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MULTIVARIATE ESTIMATOR FOR LINEAR DYNAMICAL
SYSTEMS WITH ADDITIVE LAPLACE MEASUREMENT AND

PROCESS NOISES\ast 

NHATTRIEU C. DUONG\dagger , JASON L. SPEYER\dagger , AND MOSHE IDAN\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Since uncertainties in many physical systems have impulsive properties poorly mod-
eled by Gaussian distributions, heavier-tailed distributions, such as Laplace, may be used to improve
model characteristics. From insights obtained through development of the scalar Laplace estimator,
an algorithm is determined for the vector-state case. For a discrete-time vector linear system with
scalar additive Laplace-distributed process and measurement noises, the a priori and a posteriori
conditional probability density functions (pdfs) of the system states given the measurement history
are propagated recursively and in closed form. The conditional pdfs are composed of signs and ab-
solute values of affine functions, and a basis composed of signs of affine functions is constructed to
simplify their representation. The a posteriori conditional mean and variance are derived analyti-
cally from the conditional pdf using characteristic functions. Generalization to independent vector
measurement and process noises is straightforward. From the general method for deriving Laplace
estimators in n-dimensions, a two-dimensional minimum variance estimator is explicitly developed,
and a simulation is presented.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . Laplace, estimation, stochastic, linear, systems

\bfM \bfS \bfC \bfc \bfo \bfd \bfe . 93E10

\bfD \bfO \bfI . 10.1137/21M1391237

1. Introduction. In many engineering applications, random processes or noises
have volatility that are not well modeled by Gaussian distributions. The Gaussian
distribution is considered a light-tailed distribution, whose tails decay at an expo-
nential rate or faster [2]. While its structure lends itself to compact, closed-form
analytical results, this is, in fact, a constraint on the robustness of its modeling. The
light tails poorly model systems with noise spikes, such as radar, sonar [15], and stock
market volatility [17], and algorithms built on Gaussian distributions are susceptible
to such outliers. While ad hoc methods, such as prefilters, have been developed to
compensate for this limitation, we instead wish to exploit the properties of the Laplace
distribution for this purpose.

With the advent of fast, inexpensive computational capabilities, simulation meth-
ods have been used to fill in the gap where analytical filters have been absent. Particle
filters have had widespread use in nonlinear systems [18] in robotics [14], navigation,
and image processing, using both Gaussian and non-Gaussian noises. Laplace densi-
ties have been used in areas such as image [19] and speech [16] processing. Additional
prior work has included the estimation of a Laplace random vector corrupted by
Gaussian noise [21] and state estimation for linear systems driven by Laplace noise
using a bank of Kalman filters [8]. However, these techniques are approximate by
nature and do not produce explicit closed-form expressions for the minimum variance
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estimate.
When the state and noise are both Gaussian, Cauchy, or Laplacian, there is a

closed-form solution. In any other case, a closed-form solution is not known, and
numerical ad hoc cost criteria are constructed and numerical optimization techniques
are then applied [3, 13]. In this paper, if static measurements are considered where
both the state and additive noise are Laplacian, the conditional probability density
function (pdf) is obtained in closed form and the minimum error variance estimate,
the conditional mean, is also obtained in closed form. Since our objective is to con-
struct dynamic state estimators where the state dynamic system is linear with additive
Laplacian process noise, this static result is generalized in that the conditional pdf is
constructed analytically and recursively through both measurement updates and dy-
namic propagation. There are no approximations and no ad hoc optimizations. Once
one has an analytic conditional pdf, the associated statistics can also be determined
analytically. This is the essence of our contribution.

Past efforts in deriving analytic recursive estimators for discrete-time linear vector
state systems other than the Gaussian (Kalman) filter have used Cauchy distributions,
whose heavy tails better capture volatile phenomena [10, 11, 12, 9]. The development
of a recursive, analytic filter based on Cauchy uncertainties required that the deriva-
tion be structured using characteristic functions of unnormalized conditional pdfs of
the state given a measurement sequence. For brevity, these will be simply referred
to as conditional pdfs going forward. In this formulation, the characteristic functions
are functionally similar to the Laplace pdfs. Therefore, many of the analytic tech-
niques that were developed for the characteristic functions are applicable, in modified
form, for deriving the Laplace estimator. In contrast to the Cauchy pdfs, the Laplace
densities, whose tails decay exponentially although at a slower rate than the Gauss-
ian densities, have well-defined moments. Whereas the argument of the Gaussian
exponential is L2, the argument of the Laplace exponential is L1, which produced in
the scalar Laplace system estimates that were significantly different from those that
would be generated from a Gaussian. That is, the Laplace estimator is essentially
nonlinear [7, 6]. Additionally, the structure of the Laplace pdfs naturally facilitates
the development of objective functions with L1 costs, allowing for L1 controller design
using the tools developed for the Laplace estimator [5, 22, 6].

The scalar Laplace pdf with zero mean and variance 2\alpha 2 has the form

(1.1) fL(x) =
1

2\alpha 
e - 

1
\alpha | x| .

Contrast this with the pdfs for the Cauchy distribution, fC(x), with zero median and
Gaussian distribution, fG(x), with zero mean and variance \sigma 2,

fC(x) =
\beta /\pi 

\beta 2 + x2
,

fG(x) =
1\surd 
2\pi \sigma 2

e - 
x2

2\sigma 2 .

(1.2)

Figure 1 shows plots of the Cauchy, Laplace, and Gaussian pdfs and observes the
heaviness of the Cauchy tails compared to those of the other two. While the Laplace
tails still overbound those of the Gaussian, we can see that they do decay exponentially
and are much lighter than those of the Cauchy pdf.

The Gaussian, Laplace and Cauchy estimators can be distinguished by their a
posteriori conditional pdfs (cdpfs) of the state given a measurements sequence. The
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Fig. 1. Comparison of pdfs.

Kalman filter's a posteriori cpdf is Gaussian and is therefore both symmetric and
unimodal. In contrast, the Cauchy a posteriori cpdf is neither symmetric nor uni-
modal. Finally, the Laplace a posteriori cpdf is not symmetric but is unimodal. Like
the Kalman filter and Cauchy estimator, the Laplace conditional mean state estimate
is the exact minimum-variance estimator for a linear system with additive Laplace
noise, and is not an approximation. In addition, like the Cauchy, the Laplace condi-
tional variance was shown to be a function of the measurements as well as the noise
parameters. In contrast, the Kalman filter variance can be computed a priori. One
can see the consequences of this when the Kalman filter processes Cauchy noise [11].
While the Laplace pdfs do not model volatility as well as Cauchy distributions, the
Laplace estimator still handles outliers well.

In this study, we present the vector-state form of a Laplace estimator, which
is an extension of the scalar case [7]. In section 2, we formulate the discrete-time,
time-varying, linear vector-state system with additive scalar Laplace noises and de-
fine the estimation problem. In section 3, we derive the unnormalized conditional
pdfs (ucpdfs) of the state given the first measurement and time propagation steps to
deduce the general recursive form. It is shown that the cpdf is composed of signs
and absolute values of affine functions of the state. In section 3.3, a basis composed
of signs of affine functions is constructed which simplifies the representation of fac-
tors in the cpdf. The integral formula of [12] that is central to the derivation of the
Laplace estimator is generalized to allow for products of sign functions with affine
arguments to accommodate the new basis functions in section 3.4. After we prove the
recursion of the general form of the conditional density functions of the state given a
measurement sequence by induction in section 4, we derive the closed-form equations
for the mean and variance using characteristic functions in section 5. In section 6,
we present a numerical simulation for the \BbbR 2 case as an initial demonstration of the
estimation algorithm and comment on some computational aspects. Finally, we offer
some concluding remarks in section 7.

2. Problem statement. Let the linear discrete-time system with state \~\bfitx k \in \BbbR n,
scalar measurement zk \in \BbbR , independent scalar measurement noise vk, and indepen-
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dent scalar process noise wk be defined as

\~\bfitx k+1 = \Phi \~\bfitx k + \Gamma wk,

\~zk = H \~\bfitx k + vk
(2.1)

with known \Phi \in \BbbR n\times n, \Gamma \in \BbbR n\times 1, and H \in \BbbR 1\times n. Also let \~\bfitx 1, wk, and vk all be
Laplace distributed as

f \~X1
(\~\bfitx 1) =

n\prod 
i=1

1

2\alpha 
e - 

1
\alpha | \~xi - \=xi| =

n\prod 
i=1

1

2\alpha 
e - 

1
\alpha |  - \=xi+Ei \~\bfitx 1| \triangleq 

1

(2\alpha )
n
\=f \~X1

(\~\bfitx 1),(2.2)

(2.3) fW (wk) =
1

2\beta 
e - 

1
\beta | wk| \triangleq 

1

2\beta 
\=fW (wk),

(2.4) fV (vk) =
1

2\gamma 
e - 

1
\gamma | vk| \triangleq 

1

2\gamma 
\=fV (vk),

where the elements of \~\bfitx 1 are mutually independent, and Ei \in \BbbR 1\times n have elements 1
at i and 0 elsewhere. All of the system and pdf parameters are time-varying, but an
explicit dependence of k is suppressed for notational simplicity.

For convenience, we decompose the system state into a deterministic part \=\bfitx k and
a stochastic part \bfitx k, so that

(2.5) \~\bfitx k = \=\bfitx k + \bfitx k,

where the deterministic state system is

\=\bfitx k+1 = \Phi \=\bfitx k, \=zk = H\=\bfitx k,(2.6)

with initial conditions \=\bfitx 1 =
\bigl[ 
\=x1 \=x2 \cdot \cdot \cdot \=xn

\bigr] T
, and the stochastic state system

is

\bfitx k+1 = \Phi \bfitx k + \Gamma wk, zk = H\bfitx k + vk,(2.7)

with initial conditions

(2.8) fX1
(\bfitx 1) =

n\prod 
i=1

1

2\alpha 
e - 

1
\alpha | Ei\bfitx 1| \triangleq 

1

(2\alpha )
n
\=fX1

(\bfitx 1).

For the remainder of the derivation, we will only consider the stochastic part of the
state, \bfitx k (2.7).

In what follows, we will use the following convention for the sign function, sgn (\xi ) :
\BbbR \rightarrow \BbbR such that

(2.9) sgn (\xi ) =

\Biggl\{ 
 - 1, \xi \leq 0,

+1, \xi > 0,

where, for \psi \in \BbbR and \theta ,\bfitx \in \BbbR n,

(2.10) \xi = \psi + \theta \bfitx ,
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and \theta is a row vector. We will limit our presentation to causal dynamical systems,
which have unique solutions, and invertible \Phi , thereby eliminating dead-beat systems.

The goal of this paper is to develop the conditional density function (cpdf) of the
state \bfitX k, given a measurement sequence

(2.11) \bfitY k = \{ Z1, Z2, . . . , Zk\} ,

in an analytic form for the Laplace system described in (2.7), from which we will
determine the mean and variance for the minimum-variance estimator. The sequence

(2.12) \bfity k = \{ z1, z2, . . . , zk\} 

is a realization of (2.11). To streamline the derivation and improve legibility, we will
use the unnormalized pdfs \=fW , \=fV , and \=f\bfitX 1

in (2.3), (2.4), and (2.8) to construct the
cpdf. This avoids having to keep account of the normalizing factor, which can be
computed as necessary, e.g., when determining the mean and variance.

3. Laplace cpdf. To determine the recursive form of the cpdf, we examine the
first measurement update and time propagation. We begin with the initial pdf, \=f\bfitX 1 ,
and compute the a posteriori cpdf of \bfitX 1, conditioned on a measurement z1. This is
followed by a time propagation to \bfitX 2. Continuing in this way, we can deduce and
then prove the recursive structure of the a priori and a posteriori cpdfs.

We explicitly compute the first measurement update and time propagation steps
for the two-dimensional case to motivate the general structure of the ucpdf as well as
the recursive algorithm to generate successive a posteriori and a priori ucpdfs at any
step k for the general n-dimensional case.

For the initial two-dimensional pdf, we use (2.8) where n = 2, and let the elements
of initial condition be described by independent Laplace distributions with means 0
and with spread parameter \alpha so that

\=f\bfitX 1(\bfitx 1) = exp

\biggl( 
 - 1

\alpha 
| E1\bfitx 1|  - 

1

\alpha 
| E2\bfitx 1| 

\biggr) 
,(3.1)

where

(3.2) E1 =
\bigl[ 
1 0

\bigr] 
, E2 =

\bigl[ 
0 1

\bigr] 
.

3.1. Update at \bfitk = 1. Let the measurement at k = 1 be z1 so that, using (2.4)
and (2.7), the density of Z1 conditioned on \bfitX 1 is

(3.3) \=fZ1| \bfitX 1
(z1| \bfitx 1) = \=fV (z1  - H\bfitx 1) = exp

\biggl( 
 - 1

\gamma 
| z1  - H\bfitx 1| 

\biggr) 
.

The pdf of \bfitX 1 conditioned on Z1 is given by Bayes' theorem,

(3.4) f\bfitX 1| \bfitY 1
(\bfitx 1| \bfity 1) =

f\bfitY 1| \bfitX 1
(\bfity 1| \bfitx 1)f\bfitX 1

(\bfitx 1)

f\bfitY 1(\bfity 1)
,

where \bfity 1 = \{ z1\} . As mentioned before, we will derive the ucpdf going forward, or

(3.5) \=f\bfitX 1| \bfitY 1
(\bfitx 1| \bfity 1) = \=f\bfitY 1| \bfitX 1

(\bfity 1| \bfitx 1) \=f\bfitX 1(\bfitx 1) = \=fZ1| \bfitX 1
(z1| \bfitx 1) \=f\bfitX 1(\bfitx 1).

Using (3.1) and (3.3), this becomes

\=f\bfitX 1| \bfitY 1
= \=f\bfitX 1

(\bfitx 1) \=fV (z1  - H\bfitx 1)

= exp

\biggl( 
 - 1

\alpha 
| E1\bfitx 1|  - 

1

\alpha 
| E2\bfitx 1|  - 

1

\gamma 
| z1  - H\bfitx 1| 

\biggr) 
.

(3.6)
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Figure 2 shows \=f\bfitX 1| \bfitY 1
for H =

\bigl[ 
1 0.5

\bigr] 
with noise parameters \alpha = 0.3 and \gamma = 0.1.

The initial deterministic states were set to \=\bfitx 1 =
\Bigl[ 0.2
 - 1.3

\Bigr] 
. Notice the asymmetry and

kink on the left side, which is the peak of \=fV (z1  - H\bfitx 1).

Fig. 2. \=fX1| Y1
: a posteriori ucpdf at k = 1.

3.2. Propagation from \bfitk = 1 to \bfitk = 2. To determine the ucpdf \=f\bfitX 2| \bfitY 1
(\bfitx 2| \bfity 1),

we first construct the joint density \=f\bfitX 2,W | \bfitY 1
. Since W is independent of \bfitX 1 and \bfitY 1,

(3.7) \=f\bfitX 1,W | \bfitY 1
= \=f\bfitX 1| \bfitY 1

\=fW ,

where \=fW is given in (2.3). Next, we express \bfitx 1 in terms of \bfitx 2 and w1 by using (2.7)
and then integrate with respect to w1. For the initial conditions, each term in the
exponent becomes

 - 1

\alpha 
| Ei\bfitx 1| =  - 1

\alpha 

\bigm| \bigm| Ei

\bigl( 
\Phi  - 1\bfitx 2

\bigr) 
 - Ei\Phi 

 - 1\Gamma w1

\bigm| \bigm| 
=  - 

\bigm| \bigm| Ei\Phi 
 - 1\Gamma 

\bigm| \bigm| 
\alpha 

\bigm| \bigm| \bigm| \bigm| Ei\Phi 
 - 1\bfitx 2

Ei\Phi  - 1\Gamma 
 - w1

\bigm| \bigm| \bigm| \bigm| ,(3.8)

where i = 1, 2, while the exponent for the measurement becomes

 - 1

\gamma 
| z1  - H\bfitx 1| =  - 1

\alpha 

\bigm| \bigm|  - \=z1 +H
\bigl( 
\Phi  - 1\bfitx 2

\bigr) 
 - H\Phi  - 1\Gamma w1

\bigm| \bigm| 
=  - 

\bigm| \bigm| H\Phi  - 1\Gamma 
\bigm| \bigm| 

\gamma 

\bigm| \bigm| \bigm| \bigm|  - z1
H\Phi  - 1\Gamma 

+
H\Phi  - 1\bfitx 2

H\Phi  - 1\Gamma 
 - w1

\bigm| \bigm| \bigm| \bigm| .(3.9)D
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Using (2.3) and (3.6),

\=fX2| Y1
(\bfitx 2| \bfity 1)

=
\bigm| \bigm| \Phi  - 1

\bigm| \bigm| \int \infty 

 - \infty 
exp

\Biggl( 
 - 
\bigm| \bigm| E1\Phi 

 - 1\Gamma 
\bigm| \bigm| 

\alpha 

\bigm| \bigm| \bigm| \bigm| E1\Phi 
 - 1\bfitx 2

E1\Phi  - 1\Gamma 
 - w1

\bigm| \bigm| \bigm| \bigm|  - 
\bigm| \bigm| E2\Phi 

 - 1\Gamma 
\bigm| \bigm| 

\alpha 

\bigm| \bigm| \bigm| \bigm| E2\Phi 
 - 1\bfitx 2

E2\Phi  - 1\Gamma 
 - w1

\bigm| \bigm| \bigm| \bigm| 
 - 
\bigm| \bigm| H\Phi  - 1\Gamma 

\bigm| \bigm| 
\gamma 

\bigm| \bigm| \bigm| \bigm|  - z1
H\Phi  - 1\Gamma 

+
H\Phi  - 1\bfitx 2

H\Phi  - 1\Gamma 
 - w1

\bigm| \bigm| \bigm| \bigm|  - 1

\beta 
| w1| 

\Biggr) 
dw1,

(3.10)

where
\bigm| \bigm| \Phi  - 1

\bigm| \bigm| \triangleq det
\bigl( 
\Phi  - 1

\bigr) 
and it is assumed that E1\Phi 

 - 1\Gamma \not = 0, E2\Phi 
 - 1\Gamma \not = 0, and

H\Phi  - 1\Gamma \not = 0. Using the integral formula (A.6), which generalizes the closed-form

integral in Appendix B of [12], and defining integration parameters \=\rho 
2| 1
i and \=\xi 

2| 1
i as

\=\rho 
2| 1
1 =

\bigm| \bigm| E1\Phi 
 - 1\Gamma 

\bigm| \bigm| 
\gamma 

, \=\xi 
2| 1
1 =

E1\Phi 
 - 1\bfitx 2

E1\Phi  - 1\Gamma 
\triangleq \=\psi 

2| 1
1 + \=\theta 

2| 1
1 \bfitx 2,

\=\rho 
2| 1
2 =

\bigm| \bigm| E2\Phi 
 - 1\Gamma 

\bigm| \bigm| 
\gamma 

, \=\xi 
2| 1
2 =

E2\Phi 
 - 1\bfitx 2

E2\Phi  - 1\Gamma 
\triangleq \=\psi 

2| 1
2 + \=\theta 

2| 1
2 \bfitx 2,

\=\rho 
2| 1
3 =

\bigm| \bigm| H\Phi  - 1\Gamma 
\bigm| \bigm| 

\gamma 
, \=\xi 

2| 1
3 =

 - z1
H\Phi  - 1\Gamma 

+
H\Phi  - 1\bfitx 2

H\Phi  - 1\Gamma 
\triangleq \=\psi 

2| 1
3 + \=\theta 

2| 1
3 \bfitx 2,

\=\rho 
2| 1
4 =

1

\beta 
, \=\xi 

2| 1
4 = 0 \triangleq \=\psi 

2| 1
4 + \=\theta 

2| 1
4 \bfitx 2,

(3.11)

the solution to (3.10) is

\=fX2| Y1
(\bfitx 2| \bfity 1) =

4\sum 
j=1

g
2| 1
j exp

\left(    - 
4\sum 

l=1
l \not =j

\rho 
2| 1
l

\bigm| \bigm| \bigm| \xi 2| 1l  - \xi 
2| 1
j

\bigm| \bigm| \bigm| 
\right)   \triangleq 

4\sum 
j=1

g
2| 1
j \epsilon 

2| 1
j ,(3.12)

where

g
2| 1
j (\bfitx 2) =

\bigm| \bigm| \Phi  - 1
\bigm| \bigm| 

\=\rho 
2| 1
j +

4\sum 
l=1
l \not =j

\=\rho 
2| 1
l sgn

\Bigl( 
\=\xi 
2| 1
l  - \=\xi 

2| 1
j

\Bigr)  - 
\bigm| \bigm| \Phi  - 1

\bigm| \bigm| 
 - \=\rho 

2| 1
j +

4\sum 
l=1
l \not =j

\rho 
2| 1
l sgn

\Bigl( 
\=\xi 
2| 1
l  - \=\xi 

2| 1
j

\Bigr) 

\triangleq 

\bigm| \bigm| \Phi  - 1
\bigm| \bigm| 

\=\rho 
2| 1
j +

4\sum 
l=1
l \not =j

\rho 
2| 1
l sgn

\Bigl( 
\psi 
2| 1
jl + \theta 

2| 1
jl \bfitx 2

\Bigr)  - 
\bigm| \bigm| \Phi  - 1

\bigm| \bigm| 
 - \=\rho 

2| 1
j +

4\sum 
l=1
l \not =j

\rho 
2| 1
l sgn

\Bigl( 
\psi 
2| 1
jl + \theta 

2| 1
jl \bfitx 2

\Bigr) 

(3.13)

and

\epsilon 
2| 1
j (\bfitx 2) = exp

\left(    - 
4\sum 

l=1
l \not =j

\=\rho 
2| 1
l

\bigm| \bigm| \bigm| \=\xi 2| 1l  - \=\xi 
2| 1
j

\bigm| \bigm| \bigm| 
\right)   \triangleq exp

\left(    - 
4\sum 

l=1
l \not =j

\=\rho 
2| 1
l

\bigm| \bigm| \bigm| \psi 2| 1
jl + \theta 

2| 1
jl \bfitx 2

\bigm| \bigm| \bigm| 
\right)   .(3.14)

Note that we've converted the arguments of the sign functions into standard form,

where \psi 
2| 1
jl = \=\psi 

2| 1
l  - \=\psi 

2| 1
j and \theta 

2| 1
jl = \=\theta 

2| 1
l  - \=\theta 

2| 1
j . In addition, \psi 

2| 1
jl + \theta 

2| 1
jl \bfitx is affine and,

where it is zero, defines a hyperplane (which is a line in \BbbR 2). In the next subsection,
it is shown how the gj function in (3.13) can be simplified by determining a basis
constructed from these hyperplanes.
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3.3. Simplify \bfitg after propagation. The form of the coefficient function gj in
(3.13) is not suitable for recursion, because it produces a complicated, nested fraction
which quickly becomes intractable. Furthermore, it is impractical to combine any
terms in (3.12), which share the same argument of the exponential while dealing with
such an unwieldy coefficient function. However, we can transform gj into a sum of
sign basis functions, which solves both of these issues, using the following theorem.

Theorem 3.1. Let \scrA be a hyperplane arrangement ofm affine hyperplanes A1, . . . ,
Am in \BbbR n, where Ai = \{ \bfitx | \psi i + \theta i\bfitx = 0\} , \theta Ti ,\bfitx \in \BbbR n, \psi i \in \BbbR . Let g : \BbbR n \rightarrow \BbbR be
a function of sgn (\psi i + \theta i\bfitx ), which is thus constant on the n-dimensional faces of \scrA .
Then, g can be expressed as

(3.15) g =
P\sum 

j=0

\rho j
\prod 
l\in \sigma j

sgn (\psi l + \theta l\bfitx ) ,

where \sigma j \in \sigma , which is the set of all subsets of \{ 1, . . . ,m\} with cardinality n or
less, and P =

\sum n
k=0

\bigl( 
m
k

\bigr) 
. For \sigma j = \emptyset , the product in (3.15) reduces to 1 and the

corresponding term is constant.

Proof. The proof of this theorem is presented in [4].

Corollary 3.2. Let S be defined as

(3.16) S \triangleq 
\bigl[ 
1 s1 \cdot \cdot \cdot sm s1s2 \cdot \cdot \cdot sm - 1sm \cdot \cdot \cdot sm - n+1 \cdot \cdot \cdot sm

\bigr] 
,

where si = sgn (\psi i + \theta i\bfitx ). Then S is a basis for g.

Proof. This is clear from the representation of g in (3.15).

Theorem 3.1 has a profound effect on the general n-dimensional Laplace esti-
mator. Not only does it make more obvious how we can preserve the structure of
the ucpdf under propagation, it provides a straightforward framework for combining
terms simply by adding coefficients.

To illustrate the application of Theorem 3.1, we show the form of g
2| 1
1 (\bfitx 2) for

\bfitx \in \BbbR 2 after it has been transformed from the fractional form in (3.13) to a sum of
basis functions. The algorithm to determine the coefficients is described in Appendix
B. g1(\bfitx 2) then assumes the form

g
2| 1
1 (\bfitx 2) = \rho 

2| 1
10 + \rho 

2| 1
11 sgn

\Bigl( 
\psi 
2| 1
11 + \theta 

2| 1
11 \bfitx 2

\Bigr) 
+ \rho 

2| 1
12 sgn

\Bigl( 
\psi 
2| 1
12 + \theta 

2| 1
12 \bfitx 2

\Bigr) 
+ \rho 

2| 1
13 sgn

\Bigl( 
\psi 
2| 1
13 + \theta 

2| 1
13 \bfitx 2

\Bigr) 
+ \rho 

2| 1
14 sgn

\Bigl( 
\psi 
2| 1
11 + \theta 

2| 1
11 \bfitx 2

\Bigr) 
sgn

\Bigl( 
\psi 
2| 1
12 + \theta 

2| 1
12 \bfitx 2

\Bigr) 
+ \rho 

2| 1
15 sgn

\Bigl( 
\psi 
2| 1
11 + \theta 

2| 1
11 \bfitx 2

\Bigr) 
sgn

\Bigl( 
\psi 
2| 1
13 + \theta 

2| 1
13 \bfitx 2

\Bigr) 
+ \rho 

2| 1
16 sgn

\Bigl( 
\psi 
2| 1
12 + \theta 

2| 1
12 \bfitx 2

\Bigr) 
sgn

\Bigl( 
\psi 
2| 1
13 + \theta 

2| 1
13 \bfitx 2

\Bigr) 
= \rho 

2| 1
10 +

6\sum 
j=1

\rho 
2| 1
1j

\prod 
l\in \sigma j

sgn
\Bigl( 
\psi 
2| 1
1i + \theta 

2| 1
1i \bfitx 2

\Bigr) 
,

(3.17)

where

(3.18) \sigma j = \{ \{ 1\} , \{ 2\} , \{ 3\} , \{ 1, 2\} , \{ 1, 3\} , \{ 2, 3\} \} ,
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and the basis function is a constant (i.e., 1), a single sign function, or product of two
sign functions. Note that the number of nonconstant terms is

\bigl( 
3
1

\bigr) 
+
\bigl( 
3
2

\bigr) 
= 3 + 3 = 6.

Figure 3 shows \=fX2| Y1
for system parameters

\Phi =

\biggl[ 
0.95 0.01
 - 0.1 1

\biggr] 
, \Gamma =

\biggl[ 
0
1

\biggr] 
, H =

\bigl[ 
1 0.5

\bigr] 
(3.19)

with initial conditions

(3.20) \=\bfitx 1 =

\biggl[ 
0.2
 - 1.3

\biggr] 
,

and noise parameters \alpha = 0.3, \beta = 0.01, and \gamma = 0.1. Note the smoothness (twice-
differentiable; see section 5.2 of [12]) of the pdf after convolution with fW compared
to the sharp point of \=fX1| Y1

in Figure 2.

Fig. 3. \=fX2| Y1
: a priori ucpdf from k = 1 to k = 2.

3.4. Generalized integral formula. The simplification of the coefficient func-
tion in (3.17) introduces a complication. The integral formula that we've been using
to propagate \=fXk| Yk

was derived in [12] and is not valid when g is not a function of
sums of signs. Therefore, we rederived the integral formula to account for the prod-
ucts of sign functions in Appendix A. In fact, Appendix A is valid for any function
g constant on intervals of the real axis. The results in the relevant form in (A.6) are
restated here for convenience. For some M,P \in \BbbZ + and

(3.21) g(w) = \rho 0 +

P\sum 
j=1

\rho j
\prod 
\ell \in \sigma j

sgn (\xi \ell  - w) ,
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where \sigma j is one of P unique subset of \{ 1, . . . ,M\} ,\int \infty 

 - \infty 
g(w) exp

\Biggl( 
 - 

M\sum 
\ell =1

\eta i | \xi \ell  - w| 

\Biggr) 
dw =

M\sum 
i=1

gi(\xi i) exp

\Biggl( 
 - 

M\sum 
\ell =1

\rho \ell | \xi \ell  - \xi i| 

\Biggr) 
,(3.22)

where

gi(\xi i) =
g(\xi i)

\dagger 

\eta i +
M\sum 
\ell =1
\ell \not =i

\eta \ell sgn (\xi \ell  - \xi i)

 - g(\xi i)

 - \eta i +
M\sum 
\ell =1
\ell \not =i

\eta \ell sgn (\xi \ell  - \xi i)

,
(3.23)

and the \dagger on the left term of (3.23) indicates a special case where, for

g\dagger (\xi i) = \rho 0 +
P\sum 

j=1

\rho j
\prod 
\ell \in \sigma j

sgn (\xi \ell  - \xi i) ,(3.24)

all instances of sgn (\xi \ell  - \xi i) = 1 when \ell = i. In contrast, for g(\xi i) on the right term of
(3.23), sgn (\xi \ell  - \xi i) =  - 1 when \ell = i. Since this is consistent with the original defini-
tion of sgn (\xi ) in (2.9), it is not considered a special case. The denominators of (3.23)
apply these different definitions for sgn (\xi \ell  - \xi i) when \ell = i, and the substitutions
have been made explicitly, resulting in the \eta i and  - \eta i terms. This integral formula
allows for the propagation in \BbbR n as well as calculation of the moments in section 5.

4. General form of ucpdf: Proof by induction for \BbbR \bfitn . We now present
the recursive algorithm for determining the a posteriori and a priori ucpdfs at step
k + 1| k by undergoing a measurement update from step k| k  - 1 to k| k, followed by a
propagation step requiring a convolution integral. Finally, we organize these results
into the standard structure.

4.1. Induction hypothesis in \BbbR \bfitn . Suppose we are given the a priori ucpdf at
k| k  - 1

(4.1) \=fXk| Yk - 1
=

N
k| k - 1
i\sum 
i=1

g
k| k - 1
i \epsilon 

k| k - 1
i ,

where g
k| k - 1
i is manipulated into the form in (3.15) as

(4.2) g
k| k - 1
i = \rho i0 +

P
k| k - 1
i\sum 
j=1

\rho 
k| k - 1
ij

\prod 
l\in \sigma ij

sgn
\Bigl( 
\xi 
k| k - 1
il

\Bigr) 
,

and

(4.3) \epsilon 
k| k - 1
i = exp

\left(   - 
M

k| k - 1
i\sum 
j=1

\eta 
k| k - 1
ij

\bigm| \bigm| \bigm| \xi k| k - 1
ij

\bigm| \bigm| \bigm| 
\right)  .

The affine function of \bfitx k is

(4.4) \xi 
k| k - 1
ij = \psi 

k| k - 1
ij + \theta 

k| k - 1
ij \bfitx k,

where N
k| k - 1
i is the number of terms, M

k| k - 1
i is the number of elements of term i,

P
k| k - 1
i is the number of terms in g

k| k - 1
i , and \sigma ij is the set of indices of sign functions

associated with term j of g
k| k - 1
i at step k| k  - 1.
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4.2. Measurement update from \bfitk | \bfitk  - 1 to \bfitk | \bfitk . By construction, we know
that the ucpdf at 2| 1 from section 3 has the form shown in (4.1). Therefore, we assume
\=fXk| Yk - 1

in (4.1) and show that \=fXk+1,Yk
has the same structure.

The measurement update step involves constructing the joint density from the a
priori ucpdf (4.1) and

(4.5) \=fZk| \bfitX k
= \=fV (zk  - H\bfitx k) = exp

\biggl( 
 - 1

\gamma 
| zk  - H\bfitx k| 

\biggr) 
.

Since V is independent measurement noise, the ucpdf for \bfitX k given \bfitY k is obtained by
Bayes' theorem using (4.5) and (4.1) and effectively contributes an additional element
to the exponential in (4.1) so that

(4.6) \=f\bfitX k| \bfitY k
=

N
k| k - 1
i\sum 
i=1

g
k| k
i \epsilon 

k| k
i ,

where g
k| k
i = g

k| k - 1
i and

\epsilon 
k| k
i = exp

\left(   - 
M

k| k - 1
i\sum 
j=1

\eta 
k| k - 1
ij

\bigm| \bigm| \bigm| \xi k| k - 1
ij

\bigm| \bigm| \bigm|  - 1

\gamma 
|  - zk +H\bfitx k| 

\right)  
= exp

\left(   - 
M

k| k - 1
i +1\sum 
j=1

\eta 
k| k - 1
ij

\bigm| \bigm| \bigm| \xi k| k - 1
ij

\bigm| \bigm| \bigm| 
\right)  ,

(4.7)

with

(4.8) \xi 
k| k - 1
ij = \psi 

k| k - 1
ij + \theta 

k| k - 1
ij \bfitx k.

This gives us the a posteriori ucpdf at k| k, with the additional parameters

(4.9) \rho 
k| k - 1

i,M
k| k - 1
i +1

=
1

\gamma 
, \psi 

k| k - 1

i,M
k| k - 1
i +1

=  - zk, \theta 
k| k - 1

i,M
k| k - 1
i +1

= H

4.3. Propagation from \bfitk | \bfitk to \bfitk +1| \bfitk . The propagation of the ucpdf involves
constructing the joint density function of \=f\bfitX k| \bfitY k

and fW and integrating with respect
to wk. Given (4.6), the a priori ucpdf at k + 1 is

(4.10) \=f\bfitX k+1| \bfitY k
(\bfitx k+1| \bfity k) =

\int \infty 

 - \infty 
\=f\bfitX k| \bfitY k

(\bfitx k| \bfity k) \=fW (wk) dwk.

In order to perform this integral, we write \bfitx k in terms of (\bfitx k+1, wk) using the dy-
namical equation in (2.7) and the derived density formula in [23, p. 51] to get\biggl[ 

\bfitx k+1

wk

\biggr] 
=

\biggl[ 
\Phi \Gamma 
0 I

\biggr] \biggl[ 
\bfitx k

wk

\biggr] 
\triangleq A

\biggl[ 
\bfitx k

wk

\biggr] 
=\Rightarrow 

\biggl[ 
\bfitx k

wk

\biggr] 
=

\biggl[ 
\Phi  - 1  - \Phi  - 1\Gamma 
0 1

\biggr] \biggl[ 
\bfitx k+1

wk

\biggr] 
\triangleq A - 1

\biggl[ 
\bfitx k+1

wk

\biggr] 
.

(4.11)

We then integrate with respect to wk,

\=fXk+1| Yk
(\bfitx k+1| \bfity k)

=
\bigm| \bigm| \Phi  - 1

\bigm| \bigm| \int \infty 

 - \infty 
\=fXk| Yk

\bigl( 
\Phi  - 1\bfitx k+1  - \Phi  - 1\Gamma wk| \bfity k

\bigr) 
\=fW (wk) dwk,

(4.12)
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where
\bigm| \bigm| \Phi  - 1

\bigm| \bigm| = det
\bigl( 
\Phi  - 1

\bigr) 
= det

\bigl( 
A - 1

\bigr) 
. Since fW is an exponential of absolute value

of wk, we can rewrite the integrand into the same form as the integral formula in
(3.22). Therefore, each term of \=f\bfitX k+1| \bfitY k

becomes

(4.13) \=f i\bfitX k+1| \bfitY k
(\bfitx k+1| \bfity k) =

\int \infty 

 - \infty 
\~g
k| k
i (\bfitx k+1, wk)\~\epsilon 

k| k
i (\bfitx k+1, wk) dwk,

where

\~g
k| k
i (\bfitx k+1, wk) = \~\rho 

k| k
i0 +

P
k - 1| k
i\sum 
j=1

\~\rho 
k| k
ij

\prod 
l\in \sigma ij

sgn
\Bigl( 
\~\xi 
k| k
il (\bfitx k+1) - wk

\Bigr) 
,

\~\epsilon i(\bfitx k+1,wk
) = exp

\left(   - 
M

k| k - 1
i +2\sum 
j=1

\~\eta 
k| k
ij

\bigm| \bigm| \bigm| \~\xi k| kij (\bfitx k+1) - wk

\bigm| \bigm| \bigm| 
\right)  ,

\~\rho 
k| k
i0 =

| \Phi |  - 1

2\beta 
\rho 
k| k
i0 ,

\~\rho 
k| k
ij =

| \Phi |  - 1

2\beta 
\rho 
k| k
ij

\prod 
l\in \sigma j

sgn
\Bigl( 
\theta 
k| k
il \Phi  - 1\Gamma 

\Bigr) 
,

\~\eta 
k| k
ij = \eta 

k| k
ij \cdot 1\bigm| \bigm| \bigm| \theta k| kij \Phi  - 1\Gamma 

\bigm| \bigm| \bigm| ,
\~\xi 
k| k
ij =

\psi 
k| k
ij

\theta Tij\Phi 
 - 1\Gamma 

+
\theta 
k| k
ij \Phi  - 1

\theta 
k| k
ij \Phi  - 1\Gamma 

\bfitx k+1 \triangleq \~\psi 
k| k
ij + \~\theta 

k| k
ij \bfitx k+1.

(4.14)

Each term is then integrated using the generalized integral formula (3.22) to get

\~fi,Xk+1| Yk
(\bfitx k+1| \bfity k)

=

M
k| k - 1
i +2\sum 
j=1

\~g
k+1| k
ijl exp

\left(   - 
M

k| k - 1
i +2\sum 
l=1

\~\eta 
k| k
il

\bigm| \bigm| \bigm| \~\xi k| kil  - \~\xi 
k| k
ij

\bigm| \bigm| \bigm| 
\right)  

=

M
k| k - 1
i +2\sum 
j=1

\~g
k+1| k
ijl exp

\left[   - M
k| k - 1
i +2\sum 
l=1

\~\eta 
k| k
il

\bigm| \bigm| \bigm| \Bigl( \~\psi k| k
il  - \~\psi 

k| k
ij

\Bigr) 
+
\Bigl( 
\~\theta 
k| k
il  - \~\theta 

k| k
ij

\Bigr) 
\bfitx k+1

\bigm| \bigm| \bigm| 
\right]  

\triangleq 

M
k| k - 1
i +2\sum 
j=1

\~g
k+1| k
ijl exp

\left(   - 
M

k| k - 1
i +2\sum 
l=1

\~\eta 
k| k
il

\bigm| \bigm| \bigm| \~\psi k+1| k
ijl + \~\theta 

k| k
ijl \bfitx k+1

\bigm| \bigm| \bigm| 
\right)  

=

M
k| k - 1
i +2\sum 
j=1

\~g
k+1| k
ijl exp

\left(   - 
M

k| k - 1
i +2\sum 
l=1

\~\eta 
k| k
il

\bigm| \bigm| \bigm| \~\xi k+1| k
ijl

\bigm| \bigm| \bigm| 
\right)  ,

(4.15)
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where
(4.16)

\~g
k+1| k
ijl =

\~g
k| k
i

\Bigl( 
\~\xi 
k| k
ij

\Bigr) \dagger 
\~\eta 
k| k
ij +

M
k - 1| k
i  - 2\sum 
l=1
l \not =j

\~\eta 
k| k
il sgn

\Bigl( 
\~\xi 
k+1| k
ijl

\Bigr)  - 
\~g
k| k
i

\Bigl( 
\~\xi 
k| k
ij

\Bigr) 
 - \~\eta 

k| k
ij +

M
k - 1| k
i  - 2\sum 
l=1
l \not =j

\~\eta 
k| k
il sgn

\Bigl( 
\~\xi 
k+1| k
ijl

\Bigr) 

and the \dagger indicates that every instance of sgn
\Bigl( 
\~\xi 
k| k
il  - \~\xi 

k| k
ij

\Bigr) 
= 1 when l = j. Note

that each new argument has the form

\~\eta 
k+1| k
ijl = \~\eta 

k| k
ij ,

\~\xi 
k+1| k
ijl = \~\xi 

k| k
il  - \~\xi 

k| k
ij =

\Bigl( 
\~\psi 
k| k
il  - \~\psi 

k| k
ij

\Bigr) 
+
\Bigl( 
\~\theta 
k| k
il  - \~\theta 

k| k
ij

\Bigr) 
\bfitx k+1

\triangleq \~\psi 
k+1| k
ijl + \~\theta 

k+1| k
ijl \bfitx k+1.

(4.17)

In the next subsections, we will reindex the triple indexing as well as the number of
terms to prepare for the next measurement update.

4.4. Simplify coefficient function and reindex terms. The coefficient term
in (4.16) is transformed from its fraction form into the basis form of (4.2) using the
procedures outlined in Appendix B so that

(4.18) \~g
k+1| k
ijl = \~\rho 

k+1| k
ij0 +

P
k+1| k
ijl\sum 
p=1

\~\rho 
k+1| k
ij

\prod 
l\in \sigma ijp

sgn
\Bigl( 
\~\xi 
k+1| k
ijl

\Bigr) 
.

Since \xi ij and \xi il of (4.15) have double indices, the difference \xi il  - \xi ij has a triple
index ijl. To simplify this, the i and j indices are combined into a new i index, and
the l index becomes the new j index. While this reindexing is not strictly necessary,
it prevents us from having to keep adding new indices after every time propagation
step. Furthermore, simplifying g and reindexing returns the structure of \=f\bfitX k+1| \bfitY k

to

the recursive form that we assumed at step k| k  - 1. Each of the Nk| k - 1 terms of the

integrand spawns M
k| k - 1
i + 1 subterms, so the total number of terms at step k + 1| k

becomes

(4.19) \~Nk+1| k =
Nk| k - 1\sum 
i=1

\Bigl( 
M

k| k - 1
i + 1

\Bigr) 
,

with each term having M
k| k - 1
i + 1 elements. Correspondingly, each \~\xi 

k+1| k
ijl becomes

the new \~\xi 
k+1| k
ij .

4.5. Special cases and term combination at \bfitk + 1| \bfitk . After the coefficient
functions have been transformed into the basis form, several implementation consid-
erations must be addressed. Some hyperplanes, as defined when the arguments of
the sign functions equal zero, may become equal to another hyperplane, while other
hyperplanes may disappear altogether, i.e., \theta = 0. These are special cases which
result in a reduction in elements and thus the number of terms in g, leading to a
reshuffle of parameters. After the special cases are resolved, terms with the same ex-
ponentials can be combined. At this point, the parameters lose the tilde and become

Nk+1| k, P
k+1| k
i ,M

k+1| k
i , \rho 

k+1| k
ij , \xi 

k+1| k
ij , and \eta 

k+1| k
ij .
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4.6. The ucpdf at \bfitk + 1| \bfitk . Finally, we state the ucpdf at k + 1| k as

(4.20) \=f\bfitX k+1| \bfitY k
=

N
k+1| k
i\sum 
i=1

\=g
k+1| k
i \=\epsilon 

k+1| k
i ,

where

(4.21) \=g
k+1| k
i = \=\rho 

k+1| k
i0 +

P
k+1| k
i\sum 
j=1

\=\rho 
k+1| k
ij

\prod 
l\in \sigma ij

sgn
\Bigl( 
\xi 
k+1| k
il

\Bigr) 
and

(4.22) \=\epsilon 
k+1| k
i = exp

\left(   - 
M

k+1| k
i\sum 
j=1

\eta 
k+1| k
ij

\bigm| \bigm| \bigm| \xi k+1| k
ij

\bigm| \bigm| \bigm| 
\right)  ,

where

(4.23) \xi 
k+1| k
ij = \psi 

k+1| k
ij + \theta 

k+1| k
ij \bfitx k+1,

Nk+1| k is the number of terms, M
k+1| k
i is the number of elements of term i, P

k+1| k
i is

the number of terms in g
k+1| k
i , and \sigma ij is the set of indices of sign functions associated

with term j of g
k+1| k
i at step k + 1| k. Thus, we've shown by induction that the

update and propagation algorithm is recursive and preserves the underlying structure
for \=f\bfitX k| \bfitY k - 1

in (4.1).

5. Mean and variance in \BbbR \bfitn . To determine the mean and variance of \bfitX 
given \bfitY , we first normalize \=fX| Y and then compute the first and second moments.
For this section, \=f\bfitX | \bfitY can be either a priori or a posteriori at any step k. Therefore,
to simplify the presentation, the indices of the pdfs, used previously, are dropped
in what follows. Instead of directly integrating to obtain the first two moments, we
will derive them from the characteristic function of the ucpdf. The benefit of using
characteristic functions is that one need only perform n integrations, followed by two
relatively simple differentiations. In contrast, direct integration involves involves n
integrations as well as two additional complicated integrations by parts [7, 6].

For \bfitnu ,\bfitx \in \BbbR n, where \bfitnu is the spectral vector, the characteristic function of
\=fX| Y (\bfitx | \bfity ) is the expectation of ej\bfitnu 

T\bfitx , or

(5.1) \=\phi \bfitX | \bfitY (\bfitnu ) =

\int 
\BbbR n

ej\bfitnu 
T\bfitx \=f\bfitX | \bfitY (\bfitx | \bfity ) d\bfitx .

Evaluating (5.1) at \bfitnu = 0 gives the normalization factor

(5.2)
\bigl[ 
\=\phi \bfitX | \bfitY 

\bigr] 
\bfitnu =\bfzero 

=

\int 
\BbbR n

\=f\bfitX | \bfitY (\bfitx | \bfity ) d\bfitx = f\bfitY .

Then, the normalized characteristic function is

\phi \bfitX | \bfitY =
\=\phi \bfitX | \bfitY 

f\bfitY 
.(5.3)
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Using (5.3), the mean and error variance are given by

\mu = E [\bfitX | \bfitY ] ,

Var(\bfitx ) = E
\bigl[ 
\bfitX \bfitX T | \bfitY 

\bigr] 
 - E [\bfitX | \bfitY ]E [\bfitX | \bfitY ]

T
,

(5.4)

where the ith element of E [\bfitX | \bfitY ] and the i\ell element of the symmetric E
\bigl[ 
\bfitX \bfitX T | \bfitY 

\bigr] 
are

E [Xi| \bfitY ] =

\biggl[ 
1

j

\partial \phi \bfitX | \bfitY (\bfitnu )

\partial \nu i

\biggr] 
\bfitnu =\bfzero 

,

E [XiX\ell | \bfitY ] =

\biggl[ 
 - 
\partial 2\phi \bfitX | \bfitY (\bfitnu )

\partial \nu i\partial \nu \ell 

\biggr] 
\bfitnu =\bfzero 

,

(5.5)

respectively.
Note that we have abused the notation a little bit. Since we are not labeling the

step number k, we use the subscript on the random variable X to indicate the element
number instead. This should be clear in this context, even if it doesn't agree with the
standard use of the subscript throughout this paper.

For \bfitx \in \BbbR n, this requires n integrations as well as n single and
\sum n

i i =
n(n+1)

2
double partial differentiations, though the differentiations can be done a priori. Al-
though a numerical burden, it is less complicated than directly integrating to find the
moments.

5.1. Characteristic function of ucpdf. To determine the characteristic func-
tion of \=f\bfitX | \bfitY in \BbbR n, we must integrate over \BbbR n, which means evaluating n successive
integrals using the same integral formula that was used in previous sections. Consider
the form \=f\bfitX | \bfitY to be

(5.6) \=f\bfitX | \bfitY =
N\sum 
i=1

\=gi(x) exp

\Biggl( 
 - 

Mi\sum 
l=1

\eta l | \psi l + \theta l\bfitx | 

\Biggr) 
,

where, for Mi unique pairs (\psi l \in \BbbR , \theta l \in \BbbR 1\times n),

(5.7) \=gi(x) = \=\rho i0 +

Pi\sum 
q=1

\=\rho iq
\prod 
l\in \sigma iq

sgn (\psi l + \theta l\bfitx ) ,

where g and \sigma iq are unique subsets of \{ 1, . . . ,Mi\} . Note that when Mi > n, \sigma iq can
have at most n elements of \{ 1, . . . ,Mi\} . Using the generalized integral formula (3.22),
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(5.1) can be solved elementwise, and each element can be explicitly written as

\phi i\bfitX | \bfitY =

\int 
x

ej\nu 
T x\=gi(x) exp

\Biggl( 
 - 

Mi\sum 
l=1

\eta l | \psi l + \theta l\bfitx | 

\Biggr) 
dx

=

\int 
x1

\cdot \cdot \cdot 
\int 
xn

\left(  \rho i0 + Pi\sum 
q=1

\rho iq
\prod 
l\in \sigma q

sgn (\psi l + \theta l\bfitx )

\right)  
\cdot exp

\Biggl( 
 - 

Mi\sum 
l=1

\eta l | \psi l + \theta l\bfitx | + j\nu Tx

\Biggr) 
dx1 \cdot \cdot \cdot dxn

=

\int 
x1

\cdot \cdot \cdot 
\int 
xn

\left(  \rho i0 + Pi\sum 
q=1

\rho iq
\prod 
l\in \sigma q

sgn (\psi l + \theta 1x1 + \cdot \cdot \cdot + \theta nxn)

\right)  
\cdot exp

\Biggl[ 
 - 

Mi\sum 
l=1

\eta l | \psi l + \theta l1x1 + \cdot \cdot \cdot + \theta lnxn| + j (\nu 1x1 + \cdot \cdot \cdot + \nu nxn)

\Biggr] 
dx1 \cdot \cdot \cdot dxn.

(5.8)

Note that care must be taken to account for variables which are constant for one
integration but are not constant for another. For example, x1 is constant when inte-
grating with respect to x2. However, it is not constant in the subsequent integration
with respect to x1.

5.2. Normalization and moments from characteristic function in \BbbR \bftwo .
Applying (5.8) to the two-dimensional case results in

(5.9) \=\phi \bfitX | \bfitY =
N\sum 
i=1

\=\phi i\bfitX | \bfitY =
N\sum 
i=1

\=Gi(\nu 1, \nu 2)\scrE i(\nu 1, \nu 2),

where, after some involved algebra,

\=Gi(\nu 1, \nu 2) =

ai1

ai2+j\nu 2
 - ai3

ai4+j\nu 2

ai5 + j\nu 1 + ai6 \cdot j\nu 2
 - 

bi1
bi2+j\nu 2

 - bi3
bi4+j\nu 2

bi5 + j\nu 1 + bi6 \cdot j\nu 2
,

\scrE i(\nu 1, \nu 2) = exp (ci1 \cdot j\nu 1 + ci2 \cdot j\nu 2 + ci3) ,

(5.10)

and ai1, . . . , ai6, bi1, . . . , bi6, and ci1, . . . , ci3 are constants.
Applying (5.2) to (5.9), the normalization factor becomes

(5.11) f\bfitY =
N\sum 
i=1

f i\bfitY ,

where

(5.12) f i\bfitY =
\Bigl[ 
\=\phi i\bfitX | \bfitY 

\Bigr] 
\bfitnu =\bfzero 

=

\Biggl( 
ai1

ai2
 - ai4

ai5

ai7
 - 

bi1
bi2

 - bi4
bi5

bi7

\Biggr) 
exp (ci3) .

Using (5.11), the normalized characteristic function becomes

\phi \bfitX | \bfitY =

\sum N
i=1

\=\phi i\bfitX | \bfitY 

f\bfitY 
=

N\sum 
i=1

\=Gi(\nu 1, \nu 2)

f\bfitY 
\cdot \scrE i(\nu 1, \nu 2)

\triangleq 
N\sum 
i=1

Gi(\nu 1, \nu 2) \cdot \scrE i(\nu 1, \nu 2).

(5.13)
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The ith term of the first two moments in \BbbR 2 are

Ei [\bfitX ] =

\Biggl[ 
1
j
\partial \phi i

\partial \nu 1

1
j
\partial \phi i

\partial \nu 2

\Biggr] 
\bfitnu =\bfzero 

,

Ei
\bigl[ 
\bfitX \bfitX T

\bigr] 
=

\left[   - \partial 2\phi i

\partial \nu 2
1

 - \partial 2\phi i

\partial \nu 1\partial \nu 2

 - \partial 2\phi 
\partial \nu 1\partial \nu 2

 - \partial 2\phi 
\partial \nu 2

2

\right]  
\bfitnu =\bfzero 

.

(5.14)

The partial derivatives are somewhat long due to multiple implementations of the
product and quotient rules. However, they are straightforward and the expressions
are omitted for brevity.

1 2 3 4 5 6 7
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)

Fig. 4. Estimation errors for seven steps in \BbbR 2 for \alpha = 0.3, \beta = 0.01, \gamma = 0.1.

6. Numerical example. A two-state example of the Laplace estimator was
implemented in MATLAB to illustrate the theory developed in section 4. For the
stochastic system of (2.1) with system parameters, initial conditions, and noise pa-
rameters given in (3.19), the conditional mean and conditional error variance defined
in (5.5) are computed.

Figure 4 shows the results for a seven-step simulation where we can see that the
covariance changes as a function of the measurement. In addition, the response to
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the large jump in the measurement at k = 2 is rather muted, despite the fact that
zk = x1 + 0.5x2.

6.1. Incremental enumeration. The algorithm for transforming the coeffi-
cient functions, g, from the nested, fractional form of the integral formula to a sum
of basis sign functions is described in Appendix B. In order to enumerate the faces of
the hyperplane arrangements defined by the sign functions in g, we first experimented
with the reverse search algorithm by Avis and Fukuda in [1]. However, that algorithm
had some numerical issues and was particularly slow. Instead, we use the algorithms
developed by Rada and Cern\'y in [20], along with linear program solvers by Gurobi to
enumerate the faces. The coefficients of g are then found by solving a linear equation
using standard solvers.

6.2. Computational aspects. We analyze the growth in the quantity of pa-
rameters needed to define the cpdfs. As shown in (4.19), the number of elements in
the exponential increases by 1 every step, so it grows as k. In addition, each term
at step k in the a posteriori cpdf spawns the number of elements plus one additional
term, so the total number of terms grows as k+2 factorial. As shown in Theorem 3.1,
due to the basis functions, the worst-case coefficient function grows as

\sum n
j=0

\bigl( 
k
j

\bigr) 
, or

kn. Therefore, the worst-case number of parameters needed to define the a posteriori
cpdf grows as (k + 2)! \cdot kn+1. In practice, we do not approach the worst case due to
combining terms enabled by Theorem 3.1 and special cases discussed in section 4.5.

Practical implementation of the Laplace estimator may require a moving fixed
window of data which bounds the computation. The parallel structure of the pdfs
can be exploited by use of GPU-assisted architectures, such as CUDA. Efficient com-
putational architectures will enable comparison with current approximate algorithms.

7. Conclusions. A recursive algorithm for determining the cpdf given the mea-
surement history of an n-dimensional linear dynamic system with additive Laplace
noise is determined. The unnormalized conditional pdf of the state conditioned on
the measurement history was propagated and updated analytically and recursively.
Unlike for approximate Laplace estimation techniques, expectations can be computed
directly using the cpdf, which allows for construction of L1 cost functions and use in
optimal control schemes [5].

The ucpdf is composed of a growing sum of terms, where each term is composed
of a product of an exponential, whose argument is the sum of absolute values of affine
functions of \bfitx , and a coefficient function g, composed of signs of the same affine
functions. On each face of the hyperplane arrangement, g is constant. To construct
the recursion, it is necessary to restructure the functional form of g by constructing
a basis, which also allows some terms to sum. The structure of the basis required a
generalization of an integral formula, used in the propagation step and in constructing
the characteristic function from which the conditional mean and conditional error
variance are evaluated. It it shown numerically that the conditional error variance
changes with the measurements.

Appendix A. Key integral formula. Appendix B of [12] gives the solution
for

(A.1) I =

\int \infty 

 - \infty 
g

\Biggl( 
n\sum 

i=1

\varrho isgn (\xi i  - \eta )

\Biggr) 
exp

\Biggl( 
 - 

n\sum 
i=1

\rho i | \xi i  - \eta | + j\nu \eta 

\Biggr) 
d\eta ,

where g is an explicit function of a sum of sign functions. We extend the solution to
include g as any function of the n sign functions corresponding to \xi in the exponential,
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i.e.,

(A.2) I =

\int \infty 

 - \infty 
g (\eta ) exp

\Biggl( 
 - 

n\sum 
l=1

\rho l | \xi l  - \eta | + j\nu \eta 

\Biggr) 
d\eta ,

where

(A.3) g(\eta ) = g (sgn (\xi 1  - \eta ) , . . . , sgn (\xi n  - \eta )) .

As in the original derivation, sgn (\xi \ell  - \eta ) is constant on the interval (\xi i, \xi i+1] such
that

sgn (\xi \ell  - \eta ) \triangleq s\ell i =

\biggl\{ 
sgn (\xi \ell  - \xi i) , i \not = \ell ,

 - 1, i = \ell .
(A.4)

The original derivation in [12] is valid for the general g(\eta ) until substituting s\ell i for
sli - 1 in the left term. It is shown that sli - 1 = s\ell i except for when i = \ell , where s\ell i=1 = 1
instead of  - 1. This leads to the equation

(A.5)

n\sum 
i=1

\rho is
\ell 
i - 1 = \rho i +

n\sum 
\ell =1
\ell \not =i

\rho is
\ell 
i ,

which is the common argument in the final expression of the integral formula. How-
ever, (A.5) is only valid for a sum of sign functions. Therefore, the denominator is
the same as in [12], but the numerator requires us to identify when i = \ell and evaluate
s\ell i = 1. Therefore, the solution is

I =
n\sum 

i=1

\=gi exp

\Biggl( 
 - 

n\sum 
\ell =1

\rho \ell (\xi \ell  - \xi i)s
\ell 
i + j\nu \xi i

\Biggr) 
,(A.6)

where

\=gi =
g (\xi i)

\dagger 

j\nu + \rho i +
n\sum 

l=1
l \not =i

\rho \ell s\ell i

 - g (\xi i)

j\nu  - \rho i +
n\sum 

l=1
l \not =i

\rho \ell s\ell i

,
(A.7)

where g\dagger indicates that every instance of s\ell i = 1 when i = \ell . It is clear that the
integral formula in [12] is a special case of (A.6) and (A.7).

Appendix B. Algorithm for finding coefficients of the basis of the \bfitg 's
in \BbbR \bftwo . The coefficient function g is piecewise constant on each of n-dimensional
faces defined by the hyperplane arrangement associated with the arguments of its
sign functions. Therefore, we wish to evaluate each sign function on each face, which
can then be used to evaluate both g and the basis functions from (4.18). We know
from Theorem 3.1 that all of the unique combinations of products of at most n sign
functions present in g form a basis for g. With the value of g and sign basis known,
we can rearrange (4.18) into a linear equation to solve for the coefficients \rho .

For simplicity, we will show the algorithm for the \BbbR 2 case, but it easily extends
to n dimensions. Let us evaluate g : \BbbR 2 \rightarrow \BbbR , composed of m sign functions on each
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of N faces, and arrange the values into the vector

(B.1) y =

\left[     
g1
g2
...
gN

\right]     .
We then evaluate the basis functions on each face and arrange them into the matrix

(B.2) S =

\left[     
1 s1,1 \cdot \cdot \cdot s1,2 \cdot \cdot \cdot s1,1s1,2 \cdot \cdot \cdot s1,m - 1s1,m
1 s2,1 \cdot \cdot \cdot s2,2 \cdot \cdot \cdot s2,1s2,2 \cdot \cdot \cdot s2,m - 1s2,m
...

...
. . .

...
. . .

...
. . .

...
1 sN,1 \cdot \cdot \cdot sN,2 \cdot \cdot \cdot sN,1sN,2 \cdot \cdot \cdot sN,m - 1sN,m

\right]     .
The samples (B.1) and basis (B.2) are related as

(B.3) y = S\rho ,

where

(B.4) \rho =
\bigl[ 
\rho 0 \rho 1 \rho 2 \cdot \cdot \cdot \rho Nb

\bigr] T
,

where N is the number of distinct polytopes in \BbbR n generated by the m sign functions.
Before we solve (B.3), we will show that it will always have at least one solution.

Consider the hyperplane arrangement defined in Theorem 3.1, and let N be the
number of faces of \scrA and be bounded by

(B.5) N \leq 
n\sum 

k=0

\biggl( 
m

k

\biggr) 
.

From Theorem 3.1, for every constant-valued region Fj , j = 1, . . . , N , there exists
\rho 0, . . . , \rho P such that for every \bfitx j \in Fj , g(\bfitx j) has the form of (3.15). Since

(B.6) P (m,n) =
n\sum 

k=0

\biggl( 
m

k

\biggr) 
,

N \leq P (m). Observe that N is the number of rows and P (m,n) is the number of
columns of S. From Corollary 3.2, the rows of S form a basis for any g(\bfitx ) and are
thus independent. Consequently, since S has full row rank, there exists at least one
solution to (B.3). A particular solution is the least-norm solution, or

(B.7) \^\rho ln = ST
\bigl( 
SST

\bigr)  - 1
y,

which is what we get when we use the MATLAB pinv function. Note that using the
left matrix divide, or backslash (A``b), to solve this equation yields the solution with
the greatest number of zero elements instead of the least-norm.
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