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Abstract. In this work we present a machine learning model to seg-
ment long axis magnetic resonance images of the left ventricle (LV) and
address the challenges encountered when, in doing so, a small training
dataset is used. Our approach is based on a heart locator and an anatom-
ically guided UNet model in which the UNet is followed by a B-Spline
head to condition training. The model is developed using transfer learn-
ing, which enabled the training and testing of the proposed strategy from
a small swine dataset. The segmented LV cavity and myocardium in the
long axis view show good agreement with ground truth segmentations at
different cardiac phases based on the Dice similarity coefficient. In addi-
tion the model provides a measure of segmentations’ uncertainty, which
can then be incorporated while developing LV computational models and
indices of cardiac performance based on the segmented images. Finally,
several challenges related to long axis, as opposed to short axis, image
segmentation are highlighted, including proposed solutions.

Keywords: Cardiac image segmentation · Long axis MRI · Machine
learning · Anatomically-guided UNet.

1 Introduction

Subject specific computational cardiology has the potential to significantly im-
prove diagnosis, prognosis, and therapy planning for patients affected by cardiac
diseases. One of the current challenges in deploying computational models to the
clinic consists in quickly generating accurate anatomical models from imaging
data. In recent years, machine learning (ML) has made it possible to automat-
ically process imaging data. For example, in the context of cardiac magnetic
resonance imaging (cMRI), ML models have been extensively used to segment
cine MRI data to compute indices of cardiac function.

Currently, most of the ML effort has been directed toward segmenting the
left ventricle (LV) myocardium (LVM) and cavity (LVC) from slices acquired in
a short axis view. However, there could be significant benefits from building LV
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models based on images acquired in the long axis view. For example, in contrast
to short axis based models, the base and the apex of the LV are clearly identified
in the long axis views. Furthermore, fewer long axis versus short axis slices may
be needed to build a full LV model, potentially shortening the acquisition time.

In this work we propose a ML model to segment the LVM and LVC from
long axis (LA) images. To enable the development of this new model based on
a significantly smaller and swine dataset, we apply transfer learning [9] to our
previous model [13], which was developed to segment short axis (SA) images and
applied to the ACDC [1] human dataset. Therefore, the current study applies
transfer learning across species (human to swine) and between different image
views (short axis to long axis). In the following, after describing the key fea-
tures of our algorithm, we present representative results and the new challenges
encountered when segmenting long axis images.

2 Methods

2.1 Long axis cine MRI dataset

We tested the proposed ML segmentation model using MRI data acquired in
nine (N=9) healthy swine subjects. All animal experiments were approved by
the UCLA Institutional Animal Care and Use Committee (ARC protocol #
2015-124). Subjects were imaged using a 3T MRI scanner (Prisma, Siemens)
and, among other data, balanced steady state free precession (bSSFP) 2D cine
MRI data was acquired in short and long axis views. Here, we focus on images
acquired along 6 long axis planes approximately 30o apart. The in plane spatial
image resolution is 1.18 × 1.18mm2. For each subject and long axis location,
three cardiac phases (the beginning, mid, and end of systole) are selected and
segmented. In total, our dataset consists of 162 unique images. In each segmen-
tation, the LVM and LVC are identified. Data augmentation via elastic defor-
mation is included similarly to our previous work [12]. Via data augmentation,
we generated ten variations for each image, leading to a total of 1782 images
including the original images.

2.2 Deep Learning Segmentation Strategy

Model Architecture. The proposed pipeline illustrated in Fig. 1 is composed
of three neural networks designed to perform the following tasks:

1. Localization of the LVC: the LVC-Locator consists in a traditional UNet.

2. Anatomically-guided feature extraction: two anatomically-guided deep neu-
ral networks (UNetAG) generate the contours of the LVC and LVM, i.e., the
LV endocardial and epicardial walls.
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Fig. 1. Proposed pipeline of deep learning models for LV long axis segmentation.

The LVC locator network is a UNet [11, 6] that receives a 352×352 pixels image
as input and outputs each pixel’s probability to be part of the heart. In training,
a combination of the Dice similarity coefficient (DSC) loss and the binary cross-
entropy loss is used as the loss function. The process to locate the region of
the image containing the LV includes identifying the pixels with the highest
and lowest horizontal and vertical locations, calculating their midpoint, and
extracting a 144× 144-pixel region centered at that midpoint. Before extracting
the region of interest, the image is rotated using the singular value decomposition
of the UNet output to align the LV long axis along the vertical or horizontal
directions. This step simplifies the implementation of the B-Spline layers in the
UNetAG.

The anatomically-guided UNet (UNetAG) model is a specialized implementation
of the UNet proposed in [13] in which the UNet is followed by a B-Spline head.
In our UNet implementation, the encoder contains four convolutional blocks (2D
convolutional layers and batch normalization) and the decoder contains the four
respective transposed convolutional blocks. The B-Spline head is composed of
three layers: a contour detection, a B-Spline, and a perimeter-filling layer. As
further detailed in [13], the B-Spline head conditions the training of the UNet by
returning a smooth and constrained region with high probability of containing
the region of interest. The LVM-UNetAG receives the LVC-UNetAG output as
an additional channel, enhancing the overall left ventricle contours generated by
the pipeline and leading to a robust wall thickness estimation. These characteris-
tics, combined with the smooth and continuous nature of the B-Spline head (i.e.,
the B-Spline penalizes non-physiological protrusions, jaggedness, and discontinu-
ities), provide lower segmentation uncertainty at the endocardial and epicardial
walls. Furthermore, to increase robustness during training and prediction, four
copies of the same image are passed to the UNetAG (each copy corresponds to the
original image rotated by 0o, 90o, 180o, and 270o): the probabilities computed
for each image are then averaged to compute the final segmentation.
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Transfer Learning (TL). TL is adopted to implement the UNetAG such that:

– The UNet portion has the same architecture presented in [13] and the weights
generated during training with the ACDC dataset [1] will be used as initial
guess for the training with the swine dataset. This approach will lead to
faster convergence during training and robustness with respect to the re-
duced dataset.

– The B-Spline head for the long axis will have 45 control points, as opposed to
20 found in [13]. The larger number of control points will allow the UNetAG

to conform to the LA geometry, which departs from the circular-like SA
geometry.

The choice of 45 B-Spline control points is motivated to promote smoothness
of the segmentation while enabling flexibility to match the long axis LV geometry.
We conducted studies using 20, 45, 90, 180, and 360 control points and observed
only a moderate increase in DSC, which reaches a plateau at ≈45 control points.
Additionally, a lower number of control points limits memory usage.

Ablation study. Given the size of the swine dataset, a 3-fold cross-validation
strategy was used to assess the quality of the resulting models. The data was
split into 3 groups, each containing the images for 3 subjects: two groups are
used for training and the remaining one for validation. Using this approach, we
perform an ablation study by varying the initial weights used in training and
the utilization of the B-Spline head:

– Case #1: UNetAG that uses the UNet transferred from [13] to initialize the
training and B-Spline head with 45 control points.

– Case #2: UNetAG that uses the UNet transferred from [13] to initialize the
training but without the B-Spline head.

– Case #3: UNetAG with UNet trained from initially randomized weights (Glo-
rot Uniform initialization function) and B-Spline head with 45 control points.

– Case #4: UNetAG with UNet trained from initially randomized weights (Glo-
rot Uniform initialization function) without the B-Spline head.

3 Results

First, we summarize in Tab. 1 the model size and computational cost associated
with training each network of the pipeline illustrated in Fig. 1. In our study,
both the model and the data fit well in the GPU memory. The LVC-Locator
is a straightforward segmentation model with low accuracy requirement (other
than the LVC rough segmentation and the localization of the region of interest);
therefore, we do not report further results on it.

Figure 2 shows the convergence of the loss function throughout training of
the LVC-UNetAG for each one of the cases detailed in the “Ablation study”
subsection. Similar results were observed for the LVM-UNetAG (data not shown).
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Table 1. Trainable parameters and training computational cost. All networks were
trained on a GPU NVIDIA Tesla P100 with 16 GB of memory.

Model Trainable parameters Time per epoch [s]

LVC-Locator 17,660,694 66
LVC-UNetAG 17,660,694 72
LVM-UNetAG 17,661,126 114

Fig. 2. Loss vs. epochs for LVC-UNetAG models during training and validation. Black
circular markers correspond to the lowest validation loss within 150 epochs.

Next, in Tab. 2, we report the cross-validation performance of the model
in terms of DSC for segmentations obtained at the beginning, mid, and end of
systole for the swine dataset. The obtained DSC values are comparable with,
although slightly lower than, the results reported for SA image segmentation
computed from the large ACDC human dataset [1] in our previous work [13].

Figure 3 illustrates the image segmentations obtained with the proposed
UNetAG transferred from [13] and using the B-Spline head (case #1). The right
and left panels present results for end diastole (ED), mid systole (MS), and
end systole (ES) for two subjects in the validation fold. These cases represent
different levels of complexity due to contrast between the myocardium and the
background, the presence of image artifacts, and different views of the ventricles,
including the prominence of the right ventricle.

We conclude by illustrating two challenges specific to LA images’ segmenta-
tion (Fig. 4). First, the LV myocardium prediction may be closed at the base
(Fig. 4, top). Second, the left and right ventricles may be connected due to low
contrast or artifacts in the image close to the basal plane (Fig. 4, bottom).
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Table 2. Comparison of DSC values obtained in the ablation study and values obtained
for SA segmentation using our previous model [13] and the large human ACDC dataset.
TL: transfer learning; ED: end diastole; MS: mid systole; ES: end systole.

Method
LVC LVM

ED MS ES ED MS ES

TL + B-Spline 0.924 0.903 0.866 0.821 0.824 0.815
TL - No B-Spline 0.926 0.907 0.867 0.825 0.828 0.817
No TL + B-Spline 0.921 0.906 0.858 0.801 0.818 0.799
No TL - No B-Spline 0.923 0.910 0.859 0.801 0.814 0.788

ACDC Dataset (short axis only) 0.951 - 0.859 0.866 - 0.874

4 Discussion

In the ablation study, we proposed investigating the performance of transferring
the models from [13] as well as the benefits of the B-Spline head. From the
analysis of the cross-validation study reported in Tables 1 and 2 as well as
Fig. 2, we conclude:

– While the cost-per-epoch is the same for all cases, transferring the models
from [13] helps significantly, as the optimization starts at a significantly
lower loss function value. We opted for training all the tested cases for the
same number of epochs (150) for a fairer comparison. Within 150 epochs,
we chose the lowest validation loss (marked with black dots in Fig. 2) to
select the weights of the models. We also note that the final validation loss
obtained when TL is implemented is lower than the final validation loss
obtained without TL, although this difference is small. In practice, other
approaches requiring fewer epochs to converge may be used. For example, a
different strategy consists in terminating the optimization procedure when
the validation loss stabilizes (low noise). Such alternative strategy would
benefit even more from the use of transfer learning as, in this case, the
validation loss noise is low from the start.

– Given that the original model [13] was trained on the much larger ACDC
dataset with the B-Spline head, it is difficult to isolate the benefit of the
B-Spline head only when using TL. Indeed, the transferred model could have
benefited from the B-Spline head in both cases #1 and #2, although case
#2 does not include the B-Spline head during the fine tuning using the swine
dataset. In addition, the models trained without TL were based only on the
small swine dataset, making it difficult to conclusively analyze the role of the
B-Spline head on convergence from scratch. However, we highlight that the
main benefit of the B-Spline head is not in the speed of training (although it
is beneficial), but consists in regularizing the UNet output and in generating
smoother contours.

Given the practical advantage during training and the DSC results shown in
Tab. 2, we proceeded to report the predictions’ results of the UNetAG transferred
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Fig. 3. Raw image, ground truth, prediction, and uncertainty results obtained in case
#1. In the ground truth and prediction images, LVM and LVC are shown in green and
blue, respectively. The prediction row is obtained by selecting the 50th percentiles of
the UNetAG probabilities. Uncertainty results illustrate the 95% prediction interval.

from [13] and using the B-Spline head (case #1). Overall, the obtained segmen-
tations agree well with the ground truth regions (Fig. 3) at the beginning, mid,
and end of systole. The LVM regions are smooth and anatomically correct, with
reduced jaggedness due to image resolution and artifacts. The LVC predictions
also present good agreement with the ground truth segmentations. The LVM and
LVC predictions are paired with their uncertainty estimates (Fig. 3, bottom).
Overall, the uncertainty estimates present small bands (few pixels across), which
indicates prediction robustness with respect to the dataset. Larger uncertainties
are present in regions with lower contrast and image artifacts, for example close
to the apex and base of the LV.

Our proposed pipeline starts with an LVC-Locator network used to identify
the region of interest (ROI). Different techniques were recently introduced for
ROI isolation based on attention mechanisms [7, 4, 2], bounding boxes [10, 3], or
spatiotemporal statistical analysis [5]. Although these methods are both robust
and lightweight, their outputs do not carry enough information for our model.
Instead, we chose to employ a UNet to compute a rough preliminary segmenta-
tion of the LVC so that we can find the ROI and, at the same time, utilize the
preliminary segmentation to rotate the input images and align the LV long axis
along the vertical or horizontal direction.
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Fig. 4. Examples of specific challenges found during long axis segmentation. Top row:
the LV myocardium prediction is incorrectly closed at the base. Bottom row: the left
and right ventricles are incorrectly connected due to low image contrast and artifacts
near the LV base.

Subsequently, the anatomically-guided deep learning models segment the
LVC and LVM. The current cascade approach (the LVM-UNetAG is informed by
the LVC-UNetAG) and the use of the B-Spline head lead to lower uncertainty
regarding the location of the epicardial and endocardial outlines. An alternative
approach consists in connecting two B-Spline heads to the same UNet backbone.
Although losing the cascade approach would likely increase the uncertainty of
epicardial and endocardial walls, this negative effect may be compensated, at
least in part, by the presence of the two B-Spline heads, making this another
approach to consider.

The proposed methodology also presents limitations. The first open chal-
lenge regards the possible closure of the LV base in the prediction (Fig. 4, top).
A strategy to correct this problem consists in repeating the training while in-
cluding a classifier to identify if the shape of the predicted LVM is physiologically
correct (e.g., it has a ‘U’ versus an ‘O’ shape). Another strategy to reinforce a
physiologically correct LV anatomy could follow the work presented in [8]. Ad-
ditionally, one could segment the LVM first and then use the LVM segmentation
as starting point to estimate the LVC. As this strategy reverses the current order
(the current pipeline uses the LVC segmentation as an additional input channel
for the LVM-UNetAG), transfer learning could not be directly applied. However,
predicting the LVC from the LVM could eliminate the over-prediction at the
LVM base. A second challenge with our current approach consists in occasion-
ally predicting multiple LV chambers (Fig. 4, bottom). As multiple chambers
are usually predicted only in one cardiac phase, presenting the UNetAG with
images from different phases (e.g., ED, MS, and ES) could benefit the predic-
tions. However, this solution may not be feasible with small datasets as multiple
images could not be segmented independently, effectively reducing further the
size of the dataset. Several of these approaches are currently being implemented
to improve the proposed model for LA MRI segmentation.
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