
solve an LP with O(|V||R|) = O(|V|?|C|) variables and
constraints.

4.2 Bicriteria Approximation under Binary Cache Ca-
pacities

We see from Section 4.1 that the routing decision becomes
trivial (i.e,, RNR) when the link capacity constraints are
removed. We now consider another special case where the
caching decision becomes trivial. Specifically, suppose that
¢y = |C|forv € V; C V,and ¢, = 0 for the rest. Then
each node v € V, will store the entire catalog and each
v € V' \ V; will store nothing. This models scenarios with
predetermined, geographically distributed backup servers
(i.e., in CDNSs).

4.2.1 Equivalent Formulation

We will show that in this case, the joint optimization of
source selection and routing is equivalent to a single-source
routing problem in an auxiliary graph. Consider the auxil-
iary graph G’ that is constructed by adding to G a new node
vs and a new link (vs, v) for every v € V;, as illustrated in
Fig. 2. We will refer to v, as the virtual source and (vs, v) as
a virtual link. Let E' := E U {(vs,v) : v € V,} denote the
link set for G'. Assign to each virtual link a zero cost and
an unlimited capacity. Then our problem is equivalent to a
single-source routing problem in G’ as stated below.

Lemma 4.5. Under the content placement z,;, = 1 for all
v € Vi,i € C and z,; = 0 otherwise, minimizing the
cost in serving all the requests in G' by optimizing source
selection 7 and routing f is equivalent to minimizing the
cost in serving the same requests in G’ by optimizing the
routing f’ from v, to content requesters.

2. The precise approximation ratio is 1 — (1 — %)d, where d :=
max, ey deg(u) — 1 [32], which converges to 1 — 1/e as d gets large.

_.-m. Vs (virtual source)

--> virtual link

— real link

Fig. 2. Auxiliary graph G’ that augments G by adding a virtual source v,
connected to all real sources in V.

4.2.2 Bicriteria Approximation Algorithms

Under fractional routing (which implies fractional source
selection) in G, the corresponding single-source routing
problem in G’ is easily solvable by an LP (e.g., the LP
relaxation of (10)). Hence, we focus on the case of integral
routing (and integral source selection), in which case the
corresponding single-source routing problem in G is:

mn > Aiw D wafu (10a)
(i,s)ER (u v)GE
s.t. Z )‘(1 5)f uv < Cuvs (u7 ’U) € Ev (10b)
(i,s)ER
Z f/(ls Z f/gi):]]-ue f/(zS)_]]-u ER)
w:(u,w)eEE w:(w,u)eEE
V(i,s) € Ryu eV, (10c)
3 = V(i,s) € R, (10d)
vEVy
7159 e {0, 1}, V(i,s) € R, (u,0) € B,  (10e)

known as the minimum-cost single-source unsplittabl_e {7060
problem (MSUFP) [33]. Under the conversion of fuis =
#8%) for all (i,s) € Rand (u,v) € E, and r{"" = f’”)
for all (i,s) € Rand v € V;, it is easy to see that (10) is a
special case of (1) under integral routing, when ¢, = |C/ for
allv € Vyand ¢, =0forallv € V' \ V.

For ease of presentation, we define MSUFP using simpler
notations as follows.

Definition 1. Given a graph G = (V,E) with capacity
ce and cost w, associated with each link e € FE, and
commodities i = 1,...,n, each with source s, destination d;,
and demand \;, MSUFP aims at finding an unsplittable flow
satisfying all the demands within the link capacities at the
minimum cost, i.e., a set of paths {p;}~; such that routing
commodity ¢ on p; satisfies the demands while satisfying
Dieep; Ni < ce (Ve € E), and achieves the minimum
cost measured by > A\ Y we among all the feasible
solutions.

MSUFP is NP-hard [25]. Notable efforts have been de-
voted to designing approximation algorithms, which gen-
erally start from an initial splittable flow f (i.e., fractional
routing) and then round it into an unsplittable flow f. It
has been shown in [34] that in the worst case, rounding a
splittable flow that satisfies the link capacity constraints into
an unsplittable flow will violate the capacity of some link
by an amount arbitrarily close to the maximum demand.
Therefore, existing algorithms focus on obtaining bicriteria
approximation defined as follows.

eep;



Definition 2. A solution f to MSUFP is a bicriteria («, )-
approximation if: (i) the total load on each link imposed
by f is within « times its capacity, and (ii) the total cost
incurred by f is within 3 times the optimal cost.

Despite extensive studies, existing results on MSUFP
are far from satisfactory. Under arbitrary demand, the best
known bicriteria approximation ratio is (3 +2+v/2, 1) [33]. If
the maximum demand is within the minimum link capacity,
the best known ratio is (3, 1) [33]; under the same condition,
[35] proved that for any € > 0, there is no bicriteria (2—¢, 1)-
approximation algorithm for MSUFP unless P = N P. These
results imply that if we use the algorithms therein to solve
(10), some link may carry a load that is three times its
capacity, which will cause significant congestion.

To address this issue, we will show a better approx-
imation algorithm in the scenario where the maximum
demand is much smaller than the minimum link capacity,
ie, maxje(1,....n} Ai = Amax < Cmin = Miheep Ce. This
scenario models cases where the network serves a large
number of users with a large catalog, but each user only has
a small demand for each item in the catalog. In this case,
we will provide a polynomial-time algorithm that achieves
no more than the optimal cost, while causing no more than
e congestion on each link for an arbitrarily small ¢ > 0.
We will present the main results here and defer further
explanations to Appendix B of the supplementary file.

Subroutine: The basis of our solution is an algorithm
developed in [33], which converts a splittable flow to an
unsplittable flow with the following properties.

Lemma 4.6 ( [33]). Given MSUFP with demands \; =
Amin2% (1 = 1,...,n) for ¢; € N (natural numbers including
zero) and 0 = ¢; < g2 < .-+ < gy, and a splittable flow
f satisfying all the demands, [33, Algorithm 2] outputs an
unsplittable flow that routes each commodity 7 on a single
path p; in O(n|V| + |E|g, + |V]||E]|) time, such that (i)
PIEPY >_cep; We is no more than the cost of f, and (i)
Ve € E, if i, 1= argmax;,.c,,. A\i, then Z#ie:egm A < fle),
the total flow on link e under f.

Proposed algorithm: Using [33, Algorithm 2] as a sub-
routine, we develop a three-step algorithm for arbitrary
demands ()\;)7_; in Algorithm 2. First, we compute by LP
an optimal splittable flow f that satisfies these demands
within the link capacities with the minimum cost (line 1).
Second, using a given parameter K € N, we round each
demand \; to®

The rounded demand satisfies ;2" Y5 < \; < \;. We
then reduce the flow f along the most expensive paths to a
new splittable flow f satisfying demands (\;)"; (lines 2—
4). Third, we partition the commodities {1,...,n} into K
subsets:

Ay 2LE 10BN/ Amas) |/ K
)\max/21/K

if )\z < /\maxa

if A; = Amax- (a1

) I_K log()\i/)\max)J .7
SjI:{ZE{la---7n}:_ K +§€N}’
—0,.. K-1 (12)

3. The log here denotes base-2 logarithm.

Algorithm 2: Bicriteria Approximation for MSUFP

input : Network topology G = (V, E), link costs
(we)eek, link capacities (ce)ecr, commodities
i € {1,...,n} with source s, destination d;, and
demand );, and design parameter K € IN
output: Paths (p;)i=;, each for routing one commodity
1 compute a feasible splittable flow f := (( 5(’))56 E)ie1
that satisfies all the demands (\;);=; at the minimum
cost;
2 convert the link-level flow f to a path-level flow
(( Z(,”)pe P; )i=1 by the Edmonds-Karp algorithm as in
[36], where P; is the set of paths carrying commodity ¢
and fl(,” the amount of commodity i on path p € P;;
3 foreachi=1,...,n do
(4)

4 reduce (fp’)pep, in descending order ofﬁZe ep We
until the reduced flow satisfies > ., 79 =X, as
in (11);

5 split the reduced flow f into f; := ((f;gl))pepi)iesj
(G =0,..., K —1)for S; defined in (12);

¢ foreach j =0,..., K —1 do

7 convert f; into an unsplittable flow by [33,
Algorithm 2], specified by paths (p:)ies,;

8 return paths (p;)j-;, with p; serving demand \;;

We then split f into flows f] (j =0,...,K — 1) such that
f; satisfies demands ()\;);cs, (line 5), and convert f; into
an unsplittable flow by [33, Algorithm 2], which routes each
commodity ¢ (¢ € S;) on a path p; (lines 6-7). The final
solution is to route the original demand A; on path p; for
eachi =1,...,n (line 8).

The performance of Algorithm 2 is guaranteed as fol-
lows.

Theorem 4.7. Given MSUFP with demands A := A1 <
- < Ap =! Amax, Algorithm 2 computes an unsplittable
flow that serves demand A; by path p;, (i = 1,...,n)

in 0 (w2 (V| + [E)>® + K|E| (log(3m) + V1))

min

such that (i) >0 \; >_cep; We is no more than the mini-

1/K
)\i < ‘2(221/K_1))‘max + 21/KCE/

time,

mum cost, and (ii) >
Ve € E.

Remark: Algorithm 2 extends the solution in [33] (called
variant of Algorithm 3), which addressed a special case of
K = 2. When Ayax < Cmin, choosing K = [1/1og(1 + ¢)]
for a small ¢ > 0 implies that the solution given by
Algorithm 2 will achieve the optimal cost while incurring a
load on each link that is within (14 ¢) times its capacity, i.e.,
giving a bicriteria (1 + €, 1)-approximation. Applying this
algorithm to (10) will then give an integral source selection
and routing solution to (1) when the catalog is replicated
over a given subset of nodes V;, which incurs no more than
the optimal cost and exceeds the capacity of any link by at
most a factor of e.

While the case of A\pax < cmin Was considered in [37],
which proposed a different algorithm, the performance of
that algorithm was not analyzed rigorously. To our knowl-
edge, Algorithm 2 is the first algorithm achieving (1 + ¢, 1)-
approximation for MSUFP.

i:e€p;

4.3 Heuristics under General Link/Cache Capacities

Given our experiences in solving the special cases, we
propose to solve the general case with arbitrary link/cache



capacities by alternatingly optimizing content placement
and routing (including source selection).

4.3.1 Approximation Algorithm for Content Placement

Consider the problem of integral content placement under a
given solution (r, f) to source selection and routing. In the
case of integral routing, this problem has been studied in
[38], for which a (1 — 1/e)-approximation algorithm based
on pipage rounding was proposed. Below we show how
to achieve the same approximation ratio in the case of
fractional routing.

Under source selection r and routing f, let Pf;) denote
the set of cycle-free paths used to serve requests of type
(i,s) and )\(l %) (Vp € P(lfs)) the rate of requests served
by path p. Spec1f1cally, given a possibly fractional link-level

routing decision f := ( fw )(Z s)€R,(u,v)e B, the correspond-
(")

P perly) (i,5)ER
be computed as in [36] in O(|R||V||E|) time (flgl"s) the
fraction of type- (z s) requests served by path p), and then
)‘(2 g = /\(z s)fp
|P(Z )| < |E| (V(i,s) € R) (see the proof of Theorem 4.7 for
explanation) Let |p| denote the number of nodes on path
pand p; (i = 1,...,|p|) the i-th node from the source.
Then the cost of serving requests using the paths and
rate allocation specified by (r, f) and an integral content
placement x is

ing path-level routing decision can

. This conversion also guarantees that

lp|—1

Crp(z) == Z Z )‘(1 g Z Wp)p| kP |p|—k+1
(4, S)GRPGP(‘ 15)
k—1
: H (1 - xpmfk/i)a (13)
k’=0

because the response to request (i, s) along path p needs to
traverse link (p|,|—x, P|p|—k+1) if and only if no node closer
to the requester (at node pj,|) than node pj,|_, has content i,
ie., H:,_:lo(l — &y _,,i) = 1. This is a generalization of the
formulation in [38], which only considers the special case of
|P(l S)| = 1 (i.e., integral routing). Note that to be consistent

with previous sections, we consider each p € P(ng) tobe a
response path, instead of a request path as in [38].

The solution is based on similar ideas as in Algorithm 1.
First, the minimization of cost (13) is converted into an
equivalent maximization of cost saving, defined as

Frg(x) == Cr5(0) — Cp ¢ ()

lp|—1

Z Z /\13) Z Wp)p)—kPp|— k41

(i,s)ER ep(l )8)

k—1
. <1 _ H (1—
k'=0

xplplk’i)> . (14)

Second, the nonconcave objective function (14) is replaced by
a piecewise-linear concave objective function:
lp|—1

Z Z )‘(1 g Z Wp|p|—kD|p|—k+1

(1, s)GRPeP(I »8)

L, ¢(x) :=

8

k—1
- min (1, > xplpk”-) , (15)
k'=0

which can be shown to satisfy (1—1/€) L, ¢(x) < F, f(x) <
L, ¢(x) by applying the Goemans-Williamson inequal-
ity [38], [39] as in Lemma 4.2. Using auxiliary variables to
represent min (1, Zl,z,;lo Tp ., i) asin (7), the maximiza-
tion of (15) under cache capacity constraints and z,; € [0, 1]
(Vv € V,i € C) can be written as an LP and solved effi-
ciently. Finally, if the solution & is fractional, then a pipage
rounding scheme similar to (8)—(9) can be used to round it
into an integral solution x such that Fy. ¢(x) > F,. ¢(&).
Together, these steps produce an integral content place-
ment x that achieves (1 — 1/e)-approximation in terms
of maximizing F, ¢. That is, compared to the content
placement x. . that maximizes (14), « satisfies F, ¢(x) >

(1~ 1/e)F, g} ).

4.3.2 Algorithms for Source Selection and Routing

Given an integral content placement x, we can reduce
the joint optimization of source selection r and routing
f to a pure routing problem by a construction similar to
Lemma 4.5. Specifically, let V* := {v € V : z, = 1}
be the set of nodes storing content ¢ under placement
x (Vi € (). We can construct an auxiliary graph
G” .= (VU{vi}icc, EUU;ec{(vi,v) - v € Vi®}), where v;
is the virtual source for content ¢ that is connected to each of
the real sources for content ¢ via a virtual link that has a zero
cost and an unlimited capacity. Then by the same arguments
as in Lemma 4.5, we see that minimizing the total routing
cost in G by a joint optimization of source selection and
routing under content placement x is equivalent to minimiz-
ing the total routing cost in G* by optimizing the routing
from the virtual source v; of each content to its requesters.

The resulting routing problem in G® is known as the
minimum-cost multiple-source splittable/unsplittable flow prob-
lem (MMSFP/MMUFP) depending on whether fractional
routing is allowed. Under fractional routing, the corre-
sponding problem (MMSEFP) can be solved via LP. If routing
must be integral, then the corresponding problem (MMUEFP)
is NP-hard [26]. A number of heuristics for MMUFD, e.g.,
greedy and LP relaxation with randomized rounding, have
been proposed [26]. The optimal solution can also be com-
puted by the branch-and-price-and-cut algorithm [40], al-
though with an exponential complexity.

Remark: In contrast to the bicriteria approximations for
MSUEFP (see Section 4.2.2), approximating MMUFP is much
harder. This is because in the single-source case, if all de-
mands and link capacities are integer multiples of a for
any a > 0, then we can compute in polynomial time a
minimum-cost flow whose value on each link is an integer
multiple of o [33], but in the multiple-source case, comput-
ing such a flow is NP-hard [41]. To our knowledge, how
to solve MMUFP efficiently with approximation guarantee
remains an open problem.

4.3.3 Overall Algorithm

Based on the solutions for the subproblems in Sections 4.3.1-
4.3.2, we propose an algorithm that alternatingly optimizes
x and (r, f) as follows. Starting from an arbitrary feasible



solution (2@, 7 £(©)) repeat the following steps for
t = 1,2,... until there is no more improvement in cost or
congestion:

1) compute z® by maximizing F.c:-1) gt—1) () subject to
cache capacity constraints;

2) compute (7, £f®) by solving MMSFP (under frac-
tional routing) or MMUFP (under integral routing) in
G

After each iteration, we only retain the new solution if it has
a lower cost than the solution from the previous iteration.

4.3.4 Limitation

The above approach effectively treats the joint caching and
routing problem (1) as a two-player cooperative game: one
player optimizes the content placement x and the other
player optimizes the source selection and routing (v, f).
The alternating optimization algorithm is designed to find a
Nash Equilibrium (NE), where neither player can improve
the performance by unilaterally changing its decision. How-
ever, this game can have many NEs, some of which can be
arbitrarily worse than the optimal solution, as shown below.

Proposition 4.8. The algorithm in Section 4.3.3 has an un-
bounded approximation ratio, even if each of the steps (i.e.,
optimizing ® based on (r*=1), (=) and optimizing
(r®, £®) based on £*) is solved optimally.

Remark: Proposition 4.8 indicates that sometimes a
locally suboptimal caching/routing decision is needed
to converge towards the optimal solution for joint
caching and routing. It remains open how to make
such suboptimal decisions such that the overall solution
achieves a guaranteed approximation, which is left to future
work. Meanwhile, despite this negative result on the worst-
case performance, the alternating optimization algorithm
has shown very good performance in comparison with the
state of the art and quick convergence in our evaluations
based on real topology and request traces (see Fig. 7-11).

5 EXTENSION TO HETEROGENEOUS CONTENT
SIZES

Although caching equal-sized chunks as we consider so far
is a common assumption in the literature (e.g., [3], [12], [21]
and references therein), it implies additional processing at
application layer to assemble the equal-sized chunks into
the requested files, which generally have heterogeneous
sizes. A question of interest is thus how to solve the joint
caching and routing problem if we directly cache the files.

5.1 Extending Problem Formulation

To model heterogeneous file sizes, we allow each content
item ¢ € C to have an arbitrary size of b; bits. Accordingly,
we measure the cache size ¢, at node v € V in bits, the
capacity ¢y, of link (u,v) € E in bits per unit time, and the
demand \(; ) of type (i,s) € R in bits per unit time. We
also interpret the cost wy,, of link (u,v) € E as the cost of
moving one bit over the link.

Under the above model, the problem of minimizing the
routing cost under link and cache capacity constraints can

9

still be formulated as in (1), except that the cache capacity
constraint (1f) is changed into:

mebi <c,, YwevV
ieC

(16)

The generalized problem is no easier than the original
problem that assumes b; = 1 (Vi € C), and remains an
LP in the case of FC-FR. Hence, the complexity analysis in
Section 3 remains applicable.

5.2 Revisiting Algorithm Design
5.2.1 Case of Binary Cache Capacities

In the special case that a subset of nodes can store the entire
catalog and the rest store none as assumed in Section 4.2,
Algorithm 2 remains applicable with the same performance
guarantee.

5.2.2 Case of Unlimited Link Capacities

Under unlimited link capacities as assumed in Section 4.1,
Algorithm 1 is no longer applicable. The reason is that the
rounding scheme in Lemma 4.3 hinges on the ability to
swap equal fractions of different items at a node without
exceeding the cache capacity, which is generally infeasible if
the items have heterogeneous sizes. Nevertheless, using the
objective function Fy:(X) defined in (4), we can reformu-
late the problem as

Xranz/u; c FRNR(X ) (17a)
s.t. > bi<c, Vv e V. (17b)
i€C:(v)eEX

We know from Lemma 4.1 that EQNR(-) is monotone and
submodular. Moreover, the solution space of (17) also has
a desirable property as shown below.

Definition 3 ( [42]). Let A be a universe of elements and
7 C 24 a collection of subsets of A.
1) The pair (A, Z) is called an independence system if: (i)
0ec Z,and (ii) if S; € Z and S; C Sy, then S; € 7.
2) Given an independence system (A, 7) and aset S C A,
a maximal subset of S that is in 7 is called a basis of
S. The rank r(S) is the cardinality of the largest basis
of S, and the lower rank p(S) is the cardinality of the
smallest basis of S. The independence system is called
a p-independence system if maxgsc 4 % <p.
Lemma 5.1. For Z := {X C V x C : X satisfies (17b)},
(V xC, T) is a p-independence system for p = [bmax/bmin |,
where by ax/bmin 18 the maximum /minimum item size.

Combining Lemmas 4.1 and 5.1 yields the following
result.

Theorem 5.2. Greedy content placement (i.e., iteratively
expanding X by adding an element (v,7) that achieves

the maximum Fi(X U {(v,7)})) achieves 1/(1 + p)-
approximation for (17), where p = [bmax/bmin |-

Remark: In contrast to the (1 — 1/e)-approximation in the
case of equal-sized items, caching items of arbitrary sizes
has a worse approximation ratio. This is essentially the cost
of storing arbitrary-sized files instead of equal-sized chunks.
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5.2.3 General Case

In the general case with arbitrary link/cache capacities,
the heterogeneity in item sizes only affects the content
placement subproblem. For reasons similar to Section 5.2.2,
the (1 — 1/e)-approximation algorithm in [38] no longer
applies. However, we can show that the equivalent objective
function F}. ¢(X) is still monotone and submodular.

Lemma 5.3. The function ﬁryf (X) := Fp #(x) in (14), where
2y = 1if and only if (v,7) € X, is monotone increasing and
submodular in X.

This result together with Lemma 5.1 implies that
when formulated as a cost saving maximization problem
max F,. ¢(X) s.t. (17b), the content placement subprob-
lem is again a submodular maximization subject to a p-
independence constraint, for which the greedy algorithm
achieves 1/(1 + p)-approximation as shown in the proof
of Theorem 5.2. Given a content placement, the source
selection and routing subproblem can still be solved as
MMSFP/MMUEFP as in Section 4.3.2. Thus, we can still ap-
ply the alternating optimization algorithm in Section 4.3.3.

6 PERFORMANCE EVALUATION

We evaluate our solutions against benchmarks in the sce-
nario of edge caching, where content items are cached at loca-
tions within/near users” access networks. Edge caching has
been widely used by large content providers like Google [43]
and distributors like Akamai [44], and has been shown to
achieve most of the benefits of ICN [45].

Simulation setting: To simulate edge caching, we use
an Internet Service Provider (ISP) topology called Abovenet
from [46] to model the network, where a degree-1 node
is designated as (the gateway to) the origin server perma-
nently storing all the items, and a set V., of low-degree nodes
(with degree < 3) are designated as edge nodes, which
receive requests from users and host caches. We assume that
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each cache can store ( items. The other nodes are internal
routers that only forward requests/responses. See Fig. 3 for
the topology.

As the origin server is usually much farther away from
users than edge caches, we select the cost for the outgoing
link of the origin server randomly from [100,200], and
the costs for the other links randomly from [1,20]. These
costs can represent any additive metric (see examples in
Section 2.1); the choice of cost measure is not our focus.
In [1], we have conducted extensive synthetic simulations
based on requests generated according to the Zipf distribu-
tion as in [3]. Here, we will simulate more realistic content
demands based on traces. To this end, we collected #views
per hour of the top 12 YouTube videos over 100 consecutive
hours between 11/14/2021 and 11/18/2021; see Table 1 for
the statistics. Additional 550 hours of #views of the top
300 videos were collected for training a demand predictor.
We use the collected data to perform simulations at two
different levels:

o Chunk level (with homogeneous-sized items): Each video
is divided into 100-MB chunks to be stored in the
cache nodes, and the application layer will assemble
the equal-sized chunks into the video files that are
requested.

e File level (with heterogeneous-sized items): Each video is
treated as a single item with a heterogeneous size,
and stored in its entirety in the cache nodes.

We use the views of these popular videos to represent
content requests and randomly distribute the requests for
each video among the edge nodes. Following the setting
in [3] for topology with a similar size as Abovenet, we set
|C] = 10 and ¢ = 2 by default for file-level simulation.
Correspondingly, we set |C| = 54 and ¢ = 12 for chunk-
level simulation to represent the same set of videos and the
same cache size (on the average). Both parameters will be
varied later.

We give each link a default capacity of x, which is set
to 0.7% of the total request rate. In our traces, the top-10
videos have a total request rate of 1949666.52 chunks/hour,
which equals 381.1902 Gbps. This leads to a default link
capacity of 13715.796 chunks/hour, or roughly x = 3
Gbps. We will vary the default link capacity later. To ensure
feasibility, we augment link capacities along a cycle-free
path from the origin server to each edge node so that all
the requests can be served by the origin server as a last
resort. Our evaluation focuses on the most challenging case
of IC-IR. Results are averaged over 100 Monte Carlo runs.

The above setting simulates a real-world scenario, where
the network provider adjusts caching and routing decisions
on an hourly basis based on the predicted demand. To
enable this, we apply Guassian process regression (GPR)
from the scikit-learn library [47], with white noise, periodic,
and radial-basis function kernels and maximum marginal
likelihood fitting, to predict the request rates for the next
hour based on a history of at least 550 hours®. See the

4. We assume that the last chunk will be padded to 100 MB.

5. This is the total #views during the 100 hours of data collection.

6. To accommodate the training time, we perform prediction for five
hours at a time, and then retrain the model using the cumulative
history.



TABLE 1
Statistics of YouTube Videos in Evaluation

video_id size (MB) | #100-MB chunks* | total #views®
dNCWe_6HAMS 450.8789 5 14144021
f5_wn8mexmM 611.7188 7 6046921
3YqPKLZF_WU 746.1914 8 3516996
2dTMIH5gCHg 387.5977 4 2724433
CULFIIXH87w 851.6602 9 1935258
QDYDRASJPLE 427.1484 5 1606676
LWAI7HkQMyc 158.2031 2 2701699
Zpi7CTDvilA 709.2773 8 1286994
vH7n1vj-ewQ 155.5664 2 128860
JNCKUEeUFy0 308.4961 4 369157
CaimKeDcudo 337.5 4 613737
gXH7_XaGuPc 680.2734 7 368432

results in Fig. 4. We note that this prediction method is only
used to evaluate the proposed caching/routing algorithms
under realistic demand prediction; demand prediction is
not the focus of this work, and other prediction methods
can be applied.

Simulation results: First, in the special case of unlimited
link capacities, we compare our proposed algorithm (Algo-
rithm 1 for chunk-level simulation and greedy algorithm
for file-level simulation) with the solution in [3] (‘k shortest
paths’) and the content placement algorithm in [38] based
on shortest path routing (‘shortest path’). We configure
the solution in [3] according to its recommendation, by
constructing k shortest paths from the server to each edge
node as the candidate paths with & = 10 by default. We
have the following observations based on the results in
Fig. 5. In the case of homogeneous item sizes (i.e., chunk-
level simulation), (i) our algorithm achieves a substantially
lower routing cost than the state-of-the-art solutions in
[3], [38], and (ii) the advantage remains as the number of
candidate paths for [3] increases. This is because [3], [38]
both predetermine the candidate paths based on the server’s
location, hence not fully utilizing the caches. In the case of
heterogeneous item sizes (i.e., file-level simulation), (i) the
benchmarks from [3], [38] appear to achieve a lower routing
cost than our algorithm, but (ii) their content placement
solutions are actually infeasible as shown by the plots of
the maximum cache occupancy. This is because the pipage
rounding scheme used in [3], [38] swaps equal fractions of
different items to minimize cost, which can exceed the cache
capacity when items have different sizes. The above obser-
vations hold regardless of whether the algorithms run on the
predicted demand or the true demand (all the performances
are evaluated based on the true demand).

Next, we consider the special case of binary cache capac-
ities, where one of the edge nodes (in addition to the server)
stores all the items and the rest store none. As our problem
reduces to MSUFP in this case, we compare our Algorithm 2,
with parameter K tuned to minimize congestion under the
default link capacity of 15 Gbps (shown by the varying-K
plots in Fig. 6), with the state-of-the-art MSUFP algorithm in
[33], which is a special case of our algorithm with K = 2. As
benchmarks, we also compare with the splittable flow and
the solution by [3], which routes each request to the nearest
replica ('RNR’). As some of the algorithms may exceed
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Fig. 5. Case of unlimited link capacities: first row — chunk-level simu-
lation, second row — file-level simulation under varying cache capacity,
third row — file-level simulation under varying #candidate paths (light:
true demand; dark: predicted demand).

the link capacities, we evaluate congestion in addition to
routing cost, measured by the maximum load-to-capacity
ratio over all the links. The results in Fig. 6 show that: (i)
RNR can cause severe congestion (it exceeds link capacities
by up to 51 times; the congestion plots have been truncated
for better visibility of other results), (ii) compared to the
state-of-the-art algorithm in [33] ('K = 2’), Algorithm 2 with
a larger K can substantially reduce the congestion while
achieving/beating the minimum routing cost achievable
without congestion (which is lower-bounded by the cost
for ’splittable flow’), and (iii) compared to serving each
video as a whole, serving it in chunks can substantially
reduce the routing cost (by 5-6 times) without worsening
the congestion. The second observation is because a larger
K leads to smaller errors when rounding the demands
and thus less congestion when serving the actual demands
over paths selected based on the rounded demands. The
third observation is because chunking the videos effectively
allows each video to be served to each requester via multiple
paths (one per chunk), which provides more flexibility than
serving each video in its entirety via a single path.

Finally, we consider the general case with limited
cache and link capacities. We implement versions of the
alternating optimization algorithm proposed in Section 4.3.3
(‘alternating”) that solve content placement by pipage
rounding (chunk-level simulation) or greedy algorithm
(file-level simulation), and MMUEFP by LP relaxation with
randomized rounding. We compare them with the solution
in [38] based on shortest path routing (‘SP’), a variation of
[3] with the shortest path as the only candidate path (‘SP
+ RNR’), and the solution in [3] with its recommended
way of constructing candidate paths as the k& = 10 shortest
paths ('k-SP + RNR’). The results in Fig. 7-8 show the
following. For chunk-level caching and routing, (i) our
algorithm significantly outperforms [3], [38] in both cost
and congestion, and (ii) while ‘SP + RNR’ achieves a lower
cost, it causes severe congestion. For file-level caching and
routing, (i) none of the benchmarks is feasible as their
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Fig. 6. Case of binary cache capacities: top two rows — chunk-level
simulation, bottom two rows — file-level simulation (light: true demand;
dark: predicted demand).

content placements substantially exceed the capacity of at
least one cache, and (ii) although our algorithm maintains
feasibility with respect to cache capacities, it incurs a
notably higher level of congestion and a higher routing
cost than what is achieved in chunk-level simulation. Our
algorithm has also exhibited quick convergence (within 10
iterations) in all the evaluated cases.

In addition to the quality of the solutions, We have
also evaluated the computation efficiency of the algorithms
as measured by their average execution times under the
default parameter setting in the most computationally chal-
lenging case of IC-IR. The results, shown in Appendix C
of the supplementary file, indicate that the proposed algo-
rithms are sufficiently fast to be applied to adjust caching
and routing decisions on a regular basis.

Summary of results: To facilitate comparison, we sum-
marize the qualitative observations from the chunk-level
simulation under IC-IR in Table 2, which compares our
proposed solutions (in bold) with the benchmarks. The
summary clearly highlights the advantage of our solutions
in terms of lower cost and /or lower congestion. While these
conclusions are obtained under a fixed setting, we have val-
idated them under other settings as shown in Appendix D
of the supplementary file.

7 CONCLUSION

We studied the fundamental problem of joint caching and
routing in a cache network with arbitrary topology, with
the objective of minimizing routing cost under link/cache
capacity constraints. After characterizing the complexity of
this problem in all the cases, we developed polynomial-time
algorithms that achieved guaranteed approximations in
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important special cases and superior empirical performance
in the general case. While our focus was on one-shot
optimization for a given set of demands, our solution was
shown to work well in an online setting when combined
with reasonable demand prediction. Meanwhile, our
negative result also indicates further room of improvement
for the worst-case performance in the general case.
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APPENDIX A
SUPPORTING PROOFS

A.1 Proof of Lemma 4.1

Proof. 1t is easy to see that ﬁ'RNR (X) is monotone increasing
in X, as caching one more item can only help to increase (or
preserve) the cost saving under proper source selection.

For submodularity, we need to show that for any X (1) C
X®) CV x Candany (v,i) ¢ X,

Fo({(0,1)} U XD) = Fo(X V) > Fo({(v,1)} U X )

— Fow(X®). (18)

To this end, consider the set of requesters for content ¢ that
will benefit from storing a replica of content ¢ at node v:

Sui(XD):={s€V: (i, 8)€R, wymse < min_ wys}, (19)

wi(u,i)eXU

where j = 1, 2. Since X € X, (X)) D §,,(X?),
and minu:(u}i)ex(l) Woyoss = minu:(u)i)ex(m Wy_s for each
s € V. Therefore,

LHS of (18) = Z /\(i,s) ((u;(ul,?)lenx(l) wu—>s) - wv—>s)
S€8,: (X (D)
Z Z )\(i,s) ( mln wu%s) — Wy—s
$ES (X @) ( w:(u,i)€X (2 )
= RHS of (18),
which completes the proof. O

A.2 Proof of Lemma 4.2

Proof. We will use the Goemans-Williamson inequality [38],
[39]: forany y; € [0, 1] fori=1,...,n

(1—7 min( Zyl <1—H 1 —y;) < min(1 Zyz
By definition (3),

Z )\(z s) Z Wmax

(i,8)ER veV

. (1 o Tl(,i’s) (1 _ xvi(wmax - wv%s))) ) (20)
Wmax

Asyy :=1—r{"" €[0,1] and yy :=

applying the Goemans-Williamson mequahr’gfx yields that

Fow(z,T)

Zyi (Wmax —Wy—ss) c [O 1]

Tys (wmax - wv—)s))
Wmax

<1_ 70(7;73) 1 _ xvi(wmax - wv—>s)
o Y Wmax

. : Zyilw —w
S min (17 1 o 7”1()275) + vz( max v%s)) ,
lea,X

1 )
(1~ ) min (1, P CE T

@1

Plugging (21) into (20) completes the proof. O
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A.3 Proof of Lemma 4.3

Proof. Without loss of generality, suppose that & achieves
“=""in (2c), as otherwise its value can be increased to
achieve “=" without decreasing Fin(Z, 7).

If 3%,; € (0,1), then there must exist another frac-
tional variable #,; € (0,1) for j # i (i,j € C), as
Y irec Twir = ¢y € N. Treating ., T,; as the only variables,
we can formulate a simple LP:

zm%;X Frow(woi, Lyj |53—{vi,vj}v 7) (22a)
s.t. Xy + Toyj S ffm' + fi’ﬂj, (22b)
Loiy xvj S [07 1]; (22C)

where FRNR(xUZ,kaE {vi,wj}»T) denotes Fig(x,T) when
r = 7 and & = & at all the entries except for x,;, z,;. As
F}{NR(%Z—, mvj|:i:_{m; vj}»T') can be written as

Z A (@ 5)7:(1 ) w max wv—)s)
s:(i,8)ER

+ -r’Uj Z A(j’S)ngvs) (wmax — wv—)s) + c, (23)
s:(j,s)ER

where ¢ is a constant not depending on x,; or x,;, there
exists an optimal solution that makes z,; or x,; inte-
gral. Specifically, if Z (irs)eR A, S)Fl(,l %) (Wimax — Wy—s) >
ZS:(]’S)ER /\(j,s)rq(,j )(wmax Wy—ss), then (zy;,x,;) from
(8) is an optimal solution to (22), which sets z,; = 0 if
Tpi + Ty; < 1 or 2y = 1if 2y + T; > 1; similar
argument holds in the other case. Moreover, as (itvi,fcvj)
is a feasible solution to (22), the optimal solution (., Zoj)
guarantees that Fig(Tvi; Toj|€_{viw;},T) > Frow(T,T).
Thus, one application of (8) or (9) reduces the number
of fractional variables by at least one without decreasing
Fu, at a time complexity of O(|V|). By repeating this step
O(|V]|C]) times, we can obtain an integral solution & such
that Fig (2, 7) > Frw(E, 7). O

A.4 Proof of Theorem 4.4
Proof. Let (&, 7) denote the optimal solution to (7). Then
1

FRNR(£75) > (1 - ;)LRNR(:;:; 7:) (24)
> (1 — é)LRNR(w*,T*) (25)
> (1— é)Fm@:*m*), (26)

where (24) and (26) are due to Lemma 4.2, and (25) is
due to the optimality of (&,7) for (7). By Lemma 4.3, the
rounded x satisfies Fiwe(, 7) > Fiug(Z, 7). Finally, given
an integral z, it is easy to see that RNR, i.e., mz’s) =1 for
v =argmin,., _;wy s (V(i,s) € R), minimizes Cry and
hence maximizes Fyz. Therefore,

FRNR(xvr) > FRNR(wvlf) > FRNR(Cijaf) > (1 - é)FRNR(w*ﬂr*)‘

In terms of complexity, line 1 can be done in O(|V|(|E|+
[V]log|V])) time using Dijkstra’s algorithm, line 2 can
be done in O(|R|*®|V|?5) time using Vaidya’s LP algo-
rithm [48] (as the number of variables and the number of
constraints are both O(|R||V'])), line 3 takes O(|V|?|C|) time



as in Lemma 4.3, and line 4 takes O(|V||R|) time. Thus,
the total complexity is O(|V||E| + |R|?*%|V|*®) (assuming
[Cl = O(|R]) O

A.5 Proof of Lemma 4.5

Proof. Given a feasible joint source selection and routing
solution (7, f) in G, we can construct an equivalent solution
f'in G’ such that f'®*) = £ for all (i,s) € R and
(u,v) € E, arldf’(lS (1’8) for all (i,s) € Rand v € V.

As the virtual links have no capacity constraints or costs, f’

is a feasible routing solution in G’ with a single source v,,
and achieves the same cost as f. Similarly, given a feasible
routing solution f’ in G’ that serves all the requests from v,
the same construction yields a feasible joint source selection
and routing solution (7, f) with the same cost. O

A.6 Proof of Theorem 4.7

Proof. To show (i), since the optimal splittable flow f has
a cost no larger than the cost of the optimal unsplit-
table flow, it suffices to show that . | A\; > <

eep; W
D i1 2pep; fpl > cep We- To this end, we first note that
reducing the flow in the descending order of path cost

(line 4) ensures that for any commodity 7 and any path p
with ﬁgl) >0

_S\i)zwe S

ecp

27)

Ji(,f)) Z We.

ecp’

Z (fl(;) —

p'EP;
Meanwhile, the partition in (12) ensures that for each i € S,

g (Pmax) _ _Elos()] 5
AN )T K “UT R

for g = — o/ Ame)] | € N, which implies that
N = )\maXQj/K*q(]) '2‘7('7)*_‘11' for ¢) := max;eg; ¢;- That
is, the rounded demands ()\;)cs,; satisfy the condition in
Lemma 4.6. By Lemma 4.6, the converted unsplittable flow

(28)

for S (j =0,..., K — 1) satisfies
DAY we <y DY we (29)
i€S; eEp; i€S; peP; e€p

As the roundmg in [33, Algorithm 2] ensures that each p;
satisfies fpl > 0, (27) implies

ST =) Y we < DD = AN we. (30)
=1 eep; i=1peP; eecp
Moreover, as UJK;Ol S; ={1,...,n}, (29) implies
DN we <D0 DS we @31)

i=1 eEp; i=1peP; ecp

Summing (30) and (31) proves (i).
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B item1
0 item?2

Fig. 9. Example for unbounded approximation ratio.

To show (ii), consider a given e € FE. Let i; :=
arg max,cg .ccp, Mis [5(€) the load imposed on e by f;, and
f(e) the load imposed on e by f. We have

SN A, + 21K PP (32)
1€Sj:e€p;,iFi;

MN

i:e€Ep; 7=0
K-1

<3 (N + 25 fi(e) (33)
j=0
K-1

Ai, +2Y5 f(e) (34)
]=0

21/[( K

where (32) is because \; < 21/K ), as implied by (11), (33) is
by Lemma 4.6, (34) is because f is reduced from f, and (35)
is due to f(e) < c. (as f is a feasible flow) and the fact that
Vi € S, Ai < Amax forj = K—1,and \; < 20F1=K/K)
forj:0,...,K—2,impliedby—w+% > 1.

For complexity, line 1 solves an LP with O(n|E|)
variables and O(|E| + n|V|) constraints, which takes
O(n?*5(|V|+|E|)?%) time by Vaidya’s algorithm [48]. Line 2
takes O(>_7_, |[V||Pi]) = O(n|V||E|) time as |P;| < |E|.
This is because in constructing P;, we set initial “link
capacities” to ( e())pe g, and iteratively find a s — d;
path with posmve residual capacity and route the max-
imum flow on the path. As each iteration reduces the
residual capacity of at least one link to zero, the num-
ber of iterations, i.e., the number of constructed paths
|P;|, is at most |E|. Lines 34 take O(>_" ; |P;|log |Pi]) =
O(n|E|log |E|) time, dominated by the sorting of the path
costs for each P; (the path costs can be computed while
constructing P;). Line 5 takes O(n) time. Line 7 takes

O(1S;]|V| + |E|log(3=2=) + |V||E|) time by Lemma 4.6,

and thus lines 6-7 take O <n|V| + K|E| (log( Jmax) 4 |V|))
time. Summing up all these yields the overall complexity of
Algorithm 2. O

A.7 Proof of Proposition 4.8

Proof. We prove the claim by constructing an example with
an arbitrarily large approximation ratio. Consider the sce-
nario in Fig. 9, where client s requests item 1 with rate
A1,s) = A and item 2 with rate A\s, = €. Suppose
that the cache capacities of vy, vy, and v, are 1, 1, and
2, respectively. Suppose that all the links have capacity ),
Wy, s = € and Wy, = Wy,u, = Wy,s = w. If the initial
solution is to store item 1 on v and item 2 on vy, and serve
requests for item 1 from vy and requests for item 2 from
v1, then it is easy to see that this will be the final solution
of alternating optimization (i.e., it is an NE), with a total



cost of Aw + €2. However, the optimal solution is to store
item 1 on v; and item 2 on vy, and serve requests for item
1 from v; and requests for item 2 from vy, which has a total
cost of €(A + w). The approximation ratio is unbounded as
lime o (Aw + €%)/(e(A + w)) = 0. O

A.8 Proof of Lemma 5.1

Proof. 1t is easy to see that (V x C, ) is an independence
system, as X = () is feasible for (17), and a subset of a
feasible set remains feasible. Consider any X C V' x C and
any two maximal feasible subsets X;, Xo C X. To add
an element (v,7) € X5\ X; to X7, we have to take out a
set X’ of at most [bmax/bmin | elements from X; such that
(X1 \ X") U{(v,4)} remains feasible for (17). Repeating this
swap for each element in X5\ X; shows that the cardinalities
of the bases of X differ by at most p := [bmax/bmin |
fold. Hence, (V x C, 7) is a p-independence system by
Definition 3. O

A.9 Proof of Theorem 5.2

Proof. 1t is known [49] that for maximizing a monotone sub-
modular function subject to a p-independence constraint,
the greedy algorithm has an approximation ratio of 1/(1 +
p)- O

A.10 Proof of Lemma 5.3

Proof. By (14), increasing elements of x can only increase
the function value, which proves the monotonicity of F. .
Moreover, for any XM c X® CcV xCand any (v,i) &
X@ et K, (X)) (j = 1,2) denote the index of the node
on path p with the nearest replica when serving item 7 to
node p|,| along path p under content placement X W), Tt is
easy to see that K, ;(X () < K, ;(X ). Thus, the increase
in I, ; by selecting (v, ) on top of X /) satisfies

Frs({(0, )} UXW) = F (X D)

lp|—1 lp|—1
_ (i,s) _
- Z Z/\P max 0’ wpkpk+1 wpkpk+1
i:(i,5) ERPEP(;,s): k=K, (X)) k=k,

Pk, =V

lp|—1 lp|—1
§ : (i,s) _
Z Z )‘p max 0’ wpkpk+1 wpkpk+1
i:(1,8) ERPEP; ): k=Kp (X)) k=ky

Pk, =0V

= 'I‘,f({(v’i)} U X(Q)) - ﬁ'mf(X(Z))a

which proves the submodularity of Fr, f- O

APPENDIX B
ADDITIONAL EXPLANATIONS

B.1 Conversion between the Case of Binary Cache Ca-
pacities and MSUFP

Given the auxiliary graph G’ constructed from the original
topology G and the locations of caches V; as in Fig. 2, the
corresponding MSUFP problem aims at finding an unsplit-
table flow in G’ within the link capacities at the minimum
cost, to route each commodity (i,s) € R of demand A, )
from the virtual source v, to the content requester s. For
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—— real link

---> virtual link

Fig. 10. Example: MSUFP in auxiliary graph G’.

example, if R = {(1,u1), (1, u2), (1, u4), (2,u3), (2,u5)} in
the network illustrated in Fig. 10, then the constructed
MSUPFP problem has n = 5 commodities, all with the same
source v, and the commodity (1,u1) € R has destination
u1 and demand Ay 4,). After solving the MSUFP problem,
e.g., by Algorithm 2, we will obtain a routing path for each
commodity in G’, ignoring the first hop of which gives
the routing path in the original topology. For example, if
the path given by MSUFP for commodity (1,u;) in Fig. 10
is vs — v; — wuy, then the source for serving item 1 to
requester u; is v, and the path is v1 — uy.

B.2 Ideas in Solving MSUFP

We first interpret the utility of the existing rounding algo-
rithm in [33] according to Lemma 4.6. Given an optimal
splittable flow f that minimizes the routing cost under the
given link capacities, we know that the cost of f is no more
than the minimum cost of an unsplittable flow under the
same link capacities, and the traffic load f(e) it imposes
on each link e € E is no more than the link capacity c..
Lemma 4.6 states that if the demands only differ by factors
that are integer powers of 2, then we can use an algorithm
in [33] to convert f to an unsplittable flow that routes each
commodity on a single path, such that (i) the routing cost is
no larger than the cost of any feasible unsplittable flow, and
(ii) the excess load on each link (beyond its capacity) is no
more than the rate of the largest flow traversing it. Hence,
the key is to convert arbitrary demands ()\;)]—; to demands
that differ by integer powers of 2.

To this end, we round each demand ); down to )\; as
in (11) and partition the rounded demands into K subsets
{S;:j=0,...,K —1} asin (12). This partition guarantees
that the rounded demands in each subset (\;);c s, only dif-
fer by integer powers of 2. This is because by (12), Vi € S},
Jg; € N such that

LK log()‘i/)\max)J ] _
I7 T =% (36)
which implies that
i = )\maXQLKlog(Ai/Amax)J/K — )\max2j/K_q"'- (37)

Therefore, if i* is the commodity in S; with the minimum
rounded demand, then

Ai

= 24 _qz, (38)
where ¢;+ — q¢; € N because Ai~ < ). Note that this
argument also holds for \; = Anax, which belongs to



TABLE 3
Execution Time under Chunk-level Simulation
scenario algorithm avg execution time (s)
Alg. 1 0.7260
Cyy = 00 [3] (’k shortest paths”) 11.1574
[38] (‘shortest path’) 0.0171
Alg. 2 (K = 1000) 1.4030
cy =0/|C] [33] 1.4032
[3] (RNR’) 0.0154
alternating 9.6714
[38] (‘'SP’) 0.0313
general
[3] (‘'SP + RNR’) 0.0493
[3] (k-SP + RNR) 11.3286
TABLE 4
Execution Time under File-level Simulation
scenario algorithm avg execution time (s)
greedy 0.0226
Cypy = 00 [3] (’k shortest paths”) 0.4364
[38] (‘shortest path’) 0.0155
Alg. 2 (K = 1000) 1.5836
cy =0/|C| [33] 1.5837
[3] (RNR’) 0.0167
alternating 1.0910
[38] (‘'SP’) 0.0161
general
[3] (‘'SP + RNR’) 0.0459
[3] (k-SP + RNR’) 10.4771

Sk —1. The rounding and partitioning decompose the origi-
nal MSUFP problem with arbitrary demands into K smaller
MSUEFP problems with demands satisfying the condition in
Lemma 4.6, which allows us to use the algorithm in [33] to
convert the rounded splittable flows into unsplittable flows
with optimal cost and bounded congestion; see details in the
proof of Theorem 4.7.

Finally, we comment on the role of the design parameter
K. Although K can be any positive integer, we expect a
larger value of K to yield less congestion. This is because
in rounding the demands, we reduce each demand by a
factor of at least 27 /% Intuitively, a larger K will lead
to a smaller demand reduction, and thus less congestion
when computing the routes based on the reduced demands
but using the routes to support the original demands. This
intuition has been confirmed by our evaluation results in
Fig. 6.

APPENDIX C
EXECUTION TIME EVALUATION

In addition to the quality of the solutions, We have also eval-
uated the computation efficiency of the algorithms as mea-
sured by their average execution times under the default
parameter setting, shown in Tables 3—4. All the times are
measured under IC-IR, which is the most computationally
challenging case. We see that the proposed algorithms are
sufficiently fast to be applied to adjust caching and routing
decisions on a regular basis.
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Fig. 11. Varying catalog size by varying #videos (light: true demand;
dark: predicted demand).
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Fig. 12. Varying chunk size under the same #videos (light: true demand;
dark: predicted demand).

APPENDIX D
ADDITIONAL EXPERIMENTS

While the observations in Section 6 are based on a fixed
set of environment parameters, such as network topology,
catalog size, chunk size, and demand prediction method, we
will show via additional simulations that these observations
remain valid as these parameters vary. In the sequel, we will
only focus on the case of caching/routing chunked videos
under limited cache and link capacities, as this is the case of
primary interest in this work.

D.1

As the catalog includes chunks (of 100MB each) from more
videos, shown in Fig. 11, the relative performance of the
evaluated algorithms exhibits the same trend as in Table 2.
Meanwhile, both the routing cost and the congestion tend
to increase, as more demands are contending for the same
amount of cache and link capacities.

Varying Number of Videos

D.2 Varying Chunk Size

Another way to grow the catalog size is to decrease the size
of each chunk while keeping the set of videos the same.
The top-10 videos in our trace correspond to |C] = 199
chunks of size 25MB, |C| = 103 chunks of size 50MB, and
|C| = 54 chunks of size 100MB. Fig. 12 shows the result
based on demands from the first 10 hours; the same trend
has been observed for other hours. We see that the proposed
algorithms (‘alternating’) achieve slightly smaller costs as
the chunk size decreases, because smaller chunks allow
for more fine-grained optimization of caching and routing.
Meanwhile, the congestion of the benchmark algorithms
("SP’, 'SP + RNR’, ‘k-SP + RNR’) gets worse, as they become
greedier in cost reduction.

D.3 Varying Prediction Accuracy

As mentioned before, the prediction of the demands is not
our focus. Nevertheless, it is desirable to understand the
sensitivity of our solutions to prediction errors. To this end,
we perform a sensitivity analysis by synthetically gener-
ating prediction errors according to a normal distribution
N(0,0?), and testing the performance of joint caching and



total routing cost
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Fig. 13. Varying prediction error o (o = 0 represents true demand).

TABLE 5
Topologies and Parameters in Evaluation

Topology || |V| | |E| | link capacity
Abvt 23 31 1 Gbps
Tinet 53 89 1 Gbps
Deltacom || 113 | 161 1 Gbps

routing under different levels of error as measured by the
root mean squared error o. The results in Fig. 13 indicate
that our proposed algorithms (‘alternating’) are reasonably
robust to prediction errors, maintaining notable advantages
over the benchmarks from [3], [38] in both cost and conges-
tion over a wide range of o values.

D.4 Varying Network Topology

Finally, we evaluate the impact of network size and topol-
ogy by repeating our experiments on three networks of
different sizes, with parameters in Table 5. To make the
setting more realistic, we use real bandwidths as link capac-
ities. All the data are from” [50]. We simulate edge caching
in each network under the same setting as in Section 6,
except that the topology and the default link capacity are
changed according to the dataset. In each network, we set
the lowest-degree node as the origin server and the next 5
lowest-degree nodes as the edge nodes, as shown in Fig. 14.
Fig. 15 shows the performance for each network. We see that
the topology does have a notable impact on the absolute
performance in cost and congestion, where a network tends
to have a higher cost or congestion if the size is larger or
the edge nodes are more scattered. However, our proposed
algorithms consistently outperform the benchmarks in all
the simulated networks.

7. Although “Abvt’ also stands for Abovenet, the topology in [50] is
from a different source (Internet Topology Zoo) and different from the
topology in Fig. 3 (which is from Rocketfuel). We switch to this dataset
to experiment with real link capacities.

(a) Abvt

(c) Deltacom

Fig. 14. Network topology with varing size; e: origin server, e: edge
nodes, e: internal nodes.
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Fig. 15. Varying network topology with real link capacities (light: true
demand; dark: predicted demand).
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