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We study a class of Legendrian surfaces in contact five-folds by encoding their wave-
fronts via planar combinatorial structures. We refer to these surfaces as Legendrian
weaves, and to the combinatorial objects as N –graphs. First, we develop a diagram-
matic calculus which encodes contact geometric operations on Legendrian surfaces as
multicolored planar combinatorics. Second, we present an algebrogeometric characteri-
zation for the moduli space of microlocal constructible sheaves associated to these Leg-
endrian surfaces. Then we use these N –graphs and the flag moduli description of these
Legendrian invariants for several new applications to contact and symplectic topology.

Applications include showing that any finite group can be realized as a subquotient
of a 3–dimensional Lagrangian concordance monoid for a Legendrian surface in
.J 1S2; �st/, a new construction of infinitely many exact Lagrangian fillings for Leg-
endrian links in .S3; �st/, and performing Fq–rational point counts that distinguish
Legendrian surfaces in .R5; �st/. In addition, we develop the notion of Legendrian
mutation, studying microlocal monodromies and their transformations. The appendix
illustrates the connection between our N –graph calculus for Lagrangian cobordisms
and Elias, Khovanov and Williamson’s Soergel calculus.
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3590 Roger Casals and Eric Zaslow

Legendrian fronts arise naturally in several areas: in topology, as Cerf diagrams of
families of smooth functions; in differential equations, as Stokes diagrams of an irregular
singularity; and in analysis, as wavefront sets of distributions, generalizing the original
context of wavefronts in geometric optics. This article studies Legendrian surfaces
through the combinatorics of their wavefronts and develops the theory of N –graphs,
planar structures encoding front singularities. The moduli space of simple sheaves
microsupported on the Legendrian surface becomes an incidence problem for flags of
vector spaces, as dictated by the N –graph. We exploit the connections between the
combinatorics of N –graphs, algebraic geometry and cluster algebras to obtain results
in contact and symplectic topology.

1 Introduction

Legendrian knots in contact 3–manifolds — see Etnyre [45] and Geiges [60] — are
central to the study of 3–dimensional contact geometry; see Bennequin [11], Eliash-
berg [42] and Gompf [61]. The study of Legendrian knot invariants makes extensive use
of their planar front projections, both in the context of Floer theory, due to Eliashberg,
Givental and Hofer [43], Chekanov [25] and Ng [90]; and microlocal analysis, due to
Kashiwara and Schapira [70], Guillermou, Kashiwara and Schapira [66] and Shende,
Treumann and Zaslow [112]. Higher-dimensional Legendrian submanifolds have
proven equally instrumental in the study of higher-dimensional symplectic and contact
topology, including the development of Legendrian Kirby calculus by Eliashberg [41],
Gompf [61] and Casals, Murphy and Presas [23], and Lagrangian skeleta by Ruddat,
Sibilla, Treumann and Zaslow [104], Nadler [86] and Starkston [116].

In the case of 6–dimensional symplectic manifolds and their 5–dimensional contact
boundaries — see Cieliebak and Eliashberg [26] and Casals and Murphy [22] — spatial
front projections for Legendrian surfaces are available; see Arnold and Givental [7; 8].
First, we develop a multicolored planar diagrammatic calculus for the manipulation of
such Legendrian surfaces in 5–dimensional contact manifolds and their Lagrangian
projections in 4–dimensional symplectic manifolds. This diagrammatic calculus is
first used for the efficient computation of microlocal Legendrian isotopy invariants,
as we prove and illustrate throughout the manuscript. Then we provide several new
applications, including new results in higher-dimensional contact geometry and low-
dimensional symplectic topology. We also expect that this concrete description will
prove itself useful for further results, such as the computation of symplectic invariants
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Legendrian weaves: N –graph calculus, flag moduli and applications 3591

of Weinstein manifolds of Ganatra, Pardon and Shende [55, Section 6.4] and homolog-
ical mirror symmetry of Nadler [87] and Treumann and Zaslow [119]; see also [22,
Section 4.4] and Remark 6.1.

Finally, even if Legendrian weaves are a specific class of Legendrian surfaces, we can
actually use them to prove new results, such as Theorems 1.6 and 1.8 below, and the
diagrammatic calculus presented here is already being used successfully in a variety of
recent developments due to Casals, Gao, Gorsky, Gorsky, Ng, Shen and Weng [18; 17;
20; 24; 58; 59]. In studying this manuscript, we hope that the reader will find these
Legendrian surfaces as useful and fascinating as we have.

1.1 Summary of contributions

Let G be an N –graph1 drawn on a smooth surface C. The notion of an N –graph,
combinatorial in nature, is first defined in Section 2. In a nutshell, our main contributions
are as follows:

(A) Diagrammatic calculus and Legendrian weaves The construction of a Leg-
endrian surface ƒ.G/ in the 5–dimensional jet space .J 1C; �st/ associated to the
N –graph G, along with a description of Legendrian surface Reidemeister moves in
terms of combinatorial N –graphs moves. Likewise, we show that Legendrian surgeries
and Legendrian mutations, which we introduce, can be reflected by the diagrammatics
of N –graphs. This is part of a general calculus of multicolored planar diagrams that,
as we show, captures Legendrian surfaces and 3–dimensional Lagrangian cobordisms
between them. The translation from 5–dimensional contact topology to such planar
diagrammatics allows us to study contact topology through combinatorics and graph
theory. In fact, we use this combinatorial perspective to construct Lagrangian and
Legendrian surfaces that prove new results in contact topology.

(B) The microlocal sheaf theory of N –graphs A Legendrian surface ƒ� .J 1C; �st/

specifies a category of constructible sheaves on C �R with singular support constrained
by ƒ. When ƒ D ƒ.G/ for an N –graph G, we show that the moduli stack of objects
M.G/ has a combinatorial description in terms of flag varieties, which we introduce in
Section 5. This space solves an incidence moduli problem for flags of subspaces in an

1Informally, an N –graph G � C is a collection of trivalent graphs on C decorated with labels i 2 Œ1; N �

such that graphs with successive labels can only intersect at hexavalent vertices, where the six radiating
half-edges on the surface must interlace. See Definition 2.2 for details, and note that a 2–graph is simply
an embedded trivalent graph.
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3592 Roger Casals and Eric Zaslow

N –dimensional k–vector space V, with k a field, as dictated by the N –graph G. This
stack is typically an algebraic variety and can be studied by algebraic geometric and
representation-theoretic techniques. Following [66; 112; 119], this space is shown to
be a Legendrian invariant for surfaces ƒ.G/ and can be used to distinguish Legendrian
isotopy types. In addition, we explicitly give formulas for the microlocal monodromies
along certain cycles of H1.ƒ.G/; Z/ in terms of generalized cross-ratios of flags, and
their transformation under Legendrian mutations.

(C) Applications of N –graph calculus First, in Section 6 we use the diagrammatics
in (A) to study the flag moduli spaces M.G/ in (B), including their rational point
counts over finite fields Fq . This allows us to distinguish many Legendrian surfaces,
up to Legendrian isotopy and, independently, show that, for any finite group G, there
exists a Legendrian surface in .R5; �/ whose 3–dimensional Lagrangian concordance
monoid has G as a subquotient. Second, Section 7 explains how to apply N –graph
calculus to systematically study Lagrangian fillings of Legendrian links in .S3; �st/.
In particular, we use Legendrian mutations to give new families of Legendrian links
which admit infinitely many Lagrangian fillings.

Finally, given N –triangulations .C; �/ of the smooth surface C, we construct N –graphs
G.�/ such that the Lagrangian projections of the Legendrian surfaces ƒ.G.�// relate
to the Goncharov–Kenyon conjugate surfaces [63, Section 1.1.1] associated to an
N –triangulation.2 In Section 3, we provide the construction of G.�/. In Section 8, we
provide an example of how Hitchin’s nonabelianization map is described from this
viewpoint. This provides a context for the symplectic study of the cluster structures as-
sociated to moduli spaces of framed local systems of V Fock and A Goncharov [47; 48],
and certain classes of Gaiotto, Moore and Neitzke’s spectral networks [52; 53; 89; 54].
In particular, the microlocal sheaf theory of ƒ.G.�// connects, through the moduli
space M.G.�// in (B), with their spaces of flag configurations [62, Section 3].

1.2 Main results

We now elaborate upon these topics and state our results.

Diagrammatic calculus and Legendrian weaves Weinstein manifolds the symplectic
counterpart of Stein manifolds — see Cieliebak and Eliashberg [26; 27] and Casals and
Murphy [22] — place Legendrian submanifolds at the forefront of higher-dimensional
contact and symplectic topology. Here we define and study a new class of Legendrian

2See also Goncharov [62, Section 2.1], and Shende, Treumann, Williams and Zaslow [111, Section 4.2]
describe the conjugate surface as a Lagrangian.
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.12/

.23/

.34/

.23/

.12/

Figure 1: 3–graph (left) and 4–graph (right) on the 2–sphere S2. These
correspond to Legendrian surfaces in the contact 5–space .J 1S2; �st/ of
respective genus 3 and 4. The geometric meaning of these two figures is
explained in detail in Sections 2.1 and 2.3.

surfaces ƒ.G/ in contact 5–manifolds, associated to an N –graph G, building on our
previous works [21; 119]. Prior work on Legendrian surfaces of Ekholm, Ng and
Shende [38; 109] has focused on the class of Legendrian tori ƒK � .T 1S3; �std/

arising as the conormal torus of a smooth knot K �S3. The Legendrian surfaces ƒ.G/

we study provide a second infinite family of Legendrian submanifolds whose contact
topology and sheaf invariants can be understood. Their geometry is governed by the
combinatorial data of the N –graph G. Figure 1 depicts two examples of N –graphs,
representing Legendrian surfaces of genus 3 (left) and 4 (right).

We study three geometric operations for Legendrian surfaces in 5–dimensional con-
tact manifolds. These are Legendrian isotopies [7; 26; 60], exact Lagrangian cobor-
disms — see Arnold [5], Bourgeois, Sabloff and Traynor [15] and Ekholm, Honda and
Kálmán [37] — and Legendrian mutations, which we define in Section 4. Lagrangian
cobordisms of indices 1 and 2 correspond to Legendrian 0– and 1–surgeries. We estab-
lish a correspondence between each of these three types of geometric operations and
the combinatorics of N –graphs. In addition, we describe a combinatorial stabilization
of an N –graph, which can be understood as a 5–dimensional analogue of the Markov
stabilization of a Legendrian braid; see Rolfsen [101] and Prasolov and Sossinsky [99].
Part of these results are summarized in the following two theorems (see Section 4 for
details), which are developed in the text:

Theorem 1.1 (diagrammatics for Legendrian weave calculus, I) Let G be a local N –
graph. The combinatorial moves in Figures 2 and 3 are Legendrian isotopies for ƒ.G/.
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I

.i�1;i/

.i;iC1/

.i�1;i/

II

III IV

V .i�1;i/

.j;jC1/

S
G.1;:::;N /

.12/

.23/

.N�2;N�1/

.N�1;N /

.N;NC1/

G.1;:::;N /

Figure 2: Combinatorial moves for Legendrian isotopies of surfaces ƒ.G/.
Moves I–V are local Legendrian isotopies in the 1–jet space .J 1R2; �st/.
Move S (bottom) is local in .J 1S2; �st/ after satelliting to the Legendrian
unknot ƒ0 � .R5; �st/. See Section 2 for precise details on the geometric
concepts represented by these pictures.

Theorem 1.2 (diagrammatics for Legendrian weave calculus, II) Let G be a local
N –graph. The combinatorial moves in Figure 4 are Legendrian surgeries , of indices
0, 1 and 2, Legendrian mutations and connected sums with the standard and Clifford
tori.

Theorems 1.1 and 1.2 provide an efficient diagrammatic calculus to manipulate the
Legendrian surfaces ƒ.G/ associated to N –graphs G. We refer to the Legendrian
surfaces ƒ.G/ as Legendrian weaves, due to the resemblance of their Legendrian
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VII VIII

IX X

XI XII

Figure 3: Combinatorial moves for Legendrian isotopies of surfaces ƒ.G/.
These are homotopies of spatial wavefronts involving A3–swallowtail singu-
larities. Section 2 explains the geometric meaning of these pictures.

.1/

.i�1;i/

.2/

.3/ .4/

.5/ .6/

Figure 4: Combinatorial moves for surfaces ƒ.G/ corresponding to Legen-
drian surgeries, mutations and tori connected sums. See Section 2 for details.
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fronts to a weaving pattern; see Definition 2.7. Theorems 1.1 and 1.2 are geometric
in nature and are proven by manipulating Legendrian fronts for Legendrian surfaces
in five dimensions. This is the content of Section 4, as part of our study of generic
3–dimensional front singularities and their homotopies. In addition, Section 3 provides
several combinatorial constructions of Legendrian surfaces ƒ � .S5; �st/ which are
used in our applications in Sections 6, 7 and 8.

Remark 1.3 The Legendrian weaves ƒ.G/ � .J 1C; �st/ associated to an N –graph
G � C admit spatial wavefronts �.ƒ.G// � C �R with front singularities solely of
types3 A2

1, A3
1 and D�

4 , following V I Arnold’s notation [5; 7]. That said, their satellites
�.ƒ.G// � .Y; �st/ typically acquire A2–, A2A1– and A3–singularities. Satellites will
be introduced and discussed in Section 4.2; as an example, the satellite of ƒ.G/ along
the standard Legendrian unknot ƒ0 � .R5; �st/ necessarily develops A2–singularities.
In addition, the standard 5–dimensional Legendrian Reidemeister surface moves include
the creation of A3–singularities, and the interaction of A2– and A3–singularities yield
a DC

4 –singularity. These Legendrian singularities and 3–dimensional Reidemeister
moves will also be discussed in Section 4.

The microlocal sheaf theory of N –graphs The relationship between sheaf theory
and contact and symplectic geometry — see Nadler and Zaslow [88; 85], Guillermou,
Kashiwara and Schapira [66] and Guillermou and Schapira [67] — provides invariants
of Lagrangian and Legendrian submanifolds up to Hamiltonian and contact isotopies —
see Shende, Treumann, Williams and Zaslow [112; 111] and Casals and Gao [18].
These invariants are an alternative to the more analytical Floer-theoretic methods of
Ekholm, Etnyre, Ng and Sullivan [36; 33; 34], and have recently been shown by
Ganatra, Pardon and Shende to contain equivalent data [55; 57; 56].

Let G be an N –graph on C, ƒ.G/ � J 1.C / its Legendrian surface, and C.G/ the
category of simple constructible sheaves on C �R microlocally supported along ƒ.G/.
In Section 5, we describe the moduli space of objects in C.G/ in terms of the com-
binatorics of G. Specifically, we define the flag moduli space M.G/ of an N –graph
G � C, an algebraic stack — often a variety — as being described by explicit relations
among elements in the flag variety GL.N; k/=B, where B is the Borel subgroup of
upper triangular matrices. Already when N D 2, the number of rational Fq–points
of M.G/ for a finite field Fq is, up to a factor, the chromatic polynomial of the dual

3The A2
1–singularity corresponds to a crossing, and the A3

1–singularity is given by three planes intersecting
transversely at a point. The A2–singularity corresponds to a simple cusp, A3–singularities are swallowtails,
and A2A1–singularities are obtained by intersecting a cusp with a linear space.
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graph evaluated at q C 1 D j.GL.2; Fq/=B/.Fq/j [119], and hence the moduli stack
M.G/ geometrizes a familiar graph-theoretic construction.

For general N, this algebraic space M.G/ is the moduli space of an incidence problem
between flags and their stabilizing monodromies. It has two particular virtues. First,
M.G/ changes explicitly under certain combinatorial moves of the N –graph G; thus,
each time we can simplify G with our moves from Theorems 1.1 and 1.2, we get closer
to solving the moduli problem via purely diagrammatic techniques. Second, M.G/

is an invariant of the Legendrian isotopy class of ƒ.G/ � J 1.C /. In short, M.G/

is defined purely in terms of the combinatorics of the N –graph G, in a manner we
understand, and we show it geometrically describes the following invariant:

Theorem 1.4 Let C be a closed , smooth surface and G � C an N –graph. The flag
moduli space M.G/ is isomorphic to the moduli space of microlocal rank-1 sheaves4

on C �R microlocally supported along ƒ.G/ � .J 1C; �st/.

After the work of Guillermou, Kashiwara and Schapira [66], which constructs an
equivalence of sheaf categories from a Legendrian isotopy, we conclude that the
algebraic isomorphism type of the moduli stack M.G/ is a Legendrian isotopy invariant
of the Legendrian surface ƒ.G/ � .J 1C; �st/. In fact, it will remain a Legendrian
isotopy invariant for certain satellites along C � .R5; �st/, yielding a Legendrian
invariant for ƒ.G/ � .R5; �st/. Theorem 1.4, proven in Section 5, is a generalization
to N � 2 of [119, Section 4] and the 2–dimensional surface analogue of the results in
[112; 111], where the computation of the moduli space of microlocal rank-1 sheaves for
1–dimensional Legendrian braid closures in R3 is expressed in algebraic combinatorial
terms.

Applications of N –graph calculus Sections 6, 7 and 8 exhibit a gallery of compu-
tations and uses of the flag moduli space M.G/, including the study of M.G/ as a
complex variety and its finite Fq–counts. For instance, our techniques readily prove
the following sample result:

Theorem 1.5 (flag moduli for ladder graphs) Let Ln �S2 be the .2n/–runged ladder
3–graph of Figure 5 and let be Fq a finite field. Then the flag moduli space M.Ln/ has
orbifold point count

jM.Ln/.Fq/j D
q2n�3 � qn�2 C qn�1 C q � 1

.q � 1/2
:

4Microlocal rank-1 sheaves are also called microlocally simple or just simple [70, Chapter 7].
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Figure 5: The bipartite ladder 3–graph Ln, where the right and left sides are
identified after 2n rungs.

In particular , the Legendrian 3–links of 2–spheres ƒ.Ln/ and ƒ.Lm/ are Legendrian
isotopic if and only if n D m.

The infinitely many Legendrian surfaces ƒ.Ln/ in Theorem 1.5 for n 2 N are pair-
wise smoothly isotopic. The distinct finite Fq–counts of their flag moduli spaces
M.ƒ.Ln//.Fq/ give a direct proof that they are not Legendrian isotopic as Legendrian
surfaces in .R5; �st/. Also, adding the ladder 3–graphs in Theorem 1.5 into a face of
an arbitrary N –graph G typically changes the flag moduli space of M.G/ and thus
produces another Legendrian surface, smoothly isotopic but not Legendrian isotopic
to ƒ.G/.

In general, the computation of these Legendrian invariants translates into an incidence
moduli problem, which can itself be simplified with our diagrammatic techniques,
and then possibly solved with methods from algebraic geometry. In particular, we
will understand the effect of combinatorial moves for N –graphs G on the Legendrian
invariants M.ƒ.G//. This will frequently allow for the computation of this moduli
stack and distinguish Legendrian weaves up to Legendrian isotopy. This yields a wide
range of results in the vein of Theorem 1.5, as we will illustrate. From this perspective,
Legendrian weaves, which are in general surfaces of any genus, constitute an attractive
complement to the family of knot conormals.

We now illustrate a second application of our flag moduli stacks, detailed in Section 6.
Let ƒ � .S5; �st/ be an embedded Legendrian surface and let L.ƒ/ be the space of
embedded Legendrian surfaces which are Legendrian isotopic to ƒ, with basepoint ƒ.
Let L.ƒ/ be the monoid of 3–dimensional exact Lagrangian concordances in the
symplectization .S5 �R.t/; et�st/, up to Hamiltonian isotopy, based at ƒ. The flag
moduli spaces M.G/ will be used to show the following result:

Theorem 1.6 Let G be an arbitrary finite group. Then there exists a Legendrian
surface ƒG � .S5; �st/ such that :

Geometry & Topology, Volume 26 (2022)
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(i) G is a subquotient of the fundamental group �1.L.ƒG//.

(ii) G is a subquotient of the 3–dimensional Lagrangian concordance monoid L.ƒG/.

In fact , the latter is the image of the former via the graph map gr W �1.L.ƒ// ! L.ƒ/.

Theorem 1.6 essentially states that the study of the 3–dimensional Lagrangian concor-
dance monoid can be as complicated as any finite group. The proof of Theorem 1.6
will exhibit the advantage of using combinatorial constructions on an N –graph G

to extract contact and symplectic information in five and six dimensions. Note that,
for 1–dimensional max-tb Legendrian torus links, T Kálmán provided finite cyclic
subgroups of the 2–dimensional Lagrangian concordance monoid [69], and J Sabloff
and M Sullivan provided finite cyclic subgroups of the 3–dimensional Lagrangian
monoid for certain Legendrian surfaces [107].5 Sections 5, 6 and 7 contain several
computations and applications of the flag moduli spaces M.G/.

Remark 1.7 The Legendrian DGA of a Legendrian knot in .R3; �st/ can be com-
puted algorithmically. The computation of Floer-theoretic invariants of general Leg-
endrian submanifolds in arbitrary higher dimensions represents a challenge — see
Dimitroglou Rizell [30] and Ekholm, Etnyre and Sullivan [35; 36] — with recent
progress in this direction due to Rutherford and Sullivan [105; 106]. The class of
Legendrian 2–tori arising as knot conormals is understood — see Ng [91] and Ekholm,
Ng and Shende [38; 109] — and our results, in line with Theorems 1.5 and 1.6, aim at
achieving both a geometric and sheaf-theoretic understanding for the class of Legendrian
weaves ƒ.G/.

For a third class of applications, consider an N –graph G � D2 with boundary. The
Lagrangian projection of the Legendrian weave ƒ.G/ yields6 an exact Lagrangian
filling of a Legendrian link in .S3; �st/, associated to @G. In Section 7, we will
construct different N –graphs G1 and G2 with @G1 D @G2, and explain how microlocal
monodromies can be used to show that the Lagrangian projections of the Legendrian
weaves ƒ.G1/ and ƒ.G2/ are not Hamiltonian isotopic relative to their 1–dimensional
Legendrian boundaries. In fact, N –graph calculus, in combination with Legendrian
mutations, allows us to construct infinitely many distinct embedded Lagrangian fillings
for certain Legendrian knots. The following family of Legendrian links is studied in
detail in Section 7.3:
5The results of [107] are stronger in higher dimensions, but for Legendrian surfaces the only finite
subgroups of the special orthogonal group SO.2/ must be cyclic; see [107, Remark 4.7].
6A combinatorial criterion for embeddedness, which will be useful, is described in Lemma 7.4.
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1

2
3

6
4

5

.�2/
.�2/

.�2/.�2/

.�3/

1

Figure 6: The 3–graph for one of the infinitely many Lagrangian fillings of
the Legendrian link ƒ1;1 � .S3; �st/, as featured in Theorem 1.8. Iterative
3–graph mutations will yield new 3–graphs G � D2 representing pairwise
non-Hamiltonian isotopic Lagrangian fillings of ƒ1;1.

Theorem 1.8 Let ƒs;t D ƒ.ˇs;t / � .S3; �st/ be the Legendrian link given by the
standard satellite of the positive braid

ˇs;t D .�3
1 �2/.�3

1 �2
2 /s�3

1 �2.�2
2 �3

1 /t .�2�3
1 /.� tC1

2 �2
1 �sC2

2 /; s; t 2 N; s; t � 1:

Then ƒs;t � .S3; �st/ admits infinitely many embedded exact Lagrangian fillings in
.D4; �st/ realized as 3–graphs Gs;t � D2 and their Legendrian mutations.

The 3–graphs representing the infinitely many Lagrangian fillings in Theorem 1.8 are
diagrammatically interesting, with their complexity increasing as we geometrically
realize the iterates in an infinite sequence of quiver mutations. For instance, Figure 6
depicts an example of a Lagrangian filling associated to such a 3–graph, obtained after
five mutations. Fortunately, the local mutations rules that we develop in Section 4.9
will allow us to control certain infinite sequences of N –graphs mutations and construct
infinite sequences of pairwise distinct Lagrangian fillings.

Theorem 1.8 is an appropriate complement to the recent results [18], as the construction
of the infinitely many Lagrangian fillings in Theorem 1.8 is obtained directly by
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Legendrian mutations.7 In more generality, Section 7 develops the relation between
the cluster algebra associated to the intersection quiver of a Lagrangian filling and the
Legendrian mutations from Section 4.8. In particular, N –graph calculus can serve as an
effective tool to show that a given Legendrian link admits infinitely many Lagrangian
fillings when the quiver is of infinite mutation type8 and its vertices are represented
by mutable 1–cycles in the N –graph G. In fact, any Legendrian link ƒ.ˇ/ � .S3; �st/

associated to a positive braid ˇ 2BrCN admits a Lagrangian filling — oftentimes many —
given by an N –graph G � D2.

A final application of N –graph calculus for Legendrian weaves develops the con-
nection of symplectic topology to Fock and Goncharov’s cluster varieties of framed
local systems [48] (see also [62; 111]), and should relate to the spectral networks of
Gaiotto, Moore and Neitzke [52; 53; 54]. For that, consider N 2 N and � an ideal
N –triangulation of the smooth punctured surface C. In Section 3, we present a new
construction that associates an N –graph G.�/ to an ideal N –triangulation .C; �/. In par-
ticular, each ideal N –triangulation � yields a Legendrian surface ƒ.G.�//� .J 1C; �st/.
In general, different N –triangulations lead to smoothly isotopic Legendrian surfaces
which are not Legendrian isotopic, and they are distinguished by their flag moduli
space M.G.�//. This also relies on the connection between microlocal monodromies
and cluster algebras.

The N –graph G.�/ and the Legendrian weave ƒ.G.�// are both constructed with a
local model on an N –triangle. Figure 7 depicts a Legendrian weave associated to the
4– and 5–graphs dual to 4– and 5–triangles. We will prove that their local flag moduli
space is a complex torus by using Theorem 1.1 and the flag moduli space results from
Section 5. The precise statement, proven in Section 8, reads as follows:

Theorem 1.9 Let G.tN / be the N –graph associated to an N –triangle tN , and let k a
field. The flag moduli space of G.tN / is an

�
N�1

2

�
–dimensional complex torus , i.e.

M.tN ; G.tN /I k/ Š .k�/.
N�1

2 /:

The combinatorial number
�
N�1

2

�
appears geometrically as the rank of the first homology

class of the Legendrian weave ƒ.G.tN //. Now, the class of Legendrian weaves

7In contrast, the construction for torus links given by the first author in [18] uses Lagrangian concordances
of infinite order. In that context, see also the upcoming work [58], which will show that the square of
the Donaldson–Thomas transformation — see Goncharov and Shen [64] — is a Lagrangian concordance,
oftentimes of infinite order.
8This is generically the case.
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.34/

.23/

.12/

.12/

.45/

.34/

.23/

Figure 7: The Legendrian weave associated to a 4–triangle (left) and to a
5–triangle (right). The open Legendrian surface for the 4–triangle has genus
one and two boundary components. The Legendrian surface for the 5–triangle
has genus two and three boundary components.

ƒ.G.�// arising from ideal N –triangulations � of punctured surfaces is of central
interest in the study of moduli spaces of framed local systems for the Lie group
GL.N; C/ [48]. Indeed, the Legendrian surface ƒ.G.�// is a compactification of
the Legendrian lift of the Goncharov–Kenyon Lagrangian conjugate surface L� �

.T �C; �st/; see [62; 111]. Thus, the nonabelianization technique, expressing higher-
rank local systems in S in terms of rank-1 local systems on L� , can also be recovered
by studying these Legendrian weaves ƒ.�/; see Section 8.2 for an explicit computation.
In particular, the set of Legendrian surfaces fƒ.�/g� provides a symplectic geometric
realization of the set of cluster charts in this moduli spaces of framed local systems.
This parallels the work of [111] on conjugate surfaces. See Section 8 for details.

Basic notation and color code The germs of singularities of caustics and wavefronts
are referred to according to the classical notation from the theory of singularities,
following Arnold [7]. Given a subset X � Y of a smooth manifold Y, we denote by
Op.X/ an arbitrarily small but fixed open neighborhood of it, following M Gromov [65].

Regarding colors, the two colors blue and red are associated to edges with adjacent
transpositions, i.e. edges with consecutive transpositions .i � 1; i/ and .i; i C 1/ for a
choice 2 � i � N � 1. The same holds for colors red and yellow used together. The
three colors blue, red and yellow together denote edges labeled by three consecutive
transpositions .i � 1; i/, .i; i C 1/ and .i C 1; i C 2/, respectively, for a choice 2 � i �

N � 2. In a diagram with the two colors blue and yellow, without red, these two colors
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denote any edges with disjoint transpositions. The color orange will exclusively be
used to denote cusp edges, corresponding to edges of A2–singularities. Finally, we use
purple dots (or black dots) for D�

4 –singularities, yellow dots for A3
1–singularities and

orange dots for A3–swallowtail singularities.
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2 N –graphs and Legendrian weaves

In this section we introduce the notion of an N –graph G and construct the Legendrian
surface ƒ.G/ associated to it. The interaction between the combinatorics of G and the
contact geometric invariants of ƒ.G/ is the starting focus of this article. See [14; 29]
for introductory material on graph theory and [45; 60] for the basics of contact topology.

2.1 N –graphs

Let C be a smooth surface and N 2 N a natural number. An embedded graph G � C

is said to be trivalent if all its vertices have degree three. Such a vertex is depicted in
Figure 8, left.

.i�1; i/

.i; iC1/

.i�1; i/

Figure 8: Trivalent vertex (left) and hexagonal point (right).
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Definition 2.1 Let J and K be two trivalent graphs embedded in C, having an isolated
intersection point at a common vertex v 2 J \ K. The intersection v is said to be
hexagonal if the six half-edges in C incident to v interlace, i.e. alternately belong to J

and K.

Figure 8, right, depicts a hexagonal vertex, where the graph J is labeled .i � 1; i/ in
blue and K is labeled .i; i C 1/ in red. These hexagonal intersection points will be
referred to as hexagonal .i; iC1/–points.

Definition 2.2 An N –graph G on a smooth surface C is a set G D fGig1�i�N�1 of
N � 1 embedded trivalent graphs Gi � C, possibly empty or disconnected, such that
Gi is allowed to intersect GiC1 only at hexagonal points for 1 � i � N � 2.

Two examples of N –graphs on the plane C D R2 are depicted in Figure 1. The
(trivalent) vertices are depicted by purple or black dots and the hexagonal intersection
points by yellow dots. Note that Gi ; Gj � C are allowed to intersect (anywhere) if
j ¤ i; i ˙ 1, and they may intersect nontransversely.

Remark 2.3 We can think of an N –graph as an immersed graph with colored edges,
the color i corresponding to the graph Gi for 1� i �N �1. Edges labeled by numbers
differing by two or more may pass through one another (hence the immersed property,
which is met generically), but not at a vertex. In particular, a 3–graph is a bicolored
graph with monochromatic trivalent vertices and interlacing hexagonal vertices.

Consider �.N / WD f.i; i C 1/ 2 SN W 1 � i � N � 1g � SN , the subset of simple
transpositions, and let �i WD .i; i C 1/. We label the edges of an N –graph G D fGig

which belong to the graph Gi with the transposition �i , as we have done in Figure 1.
These edges will also be referred to as �i –edges, or i–edges. By definition, the trivalent
vertices belonging to the graph Gi have three incident �i –edges. The hexagonal points
in Gi \GiC1 have six edges incident to it, alternately labeled with the transpositions
�i and �iC1 in �.N /. Figure 8 depicts the local model for the trivalent vertices of the
cubic graph Gi�1 and a hexagonal intersection point in Gi \ Gi�1. Observe that a
2–graph is, by definition, an embedded trivalent graph.

The study of N –graphs brings the combinatorial ingredients of the article, and we
provide in Section 3 several combinatorial constructions of N –graphs. For now, we
introduce its geometric counterpart, the Legendrian surface associated to an N –graph.
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2.2 Singularities of wavefronts

The Legendrian surface ƒ.G/ associated to an N –graph G � C is an embedded
Legendrian in the 1–jet space .J 1C; �st/. The Legendrian surface ƒ.G/ is described by
using germs of Legendrian wavefronts [7, Section 3.1] in the Darboux chart .R5; �st/,
where the contact 4–distribution �st is defined as

�st D ker ˛st; where ˛st WD dz �y1 dx1 �y2 dx2;

and .x1; x2; y1; y2; z/2R5 are Cartesian coordinates in R5. This is the local model for
any contact 4–distribution in the neighborhood of a point [60, Theorem 2.5.1]. Since
�st D y1 dx1 Cy2 dx2 is the Liouville form of the cotangent bundle .T �R2; !st/, this
Darboux chart .R5; �st/ is contactomorphic to the 1–jet space .J 1R2; kerfdz ��stg/.

The Legendrian fibration � W R5 ! R3, �.x1; x2; y1; y2; z/ D .x1; x2; z/, allows us
to assign a smoothly embedded Legendrian surface ƒ.†/ � R5 in the domain of �

to certain singular surfaces † � R3 in its target. The coordinates .y1; y2/ of the
Legendrian ƒ.†/ assigned to † are

y1 D x1–slope of the tangent plane T.x1;x2;z/†;

y2 D x2–slope of the tangent plane T.x1;x2;z/†:

In a local parametrization � W R2 ! R3 of †, �.u; v/ D .u; v; z.u; v//, this reads

y1 D @uz.u; v/; y2 D @vz.u; v/:

This assignment is dictated by the vanishing of the contact 1–form ˛st along ƒDƒ.†/.
The 3–dimensional case is explained in detail in [60, Section 3.2]; the general case is
discussed in [8, Chapter 5; 35, Section 3.2; 22, Section 2]. The germs of singularities
of † that lift to an embedded Legendrian ƒ and, equivalently, the singularities of the
map �jƒ are restricted. These are known as singularities of fronts or, equivalently,
Legendrian singularities [8]. By definition, a singular surface † obtained as the image
of an embedded Legendrian submanifold via a Legendrian mapping is referred to as a
(wave)front.

Remark 2.4 The classification of generic singularities of spatial fronts † � R3 is
stated in [8, Theorem 3.1.1], and that of generic singularities of a 1–parametric family
of spatial fronts † � R3 is explained in [8, Theorem 3.4.2].

The main spatial wavefronts † that we use have three different germs of singularities
of Legendrian fronts — A2

1, A3
1 and D�

4 — which we now describe. We emphasize
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A2
1

A3
1

A2
1

D�
4

A2
1

A2
1

A2
1

Figure 9: The A2
1–spatial front (left), the germ of the A3

1–Legendrian singu-
larity (center) and the D�

4 –Legendrian wavefront (right).

that these are singularities of the wavefront projections only: the corresponding local
Legendrian surfaces are all smooth.

2.2.1 The A2
1

germ This germ is obtained as a product of a 2–dimensional planar
front with an interval. It is described by the germ of the singular surface

†.A2
1/ D f.x1; x2; z/ 2 R3

W .x2
1 � z2/ D 0g

at the origin. This wavefront is informally called an A2
1–crossing, or a crossing, and the

set of points f.x1; x2; z/2†.A2
1/ W x1 D 0; z D 0g is referred to as an edge, or segment,

of A2
1–crossings. This spatial front is depicted in Figure 9, left. Its Legendrian lift

ƒ.†.A2
1// � .R5; �st/ consists of two disjoint embedded Legendrian 2–disks.

2.2.2 The A3
1

germ The wavefront A3
1 is given by the germ at the origin of the

singular surface

†.A3
1/ D f.x1; x2; z/ 2 R3

W .x1 � z/.x1 C z/.z � x2/ D 0g � R3:

This spatial front is depicted in Figure 9, center. Considered as a germ, the origin
is the A3

1–wavefront singularity, and the codimension-1 singular strata consists of
six half-lines of A2

1–singularities. The Legendrian lift ƒ.†.A3
1// of the A3

1 germ to
.R5; �st/ consists of three disjoint embedded Legendrian 2–disks.

2.2.3 The D�
4

germ The third germ †.D�
4 / D Im.ı�4 / � R3 of a Legendrian

singularity that we use is given by the germ at the origin for the image of the map

ı�4 W R2
! R3; ı�4 .x; y/ D

�
x2

�y2; 2xy; 2
3
.x3

� 3xy2/
�
:

The D�
4 –singularity of the spatial wavefront Im.ı�4 / is at .0; 0; 0/ 2 R3. The front

Im.ı�4 / itself also has three half-lines of A2
1–crossings, intersecting at the origin. This is

depicted in Figure 9, right. The Legendrian lift ƒ.Im.ı�4 //� .R5; �st/ of the D�
4 –spatial
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front is an embedded Legendrian 2–disk. We refer the reader to [7; 119] for more
descriptions; see also Remark 2.5 below.

The connection of the above three Legendrian singularities with the Weyl groups,
justifying their nomenclature, can be found in [8, Section 3.3]. It might be relevant to
notice that D�

4 is not the germ of a singularity for a generic Legendrian wavefront, but
still a valid singularity for a given spatial wavefront. In addition, it is known that the
singularity D�

4 is generic in 1–parameter families of Legendrian fronts [7, Section 3.3].
As a result, most of the Legendrians we construct are nongeneric, in their isotopy
class, with respect to the fixed Legendrian projection. This rigidification simplifies the
analysis and combinatorics.

Remark 2.5 The D�
4 –Legendrian singularity has the property that its singular strata,

excluding A2
1–singularities, is a point, which lies in real codimension 2. This is not

the case for the majority of Legendrian surface singularities, such as the Legendrian
A3–swallowtail, cusp edges A2A1 and the purse wavefront DC

4 , the former two even
being generic. (These singularities feature in Section 4.) The geometric reason for this
codimension-2 phenomenon is the existence of the holomorphic Legendrian surface
singularity

t W C ! .J 1.C; C/; kerfdw1 �w2 dw3g/; .w1; w2; w3/ D t .w/ D
�
w2; w; 2

3
w3
�
;

whose real part is the real Legendrian singularity D�
4 . This holomorphic map is

the complexification of the real simple cusp singularities appearing in generic front
projections of embedded Legendrian knots in a Darboux chart .R3; �st/.

We also use the A2– and A2A1–front singularities, which are geometrically represented
by simple cusps in R2 times an interval, and their intersections with 2–planes. These A2–
singularities do not directly arise from an N –graph G � C, but rather from satelliting
the smooth surface C to a Legendrian surface in a contact 5–manifold .Y; �/, typically
.S5; �st/.

2.3 Legendrian weaves

Let G � C be an N –graph, as introduced in Section 2.1. The principle that associates
a Legendrian ƒ.G/ to the N –graph G is that G dictates the configuration of A2

1–
singularities (crossings) of its Legendrian wavefront. This is possible because the
singularities introduced in Section 2.2 are uniquely determined by their A2

1–front
singularities. Let us explain the construction in detail.

Geometry & Topology, Volume 26 (2022)



3608 Roger Casals and Eric Zaslow

...
...

...
...

...
...

...
...

N

iC1

i

1

N

iC1

i

1

.i;iC1/

N

iC1

i

1

.i;iC1/
.i;iC1/

.i;iC1/

N

iC2
iC1

i

1

.iC1;iC2/ .iC
1
;iC

2
/.iC1;iC2/

.i;iC1/

.i;iC1/

.i;iC1/

Figure 10: The leftmost wavefront is DN , then from left to right we find
DN .P /, where P is an edge, a trivalent vertex and a hexagonal vertex.

First, we choose the ambient contact manifold, where the embedded Legendrian surface
ƒ.G/ belongs, to be the 1–jet space of the smooth surface C. That is,

ƒ.G/ � .J 1C; �st/ D
�
f.x; z/ 2 T �C �Rg; kerfdz ��stg

�
;

where �st 2 �1.T �C / is the Liouville form [60, Section 1.4]; see [7, Example 2; 60,
Example 2.5.11] for details on the 1–jet space. The local germs described in Section 2.2
and the Legendrian front projection � W .J 1C; �st/ ! C � R allow us to assign a
Legendrian ƒ.†/� .J 1C; �st/ to a spatial wavefront †�C�R in the target, as follows.

The construction of the front ƒ.G/ � .J 1C; �st/ is obtained by gluing local wavefront
models in Ui �R for i 2 I with Ui Š D2, which are the targets of front projections
in the Darboux charts .J 1Ui ; �st/ Š .J 1D2; �st/ for i 2 I. This is formalized in the
following definition:

Definition 2.6 Let DN D D2 � f1g[ � � � [D2 � fN g � D2 �R. We consider DN as
a disconnected, horizontal wavefront. Let P � D2 � f0g be one of the following four
local models of an N –graph G � D2:

(1) A unique i–edge in D2, as drawn at the bottom of the second column in Figure 10.

(2) A unique trivalent i–vertex, as shown at the bottom of the third column in
Figure 10.

(3) A unique hexagonal .i; iC1/–point, depicted in the fourth column in Figure 10.

(4) The empty set.

Here, recall that an i–edge is an edge belonging to the graph Gi � G of the N –graph
G �D2 for 1� i � .N �1/. By definition, the Legendrian wavefront DN .P /�D2�R

associated to P is obtained as follows:
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� If P is a i–edge, insert an A2
1–intersection along the two sheets D2 � fig and

D2 � fi C 1g of the wavefront DN . This A2
1–intersection must be inserted so

that the image of the A2
1–singular locus coincides with P under the projection

D2 �R ! D2 onto the first factor.

� If P is a trivalent i–vertex, introduce a D�
4 –singularity between the two sheets

D2 � fig and D2 � fi C 1g in the wavefront D2
N . This D�

4 –singularity must
be introduced so that, under the projection D2 �R ! D2 onto the first factor,
the image of the A2

1–crossings coincides with the three edges of P and the
D�

4 –singular point is mapped to the unique trivalent vertex of P.

� If P is a hexagonal .i; iC1/–point, insert an A3
1–intersection along the three

disjoint sheets D2 � fig; D2 � fi C 1g and D2 � fi C 2g of the wavefront D2
N .

The pattern for the A3
1–wavefront must be inserted so that, under the projection

D2 �R ! D2 onto the first factor, the origin in the A3
1–singularity maps to the

unique vertex of P and the six half-lines of A2
1–crossings map to the six edges

emanating from the vertex.

These wavefronts are depicted in Figure 10. For P empty we use the front

D2
� f1g[ � � � [D2

� fN g � D2
�R:

We refer to the wavefronts DN .P / as being obtained from the wavefront DN by
weaving according to the pattern P.

Definition 2.6 describes how to weave the wavefront DN � D2 �R, which we have
fixed, according to a pattern P � D2 � f0g. To glue models, let fUigi2I be a finite
cover of C by open 2–disks Ui Š D2, refined as necessary so that each Ui contains
no more than one nonempty feature P of the N –graph G. Now, let us consider two
2–disks U1; U2 � C and two corresponding patterns P1 and P2 therein.

Suppose that the patterns P1 and P2 coincide along the intersection U1 \U2. Then we
say that P1[P2 defines a pattern in U1[U2. By definition, the wavefront †.P1[P2/

associated to P1 [P2 is obtained by considering the set-theoretical union of DN .P1/

and DN .P2/ in .U1[U2/�R. For brevity of notation, we will say that †.P1[P2/ is
obtained by weaving D2

N [D2
N � .U1�R/[.U2�R/ according to the pattern P1[P2.

Finally, the Legendrian surface associated to an N –graph is defined as follows:

Definition 2.7 Let C be a smooth surface and G � C an N –graph, the Legendrian
weave

ƒ.G/ � .J 1C; �st/

Geometry & Topology, Volume 26 (2022)



3610 Roger Casals and Eric Zaslow

is the embedded Legendrian surface whose wavefront †.G/ � C �R is obtained by
weaving the wavefront C � f1g [ � � � [ C � fN g � C � R according to the pattern
G � C.

Let f'tgt2Œ0;1� � Diffc.C / with '0 D Id be a compactly supported isotopy of the
smooth surface C. Then the Legendrian surfaces ƒ.'t .G// � .J 1C; �st/, as described
in Definition 2.7, are Legendrian isotopic relative to their boundaries. Hence, in this
article, our N –graphs G � C are considered up to such planar isotopies. Similarly,
Legendrian fronts in R3 are to be considered up to homotopy of fronts.

Thanks to Definition 2.7, the wealth of contact topology invariants [43; 35; 66; 112; 22]
can be used to define algebraic structures associated to N –graphs G � C. For instance,
the chromatic polynomial of (the dual of) a trivalent graph G — which is a 2–graph —
is contained in the Floer-theoretical invariants of the Legendrian weave ƒ.G/ [21; 119].
Conversely, from a contact topology perspective, the connection to combinatorics and
algebraic geometry provides a new tool for computing contact invariants of higher-
dimensional Legendrian submanifolds. This will be the focus of subsequent sections.

Remark 2.8 The 1–dimensional analogue of a Legendrian weave is a Legendrian
braid, i.e. a positive braid. Indeed, an N –graph in a 1–manifold I is defined to be a set
of points, each point labeled with a permutation in �.N / � SN . The only planar front
singularity that we can use is A2

1, corresponding to a crossing, necessarily positive.
Thus, 1–dimensional weaving consists of introducing positive crossings to the N strands

D1
N D I � f1g[ � � � [ I � fN g � I �R

and concatenating them side by side. This is precisely the front for an N –strand
positive braid [99], which lifts to a Legendrian link in .J 1S1; �st/ [60, Section 3.3.1].
The Legendrian weaves introduced in Definition 2.7 are thus the Legendrian surface
generalization of Legendrian braids.

2.4 Smooth topology of weaves

Let G be an N –graph in a surface C ; in this subsection we address the smooth topology
of the Legendrian surface ƒ.G/ � .J 1C; �st/.9 The smooth invariants of ƒ.G/ are the
first homology H1.ƒ.G/; Z/, in particular its genus g.ƒ.G// 2 N, and the number of

9This is necessary for our applications, especially in the study of microlocal monodromies and Lagrangian
fillings in Section 7 and the nonabelianization map in Section 8.

Geometry & Topology, Volume 26 (2022)



Legendrian weaves: N –graph calculus, flag moduli and applications 3611

boundary components j@ƒ.G/j. For simplicity, we assume that C is a closed surface,
and thus @ƒ.G/ D∅. We also assume that G is a connected N –graph, i.e. the union
of the graphs Gi for i 2 I is a connected topological subspace of C.

The surface ƒ.G/ is a branched N –fold cover over C simply branched over the trivalent
vertices of G. Indeed, the image of ƒ.G/ by the projection J 1C !T �C along the Reeb
R–direction yields an immersed surface L.G/ � T �C, and the canonical projection
T �C ! C restricts to L.G/ as an N –fold branched cover. The branch set is the image
of the set of D�

4 –singularities. As a result, the genus of ƒ.G/ is provided by the
Riemann–Hurwitz formula

�.ƒ.G// D N�.C /� v.G/; i.e. g.ƒ.G// D 1
2
.v.G/C 2�N�.C //;

where v.G/ is the number of (trivalent) vertices of G.

Remark 2.9 If the surface C has boundary, each boundary component of @C con-
tributes to a piece of the boundary @ƒ.G/ of the Legendrian surface ƒ.G/� .J 1C; �st/.
Let � 2 N be the number of cycles in the (minimal-length) factorization of the mon-
odromy of the branched cover along a given boundary component of @C. Then that
one boundary component of C contributes to � distinct boundary components for the
Legendrian surface ƒ.G/.

Example 2.10 The Legendrian weaves ƒ.G1/; ƒ.G2/ � .J 1.S2/; �st/ associated to
the 3– and 4–graphs in Figure 1 are closed Legendrian surfaces of genus 3 and 4,
respectively. Should the graphs G1; G2 � R2 be considered in the 2–plane R2, instead
of the 2–sphere S2, the Legendrian surfaces ƒ.G1/; ƒ.G1/ � .J 1.R2/; �st/ have
genus 3 and 4, with three and four boundary components, respectively.

Now, the Z2–monodromy of ƒ.G/ along a nontrivial 1–cycle of the base C is trivial,
and thus the contributions of the graph G to H1.ƒ.G/; Z/, as expressed by the above
formula, can be considered by studying planar pieces. Let us then assume that g.C /D 0

and construct 1–cycles in H1.ƒ.G/; Z/ in terms of the edges of the N –graph.

There are two direct descriptions of 1–cycles 
 2 H1.ƒ.G/; Z/:

(1) Each edge e of the graph G connecting two trivalent vertices defines a 1–cycle

.e/ 2 H1.ƒ.G/; Z/. The projection of this 1–cycle onto the pattern P with two
trivalent vertices is depicted in orange in Figure 11, left. In order to construct 
.e/

from the orange curve, lift a point in the orange curve to the annulus ƒ.P /, to either
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.e/

.i;iC1/

e


.e1; e2; e3/

.i;iC1/

e3

e2

e1

.iC1;iC2/

3
2

1

1

2

1

2

1

1

Figure 11: Two combinatorial descriptions of 1–cycles in H1.ƒ.G/; Z/.

one of the two sheets, and uniquely follow the lift along the orange curve. Since
the lift is isotopic to one of the boundary components of the annulus, it generates
H1.ƒ.P /; Z/ Š Z. The 1–cycle 
.e/ is drawn directly in the wavefront projection in
Figure 12. We refer to these 1–cycles as monochromatic edges or (short) I–cycles.

There is a simple extension of this construction, depicted in Figure 13. Consider a
trivalent vertex v 2 Gi and a linear chain of edges e1; e2; : : : ; ek in G such that e1

connects v to a hexagonal vertex, ei connect two hexagonal vertices for 2 � i � k � 1

and ek connects the free hexagonal vertex in ek�1 to a trivalent vertex. Suppose further
that ej and ejC1 meet at opposite rays of the hexagonal vertex between them for
1 � j � k � 1. Then the orange curves in the patterns all lift to 1–cycles which are
essential10 in the surfaces ƒ.P / for the corresponding patterns P. These 1–cycles are
referred to as long edges or long I–cycles.


.e/

123 4 5 6

3

2

1

6

5

4

Figure 12: The first type of 1–cycle 
.e/ drawn in the wavefront (left) and in
a vertical slicing (right). Each slice on the left is labeled by a number. The
1–cycle 
.e/ appears as five-pointed stars in each slice as shown on the right.

10The topology of ƒ.P / is that of an annulus union disjoint 2–disks.
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...


.e1; e2/

.iC1;iC2/ .i;iC1/

e1 e2


.e1; e2; e3/

.i;iC1/
.iC1;iC2/ .iC2;iC3/

e1

e2
e3


.e1; e2kC1/

.iC1;iC2/ .i;iC1/

e1 e2kC1

Figure 13: Descriptions of 1–cycles in H1.ƒ.G/; Z/ of the first type, gener-
alizing 
.e/ in Figure 11, left. The lift of the orange curves generate the first
homology H1.ƒ.P /; Z/ Š Z for the corresponding patterns P.

(2) Three edges e1, e2 and e3 of a graph Gi connecting a hexagonal vertex with three
trivalent vertices in Gi define a cycle 
.e1; e2; e3/ 2 H1.ƒ.G/; Z/. This is depicted
in Figure 11, right. The 1–cycle 
.e1; e2; e3/ is drawn in the wavefront projection in
Figure 14. We refer to this type of 1–cycle 
.e1; e2; e3/ as a Y–cycle.

We can also combine the above two constructions to associate a 1–cycle to any tree
with leaves on trivalent vertices that passes directly through any hexagonal vertices,
i.e. entering and exiting along opposing edges; see Figure 100 for an example. For
such a tree, we refer to the pieces corresponding to edges as I–pieces, or edges, and the
pieces that go through a hexagonal vertex as Y–pieces. In addition, we can decorate
such 1–cycles with a number, indicating higher multiplicity.11 If we require the curves
in the Legendrian surface to be connected, then higher multiplicity in general requires
these curves to be immersed.

e1 e2

e3

9
8
7
3 4 5 6
2
1

3

2

1

6

5

4

9

8

7

Figure 14: The second type of 1–cycle 
.e1; e2; e3/ drawn in a slicing of the
wavefront associated to the pattern on the left.

11Higher multiplicities will rarely feature in this manuscript, only in relation to Theorem 7.14.
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Remark 2.11 Let ƒ.G/ � .J 1C; �st/ be a connected surface and G � C a connected
N –graph. The trivalent vertices of the N –graph G �C can be assumed to belong to G1.
This follows once we impose certain equivalence relations on the set of N –graphs,
which is done in Section 4.

2.5 Combinatorial homology

Let G � C be an N –graph. We present a combinatorial model for the (chain-level)
simplicial homology of ƒ.G/. This can be achieved in general, but for this subsection
we assume that G is a planar 3–graph, i.e. C D S2 and N D 3. We will think of G as
bicolored; see Remark 2.3. This will ease notation, while containing the essential idea
for higher N 2 N and higher-genus C. The results in this subsection will not be used
in the rest of the manuscript; we have included them for completeness.

The edges, faces and vertices of G lift to edges, faces and vertices of the Legendrian
surface ƒ WD ƒ.G/. Let us suppose that G and ƒ are connected, and that the faces
of G define a polyhedral decomposition .F; E; V / of the sphere. This decomposition
lifts to a polyhedral decomposition of ƒ, as follows. Each face, edge and hexagonal
vertex of G has three lifts to ƒ; each trivalent vertex has two lifts. This yields

�.ƒ/ D 3 � 2� v;

where v D jV.G/j is the number of trivalent vertices. For a point P 2 S2, we write P1,
P2 and P3 for the (up to) three preimages in nondecreasing order of the z–coordinate.
If P is on G, we must choose a nearby point to define the ordering of z–coordinates of
sheets. If P is a trivalent vertex with label .12/, in blue, then P1 DP2 while P2 DP3 for
a label .23/, in red. Lifts of edges and faces are labeled analogously. The chain complex
C� associated to this polyhedral decomposition of ƒ computes the homology H�.ƒIZ/.
There is a simplified chain complex that computes H1.ƒIZ/, which we now explain.

Lift each edge e D .P; Q/ labeled .i; i C1/ to a one-chain as follows (here i D 1 or 2).
In the (any) orientation of the plane, if A is the sheet with lower z value in the region
to the left of PQ and B is the sheet with lower z value to the right of PQ, then lift e

to the chain PBQB �PAQA; this only depends on e and not the ordering of P and Q.
Write Oe for this lift of e. Extending by linearity, we get a map ZE ! C1.

The embedded bicolored graph G is the union G D GB [GR of embedded blue and a
red graphs intersecting at hexagonal vertices, where GB D .FB ; EB ; VB/, FB denotes
the number of faces of the graph GB , and EB the number of edges and VB the number
of vertices (and similarly for GR D .FR; ER; VR/.) We define a complex A� as follows:
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A2 WD ZFB ˚ZFR , A1 WD ZE D ZEB ˚ZER and A0 is the image @ yA1, where yA1 is
the image of A1 in C1 under e 7! Oe. A monochromatic face f 2 ZFB � A2 has a lift
to C2 as f1 �f2, whereas f 2 ZFR � A2 lifts to f2 �f3. Summarizing, we have

C2
// C1

// C0

A2

OO

A1

OO

// A0

?�

OO

where the map A1 ! A0 sends e to @ Oe. The missing differential A2 ! A1 is defined
as follows: for a monochromatic face f 2 ZFB or ZFR � A2,

@f D

X
boundary edges

e �
X

interior edges

e;

which we extend by linearity.

Proposition 2.12 A� is a chain complex and A� ! C� is a chain map.

Proof Let f 2 A2 be a blue face. A similar argument will work for red faces. We
need to check that A� is a chain complex, i.e. the differential squares to zero. This readsX

boundary edges

@ Oe �
X

interior edges

@ Oe D 0

for a face f. The left-hand side of this equality is a (formal) sum of some of the vertices
of the graph, some trivalent and some hexagonal. Thus, this imposes a condition at
all the interior and exterior vertices of f. In fact, the condition is null at an interior
vertex, since it must be monochromatic and hence trivalent, and @ Oe is zero over any
trivalent vertex. Likewise, for an exterior trivalent vertex, there is nothing to check and
it remains to discuss exterior hexagonal vertices. For an exterior hexagonal vertex, a
local study is needed, as follows.

Let h be a hexagonal vertex and let us study the differential restricted to it. Let e1,
e2 and e3 be three attached blue half-edges, with e4 D e01, e5 D e02 and e6 D e03 the
opposite red half-edges, respectively. Let h1, h2 and h3 be the three preimages of h.
We can restrict the differential A1jh ! A0jh to edges intersecting h and points over h,
and in the chosen basis it takes the form

(2-1) @jh D

0BBBBBBB@

�1 0 1

1 �1 0

0 1 �1

1 0 �1

�1 1 0

0 �1 1

1CCCCCCCA
:
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The kernel is generated by e1 C e01, e2 C e02, e3 C e03 and e1 C e2 C e3. Note that the
last generator could also have been taken to be e1 C e2 � e03. The first three represent
long two-colored edges passing straight through the hexagonal vertex, while the last
is a monochromatic Y shape. In more detail, the element e1 C e01 of the kernel is,
diagrammatically, given by a (bicolored) edge passing through the hexagonal vertex.
Similarly, for e2 C e02 and e3 C e03, they represent straight edges passing through
the hexagonal vertex, starting blue and then turning red, or vice versa. The element
e1 C e2 C e3 of the kernel is given by the Y–shaped union of the three blue edges
coming out of a hexagonal vertex. The element e1 C e2 � e03 also belongs to the kernel,
and it represents two blue edges and the red edge in between (with a minus sign).
The terms arising in @2f which involve a boundary hexagonal vertex are given by the
image of such configurations in the kernel, and thus they must (and do) vanish. This
concludes the calculation that .A�; @/ is a chain complex.

To check that A� !C� is a chain map, we must show that, for f 2ZFB �A2, we have

@f1 � @f2 D

X
e exterior

Oe �
X

e interior

Oe:

This is shown by direct calculation.

Let us now prove the following lemma before showing that A� is quasi-isomorphic
to C� in degree one, and thus computes the first homology H1.ƒIZ/.

Lemma 2.13 In the notation above , H2.A2/ D 0.

Proof This says that @ W A2 ! A1 is injective. Suppose @f D 0. Let h be a hexagonal
vertex, which must exist since both � and ƒ are assumed connected. Label the
edges adjacent to h by e1, e2, e3, e4 D e01, e5 D e02 and e6 D e03 as in the proof of
Proposition 2.12. For 1 � c � 6, let fc be the unique (opposite-color) monochromatic
face containing ec in its interior, and again we write f4 D f 0

1 , etc. Now, for i D 1; 2; 3,
write i , j and k for cyclically ordered elements of f1; 2; 3g, i.e. j D i C 1 mod 3, etc.
Then ei is an exterior edge of f 0

j and f 0
k

and by definition an interior edge of fi . If
we write f D

P3
iD1 aifi Ca0

if
0

i C� � � , then we must have ai Caj D a0
k

for all i , and
therefore

P
a0

i D 2
P

ai . By the same token,
P

ai D 2
P

a0
i , and therefore all ai

and a0
i are zero.

The faces fc with coefficients ac ¤ 0 must therefore have no hexagonal vertices on their
boundary or interior. That said, the union U of such faces must have a boundary, and
therefore the coefficient of any face on the boundary of U must be zero. By iterating
this argument, all coefficients are zero.
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The 3–graphs associated to a 3–triangulation, and the 3–graph moves named candy-
twists and push-through, will be defined in Section 4. We will use them now just in this
particular proposition as part of this isolated subsection. Now we establish the point of
this subsection:

Proposition 2.14 Let � be a 3–graph for a 3–triangulation , or any graph related by
candy-twists or push-through moves. Then

H1.A�/ Š H1.C�/ Š H1.ƒIZ/:

Before the proof, a warning: H1.A�/ © H1.C�/ in general. Here is an example of a
weave with topology of the twice-punctured plane:

Although b1 D 2, there is only one 1–cycle in H1.A�/, represented by the tree with four
leaves — the sum of edges Oe darkened in the picture. A choice for another generating
1–cycle is clear: it is a branch cut connecting the two trivalent vertices in the top (or bot-
tom), pictured as a dotted black curve. This class can be represented in C�, but the chain
connecting the two hexagonal vertices is not in A�. One could accommodate such chains
with further notational complexity, but we will not require them for our applications.

Proof We need to prove the first equivalence only. Since A� ! C� is a chain map, we
need only compare the dimensions of their first homology groups. We prove this first
for the 3–graph �T of a 3–triangulation T D .FT ; ET ; VT /, then show that the result
is invariant under candy-twist and push-through moves.

By definition, @ W A1 ! A0 is surjective, so since, by the lemma, @ W A2 ! A1 is
injective, we know dim H1.A�/D��.A�/. On the other hand, we know �ƒ D 6�v D

6 � 3jFT j D 2 � h1.ƒ/, or h1.ƒ/ D 3jFT j � 4. We recall that each face of T has
three blue vertices. It also has one hexagonal vertex which is a vertex of the blue
and red graphs that form �T . It similarly easy to compute that jFB j D jVT j C jET j,
jFRj D jVT j, jEB j D 2jET j C 3jFT j, jERj D jET j, jVB j D 3jFT j and jVRj D 0.
Now jA2j D jFB j C jFRj D 2jVT j C jET j, jA1j D jEB j C jERj D 3jET j C 3jFT j

and jA0j D 2jFT j is computed by noting that each hexagonal vertex contributes two
possible dimensions to jA0j via the rank-2 matrix in (2-1), and these dimensions
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are realized as boundaries, while each trivalent vertex contributes nothing. We get
h1.A�/ D��.A�/ D�2�T C 3jFT j D 3jFT j � 4 D h1.ƒ/, as claimed.

It remains to compute what happens after push-through or a candy-twist move. In
fact, since the result only depends on the Euler characteristic of A�, we only need to
show that this is invariant under candy-twist and push-through. But these change the
dimensions of .A2; A1; A0/ by .2; 6; 4/ and .1; 3; 2/, respectively; a local argument
shows again that the two possible dimensions that a hexagonal vertex contributes to A0

are in fact realized, and the result follows.

3 Combinatorial constructions

In this section we introduce two combinatorial constructions for N –graphs, focusing
primarily on how to associate an N –graph to a given N –triangulation. The notion of
an N –triangulation was introduced in [48, Section 1.15], and has since had an central
role in higher Teichmüller theory [62; 64]. Legendrian weaves associated to an N –
triangulation, via our construction, place contact topology in the context of the recent de-
velopments in exact WKB analysis [53; 54; 76] and quiver Fukaya categories [16; 114].

3.1 N –triangulations

Let N 2 N be a natural number, and consider the triangle

tN WD f.x; y; z/ 2 R3
W x Cy C z D N; x; y; z � 0g:

Subtriangulate this triangle tN with the planes

.fx D sg[ fy D sg[ fz D sg/\ tN ; 0 � s � N;

which we refer to as an N –subdivision of the triangle t1, following [48; 54]. This
subtriangulation has N 2 triangles.

Now let .C; T / be a triangulation T of a smooth closed surface C and subdivide each
triangle t1 2 T according to the N –subdivision above. This yields a triangulation TN

of the surface C. By definition, an N –triangulation on C is any triangulation isotopic
to TN for some triangulation .C; T /.

3.2 Local models

The N –graph associated to an N –triangulation is obtained by gluing local models for
the N –graph G.tN / associated to each triangle tN . We provide a definition of this
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.23/

.12/

.34/
.23/
.12/

.12/

.45/
.34/
.23/

Figure 15: The Legendrian weaves ƒ.G.t3//, ƒ.G.t4// and ƒ.G.t5// asso-
ciated to 3–, 4– and 5–triangles.

local N –graph, in terms of the following construction. The reader content with using
Figure 15 as a definition is invited to defer reading these technical descriptions.

Construction Consider the triangles in tN which point up, i.e. have a unique vertex
with highest z value. For each of these

�
N
2

�
triangles, we insert a �1–trivalent vertex

dual to it — that is, a trivalent vertex associated with the permutation .12/ and such that
the edges of this 2–graph piece intersects orthogonally with the edges of each triangle.
By definition, the rest of the N –graph G.tN / is then uniquely determined by extending
the edges from these �1 vertices such that, wherever three �i –edges collide, we insert a
hexagonal vertex with three edges in �i and three edges in �iC1. That is, the two rules
to generate the N –graph for an N –triangulation are:

(i) Insert exactly one .12/–trivalent vertex at the center of each upward-pointing
triangle,

(ii) In the collision of three �i –edges, a .�i ; �iC1/–hexagonal vertex is inserted.

We stress that the original triangles are not part of the N –graph.

This construction of G.tN / can be considered as a dynamical description, in contrast
with the static definition given by the second construction below Remark 3.1. Indeed,
in this first construction one starts by placing the �1–vertices and lets the edges grow
symmetrically from these trivalent vertices such that each edge intersects the interior
edges of the N –triangulation at the middle point. These edges must collide in the interior
of the triangle, and these collisions are resolved via the insertion of hexagonal vertices,
creating �iC1–edges. This insertion of hexagonal vertices is iteratively performed when
the �iC1–edges collide, creating �iC2–edges, and the process terminates when exactly
three �N�1–edges are created at a unique hexagonal vertex.
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Thus, given the triangle tN , we obtain a local model for an N –graph. The boundary
conditions for this local model are such that the N –graphs associated to two N –triangles
tN and t 0N which share an edge of the underlying t1 and t 01 match together.

Remark 3.1 This description, according to these two rules above, captures the prop-
erties of the spectral network associated to the WKB singular foliation for an SU.2/

quadratic differential lifted via the unique N –dimensional irreducible representation
of SU.2/ — see [54, Sections 2 and 4]. The dynamical component, induced by the
growing of the edges from vertices, corresponds with the time evolution of the differ-
ential equation defining the WKB system.

We can also give a second succinct description of G.tN / as follows. Following
Definition 2.2, it suffices to describe the images of the graphs Gi for 1 � i � N � 1.
The trivalent graph Gi will be given by the vertices and edges of an hexagonal regular
lattice: a finite number of vertices lying inside the triangle tN D fx Cy C z D N � 1g

and with external edges extending to the boundary of tN . Let #i be the set of points
of tN all of whose coordinates lie in Z�0 C

1
3
i . Then the vertices of the trivalent

graph Gi are precisely the points in #i [ #iC1. Note that the intersection between
Gi and GiC1 is precisely given by the points in #iC1, and the trivalent vertices are
uniquely specified by the hexagonal lattice condition.

Remark 3.2 Both these constructions provide a Legendrian front for the Legendrian
lift of a certain exact Lagrangian spectral curve for a local spectral network. In
particular, this shows that the BPS graphs studied in [51], introduced as an interpolation
between spectral networks and BPS quivers, are in fact the set of A2

1–singularities of
the Legendrian front †.G.tN // between the first two sheets.

Note that the boundary of this local N –graph G.tN / can be compactly described as
follows. Consider the permutation

�N WD

N�1Y
iD1

� 1Y
jDi

�j

�
D �1 � .�2�1/ � .�3�2�1/ � � � .�N�1�N�2 � � � �2�1/ 2 SN ;

which is the projection to the Coxeter group SN of the Garside element of the braid
group BN in N strands, i.e. a braid half-twist in N strands. Then the edges of the
N –graph associated to tN along each of the three edges of t1 are precisely given by
the ordered terms in �N . That is, there exists an isotopy of the N –graph such that,
as one travels along an edge of t1, the edges of the N –graph that we encounter are

Geometry & Topology, Volume 26 (2022)



Legendrian weaves: N –graph calculus, flag moduli and applications 3621

first �1, then �2 and �1, then �3, �2 and �1, and iteratively until reaching �1 for the
.N�1/st time. This is equivalent to the association �.ri / for i D 1; : : : ; 2N � 3 in the
construction of G.tN / above.

For context, these permutations along the boundary are particularly relevant for the
study of Legendrian surface weaves with boundary, whose Lagrangian projections yield
interesting Lagrangian fillings of their Legendrian boundary links. The braid description
of these Legendrian links is determined precisely by these permutations; see Section 7.
We see again — confer Remark 2.8 — that it is useful to think of Legendrian weaves as
2–dimensional Legendrian braids: their 1–dimensional boundaries are positive braids.

3.3 Global model

Given that the boundary conditions for the N –graphs in the local models for tN allow
for gluing, we define the N –graph G �C associated to a global N –triangulation of C to
be the N –graph obtained by concatenating the local models G.tN / along each triangle
tN in the N –triangulation. We study the flag moduli space invariants for these N –
graphs and their associated Legendrian weaves in Sections 6 and 8. Note that the genus
of these Legendrian weaves increases as N 2 N, or the number of triangles, increases.

Remark 3.3 Trivalent vertices are dual to triangulations of surfaces. In particular, tri-
angulations of surfaces with a large group of symmetries yield particularly interesting 2–
graphs. From this perspective, Riemann surfaces with a conformal automorphism group
of large order give rise to highly symmetric 2–graphs. For instance, Riemann surfaces
associated to tilings of the hyperbolic plane H2 with Schläfli symbol fn; 3g are highly
symmetric, with f7; 3g being the Klein quartic, f8; 3g giving Bolza’s surface and f12; 3g

the M.3/ surface. We expect the flag moduli space associated to the Legendrian surfaces
of these 2–graphs, as defined in Section 5, to be algebraic spaces with correspondingly
large symmetry. We begin an exploration of this kind with our Theorem 6.3.

3.4 Bicubic graphs

Here is a second construction of 3–graphs in a smooth surface C, strictly disjoint from
the class of 3–graphs arising from 3–triangulations.

By definition, a graph is bicubic if it is both trivalent (cubic) and bipartite. Now consider
an embedded bicubic graph G � C, and replace each vertex of G with a hexagonal
vertex, doubling the edges as in Figure 16.
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.12/

.23/

Figure 16: 3–graph associated to an edge in a bicubic graph.

The bipartite condition on the graph guarantees that these local models can be glued
together, uniquely up to isotopy, yielding a 3–graph in C. This 3–graph is entirely built
from hexagonal vertices, and no trivalent vertex is used. As a result, the topology of
the Legendrian weave associated to such a 3–graphs is always that of a 3–component
link of Legendrian 2–spheres. We will study a family of such 3–graphs in Section 6.

Example 3.4 The bicubic graph G�S2 associated to the 1–skeleton of a 3–dimensional
cube, depicted in Figure 17, yields a 3–component Legendrian link ƒ.G/�.J 1.S2/;�st/.
The flag moduli space M.G/ will show that these three Legendrian spheres, even after
being satellited to a Darboux ball .R5; �st/, are Legendrian knotted (and smoothly
unknotted).

Remark 3.5 Not every 3–graph which is exclusively formed by hexagonal vertices
arises from a bicubic graph, even up to candy-twist equivalence (see Section 4). In
particular, two vertices may have just a single edge connecting them, with no vertices
connected by three edges. Figure 18 shows such an example.

This example can be generalized in several ways: by adding more interior squares with
one edge connecting adjacent vertices and/or replacing the squares with 2n–gons.

.12/

.23/

Figure 17: 3–graph associated to the 1–skeleton of the cube and the 3–
component Legendrian link of 2–spheres.
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Figure 18: 3–graph with only hexagonal vertices which does not arise from a
bicubic graph, even up to Move I.

Example 3.6 (an explosion of examples) Bicubic graphs can be readily generated
as follows. Let P 0 be a polytope, not necessarily regular, and G0 its edge graph, i.e.
G0 is the 1–skeleton of P 0. Suppose that P 0 has v0 vertices, e0 edges and f 0 faces. By
definition, the explosion of the polytope P 0 is the polytope P formed by first truncating
at the vertices and then truncating the resulting polytope along the original edges of P 0.
Then the 1–skeleton of P is cubic and has a unique bipartite coloring, up to an overall
black–white swap, so therefore is bicubic. Note that P has v D 4e0 vertices, e D 6e0

edges and f D v0C e0Cf 0 faces.

Even degenerate polytopes P 0 give interesting examples. For instance, if P 0 is the
degenerate polytope with two n–gon faces (v0 D n, e0 D n and f 0 D 2), then P is a
2n–gon prism (v D 4n, e D 6n and f D 2nC 2). The cube edge graph described in
Example 3.4 is the bicubic graph which arises when P 0 has just two bigon faces.

4 Diagrammatic calculus for Legendrian weaves

Let G � C be an N –graph. The geometric objects that we are interested in are
the Legendrian weaves ƒ.G/ � .J 1C; �st/ and their invariants up to Legendrian
isotopy. In this section we introduce a series of combinatorial operations that can
be performed to an N –graph G, and we show how they affect the Legendrian isotopy
type of ƒ.G/. The geometric understanding of the Legendrian isotopy type through
this diagrammatic calculus allows us to significantly simplify computations of algebraic
invariants associated to ƒ.G/ in Section 5. Algebraic computations, using the results
in this section, are detailed in Sections 6 and 7. Let us begin with the combinatorial
moves in G that preserve the Legendrian isotopy type of ƒ.G/.
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4.1 Surface Reidemeister moves

Let ƒ � .J 1.C /; �st/ be a Legendrian surface, a Legendrian isotopy fƒtgft2Œ0;1�g will
generically induce singularities of the Legendrian fibration J 1C ! C �R. As a result,
the front sets †.ƒt / and their singularities will restructure as the parameter t 2 Œ0; 1�

ranges along a 1–parameter family. These modifications of the Legendrian fronts are
referred to as perestroikas, or Reidemeister moves [7, Chapter 3].

Remark 4.1 The three classical 1–dimensional Reidemeister moves have been the
main method of study for smooth knots in geometric topology, since first introduced
[100; 3]. The corresponding seven moves for smooth surfaces are known as Roseman
moves, after [102, Theorem 1]. The corresponding Legendrian Reidemeister and
Legendrian Roseman moves for Legendrian knots and Legendrian surfaces follow
from the classification of (stable) wavefront singularities in dimensions dim.ƒ/ � 3

[4, Theorem 13]. We will refer to Legendrian Roseman moves as surface Legendrian
Reidemeister moves.

The combinatorial operations inducing surface Legendrian Reidemeister moves are
the content of the following theorem. In the moves, the local pieces of the N –graphs
are actually 3– or 4–graphs. The color code follows our standard notation: blue and
red are adjacent colors (corresponding to adjacent transpositions), red and yellow are
adjacent colors, and blue and yellow are disjoint colors.

Theorem 4.2 Let .G1; G2/ be one of the pairs of N –graphs depicted in Figures 19,
20, 21, 22, 23, 24 and 25. Then the associated Legendrian surface ƒ.G1/ is Legendrian
isotopic to ƒ.G2/ relative to their boundaries. That is , Moves I , II , III , IV , V , VI
and VI 0 are local surface Legendrian Reidemeister moves.

Figure 19: Move I. The first pair of local N –graphs G1 (left) and G2 (right).
We refer to this move as candy-twist.
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Figure 20: Move II. The second pair of local N –graphs G1 (left) and G2

(right). We refer to this move as the push-through, since the trivalent vertex
gets pushed through the hexagonal vertex.

Figure 21: Move III. The third pair of local N –graphs G1 (left) and G2

(right). We refer to this move as the flop.

Figure 22: Move IV. The fourth pair of local N –graphs G1 (left) and G2

(right). Note we must have N � 4. This moves implies the A3 generalized
Zamolodchikov relation depicted in Figure 106.

Figure 23: Move V. The fifth pair of local N –graphs G1 (left) and G2 (right),
with N � 4. The blue and yellow colors are associated to disjoint transposi-
tions.
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Figure 24: Move VI. The sixth pair of local N –graphs G1 (left) and G2

(right), with N � 4.

Figure 25: Move VI0. Variation on the sixth pair of local N –graphs G1 (left)
and G2 (right), with N � 4.

Proof Let us start with Move I, the candy-twist, as depicted in Figure 19. It illustrates
the method of proof for these surface Legendrian Reidemeister moves. There are
essentially three equivalent viewpoints: exhibiting the Legendrian isotopy as N –graphs,
visualizing the surface wavefronts explicitly in .J 1R2; �st/, or studying these surface
wavefronts as families of (possibly singular) Legendrian links. In the first perspective,
we need to justify that all the N –graphs lift to embedded Legendrian surfaces. In the
second, the challenge is visualizing the actual front and ensuring that all the singularities
lift to Legendrian embeddings. In the third perspective, visualization is simplified, with
the trade-off of having to draw several movies of links. The second perspective is the
strongest, as it readily implies the other two.

The first perspective is drawn in Figure 26. The left and right 3–graphs lift to Legendrian
weaves, yielding embedded Legendrian surfaces (with boundary). Figure 26, center,
does not immediately lift to an embedded Legendrian surface, as the six-valent vertex
is not a hexagonal vertex: the colors of the edges around it are not alternating, which is
the condition for the hexagonal vertices introduced in Section 2.

Nevertheless, Figure 26, center, does in fact come from a Legendrian wavefront whose
Legendrian lift is an embedded surface. Indeed, we have depicted such a front in the
second front of Figure 27.
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Figure 26: The 3–graph movie showing that the candy move, Move I, is
a Legendrian isotopy. The geometric meaning of the central picture (not a
3–graph) is explained in the text.

The movie of wavefronts in Figure 27 geometrically constructs the homotopy of
Legendrian fronts which lifts to the Legendrian isotopy corresponding to Move I. The
three fronts in Figure 27 lift to embedded Legendrian surfaces, as the singularities
are all Legendrian and there are no vertical tangent planes. The singularities at the
beginning of Figure 27 are segments of A2

1–crossings and two isolated A3
1–points. The

singularities at the end of Figure 27 are just segments of A2
1–crossings. The singularity

in the middle of the movie, not corresponding to an A2
1–segment, is not a stable front

singularity, but it does lift to an embedded Legendrian surface, and thus the homotopy
of fronts actually represents a Legendrian isotopy. Indeed, the tangent spaces at that
singularity intersect transversely, and hence their lifts are disjoint. This concludes that
Move I combinatorially represents a surface Legendrian Reidemeister move.

Remark 4.3 For completeness, in Figure 28 we have drawn the homotopy of surface
fronts from Figure 27 as a movie (of movies). It is thus a 2–homotopy of Legendrian

Figure 27: The homotopy of Legendrian wavefronts associated to Move I.
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Figure 28: The proof that Move I is a Legendrian isotopy by (transversely)
slicing each of the Legendrian wavefronts in Figure 27.

links. These three movies of links, one per column, are obtained by slicing each of
the respective fronts in Figure 27 from left to right. This is the third viewpoint we
mentioned above.

Let us now justify Move II, where a D�
4 –singularity pushes through an A3

1–singularity.
The resulting front has a D�

4 –singularity and two A3
1–singularities. The clearest proof

that this is a Legendrian isotopy comes from carefully drawing and examining the
right homotopy of fronts. In this case, the required movie of fronts is depicted in
Figure 29. These Legendrian fronts start with the front whose A2

1–singularities yield
the 3–graph G1 on the left of Move II, and end with the front whose A2

1–singularities
yield the 3–graph G2 on the right of Move II.

These fronts describe a neighborhood R3 of a D�
4 –singularity with a 2–plane … � R3

which starts away from the D�
4 –singularity. This 2–plane … is drawn with a tilt in

its slope. The homotopy of fronts consists of this 2–plane … moving towards the
D�

4 –singularity and crossing through it. There exists a unique moment in this isotopy
in which the D�

4 –singularity is contained in the 2–plane …. The A2
1–singularities

right before that moment give rise to G1 for Move II, and right after this moment the
A2

1–singularities give rise to G2 for Move II. Since the 2–plane … is not vertical and
the tangent 2–planes of the different branches at the D�

4 –singularity in all moments
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Figure 29: The homotopy of Legendrian fronts inducing Move II.

are distinct, each of the fronts in this homotopy lift to embedded Legendrian surfaces.
Thus, the movie of fronts in Figure 29 shows that there exists a Legendrian isotopy
with A2

1–singularities as dictated by Move II, and ƒ.G1/ and ƒ.G2/ are Legendrian
isotopic relative to their boundaries. This concludes Move II.

For Move III, we can proceed analogously by drawing a homotopy of fronts which
lifts to a Legendrian isotopy. Nevertheless, Move III can actually be deduced as a
combination of Moves I and II. We leave it as an exercise for the reader to visualize
the spatial Legendrian fronts, and instead explain how to deduce Move III from the
previous two moves, as follows. Starting with one side of Move III, push both trivalent
vertices through in the clockwise direction using Move II. This is depicted in the first
two steps of Figure 30.

This creates additional hexagonal vertices and the two trivalent vertices do change
color. Perform Move II twice more, pushing through these trivalent vertices again, and
then cancel two pairs of hexagonal vertices with a candy-twist (Move I) to obtain the
right-hand side of Move III. Alternatively, first undo the candy-twist as in the third
step of Figure 30; this yields a 3–graph which is identical to a partial rotation of the
initial 3–weave with red and blue switched. Iterating this again, i.e. pushing the two
blue trivalent vertices through, as indicated by the dashed green lines in Figure 30, and
undoing a candy-twist yields the right-hand side of Move III.
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Figure 30: Deducing Move III from Moves I and II. The first step pushes
a red trivalent vertex through a hexagonal vertex. The second step does the
same for the other red trivalent vertex. The third step is a simplification
undoing a candy-twist. The dashed green lines indicate push-through moves
that are about to occur.

Let us now show that Move IV is a Legendrian isotopy. The corresponding spatial
wavefronts consist of configurations of four 2–planes. The graph G1 on the left of
Move IV is obtained as the A2

1–singularities, i.e. intersections, of the union of the four
2–planes

�x D f.x; y; z/ 2 R3
W xC0:0001z D 0g; �y D f.x; y; z/ 2 R3

W yC0:0001z D 0g;

�z D f.x; y; z/ 2 R3
W z D 0g; �1 D f.x; y; z/ 2 R3

W xCyCz D 1g:

These intersections and 2–planes are depicted, with the corresponding colors, in
Figure 31. Now consider the 2–planes �t Df.x; y; z/2R3 WxCyCzD tg for t 2 Œ�1; 1�.
The homotopy of spatial wavefronts is locally given by the union �x [�y [�z [�t

for t 2 Œ�1; 1�.

This homotopy is not relative to the boundary, as the 2–planes �t for t 2 Œ�1; 1� change
the boundary conditions — but this is easily corrected by only pushing a compact
piece of �t for t 2 Œ�1; 1� through the triple intersection point �x \ �y \ �z . The
A2

1–singularity pattern of the resulting spatial wavefront is precisely as in the right
graph G2 in Move IV, as required.

Let us now address Move V, which depicts the local transition between two 4–graphs
G1 and G2 in Figure 23. The corresponding spatial fronts consist of four 2–planes
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Figure 31: Front for the start of Move IV. The lines depict the intersections
of the union of the four 2–planes �x [�y [�z [�1.

�1; �2; �3; �4 �R3, where the only nonempty intersections are �1\�2, corresponding
to the blue segment in G1 (and G2), and �3 \�4, corresponding to the yellow segment
in G1 (and G2).

The fact that the fronts giving G1 and G2 are homotopic as Legendrian fronts is proven
in Figure 32. Each of the columns in the figure represents a spatial surface front, with the
links in the columns corresponding to slices. The corresponding intersections, dictating
the A2

1–singularities, are marked with the same color as in Figure 23. The unions
of these slices in Figure 32 yield spatial fronts which lift to embedded Legendrian
surfaces, and thus the movie of columns in Figure 32 exhibits a Legendrian isotopy
from ƒ.G1/ to ƒ.G2/. Therefore, Move V is a surface Legendrian Reidemeister move.
Move VI in Figure 24 follows with the same argument as for Move V, with a segment
of A2

1–singularities passing above and, disjointly, a D�
4 –singularity — and likewise for

Move VI0. This concludes the proof of Theorem 4.2.

Remark 4.4 The Legendrian Reidemeister moves in Theorem 4.2 provide a symplectic
geometric realization of A–type Soergel calculus. Moves I and V should be compared
to [40, Figure 4.4]. Moves II and VI are known as two-color associativity respectively
of type A1�A1, with Coxeter exponent mst D 2, and of type A2, with Coxeter exponent
mst D 3, and Move IV corresponds to the A3 relation [40, Figure 4.7]. It should be
emphasized that the notation in Soergel calculus follows the notation for (rank-3)

Geometry & Topology, Volume 26 (2022)



3632 Roger Casals and Eric Zaslow

Figure 32: Each column represent slices of a spatial front. The A2
1–

singularities of the left column gives rise to G1 in Figure 23 and the A2
1–

singularities of the right column gives rise to G2.

parabolic subgroup of finite Coxeter groups, whereas we use the notation for Lie
algebras whose irregular Weyl orbits yield spatial wavefronts. See the appendix for
further details.

Theorem 4.2 contains the Reidemeister moves that we use in the course of the article.
They are all the possible (generic) Legendrian surface moves with only D�

4 – and
A2

1–Legendrian singularities in the endpoints of the Legendrian isotopy. The complete
set of surface Reidemeister moves [7, Section 3.3] also includes the moves associated
to the A4– and DC

4 –singularities, which will require the interaction of A2–cusp edges
with A2– and A3–swallowtails.
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Theorem 4.2 allows one to make local modifications to an N –graph G1 and obtain
an N –graph G2 such that the Legendrian surfaces ƒ.G1/ Š ƒ.G2/ � .J 1C; �st/ are
Legendrian isotopic. For the case C D S2, we define in Section 4.7 an additional
combinatorial move, which we refer to as a stabilization, going from an N –graph G1

to an .NC1/–graph G2. This requires a discussion on satellite constructions for
Legendrian weaves, which is useful on its own and also needed for Section 4.5.

4.2 Legendrian satellite weaves

Let G � C be an N –graph. The Legendrian surface ƒ.G/ defined by the weaving con-
struction lies in the contact 5–manifold .J 1C; �st/. Now consider a contact 5–manifold
.Y; �/ and a Legendrian embedding � W C ! .Y; �/. The Weinstein neighborhood
theorem [122, Section 7] for Legendrian submanifolds gives a contactomorphism

Q� W .J 1C; �st/ !
�
Op.�.C //; �jOp.�.C //

�
;

where Op.A/ is a sufficiently small neighborhood of A � Y, such that the restriction
to the zero section C � J 1C is the initial Legendrian embedding �. In particular,
any Legendrian ƒ � .J 1C; �st/ yields a Legendrian Q�.ƒ/ � .Y; �/. Thus, the contact
1–jet spaces serve as local contact manifolds, and a Legendrian embedding of C in an
arbitrary ambient contact 5–manifold allows one to embed a Legendrian weave there
as well. In this context, the Legendrian surface Q�.ƒ/ � .Y; �/ is called the �-satellite
of ƒ � .J 1C; �st/ and the Legendrian surface �.C / � .Y; �/ is called the companion.
This terminology parallels the theory of satellite knots, as introduced in [108]; see also
[92; 46]. Notice that the smooth topology of ƒ is identical to that of its satellite Q�.ƒ/;
only the ambient contact manifold (and thus the Legendrian embedding type) are
affected by this Legendrian satellite construction.

Example 4.5 Let .Y; �/D .S5; �st/, C DS2 and let �D �0 be the Legendrian embedding
of the standard Legendrian unknot �0 WS2 !S5. Given any Legendrian ƒ� .J 1S2; �st/,
we will refer to Q�0.ƒ/ � .S5; �st/ as the standard satellite of ƒ. Since .S5 n fptg; �st/ Š

.R5; �st/ and the image Q�0.ƒ/ will avoid some point, this surface can be equivalently
considered in Q�0.ƒ/ � .R5; �st/ Š .J 1.R2/; �st/. It can thereupon be described by its
front projection to R3 D R2 �R. This is depicted in Figure 33.

When no Legendrian embedding � is specified and C D S2, the notation �.ƒ/ will
implicitly refer to the standard satellite Q�0.ƒ/ � .R5; �st/ as in Example 4.5 and
Figure 33. It is often the case that the Legendrians ƒ.G/� .J 1C; �st/ that we introduce
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.J 1S2; �st/

S2 �R

ƒ

S2

.R5; �st/
R2 �R Q�0.ƒ/

ƒ �0.S2/

Figure 33: Left: a Legendrian surface ƒ � .J 1S2; �st/ drawn in the front
projection S2 � R. Right: the satellite Q�0.ƒ/ of ƒ along the standard Leg-
endrian unknot �0 W S2 ! .R5; �st/, drawn in the front projection R2 � R.
These pictures are schematic and ought to be rotated symmetrically along
their central vertical axis so that the wavefronts for ƒ and Q�0.ƒ/ are indeed
surfaces in a 3–dimensional ambient space.

in this work do not have an a priori name nor have they been previously studied.
Interestingly, for a certain variety of graphs G � S2 we will see how their standard
Legendrian satellites are actually related to well-known Lagrangian surfaces; eg see
Section 6.1.

In addition, and in line with Markov’s theorem for smooth 1–dimensional braids
[13; 99], the satellite operation is also required for a meaningful stabilization operation.
Finally, note that, even if ƒ.G/ � .J 1C; �st/ has no A2–cusp edges, the spatial wave-
fronts for its standard satellite Q�0.ƒ.G// will always have A2–cusp edges, as any front
for the standard Legendrian unknot ƒ0 � .R5; �st/ must have A2–cusp edges. We now
discuss A2–cusp edges and A3–swallowtail singularities, which are required for such
a stabilization operation and Theorems 4.10 and 4.21 below, regarding Legendrian
surgeries and Legendrian mutations.

4.3 Cusp edges and swallowtail singularities

Let G � C be an N –graph; the Legendrian weave ƒ.G/ � .J 1C; �st/ associated to G

is determined by its front �.ƒ.G// � C � R. By definition, these fronts only have
D�

4 –, A2
1– and A3

1–singularities. The latter two are stable, i.e. a generic Legendrian
isotopy ƒt � .J 1C; �st/ for t 2 Œ0; 1� such that ƒ.G/ D ƒ0 will have each of the A2

1–
and A3

1–singularities of the front �.ƒ0/ persist for �.ƒt / for t 2 .0; 1�. In contrast,
D�

4 is not: the fronts �.ƒt / for t 2 .0; "� will not have any D�
4 –singularity for " 2 RC

small enough.
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A2
1

A2

A3

A3
1 A1A2

Figure 34: The generic Legendrian singularities of wavefronts in 3–space.
The depicted A3–singularity is known as the A3–swallowtail, and the center
A2–singularity in the first row is referred to as the A3–cusp edge. Note that
the two D˙

4 –singularities are not generic.

The generic (stable) singularities of fronts in 3–dimensional space are A2
1, A3

1, A2,
A2A1 and A3, as shown in [7, Section 3.2]. These singularities are depicted in Figure 34.
The appearance of A2–, A2A1– and A3–singularities in a generic front forces us to
extend our combinatorial diagrammatics, as our Legendrian isotopies will (typically)
be generic. In the figures for this subsection, and only this subsection, we will draw
edges around a hexagonal vertex with the same color; this will simplify our diagrams,
which are no longer N –graphs due to the presence of A2–cusp edges.

We extend the diagrammatics with the following rule: orange segments will denote A2–
cusp edges of singularities and orange dots will stand for A3–swallowtail singularities.
Figure 35, left, depicts a genuine spatial front for the A3–swallowtail singularity. The
singularities of this front consist of a segment of A2

1–crossings, shown in blue, two A2–
cusp edges, in orange, and a unique A3–swallowtail point. The planar diagram through
which we represent this front is shown in Figure 35, right. It is simply a vertical view
of the front (from above or below) with the A2

1–, A2– and A3–singularities marked.

Remark 4.6 For the same reasons that we label A2
1–singularities with transpositions,

in order to indicate which two sheets are crossing, we should label A2–cusp edges with
the corresponding information. This is necessary information in order to recover the
actual (homotopy type of the) Legendrian front, and thus the Legendrian itself. That
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Figure 35: The Legendrian front of an A3–swallowtail singularity (left) and
the planar diagrammatic depiction in our calculus (right).

said, in this article, it should be clear from context where such A2–cusp edges lie, so
these labels will be omitted.

The D�
4 –singularities are the central pieces in the construction of our Legendrian

weaves ƒ.G/ � .J 1C; �st/. It is important to emphasize that D�
4 is not a generic

singularity of a real spatial front, despite the fact that its complexification is a stable
holomorphic Legendrian singularity. In particular, in our upcoming study of Legendrian
surgeries, we will need generic Legendrian isotopies starting at ƒ.G/, whose fronts
will break the nongeneric D�

4 into generic singularities of real spatial wavefronts.

The generic deformation of the D�
4 –singularity is depicted in Figure 36, left. It

contains three A3–swallowtails arranged in a triangle and connected by A2–cusp edges.

Figure 36: The spatial wavefront for a generic perturbation of the D�
4 –

singularity (left) and the associated planar diagram for this stable spatial
wavefront (right). Note that the A2

1–edges around the hexagonal vertex all
drawn with the same color (blue), following the convention in this subsection.
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Following our convention above, the associated planar diagram is shown in Figure 36,
right.

4.4 Legendrian front calculus with cusp singularities

Let us continue our development of a diagrammatic front calculus for Legendrian
surfaces, this time including A2–cusp edges and A3–swallowtails. Proposition 4.7
below is used to prove Proposition 4.9 and also Theorem 4.10, in Section 4.5.

Proposition 4.7 Let G �C be an N –graph with N 2N. The four moves in Figure 37
are achieved by compactly supported Legendrian isotopies relative to the boundary.

Proof Moves VII and VIII, on the creation and fusion of two A3–swallowtails singu-
larities, are immediate from the 3–dimensional first Reidemeister move R1. Indeed, the
left-to-right 1–dimensional Legendrian slices in Move VII correspond to a concatenation
of R1 and its inverse, i.e. an R1 is performed, corresponding to the appearance of
the leftmost A3–swallowtail, and then the same R1 is undone, corresponding to the
appearance of the rightmost A3–swallowtail. This movie of 1–dimensional Legendrian

VII VIII

IX X

XI

Figure 37: The five Legendrian front moves in Proposition 4.7. The moves
are referred to as Move VII (top left), Move VIII (top right), Move IX (center
left), Move X (center right) and Move XI (bottom).
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∅ ∅ ∅

DC
4

A3

A3

Figure 38: The homotopy of surface fronts showing that Move IX is a Leg-
endrian Reidemeister move. The left-to-right slices for the left diagram in
Move IX are depicted in the left column, whereas the slices for the right
diagram in Move IX are depicted in the right column.

slices can be isotoped to a movie with no R1 fronts, whose (big) front corresponds
to the right of Move VII, with no swallowtails. For Move VIII, the R1 moves are
performed in reverse order. That is, the left-to-right 1–dimensional Legendrian slices
correspond to the inverse of an R1 move (a pair of cusps being undone) and then the
exact same R1 move. This homotopy of 1–dimensional Legendrian fronts can be itself
homotoped to a constant homotopy, which is the local N –graph depicted in the right
of Move VIII.

For Move IX, we proceed with our slicing techniques. The 1–dimensional vertical
left-to-right slices of the two fronts for Move IX are depicted in the left and right
columns of Figure 38. In the left column, the Reidemeister R1 move is performed for
the upper piece of the 1–dimensional Legendrian knot. In the right column, the R1
move is performed for the lower piece of the 1–dimensional Legendrian knot. The
homotopy of Legendrian surface fronts is achieved by the center column in Figure 38,
where both R1 are performed simultaneously.
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Figure 39: The front depiction of the nontrivial part in Move X. The A3–
swallowtail singularity slides across a orthogonal A2

1–line, changing sheets
as it slides through.

Since the homotopy of fronts preserves the boundary conditions, this lifts to a Leg-
endrian isotopy of embedded Legendrian surfaces, thus proving that Move IX is a
Legendrian Reidemeister move. The fact that Move IX is a Legendrian Reidemeis-
ter move also follows carefully from visualizing the critical fronts associated to the
generating family

DC
4 W F.x; y; �1; �2; �3/ D x2y Cy3

C �1y2
C �2y C �3x;

which leads to the above families in Figure 38.

Move X consists of a sliding for a A3–swallowtail along an A2
1–crossing line, as

depicted in the top row of Figure 39. The realistic surface fronts are depicted in the
bottom row of Figure 39, where on the right the A3–swallowtail singularity has been
moved past the A2

1–segment of singularities.

The sliding lifts to a Legendrian isotopy, as the interaction between the A3–swallowtail
and the A2

1–line only sees a critical moment, where a A3A2
1–singularity appears. At

this critical stage, the slopes are all distinct and nonvertical; thus, the A3–swallowtail
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Figure 40: The homotopy of fronts for Move XI. The left front diagram of
Move XI is obtained as the union of the slices in the left column, whereas the
right front in Move XI is the union of the slices in the right column.

is allowed to move past with a homotopy of fronts. This concludes that Move X is a
Legendrian Reidemeister move.

Finally, Move XI is proven in Figure 40. The middle singularity corresponds to the
generic spatial front A2A1–singularity. In short, Move XI is obtained by performing
a homotopy which interpolates between a constant movie of Legendrian links and a
movie consisting of doing a Reidemeister R2 move and then undoing it, as in the left
column of Figure 40.

Remark 4.8 It would appear that Reidemeister moves for Legendrian knots have been
mastered by the vast majority of contact topologists. This does not seem to be the case
in higher dimensions, including the Legendrian singularities appearing in surface fronts.
The reader interested in that should see [12; 7] for a starting presentation of the generic
singularities of surface fronts. Our work develops the diagrammatic calculus adding
to that classification, which allows us to manipulate fronts in a versatile manner. The
combination of the results here, along with [7], should permit the reader to be fluent in
the manipulation of wavefronts for Legendrian surfaces in contact 5–manifolds.
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Figure 41: Move XII. This move allows us to exchange A3–swallowtail
singularities with D�

4 –singularities in the presence of a A2–cusp edge.

Let us now address the move shown in Figure 41, which we prove in the following:

Proposition 4.9 The combinatorial move depicted in Figure 41 is realized by a com-
pactly supported Legendrian isotopy of surfaces in a 5–dimensional Darboux ball
.J 1R2; �st/, relative to the boundary.

Proof Let us start with the left front in Figure 41. Apply Move VII to create a
canceling pair of A3–swallowtails, as shown in the beginning of Figure 42. Now slide

Figure 42: The homotopy of fronts for Move XII. The initial A3–swallowtail
requires two additional swallowtails to become a D�

4 –singularity, and certain
intermediate moves. The homotopy realizing this can be read in this picture.
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the A3–swallowtail by performing a Move X, and use the DC
4 –singularity, i.e. Move IX,

to exchange the A2–cusp edge where the A3–swallowtail connects. This is depicted
in the first and second steps of Figure 42. The next two steps in Figure 42 consists
of Legendrian isotopies where no singularities interact with each other; it is a plain
homotopy of fronts with the same singularities. Finally, the last step consists in joining
the three existing A3–swallowtails into a single D�

4 –singularity, as depicted at the end
of Figure 42.

4.5 Legendrian surgeries

The theory of Legendrian surgeries was initiated in [5; 6] in the study of critical points
of the time function with respect to a Legendrian wavefront. Its modern description in
terms of Lagrangian handle attachments is described in [15, Theorem 4.2; 31, Section 4].
A Legendrian surgery on ƒ � .Y; �/ is an operation which inputs an isotropic sphere
within ƒ, bounding ambiently, and outputs a Legendrian zƒ � .Y; �/. The Legendrians
ƒ and zƒ are not even homotopy equivalent, and thus Legendrian surgery is a useful
method to create new Legendrians by modifying the topology of a given Legendrian ƒ.

In the context of Legendrian surfaces, there are different types of Legendrian surgeries
[7, Figure 48]. The following result characterizes the combinatorial operations that
correspond to Legendrian 0–surgeries and 1–surgeries and Legendrian connected sums.

Theorem 4.10 (Legendrian surgeries) Let G � C and G1 � C1 be N –graphs and
G2 � C2 an M –graph with N; M 2 N. The following statements hold :

(1) 0–surgery The combinatorial move of adding an i–edge and two vertices along
an existing i–edge corresponds to a Legendrian 0–surgery. This move is shown
in Figure 43, top right.

(2) 1–surgery The combinatorial move of removing an i–edge between two triva-
lent vertices corresponds to a Legendrian 1–surgery. This move is shown in
Figure 43, bottom left.

(3) Connect sum The kissing of two trivalent vertices v1 2G1 and v2 2G2, where
G1 � C1 and G2 � C2 are two disjoint graphs , corresponds to a connected sum

�.ƒ.G1// # �.ƒ.G2// � .R5; �st/

for any satellite � W ƒ ! .R5; �st/. This is shown in Figure 43, top left.
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connected sum

(3)
.i � 1; i/

0–surgery

(1)

1–surgery

(2)

Clifford sum

(4)

Figure 43: The Legendrian surgery moves in Theorem 4.10.

(4) Clifford sum The combinatorial move of substituting a trivalent vertex by a
triangle corresponds to a connected sum of �.ƒ.G// with a Clifford 2–torus
T2

c � .R5; �st/. This move is shown in Figure 43, bottom right.

The 0–surgeries and 1–surgeries are local in any ƒ.G/ � .J 1C; �st/. In contrast , the
connected sum in (3) requires one to geometrically satellite the Legendrian weaves
ƒ.G1/ � .J 1C1; �st/ and ƒ.G2/ � .J 1C2; �st/ via any Legendrian embedding

� W C1 [C2 ! .R5; �st/:

Theorem 4.10 will be proven below. The Legendrian weaves in the statements involve
only D�

4 and A2
1 (and A2–cusp edges for the connected sum, due to the satellite

operation). Nevertheless, the manipulation of their fronts in the proof of Theorem 4.10
requires the use of further Legendrian front moves, involving A3–swallowtails and
A2A1–singularities and their interaction with the A2, A2

1 and D�
4 germs, as developed

in Section 4.4.

Remark 4.11 (i) Should the reader be solely interested in the satellited Legendrian
surface �.ƒ.G// � .R5; �st/, the connect sum operation in Theorem 4.10(3) is the
strongest of the four statements (and the hardest to prove). Indeed, the satellite analogue
of (1), (2) and (4) follow from (3). That said, (1) and (2) do not follow from (3) locally.

(ii) The �–satellite of the Legendrian 0–surgery depicted in Move (1) of Figure 43,
and Theorem 4.10(1) corresponds to a Legendrian connected sum with the standard
Legendrian 2–torus in .R5; �st/. This is the 2–torus whose front is obtained by S1–front
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.20/ .200/

Figure 44: The two Legendrian surgery moves in Corollary 4.12, both repre-
senting Lagrangian 2–handle attachments.

spinning of the saucer front for the standard Legendrian unknot in .R3; �st/. See [30,
Section 4.1] and Figure 6 therein, and also [15; 31].

We recall that, by definition, the index of an elementary exact Lagrangian cobordism
is the Morse index of its unique critical point; see [15, Section 4.1; 31, Section 4].
Note that elementary index-k exact Lagrangian cobordisms are also referred to as
Lagrangian k–handle attachments. In particular, the Legendrian convex end of an
elementary index-k exact Lagrangian cobordism is a Legendrian .k�1/–surgery on
the Legendrian concave end. In combination with Theorem 4.2, Theorem 4.10 yields
the following two moves:

Corollary 4.12 The two N –graph moves in Figure 44 correspond to a Legendrian
1–surgery , i.e. upon performing (20) or (200) there exists an elementary index-2 exact
Lagrangian cobordism from the Legendrian weave on the left to the Legendrian weave
on the right.

In fact , in Move (20) the Lagrangian 2–disk is attached along the 1–cycle represented
by the (bi )chromatic horizontal edge between the two trivalent vertices. In Move (200),
the Lagrangian 2–disk is attached along the 1–cycle represented by the (blue) tripod at
the hexagonal vertex uniting the three trivalent vertices.

Proof of Theorem 4.10 We start by proving that adding an i–edge with two trivalent
vertices to an existing i–edge effects a Legendrian 0–surgery, i.e. a Lagrangian 1–handle
attachment. The homotopy of spatial fronts is depicted in Figure 45, according to
the conventions in Section 4.3. The detailed description reads as follows. We first
generically perturb the two D�

4 –singularities in the first spatial front, which yields
the second front. Performing Move VIII and then Move I yields the third and fifth
fronts, respectively, in Figure 45. Note that the homotopy from the third to the fourth
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Figure 45: The diagrammatic homotopy of spatial fronts associated to the
Legendrian 1–surgery move. It shows that the first front is a Legendrian
0–surgery on the eighth front, i.e. the result of a Lagrangian 1–handle attach-
ment.

front does not involve any change in the singularities of fronts, as the blue segment
of A2

1–singularities intersecting the orange A2–cusp segment lies strictly below it in
3–space. The homotopy from the fifth to the sixth front emphasizes the yellow band
where the (reverse) 1–surgery is to be performed. The step from the sixth to the seventh
fronts is precisely the reverse surgery: the A2–cusp edges in the seventh front are
surgered along the yellow band [5; 15], in the sixth front, to obtain the fifth front. The
seventh front is homotopic to the eighth front by Move VII.

Let us now show that removing an i–edge corresponds to a Lagrangian 2–handle
attachment, i.e. a Legendrian 1–surgery. The homotopy of fronts is depicted in Figure 46.
Starting with the first front, generically perturbing yields the second front and two
applications of Move VIII give the third front. In the fourth front we have shown the
Legendrian 2–disk (in yellow) along which we perform the 1–surgery [7; 15], the result
of which is the fifth front. Indeed, the 1–surgery opens up the inner circle of A2–cusp
edges and adds two horizontal (Legendrian) 2–disks. As a result, the effect on its
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2–disk

Figure 46: The diagrammatic homotopy of spatial fronts associated to the
Legendrian 1–surgery move. It shows that the eighth front is a Legendrian 1–
surgery on the first front, i.e. the result of a Lagrangian 2–handle attachment.
Note that diagrams 3 and 4 in the first row are the same. The difference is
that in diagram 4 we have depicted (in yellow) the 2–disk along which the
Legendrian 1–surgery is performed, which overlaps with part of diagram 3
(and thus this part is not depicted in diagram 4).

diagrammatic representation is of removing the inner circle of A2–cusps, as shown
in the fifth front. The application of Move I gives the sixth front, which is readily
homotopic to the seventh front. The eighth front is then obtained by performing a
Move VII.

Now we prove that joining two trivalent vertices in distinct graphs G1 � C1 and
G2 � C2 is realized by a Legendrian surface connected sum, which is a Lagrangian
1–handle attachment (a Legendrian 0–surgery) whose attaching 0–sphere has its two
points belonging to different boundary components. The required homotopy of fronts
is shown in Figure 47. In this case, we must satellite the Legendrian weaves ƒ.G1/

and ƒ.G2/ to a Darboux ball .R5; �st/. From the perspective of spatial fronts, we
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Figure 47: The diagrammatic homotopy of spatial fronts associated to the
Legendrian connected sum.

must locally add a A2
1–curve and two A2–cusp edges as depicted in the first front of

Figure 47. The Legendrian 0–surgery is performed from the first front to the second,
along the Legendrian band given by the red dotted line. The homotopy from the second
front to the third consists of four applications of Move XI. Then we use Move XII to
obtain the fourth front. The fifth front is achieved by applying Move VII, and the sixth
front consists of two applications of Move XI.

Finally, substituting a trivalent vertex by a triangle corresponds to a connected sum
with the 4–vertex graph Gc � S2 in Figure 48, left. One then shows that the spatial

Figure 48: The Clifford graph Gc � S2 and a simplified spatial front for the
satellited Legendrian �.ƒ.Gc// � .R5; �st/.
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II [ h2

II

I D

Figure 49: The Lagrangian 2–handle attachment in Move (200) decomposed as
a sequence of surface Reidemeister moves, from Theorem 4.2, and Move (2)
in Theorem 4.10, in the guise of Corollary 4.12.

front of the Legendrian weave �.ƒ.Gc// � .R5; �st/ is front-equivalent to the front in
Figure 48, right, which is known to be the Legendrian lift of the Clifford torus [30; 22].
In brief, this can be shown by first identifying the Legendrian 2–torus associated to the
Clifford graph with the vanishing cycle associated to the superpotential W W C3 ! C,
W.z1; z2; z3/ D z1z2z3. This superpotential has a singular Lagrangian thimble

L D f.z1; z2; z3/ 2 C3
W W.z1; z2; z3/ 2 R�0; jz1j D jz2j D jz3jg;

whose intersection with the contact unit 5–sphere .S5; �st/ � C3 is a Legendrian
2–torus LW . It is shown in [87, Section 3.3] that the Clifford graph is a front for this 2–
torus LW . In order to obtain the cone front from Figure 48, right, one stereographically
projects from .S5; �st/ � C3 to .R5; �st/ with the contactomorphism provided in [60,
Proposition 2.1.8] and draws the (image of LW in the) front projection. The resulting
front for LW is precisely the one drawn in Figure 48, right.

Proof of Corollary 4.12 In Figure 44, Move (20) follows by applying a sequence of
Moves II to the leftmost trivalent vertex, pushing that vertex through all the hexagonal
vertices — until it is connected to the rightmost trivalent vertex with a monochromatic
edge — and then using Move (3) in Theorem 4.10. Move (200) is more interesting, and
its proof is shown in Figure 49.
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Theorem 4.10 provides a useful and efficient way to describe Legendrian surfaces in
terms of N –graph combinatorics. Its statement is as strong as possible, in that the
conclusion is on the Legendrian isotopy type of the associated Legendrian weaves. The
computation of algebraic invariants then follows as a consequence of our geometric
understanding.

In particular, we have following:

Corollary 4.13 Let G � C be an N –graph and v 2 G a trivalent vertex. The blow-up
combinatorial move on G, given by an insertion of a triangle at the vertex v, is a twisted
0–surgery on �.ƒ.G//.

The blow-up procedure was first studied in [119, Section 5]. It is depicted in Figure 43,
bottom right. By definition, a twisted 0–surgery is a connected sum with a nonstandard
Legendrian torus in .S5; �st/. For now, we refer to [30, Section 4] for more details.

A consequence of Corollary 4.13 is that the Legendrian isotopy type of �.ƒ/ is inde-
pendent of the choice of vertex v 2 G, because a twisted 0–surgery is independent of
the choice of 0–sphere at which it is performed (since all pairs of points are isotopic
in a connected surface). This question was initially asked in [119] in the study of the
dependence of the sheaf invariants in terms of v. Since the Legendrian isotopy type
of �.ƒ/ is independent of v, the algebraic invariants are also independent of v.

Finally, note that the Legendrian 0–surgery in Theorem 4.10(1) can be understood as a
Legendrian connected sum with the 2–graph G � S2 shown in Figure 50, left. In fact,
the standard Legendrian satellite �.ƒ.G// for this 4–vertex 2–graph is the standard
Legendrian 2–torus, a Legendrian front of which is shown in Figure 50, right. Indeed,
they are both obtained from the standard Legendrian unknot by a 0–surgery (which
yields a unique Legendrian isotopy class of Legendrian 2–tori) and thus they must be
Legendrian isotopic.

T 2
st

Figure 50: A 2–graph G in the 2–sphere S2 (left) and a Legendrian front
for its Legendrian weave �.ƒ.G// (right). This is the standard Legendrian 2–
torus T 2

st � .R5; �st/, given by Legendrian front spinning of the 1–dimensional
standard Legendrian unknot ƒ0 � .S3; �st/.
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Remark 4.14 The Legendrian 0– and 1–surgeries in Theorem 4.10 physically corre-
spond to partial puncture degenerations in the context of spectral networks [53; 54].
Indeed, the Legendrian weaves obtained as the Legendrian lift of the Lagrangian
hyperkähler rotation of the spectral curve of a diagonalizable Higgs field are related by
the Legendrian surgeries in Theorem 4.10. For instance, the process of a full puncture
Œ1; 1; 1� degenerating to a simple Œ2; 1� puncture in a punctured 3–sphere is precisely a
Legendrian 0–surgery [51, Section 6].

The Reidemeister moves in Section 4.1 and the stabilization operation in Section 4.7 pre-
serve the Legendrian isotopy type of the (satellite) Legendrian weaves. The Legendrian
surgeries discussed in Theorem 4.10 generically change the topology of ƒ.G/. The
natural next step is to modify the Legendrian isotopy type of ƒ.G/ without changing its
topology, which we will discuss in Section 4.8. For now, we study an explicit example
and present the stabilization operation.

4.6 Example of a closed Legendrian weave

Let us illustrate our spatial front calculus in an example. Consider the triangulation
of C D S2 given by a tetrahedron, and the 3–graph G associated to this triangulation
according to Section 3. This 3–graph is shown in Figure 51, top left. The 3–graph G is
depicted in the plane as an unfolded triangulation; thus, the triangles should be identified
according to the faces of the tetrahedron: the outer three vertices of the dashed triangle
are identified, and the dashed lines are glued accordingly. In particular, the 3–graph G

has twelve trivalent vertices and four hexagonal vertices. The question is to describe the
Legendrian isotopy type of this Legendrian surface �.ƒ.G// � .R5; �st/. In addition,
we would like to compute Legendrian invariants, such as the augmentation variety
of 3–dimensional Lagrangian fillings in .D6; !st/. In this context, understanding the
Legendrian isotopy type readily implies the computation of this Legendrian invariant.

We will exploit Theorems 4.2 and 4.10 to understand this Legendrian weave, and
note that the closed surface �.ƒ.G// WD Q�0.ƒ.G// has genus 4. First, we describe the
sequence of Legendrian moves and surgeries in Figure 51. In diagram (1), in the top
left, first note that there are three blue triangles each having one vertex in the central
triangle, one each in two outer triangles, and passing through one glued edge. There is
another blue triangle with one vertex on each of the outer triangles. By Theorem 4.10,
we conclude that diagram (1) corresponds geometrically to a connected sum of the
weave from diagram (2) with four copies of the Clifford 2–torus T2

c . The 3–graph
of diagram (2) is still complicated, so we use Theorem 4.2 to simplify. First apply
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(1)

'

(2)

# #4
ƒ.T2

c / '

(3)

# #4
ƒ.T2

c /

'

(4)

# #4
ƒ.T2

c /

Figure 51: Simplification of a 3–graph with Theorems 4.2 and 4.10.

Move III, flopping the four vertices in the upper right of the 3–graph. This brings us to
diagram (3). Now do a Move I to undo the newly appearing candy-twist.

This brings us to diagram (4). So we have proven that the standard satellite �.ƒ.G// is
Legendrian isotopic to �.ƒ.G0// # #4

iD1 T2
c , where G0 is the 3–graph in diagram (4) of

Figure 51. It now suffices to understand the Legendrian �.ƒ.G0// � .R5; �st/.

Assertion Let G0�S2 be the 3–graph in Figure 52, top left. The Legendrian 2–sphere
�.ƒ.G0// is Legendrian isotopic to the standard Legendrian unknot ƒ0 � .R5; �st/.

Proof By Theorem 4.10, we can undo the two bigons in diagram (5) of Figure 52,
and understand them as two connect sums with the standard Legendrian 2–torus T2

st ,
defined as any Lagrangian 1–handle attachment to the standard Legendrian unknot
ƒ0 � .R5; �st/.

By applying Move I in Theorem 4.2 to the 3–graph in diagram (6), we arrive at the
3–graph G00 in diagram (7) of Figure 52, which simplifies to the three concentric circles
of alternating colors in diagram (8). The Legendrian weave �.ƒ.G00// � .R5; �st/ is
readily seen to be the standard 3–component unlink ƒ0 [ƒ0 [ƒ0 � .R5; �st/. Indeed,
in 3–dimensional contact topology, the standard satellite of an N –stranded braid along
the unknot — with its standard saucer front — creates a w�1

0 of crossings at each side
of the braid, where w0 2 SN is the longest element, that is, an S0–worth of w�1

0 –
crossings. In particular, a positive braid given by w2

0 , which consists of an S0–worth
of w0–crossings, will get satellited to the standard Legendrian N –component unlink.
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(5)

'

(6)

# #2
ƒ.T2

st/

'

(7)

# #2
ƒ.T2

st/ '

(8)

# #2
ƒ.T2

st/

Figure 52: Diagrammatic proof that the standard satellite of the Legendrian
2–sphere associated to the 3–graph in diagram (5) is the standard Legendrian
unknot 2–sphere ƒ0 � .R5; �st/.

See eg [24, Section 2.2]. By S1–symmetrically rotating this picture, we conclude
that an N –weave in S2 given by

�
N
2

�
concentric circles whose colors exactly give w0

will be satellited along the standard 2–dimensional unknot to a standard Legendrian
N –component unlink. Here the case at hand is N D 3 and it suffices to note that
red–blue–red represents w0 2 S3.

In conclusion, �.ƒ.G0// is obtained by performing Lagrangian 1–handle attachments to
ƒ0[ƒ0[ƒ0� .R5; �st/, and thus �.ƒ.G0// must be the standard Legendrian unknot.

The conclusion of the above discussion is that the Legendrian isotopy type of the
Legendrian surface �.ƒ.G//� .R5; �st/ associated to 3–triangulation of the tetrahedron,
i.e. diagram (1) of Figure 51, is that of the connected sum of four copies of the Clifford
2–torus T2. Hence, we now have a complete geometric understanding of �.ƒ.G//. In
particular, this readily implies [113; 30] that the C–moduli of objects of the category of
microlocal rank-1 sheaves in R3 supported in �.ƒ.G// is isomorphic to .C n f0; 1g/4.

4.7 N –graph stabilization

The Reidemeister moves introduced in Theorem 4.2 constitute combinatorial operations
on a given N –graph G which yield the same Legendrian isotopy type for the associated
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.N;NC1/

G.1;:::;N /

.12/

.23/

.N�2;N�1/

.N�1;N /

G.1;:::;NC1/

Figure 53: Ladybug graph B around G (left) and halos centered at G (right).

Legendrian weave ƒ.G/, as a Legendrian in .J 1C; �st/. In particular, the resulting
graph is still an N –graph.

In this section we discuss a different type of combinatorial move, where the number
of sheets N 2 N is increased. This operation, which we call stabilization, inputs
an N –graph G � C and outputs an .NC1/–graph s.G/ � C. The main property
of stabilization, proven in Theorem 4.17, is that it preserves the Legendrian isotopy
type of the standard Legendrian satellite �.ƒ.G// � .R5; �st/, and as a result it is a
noncharacteristic operation.

Remark 4.15 The relative homology class of the surface ƒ.G/ � J 1C has order N,
and thus no combinatorial operation that modifies the number N 2 N of sheets for a
Legendrian weave will ever yield a Legendrian isotopic surface in the 1–jet space J 1C.
Therefore, preserving the Legendrian isotopy type for the (standard) satellite is the
optimal statement for a stabilization operation.

Let us describe the Legendrian weave stabilization. Given an N –graph G, the first
step is to introduce a ladybug trivalent graph B in .N; N C 1/ as depicted in blue in
Figure 53, left, in such a way that G is completely contained in one face12 of B, i.e. G

is inside one of the wings of the ladybug B. The second step is the introduction of
descending halos centered at an .NC1/–graph G, which consists of a nested set of
N �1 circles of A2

1–crossings indexed by the permutations .N �1; N /, .N �2; N �1/,
. . . , .23/, .12/, reading outward. This is depicted in Figure 53, right.

The concatenation of these two operations leads to the following:

12The construction is independent of the choice of this face.
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.12/ .23/

G.1;2/

.12/

.23/ .34/

G.1;2;3/

Figure 54: Stabilization of a 2–graph (left) and of a 3–graph (right).

Definition 4.16 Let G � C be an N –graph. The stabilization of G is the .NC1/–
graph s.G/ � C obtained from G by placing a ladybug B around G, labeled with
the transposition .N; N C 1/, and a sequence of descending halos centered at the
.NC1/–graph G [B.

Figure 54 depicts the stabilization for the cases N D 2; 3. The ladybug graph B is
shown in blue.

The stabilization in Definition 4.16 is the Legendrian surface generalization of the type
II Markov move for smooth N –strand braids [82; 13]. The main property of graph
stabilization is the following geometric result:

Theorem 4.17 Let G � S2 be an N –graph. Then the standard satellites �.ƒ.G// and
�
�
ƒ.s.G//

�
are Legendrian isotopic in .S5; �st/.

Proof Let us provide a detailed proof for the case N D 2, where the stabilization
is a 3–graph. The argument for higher N � 3 is identical. Consider the standard
satellite closure �

�
ƒ.s.G//

�
, which yields Figure 55, left — we refer the reader to

Figure 33 for the front of the standard satellite closure. The standard satellite closure
of a 3–graph introduces three circles of A2

1–crossings, drawn in dark gray, and three
circular cusp edges, drawn in orange.13 Perform a Legendrian isotopy which exchanges
the .12/–circle of A2

1–crossings with the adjacent .34/–circle of A2
1–crossings; this

gives Figure 55, right. This move is possible thanks to the cusp sliding shown in the
first two columns of Figure 56.

13For a general N –graph, a front for the standard satellite closure of the Legendrian weave contains N

additional sheets, .N C 1/, .N C 2/, . . . , 2N. The bottom N sheets 1; : : : ; N are woven according to G,
and the top horizontal N sheets are parallel. The bottom and top sheets are then connected by N circles
worth of A2

1–crossings, according to the half-twist � 2 BrC
N

, and N circles worth of A2–cusp edges; see
Figure 33.
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.34/

.12/ .23/

G.1;2/ '

.12/

.34/ .23/

G.1;2/

Figure 55: Exchange of .12/– and .34/–circles of A2
1–crossings.

Then use the innermost cusp circle and perform a Move XI, also denoted by R2
1 as

it consists of two Reidemeister I moves, to remove two of the A2
1–crossings as in

Figure 57, left; this corresponds in the slice to the third column of Figure 56. Iterate
with an R2

1 in the same cusp edge with the .34/–circle of crossings and the ladybug
piece B, arriving at Figure 57, right.

Finally, eliminate the two half-moons in the cusp edge and isotope the cusp edge above
the graph G.1;2/, which is possible thanks to the configuration shown in the rightmost
column of Figure 56. The resulting diagram is Figure 58, left, which is Legendrian
isotopic to the diagram on its right, by applying two Moves XII, from Figure 41, and
an inverse Move VII, from Figure 37.

' '

G.1;2/

Figure 56: The left three diagrams depict slices in the dotted segments for
Figure 55. The rightmost diagram depicts a slice for the dotted segment in
Figure 57, right.
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.34/ .23/

G.1;2/ ' G.1;2/

Figure 57: Performing an R2
1–move with .34/ and the ladybug.

In this work, Reidemeister moves in Section 4.1 and the stabilization in Theorem 4.17
form the set of combinatorial moves that is available to us when manipulating an
N –graph if the Legendrian isotopy type of the associated (satellite) Legendrian weave
is to be preserved.

4.8 Legendrian mutations

We now discuss the N –graph combinatorics of Legendrian mutations, a new geometric
operation that we define in this manuscript. This operation inputs a Legendrian surface
ƒ � .R5; �st/ and an isotropic 1–cycle 
 � ƒ, and outputs a Legendrian surface
�
 .ƒ/ � .R5; �st/. The Legendrian surface �
 .ƒ/ � .R5; �st/ will be ambiently
(relatively) smoothly isotopic to ƒ, and oftentimes not Legendrian isotopic to ƒ. The

G.1;2/ ' G.1;2/

Figure 58: From N D 2 to N D 3 (left) and N D 3 to N D 4 (right).

Geometry & Topology, Volume 26 (2022)



Legendrian weaves: N –graph calculus, flag moduli and applications 3657

choice of notation aims at emphasizing its relation to the wall-crossing phenomenon
[52; 74; 75], Lagrangian mutation [98; 9; 10; 50, Chapter 10] and quiver mutations
[49; 121].

Definition 4.18 Let G �C be an N –graph and e2G and i–edge between two trivalent
vertices. The mutation of G along e is the N –graph �e.G/ obtained by performing
the exchange depicted in Figure 60, left, also shown in Figure 4(3).

By Theorem 4.21 below, the Legendrian weaves ƒ.G/ and ƒ.�e.G// will be mutation-
equivalent, according to Definition 4.19 — this motivates Definition 4.18 from the
perspective of contact topology. Note that the operation in Definition 4.18 is the simplest
possible mutation, corresponding to the combinatorics associated to a Whitehead move,
i.e. an edge flip in the context of triangulations dual to 2–graphs. Indeed, consider the
two unique nondegenerate triangulations T1 and T2 of the square; the dual 2–graphs
G1 and G2 differ precisely by a mutation along their unique internal edge.

Correspondingly, the standard satellites of their associated Legendrian weaves are two
Legendrian cylinders with coinciding Legendrian boundary, smoothly isotopic relative
to their boundary but which are not Legendrian isotopic relative to their boundary.

In general, given a 1–cycle 
 2 ƒ.G/ which is expressed combinatorially in G, it
is possible to describe the mutation of G along 
 . The mutated graph �
 .G/ can
either be defined in an ad hoc way or instead be understood as a graph which is
equivalent via Reidemeister moves, as in Section 4.1, to the mutated graph �e.
/.G0/.
Here G0 is Reidemeister equivalent to G and e.
/ is an i–edge between trivalent
vertices such that Œe.
/� D Œ
� 2 H1.ƒ.G/; Z/ under the canonical identification
H1.ƒ.G/; Z/ Š H1.ƒ.G0/; Z/ given by a Legendrian isotopy. Here is the definition:

Definition 4.19 (Legendrian mutation) Two Legendrian surfaces ƒ0; ƒ1 � .R5; �st/

are mutation-equivalent if and only if there exists a compactly supported Legendrian
isotopy f zƒtgt2Œ0;1� relative to the boundary @ƒ0, with zƒ0 D ƒ0, and a Darboux ball
.B; �st/ such that:

(i) The two restrictions zƒ1j.R5nB/ D ƒ1j.R5nB/ coincide away from this Darboux
ball.

(ii) There exists a global front projection � W R5 ! R3 such that each of the spatial
fronts �jB.zƒ1/ and �jB.ƒ1/ respectively coincide with each of the two fronts
in Figure 59.
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�

Figure 59: Legendrian mutation in a local spatial wavefront.

The two fronts depicted in Figure 59 coincide at their boundaries and lift to Legendrian
cylinders. These Legendrian cylinders are not Legendrian isotopic relative to their
boundary. Indeed, compactifying the upper sheet of the fronts with an A2–cusp edge
and a flat 2–disk, and the lower sheet with a different A2–cusp edge and a flat 2–disk,
yields the standard Legendrian unknot ƒ0 � .R5; �st/ for the front in Figure 59, left, and
a loose Legendrian 2–sphere s.ƒ0/ for the front in Figure 59, right. The Legendrians
ƒ0; s.ƒ0/ � .R5; �st/ are not Legendrian isotopic [35; 36].

A strong motivation for the study of the above mutations is the production of Legendrian
surfaces which are not Legendrian isotopic, even though they belong to the same formal
Legendrian isotopy class [65; 44]. In order to distinguish Legendrian isotopy classes
we will be using flag moduli spaces, which synthesize Legendrian invariants coming
from the study of microlocal sheaves in terms of algebraic geometry.

Remark 4.20 The conic Legendrian singularity for the front in Figure 59, left, is not
a generic singularity. It is explained in detail in [30; 22], and its generic perturbation
contains four A3–swallowtail singularities.

Theorem 4.21 (Legendrian mutations) Let .G1; G2/ be one of the pairs of N –graphs
depicted in Figure 60. Then the associated Legendrian surface ƒ.G1/ is a Legendrian
mutation of ƒ.G2/ relative to their boundaries.

Proof Let us start by showing that the exchange move in Figure 60, left, corre-
sponds to a Legendrian mutation, as in Definition 4.19. By [23, Theorem 6.3], the

Figure 60: The Legendrian mutation moves in Theorem 4.21.
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Figure 61: The 2–graphs associated to a Legendrian mutation. The middle
2–graph yields a spatial front which lifts to a singular Legendrian surface,
consisting of the union of two 2–planes intersecting at a point.

Lagrangian projections ….ƒ0/; ….ƒ1/ � R4 of the Legendrian lifts of the fronts
�.ƒ0/; �.ƒ1/�R3 in Figure 59 correspond to the two Polterovich surgeries associated
to the normal crossing of two Lagrangian planes R2 � f0g and f0g �R2 � .R4; !st/.
The Lagrangian projection of the Legendrian lifts for the two 2–graphs in the exchange
move in Figure 60, left, are exact Lagrangian fillings L1 and L2 of the Hopf link
ƒHopf � .S3; �st/ Š @.R4; !st/. Indeed, the 2–stranded braid word at the boundary of
the 2–weave is �4

1 , as there are four blue edges arriving at the boundary; then note that
the .�1/–framed closure of �4

1 in .R3; �st/ is the Hopf link. See Section 7 for more
details on Lagrangian fillings. Thus, it suffices to show that L1; L2 � .R4; �st/ are the
positive and negative Polterovich surgeries of the two Lagrangian planes R2 � f0g and
f0g �R2 � .R4; !st/ at their intersection points. Indeed, Figure 61, center, depicts the
2–graph for the singular Legendrian whose Lagrangian projections is the Lagrangian
union .R2 � f0g/[ .f0g �R2/.

The 2–graph in Figure 61, center, describes a topological surface which is the union of
2–planes intersecting at a point, for both the Lagrangian surfaces in .R4; !st/ and the
Legendrian surfaces in .R5; �st/. Topologically, the front in Figure 61, center, is the
cone over the annular projection of the .2; 4/–braid, with singular crossings.14

Finally, the Lagrangian projections of the Legendrian lifts of Figure 61, left and right,
are realized as Polterovich surgeries of the corresponding Lagrangian projection in
Figure 61, center. Since the Legendrian lifts of Polterovich surgeries are Legendrian
mutations [23, Theorem 6.3], this concludes the first part of Theorem 4.21.

Let us now show that the exchange move in Figure 60, right, also corresponds to a
unique Legendrian mutation. This is proven directly through the homotopy of fronts in
Figure 62.

14This is consistent with the fact that the Hopf link is the boundary of two transversely intersecting planes
in the 4–ball D4. For the max-tb Legendrian Hopf link, these two planes should be taken to be Lagrangian.
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.1/ .2/ .3/

.4/

�

.5/ .6/

Figure 62: The Legendrian mutation for 3–graphs as a sequence of Legen-
drian isotopies and 2–graph mutation.

Indeed, the first step in Figure 62, starting from the upper left, consists of applying
Move II, pushing a trivalent vertex through a hexagonal vertex. The second and third
steps are also a direct application of a Move II, pushing the remaining two trivalent
vertices through the newly created two hexagonal vertices. The fourth move, starting at
the left of the second row, is a mutation of 2–graphs. This yields the 3–graph at the
center of the second row, the arrow being labeled by the letter �. Finally, we apply
a Move III, flopping the four vertices nearest to the center, in order to achieve the
3–graph in Figure 60, right. This shows that the exchange move in Figure 60, right, is
a Legendrian mutation.

For our applications to Lagrangian fillings, it is important to understand how 1–cycle
representatives of classes in H1.ƒ.G/; Z/ change under the mutations depicted in
Figure 60. Following Section 2.4, we focus on 1–cycles represented by monochromatic
edges — or more generally long edges — and by Y–cycles. Figure 63 explicitly shows
how to transport certain I–cycles along the mutation. (See Section 2.4 for the definition
of I–cycles.) In addition, mutation along a long edge is dictated by the following:

Corollary 4.22 Let Œ
� 2 H1.ƒ.G/; Z/ be represented by a long edge in an N –
graph G, as shown in the first row of Figure 64. Then the Legendrian mutation
�
 .ƒ.G// is the Legendrian weave associated to the graph �
 .G/ as depicted in the
second row of Figure 64.
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Figure 63: The 2–graph mutation with the additional information of the 1–
cycles, before and after the 2–graph mutation (left). The Y–cycle and an
incident 1–cycle transforming before and after a mutation along the Y–cycle
(right).

Theorem 4.21 and Corollary 4.22 describe mutations along Y–cycles and I–cycles,
either monochromatic or long edges. In general, we might be interested in mutating
along a cycle 
 which is a tree, both with Y–pieces and I–pieces, as introduced in
Section 2.4. Thus, we now develop local rules for Legendrian mutations that will allow
us to mutation along any such cycle 
 . These rules also imply Corollary 4.22. All
these rules are obtained and proven in the same manner: one simplifies the weave with
equivalence moves, using Section 4, until the cycle to be mutated becomes a short
I–cycle. Then we apply the short I–cycle mutation in Figure 60, left, and rearrange the
weave with moves to the required configuration. For instance, for Corollary 4.22 (and
so Figure 64), we push-through the leftmost trivalent vertex through all the hexagonal
vertices until the long I–cycle becomes a short I–cycle. Then we mutate at the short
cycle and push-through one of the trivalent vertices back to the left.

4.9 Diagrammatic rules for N –graph mutations

Let 
 be a 1–cycle in an N –graph, given by a tree with Y–pieces and I–pieces. In this
subsection we gather the necessary rules for performing a general mutation along 





�




�

Figure 64: The two cases, left and right, of a Legendrian mutation along a
1–cycle 
 represented by a long edge.
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.a/ .b/

.c/

.a1/

.a2/

.a3/ .b1/

.b2/

.b3/

.c1/.c2/.c3/

D
.a1/

.a2/

.a3/ .b1/

.b2/

.b3/

.c1/.c2/.c3/

Figure 65: Case mutation at Y–cycle: internal mutation along Y–piece in green.

and also diagrammatically carrying a 1–cycle after the mutation at 
 . The rules are
local, either near a hexagonal vertex or a trivalent vertex, and there are three cases that
we need to draw: Legendrian mutation being performed at a Y–piece and at an I–piece,
and mutation near a trivalent vertex.

First, we draw the rules for the effect of mutating at a cycle which contains Y–pieces:

(i) Figure 65 shows how the Y–cycle at which we mutate transforms; this cycle
is depicted in green. Note that the resulting cycle locally contains only one
Y–piece.

(ii) Figure 66 explains how to transform the other Y–cycle, in ochre (a darker yellow),
under mutation at the green Y–cycle in Figure 65.

(iii) Figure 67 then depicts the transformation of edge I–cycles through a hexagonal
vertex under mutation at the green Y–cycle in Figure 65.

.a/ .b/

.c/

.a1/

.a2/

.a3/ .b1/

.b2/

.b3/

.c1/.c2/.c3/

Figure 66: Case mutation at Y–cycle in Figure 65: effect for ochre Y–cycle
of internal mutation along Y–cycle in green in Figure 65.
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.a/ .b/

.c/

.a1/

.a2/

.a3/ .b1/

.b2/

.b3/

.c1/.c2/.c3/

.a/ .b/

.c/

.a1/

.a2/

.a3/ .b1/

.b2/

.b3/

.c1/.c2/.c3/

.a/ .b/

.c/

.a1/

.a2/

.a3/ .b1/

.b2/

.b3/

.c1/.c2/.c3/

Figure 67: Case mutation at Y–cycle in Figure 65: effect for ochre I–cycle of
internal mutation along Y–cycle in green.

(iv) Finally, Figure 68 provides the last information needed for carrying any cycle
upon mutating at the green Y–cycle in Figure 65. These are the three ways in
which a 1–cycle must be continued if the 1–cycle is coming from the extremes
of one of the sides.

Second, the rules for mutating at a long edge of an I–piece of a 1–cycle:
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.a1/

.a2/

.a3/ .b1/

.b2/

.b3/

.c1/.c2/.c3/

.a1/

.a2/

.a3/ .b1/

.b2/

.b3/

.c1/.c2/.c3/

.a1/

.a2/

.a3/ .b1/

.b2/

.b3/

.c1/.c2/.c3/

Figure 68: Case mutation at Y–cycle in Figure 65: effect for side I–cycles of
internal mutation along Y–cycle in green.

(v) Figure 69 shows how to transform an I–piece upon mutation at the green I–piece.

(vi) Figure 70 then depicts the transformation of a Y–piece of a cycle, in ochre, upon
mutation at the green I–piece in Figure 69.

Finally, the local rules for mutating near a trivalent vertex are shown in Figure 71. These
rules are derived by performing Legendrian Reidemeister moves, especially Move II,
until the given cycle at which we want to mutate becomes a monochromatic (short)
edge. Then a monochromatic edge mutation is performed, as in Theorem 4.21, and Leg-
endrian Reidemeister moves are performed back to the starting configuration. The two
noncanceling applications of a push-through move, before and after a monochromatic
edge mutation, are responsible for the tripling behavior seen in the diagrams.

4.10 Sufficiency for stabilized Legendrians

Finally, we conclude this section by introducing the following combinatorial idea,
motivated by the topology of Legendrian surfaces in 5–dimensional contact manifolds.
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D

D

D

Figure 69: Top left: case mutation at I–cycle in green. Second and third rows:
effect of this mutation for ochre I–cycle of internal mutation along I–cycle in
green.

Definition 4.23 An N –graph G �C is said to have a bridge if there exist two disjoint
2–disks D1; D2 � C such that the complement G n .G \ D1 [ G \ D2/ consists
of N � 1 disjoint strands with labels �1; �2; : : : ; �N�1 consecutive with respect to a
transverse oriented curve in C n .D1 [D2/.

For the N D 2 case, where G is a trivalent graph, a bridge for G according to
Definition 4.23 coincides with the standard graph-theoretic notion of a bridge [14; 29].

Figure 70: Case mutation at horizontal I–cycle as in Figure 69: effect for
ochre Y–cycle of internal mutation along I–cycle in green in Figure 69, left.
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D

D

D

Figure 71: Case mutation near trivalent vertex for green cycle (first row).
Second and third rows: effect for ochre Y–cycle of internal mutation at green
cycle near trivalent vertex.

A general N –graph G � C with a bridge is depicted in Figure 72, left, and an example
of a 4–graph with a bridge is shown in Figure 72, right.

The geometric motivation for this definition is based on the theory of loose Legendrian
surfaces, also known as stabilized Legendrians [84]. This class of loose Legendrians
is known to satisfy an h–principle and has proven to be very useful in the study of
Weinstein manifolds [26; 22]. The reader is referred to [26; 84] for further details. We
will assume known its definition and state the following property:

Proposition 4.24 Let G � C be an N –graph with a bridge. Then �.ƒ.G// is a loose
Legendrian surface.

G1

�1
�2
�3

�N�1

G2

.34/

.23/

.12/

Figure 72: Structure of an N –graph with a bridge (left) and instance of a
4–graph with a bridge (right).
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�N�1

�3
�2

�1

Figure 73: The front for the Legendrian link obtained in a 3–dimensional
slice of a bridge (left), the front for the corresponding satellite closure (center)
and a homotopic front exhibiting a loose chart (right).

Proof The proof is a simple argument in the theory of spatial fronts. Indeed, consider
the 1–dimensional front slice along the dashed orange line in Figure 72. The braid
shown along this slice is depicted in Figure 73, left. Its closure as a satellite of the
standard Legendrian unknot is shown in Figure 73, center. This Legendrian link is
isotopic, via a sequence of Reidemeister II moves, to the Legendrian link given by the
front in Figure 73, right. The loose chart is exhibited in yellow in this figure. Note that
this chart has arbitrarily large thickness due to the dilation freedom in .R5; �st/ and the
fact that our front is global. This proves that �.ƒ.G// is a loose Legendrian if G has a
bridge.

Proposition 4.24 immediately has the following consequence.

Corollary 4.25 Let G � C be an N –graph with a bridge. Then �.ƒ.G// � .S5; �st/

admits no exact Lagrangian filling L � .D6; !st/.

Corollary 4.25 should be contrasted with the fact that many of the Legendrian surfaces
�.ƒ.G// � .S5; �st/ admit exact Lagrangian fillings. For instance, it follows from
Theorem 4.10 that any 2–graph G obtained from the unique 2–vertex 2–graph by
adding bigons, i.e. a 1–surgery, yields a Legendrian surface �.ƒ.G// which admits exact
Lagrangian fillings. On the other hand, simple 2–graphs do not; see [119, Theorem 1.3].

Example 4.26 (exact Lagrangian cobordisms to a loose Legendrian) Consider the
Legendrian Clifford 2–torus T2

c � .S5; �st/ associated, via the standard satellite, to the
2–graph in Figure 74, left. By applying our combinatorial Legendrian surgery from
Theorem 4.10, Figure 43(2), we obtain an (index-2) exact Lagrangian cobordism from
T2

c to the Legendrian 2–sphere ƒl associated in Figure 74, right. By Proposition 4.24,
the Legendrian ƒl is a loose Legendrian surface. This proves that the Legendrian
Clifford 2–torus T2

c � .S5; �st/ is a subloose Legendrian surface, and we will show
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Figure 74: An exact Lagrangian cobordism from a nonloose Legendrian
2–torus to a loose Legendrian 2–sphere.

in Section 6 that T2
c is not a loose Legendrian. In particular, this also proves that

T2
c � .S5; �st/ admits no 3–dimensional exact Lagrangian fillings L � .D6; �st/ in the

standard symplectic 6–disk. The points in the nonempty flag moduli associated to T2
c

will in fact be geometrically represented by nonexact Lagrangian fillings.

5 Flag moduli spaces

In this section we introduce one of the central algebraic invariants in this article, the
flag15 moduli space M.G/ of an N –graph G and its associated Legendrian weave.
We will prove that these flag moduli spaces are moduli spaces of constructible sheaves
associated to a Legendrian weave, but we first present their explicit and self-contained
definition.

5.1 Preliminaries on the flag variety

Let N 2N be a natural number and R a commutative ground ring, which will oftentimes
be a field. We denote by GLN the general linear group, a scheme whose value over R is
GL.N; R/, and likewise for PGLN , the projective general linear group. By definition,
a (full or complete) flag is an element

F �
2 fF0

� F1
� F2

� � � � � FN�1
� FN

W dim F i
D i for 0 � i � N g;

i.e. a sequence of nested linear subspaces F i � RN D R˚
.N /
� � � ˚R for 0 � i � N.

Let B � GLN be the Borel subgroup16 of upper triangular matrices preserving the

15“Vexillary” is the appropriate adjectival form of “flag”. Hence, it should technically be named the
vexillary moduli space. The word is possibly too obscure, and we thus favor flag moduli space, as in flag
variety.
16This is a maximal Zariski closed and connected solvable algebraic subgroup. Since B is a minimal
parabolic subgroup of GLN , it preserves the most geometric linear structure in RN, which is precisely a
flag F �.
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standard coordinate flag. Since GLN acts transitively on the set of bases, the space
that parametrizes such full flags is the homogeneous space B D GLN =B. This is an
algebraic variety, known as the flag variety.

The relative position of two flags .F �; G �/ 2 B � B is encoded algebraically by the
Bruhat decomposition

GLN D

G
w2SN

BwB;

where the symmetric group SN D W.GLN / is identified with the Weyl group. That is,
the orbits of the diagonal action of GLN on a pair of flags are indexed by the symmetric
group SN . The dimension of the Bruhat cell BwB is the length `.w/ of the permutation
w 2 Sn. By definition, F � and G � are in transverse position (or totally transverse
or completely transverse) if their relative position is w0 2 SN , where w0 denotes the
longest element in the Coxeter group SN . Note that `.w0/D

�
N
2

�
for w0 2SN , and that

totally transverse is the generic relative position between two points in the flag variety B.
In particular, an elementary transposition �i 2SN determines a relative position between
two flags F � and G � in which only their i th vector spaces differ, and no others.

We will require a slight generalization of the above when the surface C is not simply
connected: compatible local systems of flags, rather than flags of subspaces of a fixed
vector space. This will not be required for our applications in Sections 6, 7 and 8, so the
reader is welcome to skip this paragraph. Let E !X be a local system on a topological
space X. By a local system of flags, we mean a complete filtration (flag) E � of E by local
systems E k such that the monodromy preserves the filtration. In this sense, the flag itself
makes global sense. Let U � X be a subspace and let F � be a flag of sublocal systems
on U, so that Fk � E for all 0 � k � N. We say that F � is compatible with E � if the
monodromies are specifically, for 
 2 �1.U; u/ and v 2 Fk , ik.
 �v/ D ik;�.
/ � ik.v/,
where the symbol � denotes (ambiguously) the action of any group on a vector space.
Note that, by monodromy invariance, we may speak of the relative position of two
compatible sublocal systems of flags F � and G � on subspaces U and U 0 of X.

With these algebraic preliminaries, we turn to describing the flag moduli space associ-
ated to an N –graph.

5.2 Description of the flag moduli space of an N –graph

Let G be an N –graph on a connected surface C, thought of as the union of the embedded
graphs Gi . By a face of G we mean the closure of a connected component of the
complement C nG.
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We first give a general description of the flag moduli space for C not necessarily simply
connected. We will not use this in our applications, so the reader is welcome to skip to
the simpler Definition 5.2, which is equivalent when C is simply connected.

Let †.G/ � C �R be the wavefront of the Legendrian weave, woven according to
G � C. Call a region a connected component of the complement .C �R/ n†.G/.

Definition 5.1 Let C be a connected surface and let G � C be an N –graph. The
framed flag moduli space �M.C; G/ associated to G comprises the following data:

(i) A rank-N local system E ! C or, equivalently, a vector space V and a repre-
sentation of the based fundamental group �1.C / on V.

(ii) For each face F of the N –graph G, a compatible local system of flags F �.F /.

(iii) For each pair of adjacent faces F1 and F2, sharing an i–edge e, their two
associated compatible local systems of flags F �.F1/ and F �.F2/ are in relative
position �i 2 SN , and along the common edge e we have chosen isomorphisms

F j .F1/ Š F j .F2/; 0 � j � N; j ¤ i;

and no other information, as F i .F1/ © F i .F2/.

(iv) By gluing, these isomorphisms define local systems in each region, since the j th

step of a flag of local systems F j compatible with E defines a local system on
the region between the j th and .jC1/st sheets — and these are not separated by a
�i –crossing of sheets when j ¤ i . We require that such local systems in regions,
each of which are sublocal systems of E via upward generization morphisms,
are compatible with E.17

The group PGLN acts on the space �M.C; G/ diagonally, i.e. as isomorphisms of E

and on all flags of local systems at once. By definition, the flag moduli space of the
N –graph G is the quotient stack

M.C; G/ WD �M.C; G/=PGLN :

We simply write M.G/ when C is understood.

Definition 5.2 Let C be a connected, simply connected surface and let G � C be an
N –graph. The framed flag moduli space �M.C; G/ associated to G comprises tuples
of flags, specifically:

17This condition is not local in the N –graph, G.
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(i) There is a flag F �.F / assigned to each face F of the N –graph G.

(ii) For each pair of adjacent faces F1; F2 � C nG, sharing an i–edge, their two
associated flags F �.F1/ and F �.F2/ are in relative position �i 2 SN , i.e. they
must satisfy

F j .F1/ D F j .F2/ for 0 � j � N; j ¤ i and F i .F1/ ¤ F i .F2/:

The group GLN acts on the space �M.C; G/ diagonally, i.e. on all flags at once. By
definition, the flag moduli space of the N –graph G is the quotient stack

M.C; G/ WD �M.C; G/=PGLN :

We simply write M.G/ when C is understood.

We will equivalently exchange between the linear and projective perspective for a full
flag. In the projective setting, flags F � (or local systems of flags) are understood as a
sequence of nested projective planes P .F /�, given by the projectivization of the linear
spaces of the linear flag F �. For a ground field R, the moduli space M.C; GIR/ is
representable by an Artin stack of finite type [77; 78], and is typically an algebraic
variety (unless G is so symmetric that an admissible configuration of flags might be
fixed by PGLN ).

In Section 5.3, we explain why the moduli space M.C; GIR/ is an invariant of the
Legendrian isotopy type of the associated Legendrian weave ƒ.G/ � .J 1C; �st/. The
algebraic questions we are interested in here are about the different properties and com-
putations of the moduli M.C; GIR/ — for instance, the cardinality of jM.C; GIFq/j

over a finite field or how M.C; GIR/ changes upon performing the combinatorial
moves in Section 4, including Legendrian mutations and surgeries. To ease notation,
we will denote flags F � by F.

5.3 Sheaf description of flag moduli and invariance

Let C be a smooth surface, R a commutative ring and Sh.C � R/ the category of
constructible sheaves, i.e. the R–linear dg derived category of complexes of sheaves
of R–modules on C �R with constructible cohomology sheaves. For algebraic pre-
liminaries on (derived) dg categories we refer the reader to [72; 117; 118; 81], and
for simplicity we will choose R a field. In this section, we use the identification
J 1.C / Š T 1;�.C � R/ of the first jet bundle of C with downward covectors of
C � R; see [93, Section 2.1]. Now, given an N –graph G � C, the Legendrian
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ƒ.G/ � J 1.C / Š T 1;�.C �R/ � T 1.C �R/ can be used to define the subcategory
Shƒ.G/.C �R/ � Sh.C �R/ whose objects are constructible sheaves whose singular
support at contact infinity is contained in ƒ.G/ � T 1.C �R/; see [119, Section 4].

We write C.C; G/ WD Sh1
ƒ.G/.C � R/0 � Shƒ.G/.C � R/ for the subcategory of

microlocal rank-1 sheaves which are zero in a neighborhood of C � f�1g, or C.G/

for short. This has a simple description, which we now explain. The dg category
Shƒ.G/.C � R/ is itself a subcategory of sheaves constructible with respect to the
stratification defined by the front projection †.G/, and thus has a combinatorial
description. By [71, Theorem 8.1.11], it is equivalent to the dg category of functors
from the poset of strata to k–mod (chain complexes); see also [85, Section 2.3; 112,
Section 3.3]. The subcategory cut out by C.G/ is the one whose objects are isomorphic
to ones with the following properties: the chain complex assigned to a neighborhood of
C � f�1g is zero; the complexes in each region of .C �R/ n†.G/ are rank-1 local
systems (or just vector spaces if C is simply connected); the morphisms assigned to all
downward restriction maps are isomorphisms; and the upward morphisms from small
open sets intersecting †.G/ to the regions above them which do not are codimension-1
inclusions.

The combinatorial model for this description leads to the flag moduli space M.G/

of isomorphism classes of objects in C.G/. Indeed, the flag moduli space M.G/

associated to an N –graph G �C, as introduced in Definition 5.2, relates to the category
C.G/ WD Sh1

ƒ.G/.C �R/0 according to the following result, which itself generalizes
[119, Section 4.3] to N –graphs with N � 3:

Theorem 5.3 The flag moduli space M.C; GIR/ is isomorphic to the moduli space
of objects in C.G/ WD Sh1

ƒ.G/.C �R/0, the subcategory of microlocal rank-1 objects
in Shƒ.G/.C �R/ supported away from C � f�1g.

Proof We first assume that C is simply connected. The argument parallels that of
[112, Sections 6.2 and 6.3], with the additions required by the strictly 2–dimensional
behavior. The moduli space of objects is defined locally, meaning that it is the fiber
product over its restriction-to-boundary maps of the moduli spaces �M in neighborhoods
of C. We can assume that these neighborhoods of C are chosen small enough that they
are contractible and contain no more than one “feature” of the given N –graph G. That
is, for some such neighborhood U � C, either U \G is empty or it contains part of an
edge, a single trivalent vertex or a single hexagonal vertex. We then have a local study
for each of these cases.
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In the case where U is empty or contains part of an edge, the front of the Legendrian
weave over U is either N parallel sheets or N sheets with a single crossing labeled �i ,
and can be identified with ��R, where � is a front of a 1–dimensional Legendrian knot
being either N parallel lines or N lines with a single crossing. Then, since the R factor
is contractible, we can identify the moduli space �M over U using the 1–dimensional
study in [112, Sections 6.2 and 6.3], concluding that it is either the flag variety or pairs
of �i –transverse flags, respectively.

The moduli Sh1
ƒ.G/.C �R/ is local with respect to G � C and the topology of the

surface C, i.e. it is globally described as fibered products for the local pieces of G � C.
It therefore remains to show that Sh1

ƒ.G/.C � R/ coincides with M.C; G/ for the
local graphs Gtri � D2 and Ghex � D2, respectively given by a trivalent vertex and a
hexagonal vertex, as introduced in Section 2. We do these in turn.

The trivalent vertex case was studied in [119, Section 4] for 2–graphs, and we will
make the needed adjustments to N –graphs. The computation for the local N –graph
Gtri consists of an analysis of the moduli of constructible sheaves supported at the
D�

4 –wavefront singularity, as directly carried out in [119]. The boundary conditions
for an object in Sh1

ƒ.Gtri/
.D2 �R/ consist of a triple of flags .F1; F2; F3/ such that

Fi 2 S�k
.Fj / for i ¤ j with 1 � i; j � 3 if the edges of Gtri are labeled by �k . This

can be seen by combining the result for a neighborhood of a single crossing edge above,
taking the fiber product over the spaces of flags in the empty neighborhoods in between.
Then [119, Section 4.1] implies that these are all the required conditions (and strata)
and thus Sh1

ƒ.Gtri/
.D2 �R/ coincides with M.D2; Gtri/. Note that the analysis in [119,

Section 4.1.2] restricts to the case where the local model is a 2–graph Gtri � D2; it
is readily seen that this model suffices for the analysis of the local model N –graph
Gtri � D2.

Alternatively, it is possible to directly conclude the analysis of the D�
4 –singularity by

performing a generic perturbation of the D�
4 –wavefront, as depicted in Figure 36, and

studying the category of constructible sheaves supported at a A3–swallowtail singularity.
Indeed, Figure 75, left, shows the conditions for a constructible sheaf microlocally
supported along the front of an A3–swallowtail singularity, which consists of a choice
of injective map f W C1 ! C2, where C1 Š Rk and C1 Š RkC1 for some k 2 N. The
crucial fact is that the (stalk of the) sheaf in the remaining 3–dimensional open strata I

is uniquely determined to be the cone of the map .f;�f / W C1 ! C2 ˚C2. This is a
consequence of the Guillermou–Kashiwara–Schapira quantization [66, Theorem 3.7]
of Legendrian isotopies: since the A3–swallowtail is the big wavefront [7] of the first
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Figure 75: Left: constructible sheaf in R3 microlocally supported on the A3–
swallowtail singularity. Right: the sheaf convolution given by the Guillermou–
Kashiwara–Schapira [66] quantization upon performing a Reidemeister R1
move.

Reidemeister move for 1–dimensional Legendrian fronts, it follows that the sheaves in
the strata I are uniquely determined by f WC1 !C2 by the sheaf kernel associated to the
first Reidemeister move. It is readily seen [112] that the result of the convolution with
such a kernel yields the sheaf transformation in Figure 75, right. By the noncharacteristic
property of the category of microlocal sheaves [66], the sheaves microlocally supported
on the wavefront of the D�

4 –singularity is equivalent to that for a generic perturbation of
such a D�

4 –singularity. The generic perturbation consists of three A3–swallowtails and
the conditions for the constructible sheaves on this stratification follow from the above
analysis. In conclusion, we obtain an isomorphism Sh1

ƒ.Gtri/
.D2 �R/ ŠM.D2; Gtri/.

Let us now address the hexagonal vertex Ghex. Since the Legendrian weave †.Ghex/

is the big wavefront of the third Reidemeister move for 1–dimensional Legendrian
fronts, it suffices to understand the kernel of its quantization. Figure 76 shows the
local transformation for constructible sheaves near the third Reidemeister move [112,
Section 4.4.3].

In Figure 76, the Ci for 1 � i � 5 and E1 and E2 are complexes of vectors spaces,
which we can actually assume to be vector spaces [112, Section 3.3]. If C1 Š Rk for
some k 2 N, the microlocal rank-1 condition implies that E1; E2; C2; C3 Š RkC1,
C4; C5 Š RkC2 and C6 Š RkC3. The four flags at one of the sides of the hexagonal
vertex are

F
.1/
1 D C1 ! C3 ! C5 ! C6; F

.1/
2 D C1 ! E1 ! C5 ! C6;

F
.1/
3 D C1 ! E1 ! C4 ! C6; F

.1/
4 D C1 ! C2 ! C4 ! C6;
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Figure 76: The explicit flag exchange given by the Guillermou–Kashiwara–
Schapira quantization [66] upon performing a Reidemeister R3 move.

and the four flags at the other side of the hexagonal vertex are

F
.2/
1 D C1 ! C3 ! C5 ! C6; F

.2/
2 D C1 ! C3 ! E2 ! C6;

F
.2/
3 D C1 ! C2 ! E2 ! C6; F

.2/
4 D C1 ! C2 ! C4 ! C6:

The three crossings in Figure 76, left, imply, from left to right, that

F
.1/
1 2 S�kC1

.F
.1/
2 /; F

.1/
2 2 S�kC2

.F
.1/
3 /; F

.1/
3 2 S�kC1

.F
.1/
4 /:

Similarly, the three crossings in Figure 76, right, imply, from left to right, that

F
.2/
1 2 S�kC2

.F
.2/
2 /; F

.2/
2 2 S�kC1

.F
.2/
3 /; F

.2/
3 2 S�kC2

.F
.2/
4 /:

These are precisely the conditions for the flag moduli space M.D2; Ghex/ in Definition
5.2, and hence Sh1

ƒ.Ghex/.D
2 �R/ ŠM.D2; Ghex/.

This concludes the argument for the case where C is simply connected. We now turn
to the case where C is not simply connected. There are no further local conditions.
The only additional concerns regard compatibilities of local systems.

Let †.G/ � C �R be the wavefront of the Legendrian weave, and recall that we call a
region a connected component of the complement .C�R/n†.G/. A constructible sheaf
in C.G/ restricts to a local system on each region, since there is no singular support away
from the wavefront. There are two distinguished regions, Rtop and Rbot, containing
neighborhoods of C �f1g and C �f�1g, respectively. A constructible sheaf in C.G/

restricts to 0 in Rbot (by definition) and to a local system on Rtop � C , which we
assign to be the data E from Definition 5.1(i). Now, as explained in Definition 5.1(iv),
the data of a point in �M.G/ defines a local system in each region. Commutativity
of sheaf-restriction maps requires that a section which is parallel transported around
a region and then included into E arrives at the same place as a section which is
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included first and then parallel transported around Rtop, and this is the requirement of
Definition 5.1(iv).

5.4 Local flag moduli computations

Let us prove the following useful lemmas on the flag moduli, which can be implicitly
used when performing computations on M.C; GIR/. In this section, and subsequent
computations, we will consider a ground field R D k, with k D C and finite fields
k D Fq as the main fields of interest.

We start with the study of the flag moduli space at a trivalent vertex, as depicted in
Figure 8, left, and characterize that local flag moduli space.

Lemma 5.4 Consider the neighborhood Op3.N / of a �i –trivalent vertex in an N –
graph. Then the local moduli of flags M.Op3; GI k/ is set-theoretically a point , and
the PGLN –action on �M.Op3; GI k/ has stabilizer .k�/N�2 � k.N

2 /�1.

Proof Let F1, F2 and F3 be the three flags in Op3.N /. The GLN –action is transitive
on the space of flags, and thus F1 can be mapped to the standard flag S1, defined by

S
j
1 D fxjC1 D xjC2 D � � � D xN�1 D xN D 0g; where k D Spec kŒx1; : : : ; xN �:

The GLN –action allows us to also map the two flags F2 and F3, respectively, to S2

and S3, defined by

S
j
2 D S

j
3 D S

j
1 for 0 � j � N; j ¤ i;

S
j
2 D fxi D xiC2 D � � � D xN�1 D xN D 0g;

S
j
3 D fxi � xiC1 D xiC2 D � � � D xN�1 D xN D 0g:

This implies that the quotient of the moduli �M.Op3; GIR/ by the gauge group PGLN

is set-theoretically a point. In order to recover its structure as a quotient stack, it suffices
to identify the stabilizer of the triple of flags .S1; S2; S3/. For that, notice that the
stabilizer of S1 is the projectivization of the Borel subgroup of upper triangular matrices,
isomorphic to .k�/N�1 � k.N

2 /. The condition of fixing the flag S2 transversely cuts
out a k–coordinate in the interior of the upper triangle, since it sets the .i; i C 1/

entry equal to zero. This cuts the stabilizer down to .k�/N�1 � k.N
2 /�1 and, finally,

stabilizing S3 imposes the equality of the two diagonal entries .i; i/ and .i C1; i C1/,
thus transversely cutting down a k�. The resulting stabilizer is .k�/N�2 � k.N

2 /�1, as
claimed.
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In its simplest instance of N D 2, this is the statement that three distinct points in the
projective line P1.k/ can be sent to f0; 1;1g with trivial stabilizer. A lesson from
Lemma 5.4 is that, for any N, near at least one trivalent vertex of an N –graph we are
allowed to use the gauge group PGLN and fix the flags around that vertex. The (proof
of the) lemma also provides the (geometric) degrees of freedom left after this choice.

Example 5.5 Consider the 2–graph G associated to the triangulation of C D S2 with
two triangles. This 2–graph G, dual to the triangulation, has two vertices, three edges and
three faces. Then the flag moduli space M.S2; GIC/ consists of a point f�g. In fact, this
point f�g of the flag moduli space geometrically corresponds to the conjecturally unique
Lagrangian 3–disk filling of the standard Legendrian unknot ƒ0 � .S5; �st/.

Lemma 5.4 is a statement about a particular triple of flags. It ought to be noted that a
generic triple of flags is part of a moduli space of dimension

�
N�1

2

�
, with birational

coordinates given by generalized triple ratios; see Section 7 and [48, Section 9].
The flags appearing in the context of our N –graphs are in general a combination of
nongeneric flags, arising from the local vertices, with a flag being modified at exactly
one degree when crossing an edge.

Let us now address our second local model at a vertex, that of a hexagonal vertex, as
depicted in Figure 8, right.

Lemma 5.6 Consider the neighborhood Op6.N / of a hexagonal vertex , with edges �i

and �iC1 and consecutively ordered flags Fj for j 2 Z=6Z. Then any pair of opposite
flags .Fk; FkC3/ determines the others.

Proof By symmetry, it suffices to show that the flags F1 and F4 determine F5 and
F6. We assume that F4 and F5 are separated by a �iC1–edge — a similar argument
will work if it is of type �i . By the prescribed transversality, we have F

j
6 D F

j
1 and

F
j
5 D F

j
4 for j ¤ i C 1. Now, since F i

5 ¤ F i
6 and F iC2

1 D F iC2
4 , there exists

a unique linear subspace V � F iC2
1 which contains F i

5 and F i
6. So we must have

F iC1
5 D F iC1

6 D V, uniquely determining the flags F5 and F6.

A direct application of Lemma 5.6 is the invariance of the moduli of flags under the
N –graph Reidemeister Move I from our Theorem 4.2:

Corollary 5.7 The flag moduli space M.C; GIR/ is invariant under the candy-twist.
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The candy-twist, Move I, is the move depicted in Figure 19 on page 3624, and the
proof of Corollary 5.7 follows immediately from Lemma 5.6, since the interior faces of
the local model are uniquely determined by two opposing boundary flags, and they in
turn determine the remaining ones. Corollary 5.7 also follows from Theorem 1.1 and
the Legendrian invariance proven in [66, Theorem 3.7]. The invariance of the moduli
of flags under the other moves in Theorem 4.2 can be proven similarly by direct means.

Lemma 5.6 discusses the flags in a neighborhood of a hexagonal vertex and allows for
a computation of the local flag moduli space M.Op6.N /IR/ at a hexagonal vertex,
since it reduces it to the study of a quadruple of flags.

Example 5.8 Let us illustrate this point by computing M.Op6.3/IC/, which we
claim is isomorphic to a point stabilized by the subgroup .C�/2 � PGL.3; C/. Indeed,
the incidence problem at a hexagonal vertex is given by six flags

F1 D .p1; l1/; F2 D .p2; l1/; F3 D .p2; l2/;

F4 D .p3; l2/; F5 D .p3; l3/; F6 D .p1; l3/;

where pi and li for 1 � i � 4 are points and lines in P2.C/ and the notation .pi ; li /

stands for the projectivized flag pi 2 li . Since the three points p1, p2 and p3 are pairwise
distinct, PGL.3; C/ acts on them transitively, and their stabilizer is the (projectivization)
of a maximal torus in GL.3; C/, which is isomorphic to .C�/2. Lemma 5.6 provides
a more direct route: it suffices to observe that the PGL.3; C/–stabilizer of the two
completely transverse flags F1 and F4 is the set of diagonal matrices in PGL.3; C/,
i.e. .C�/2.

It is an exercise to extend the argument for Lemma 5.4 in this context and show that:

Lemma 5.9 Consider the neighborhood Op6.N / of a .�i ; �iC1/–hexagonal vertex in
an N –graph. Then the local moduli of flags M.Op6; GI k/ is set-theoretically a point
and the PGLN –action on �M.Op6; GI k/ has stabilizer .k�/2 � ..k�/N�3 � k.N

2 /�3/.

Having computed the local models at trivalent and hexagonal vertices, in Lemmas 5.4
and 5.9, we now address the local flag moduli space around a �i –edge connecting two
trivalent vertices for 1 � i � N � 1. Thanks to our discussion in Section 2.4 on the
homology of the associated Legendrian weaves, we know that this is the flag moduli
space associated to a Legendrian cylinder. In contrast to Lemmas 5.4 and 5.9, we
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will now discover that the local flag moduli space around a monochromatic edge is
(set-theoretically) nontrivial.

Lemma 5.10 (flag cross-ratio) Let G be an N –graph and e 2 G a monochromatic
edge between two trivalent vertices. The local flag moduli space M.Op.e/; GI k/ in a
neighborhood Op.e/ is isomorphic to k� with stabilizer .k�/N�2 � k.N

2 /�1 under the
PGLN –action.

Lemma 5.10 appears in the study of cluster coordinates for 2–graphs in [48; 119], yet
a treatment of it here, in the context of N –graphs, seems in order. The interesting
part in Lemma 5.10 is the existence of a nontrivial flag moduli space around the edge
e 2 G. The stabilizer only appears due to the dependence on N. Note also that, by
using Lemma 5.6, the statement in Lemma 5.10 can readily be generalized for a long
edge e, i.e. an I–cycle between two trivalent vertices, as described in Section 2.

Proof For an edge e 2 G between two trivalent vertices, it suffices to discuss the case
of a monochromatic edge, since the push-through move preserves the flag moduli. In
this case, let v1 and v2 be the two endpoints of e. By Lemma 5.4, the local flag moduli
space around v1 can be fixed to be a point with stabilizer .k�/N�2 � k.N

2 /�1. In this
normalization, the flag moduli space around v2 is determined in two of the sectors, and
thus it is uniquely described by the remaining choice of flag. This is tantamount to the
choice of a fourth point in P1.k/ n f0; 1;1g, which yields a modulus of k�.

In general, the existence of a nontrivial 1–cycle 
 2 H1.ƒ.G/; Z/ provides the flag
moduli space with a k� factor, which can be geometrically interpreted as being a
contribution of the microlocal monodromy of the associated local system induced in
the Legendrian surface ƒ.G/, as we explain in Section 7. The following example
illustrates this point in the case of a Y–cycle in G.

Example 5.11 Let us compute the local flag moduli space in an N D 3 neighborhood
of a Y–cycle, as depicted in Figure 11, right. The configurations of points for this
incidence problem are given by the following conditions:

(a) Three distinct points p0, p1 and p2 and three points qi 2 li D hpi ; piC1i, where
the index 0 � i � 2 is understood modulo 3,

(b) The triples fpi ; piC1; qig for 0 � i � 2 are triples of distinct points.
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.i/ M
 !
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.ii/ M
 !
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 !

.iii/ M
 !

D∅

Figure 77: The change of the flag moduli spaces M.G/ under combinatorial
changes in a piece of an N –graph G.

The action of PGL3 allows us to set p0 D Œ1 W0 W0�, p1 D Œ0 W1 W0� and p2 D Œ0 W0 W1� with
a .k�/2 Cartan stabilizer, and this stabilizer can then be used to fix q0 D Œ1 W 1 W 0� 2 l0

and q1 D Œ0 W 1 W 1�. The remaining choice of q2 yields the k� contribution to the flag
moduli space, since it is a choice of a point q2 2 l2 distinct from p1 and p2.

This concludes our local computations of flag moduli spaces M.C; G/. We now study
the behavior of the invariant M.C; G/ under Legendrian surgery, and Sections 6 and 8
will develop global computation of flag moduli spaces. Given an N –graph G � C, we
ease notation by writing M.G/ for M.C; G/.

5.5 Flag moduli under Legendrian surgeries

Let G and G0 be N –graphs such that G0 is obtained by Legendrian surgery on G, as
described in Theorem 4.10. The following result relates the flag moduli spaces M.G/

and M.G0/ before and after Legendrian surgery:

Theorem 5.12 Let k be a field and G an N –graph. For any �i –edges of G, the flag
moduli space M.G/ satisfies the local relations of Figure 77.

Proof The relations can be verified with our description of the flag moduli space in
Section 5.2. We can also argue directly thanks to the geometry developed in Section 4.
Indeed, the moduli of objects of the category of constructible sheaves microlocally
supported at a Legendrian connected sum ƒ1 # ƒ2 is a direct product of the moduli
of objects microlocally supported at ƒ1 and those microlocally supported at ƒ2.
By Theorem 4.10, the right and left graphs Gr and Gl for the relations (i) and (ii)
geometrically correspond to Legendrian connected sums with the standard Legendrian
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2–torus T2
st , and the Legendrian Clifford 2–torus T2

c , respectively. The flag moduli for
the former is k�, and for the latter it is k n f0; 1g, which concludes (i) and (ii). Finally,
the relation (iii) follows from Proposition 4.24, as there do not exist constructible
sheaves microlocally supported at a loose Legendrian.

Note that, by construction, there exists a 3–dimensional exact Lagrangian cobordism
L.G; G0/ from ƒ.G/ to ƒ.G0/, in the symplectization of .J 1C; �st/. Thus, from stan-
dard results in Floer theory [36; 43], we expect18 a map from M.G/�H1.L.G; G0/; k/

to M.G0/. Theorem 5.12 gives a strong indication of what these maps should be, i.e.
for (i)–(ii), M.G0/ is a k�– or a .k n f0; 1g/–bundle over M.G/, with the map being a
section for this bundle projection.

5.6 Noncharacteristic property of stabilization

We conclude Section 5 with an interesting and direct computation of flag moduli spaces.
First, note that the proof of Theorem 4.17, showing that the standard satellites of ƒ.G/

and ƒ.s.G// are Legendrian isotopic, and Theorem 5.3 imply the isomorphism

M.ƒ.G// ŠM
�
ƒ.s.G//

�
;

where s.G/ is the stabilization we introduced in Section 4.7. We will nevertheless
provide a self-contained sheaf-theoretical proof of that equivalence, which we now
illustrate in the case N D 2.

Proof of flag moduli space equivalence, N D 2 In that case, the moduli of objects
in the category M

�
ƒ.s.G//

�
parametrizes flags in P2 up to PGL.3; C/–equivalence

abiding the constraints imposed by the 3–graph in Figure 78, left. We assume that the
2–graph G D G1;2, before stabilizing, contains at least a vertex.

The graph G.1;2/ imposes constraints on the points lying in a line l1 � P2, the ladybug
changes this line to distinct lines l2 and l3, also different from l1, and the descending
.12/–halo provides the freedom of a point p 2 l3. The fact that G.1;2/ is contained in
a wing of the ladybug implies that l1 \ l2 \ l3 is a point, which for now we denote
by 1. Let us show that this moduli space coincides with the moduli space of points
in l1 imposed by G.1;2/. For that, note that the stabilizer of three noncollinear points

18To our knowledge, these maps have yet to be studied in the context of microlocal sheaf theory. The
expectation that they exist comes from the fact that the flag moduli space M.G/ should correspond to an
augmentation variety for ƒ.G/, and these maps are known to exist between augmentation varieties.
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Figure 78: The flag configuration for N D 2 stabilization.

p1; p2; p3 2 P2 is isomorphic to C� � C�; indeed, it is isomorphic to the space of
invertible diagonal matrices in PGL.3; C/. Geometrically, each of the C� allows us to
move any point in one of the three possible lines spanned by two of the three points
fp1; p2; p3g around that line, on the complement of these two spanning points.

Hence we can start by using the PGL.3; C/ and fix the points 1; p;1 2 P2 in the
configuration shown in Figure 78, right, which determine the lines l1 and l3. From
the C� � C� we can use the first C� in order to send the third point in l1 imposed
by G.12/ to 0 2 l1, and the second C� to choose a point in the line l D h1; pi, which
in turn determines a line l2 � P2 by taking its span with 12 l1 \ l3. This fixes the
configuration of lines l1, l2 and l3 and the points 0; 1;1; p � P2 with f0; 1;1g� l1,
and that is precisely the three points being fixed by the PGL.2; C/ symmetry acting
in G.12/.

This argument is self-contained, yet hopefully illustrates how in general the geometric
conclusion from Theorem 4.17, and the invariance of the flag moduli space M under
Legendrian isotopy, are stronger and neater tools than the strict algebraic invariance of
the flag moduli space. Let us now move forward; the remaining three sections display
several applications of the techniques developed in Sections 2–5, and in particular
prove Theorems 1.5, 1.6, 1.8 and 1.9.

6 Applications and vexillary computations

In this section we study applications of our diagrammatic calculus for Legendrian
weaves ƒ.G/ associated to an N –graph G, and their flag moduli spaces M.G/. In
particular, we will prove Theorems 1.5 and 1.6.
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Figure 79: Left: the tetrahedral 2–graph G as a planar projection of the
1–skeleton .�3/.1/ of the tetrahedron @�. Right: a front projection for the
Legendrian 2–torus �.ƒ.G//.

6.1 First pair of computations

Let us start with two simple examples of Legendrian weaves and their flag moduli:
the Legendrian Clifford torus and the double t4 [ t4 � S2 of the 4–triangle t4 in the
2–sphere S2.

6.1.1 The Legendrian Clifford torus Let us consider the 2–graph G D .@�3/.1/ �

S2 in Figure 79, which has already featured in the proof of Theorem 4.10. The flag
moduli space M.G/ is readily seen to be the pair of pants P1 nf0; 1;1g. Indeed, there
are four contractible connected components in S2 nG, which implies that�M.G/ D f.p1; p2; p3; p4/ 2 .P1/4

W pi ¤ pj ; i ¤ j g;

where P1 Š GL.2; C/=B is the flag variety of lines in C2. Since PGL.2; C/ acts
3–transitively on P1, we can assume that .p2; p3; p4/ D .0; 1;1/, and the quotient�M.G/=PGL.3; C/ is given by

M.G/ D f� 2 P1
W � ¤ 0; 1;1g:

This flag moduli space is shown in Figure 79, left, which is uniquely determined by
the choice of � 2 P1 n f0; 1;1g.

Let us illustrate the Legendrian geometry in this case. The Euler characteristic of the
Legendrian weave ƒ.G/ is �.ƒ.G// D 2 ��.S2/� 4 D 0, and thus ƒ.G/ is a closed
2–torus. A different front for ƒ.G/ is depicted in Figure 79, right, where the cone
singularity [22, Section 2] is used, in line with the description in [30, Section 3]. The
flag moduli space M.G/ for the 2–graph G is read in this front as the moduli space of
constructible sheaves in R3 microlocally supported with rank 1 in the front in Figure 79,
right. This latter moduli is given with the data of a 1–dimensional vector space C in the
bounded region in the interior of the front and a linear monodromy map � WC !C. The
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monodromy must be an isomorphism, and thus � 2 GL.1; C/ Š C�, and also satisfy
the additional constraint imposed by the cone singularity. By generically perturbing
this singularity, it is readily seen that the condition is that the monodromy � does not
have 1 has an eigenvalue, which in this case reduces to � 2 C n f0; 1g Š P1 n f0; 1;1g.
This is precisely the flag moduli space M.G/.

Remark 6.1 [87; 119] This particular wavefront allows for a direct Legendrian
analysis of the Landau–Ginzburg model .C3; z1z2z3/, as follows. The regular fiber
F �C3 of the superpotential is isomorphic to F Š .C�/2, and its Lagrangian skeleton is
thus an exact 2–torus T2 �F, i.e. the vanishing cycle for the (nonisolated) singularity W.
Its Legendrian lift

ƒ WD
˚
.z1; z2; z3/ 2 C3

W jz1j D jz2j D jz3j D
1
3
; arg.z1/C arg.z2/C arg.z3/ D 0

	
� .S5; �st/;

has vanishing (singular) thimble the conic Lagrangian

L D f.z1; z2; z3/ 2 C3
W W.z1; z2; z3/ 2 RC; jz1j D jz2j D jz3jg:

By performing a real blow-up at the origin, we introduce a real 2–sphere S2 at the origin
and a projection map � W ƒ ! S2 from our Legendrian 2–torus onto this exceptional
2–sphere S2. In coordinates, the map �.z1; z2; z3/ D .<.z1/;<.z2/;<.z3// is just
given by taking the real parts of the complex coordinates and realizes the Legendrian
surface ƒ � .S5; �st/ as the Legendrian weave �.ƒ.G// associated to the 4–vertex
2–graph G � S2, given by the 1–skeleton of the tetrahedron. Thus, the mirror of
the Landau–Ginzburg model .C3; z1z2z3/ is the Legendrian 2–torus in .J 1S2; �st/

which satellites to the Clifford 2–torus T2
c � .S5; �st/. This leads to the description of

the Landau–Ginzburg A–model .C3; z1; z2; z3/, given by the category �ShL.C3/ of
wrapped sheaves, as the bounded dg category of finitely generated torsion complexes
on the flag moduli space M.T2

c / Š P1 n f0; 1;1g.

6.1.2 The double of the 4–triangle Let us consider the 4–graph G.t4/ associated
to a 4–triangle t4, as depicted in Figure 80, left, and described in Section 3. Let
G DG.t4/[@ G.t4/�S2 be the 4–graph obtained by gluing two copies of this 4–graph
along their boundaries, i.e. G is the 4–graph associated to the 4–triangulation of S2

with two underlying t1–triangles. The 4–graph G is depicted in Figure 80, right, where
the circle at the boundary is identified to a unique point, which is a hexagonal vertex.

For the computation of the flag moduli space M.G/, we employ our geometric tech-
niques in Section 4. Theorem 4.10 allows us to remove the initial three (blue) �1–bigons,
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Figure 80: Left: the local 4–graph G.t4/ associated to a 4–triangle t4. Right:
the global 4–graph G.�4/ given by the 4–triangulation �4 of the 2–sphere S2

with two triangles.

by considering a direct sum with three copies of the standard Legendrian 2–torus T2
st ,

see Section 4. By applying Move I in Theorem 4.2 three times, we obtain the 3–graph
in Figure 81, left. Further removing three of the bigons, we reach the 3–graph G0 in
Figure 81, right. The framed flag moduli space �M.G0/ for the 3–graph G0 is given by
the choice of two flags F1 D .p1; l1; �1/ and F2 D .p2; l2; �2/2GL4=B in projective
3–space, and a choice of three points p3; p4; p5 2 P3

k
such that:

� .l1; �1/ and .l2; �2/ are completely transverse, i.e. l1 … �2 and l2 … �1, and
p1 ¤ p2.

# #3 T 2
st Š # #6 h

.2/
1

Figure 81: The 4–graph G.�4/ in Figure 80 after three index-1 antisurgeries —
accounted for by the connected sums with T 2

st — and simplified with Move I
(left) and the 4–graph obtained by three additional index antisurgeries (right).
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�in

�i3

�i2

�i1

�1
�2

�1

�3
�2

�1

Figure 82: The N –graph G.�/ associated to the sequence of transposi-
tions � D .�i1 ; �i2 ; : : : ; �in/ (left) and the 4–graph G.�/ associated to
� D .�1; �2; �3; �1; �2; �1/ (right).

� p3 2 l1 and p3 ¤ p1.

� p4 2 l2 and p3 ¤ p2.

� p5 2 �1 \�2 and p3 ¤ p1.

In particular, M.G0/Š �M.G0/=PGL4, and the flag moduli space M.G0/ is described
by the data above. By Theorem 4.10 and the fact that each bigon contributes to k�

once the Legendrian weave is connected, we deduce that our original flag moduli space
must be isomorphic to M.G/ ŠM.G0/� .k�/4.

This simplification, from the original 4–graph G to G0, allows for a direct description
above of the flag moduli space M.G/, from which further information can be readily
extracted. For instance, the Fq–rational count for M.G/.Fq/ is immediately

jM.G/.Fq/j D
.q�1/5

.q4�1/.q4�q/.q4�q2/.q4�q3/
�q3

�
.q4�1/.q3�1/.q2�1/

.q�1/3
.qC1/q;

as jPGL.4; Fq/j D .q4 � 1/.q4 � q/.q4 � q2/.q4 � q3/.q � 1/�1, the rightmost multi-
plicative factor is the count for the two flags F1 and F2, and the q3 factor stands for
the final choice of .p3; p4; p5/.

We conclude this initial gallery of computations with the following:

Example 6.2 (concentric circles) Let � D .�i1
; �i2

; : : : ; �in
/ be an ordered collection

of n simple transpositions �ij 2SN�1 for 1� j � n with n2N. Consider the N –graph
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G.�/ � S2 described by n concentric circles Ci � S2 for 1 � i � n with center on the
north pole and strictly increasing radius. This N –graph is depicted in Figure 82, left.

The Legendrian weave ƒ.G.�// � .J 1S2; �st/ is a radial version of the N –stranded
positive braid closure of ˇ D �i1

�i2
� � � �in

. Smoothly, it is a link of N 2–spheres S2.
The moduli space of rank-1 sheaves in R2 supported along the positive braid ˇ is the
open Bott–Samelson variety O.ˇ/ [112; 120; 18]. By Section 5.2, since C D S2 is
simply connected, there is no further monodromy information and M.G.�// D O.ˇ/.
In particular, the links with different n have a different number of points over Fq and
cannot be Legendrian isotopic. We note further that [112, Theorem 6.34] relates this
number to the HOMFLY–PT polynomial of the (topological) knot in R3 defined by the
braid ˇ.

6.2 Symmetry groups for Legendrian weaves

Let G be an arbitrary finite group and ƒ � .S5; �st/ a Legendrian surface, with under-
lying smooth surface S.ƒ/. Let L.ƒ/ be the space of embedded Legendrian surfaces
in .S5; �st/ Legendrian isotopic to the Legendrian surface ƒ, with basepoint ƒ. In
addition, let L.ƒ/ be the monoid of 3–dimensional exact Lagrangian concordances
in the symplectization .S5 � R.t/; et�st/, up to Hamiltonian isotopy, based on the
Legendrian surface ƒ � .S5; �st/. Let 't W S.ƒ/ ! .S5; �st/ be an S1–family of
Legendrian embeddings for t 2 S1. Then the graph map

gr W �1.L.ƒ// ! L.ƒ/; Œ't � 7!
�
't .S.ƒ//; t

�
;

allows us to relate loops of Legendrian surfaces with Lagrangian concordances.

These spaces L.ƒ/ and L.ƒ/ are challenging to study. Even in the 1–dimensional
case of Legendrian links ƒ � .S3; �st/, it was only established recently that there exist
Legendrian links such that the fundamental groups �1.L.ƒ// can admit (infinite-order)
nonabelian subgroups [18, Corollary 1.6], and L.ƒ/ actually contains elements of
infinite order [18, Corollary 1.7]. To our knowledge, the only previous result about
the fundamental group �1.L.ƒ// or the monoid L.ƒ/ for ƒ � .R5; �st/ a Legendrian
surface was proven in [107], where Legendrian surfaces ƒZn

for n2N were built such
that �1.L.ƒZn

// admits the finite cyclic group Zn as a subgroup. Legendrian weaves
and their flag moduli space are well suited to address these questions. We present the
following result for Legendrian surfaces in .S5; �st/:

Theorem 6.3 Let G be an arbitrary finite group. Then there exists a Legendrian
surface ƒG � .S5; �st/ such that :
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(i) G is a subquotient of the fundamental group �1.L.ƒG//.

(ii) G is a subquotient of the 3–dimensional Lagrangian concordance monoid L.ƒG/.

In fact , the latter is the image of the former via the graph map gr W �1.L.ƒ// ! L.ƒ/.

Proof The argument is structured in two parts. First, we describe a construction of
a 2–graph G0 given a triangulation of a surface. Second, we use this construction to
prove the statement. The second part itself has two steps: In the first step, the statement
is proven only for those finite groups G which are Hurwitz groups H.19 In the second
step, the case of Hurwitz groups is used to conclude the statement for an arbitrary finite
group.

We begin by describing a construction of 2–graphs. Let .C; T / be a closed smooth
surface, T a triangulation with e.T / edges, and G.T / the trivalent 2–graph dual to
the triangulation T. Consider the 2–graph G0 obtained by adding a bigon at each
edge of G.T /, using Move 4 in Figure 4. By Theorem 4.10, or more specifically
Remark 4.11(ii), the Legendrian �.ƒ.G0// is obtained by performing a connected sum
of �
�
ƒ.G.T //

�
with e.T / copies of the standard Legendrian torus T2

st � .S5; �st/. Then
[30, Proposition 4.6], or Theorem 5.12, implies that the complex flag moduli space
M.G0/ is isomorphic to the product M.G.T //�.C�/e.T /, and thus H�.M.G0/; Q/Š

H�
�
M.G.T /; Q/

�
˝H�..C�/e.T /; Q/ by the Künneth formula.

Second, we will now prove the statement in the case that G is assumed to be an arbitrary
but fixed Hurwitz group H. By virtue of Hurwitz’ theorem [68; 80], there exists a
compact Riemann surface C D C.H/ whose automorphism group is (isomorphic
to) H; this surface C is called a Hurwitz surface in the literature. The topological
surface underlying the Riemann surface C admits a triangulation T .H/ with symmetry
group H. In particular, the dual graph G D G.T .H// also has symmetry group H. Let
us now consider the 2–graph G0, associated to G as in the paragraph above, where the
edge bigons are added so that H is still a subgroup of the symmetry group of G0. Note
that, by construction, H acts faithfully on the set of edges of the triangulation T, and
thus H also acts faithfully on the 1˝H�..C�/e.T /; Q/ � H�.M.G0/; Q/ piece of
the cohomology of the flag moduli space M.G0/.

Now, the generators x and y of the triangle group T .2; 3; 7/ are geometrically given by
rotations of the Poincaré hyperbolic disk, namely x is a rotation of angle � about the

19A Hurwitz group H is any finite group which can be generated by an element x of order 2 and an
element y of order 3 whose product xy has order 7. Equivalently, a Hurwitz group is any finite nontrivial
quotient of the .2; 3; 7/–triangle group T .2; 3; 7/ WD hx; y j x2 D y3 D .xy/7 D 1i.
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vertices of the .2; 3; 7/–Schwarz triangle and y corresponds to a rotation of angle 2
3
� .

Since a rotation � is smoothly isotopic to the identity, as a diffeomorphism, there exists
a contact isotopy �t .�/ for t 2 Œ0; 1� of .J 1C; �st/ such that �0.�/ D Id and �1.�/

setwise fixes the weave front associated to G0, and thus the Legendrian surface ƒ.G0/

associated to it. This contact isotopy �t .�/ defines an element of �1

�
L.ƒ.G0//

�
, and

its graph an element of L.ƒ.G0//. The flag moduli space M.G0/ is a Legendrian
isotopy invariant of the Legendrian surface ƒ.G0/ � .S5; �st/, and this contact isotopy
induces an automorphism of M.G0/. In particular, there are Legendrian isotopies �t .x/

and �t .y/ associated to the generators x and y of any Hurwitz group H, x rotating �

and y rotating 2
3
� . Thus the subgroup h�t .x/; �t .y/i � �1

�
L.ƒ.G0//

�
acts by auto-

morphisms in M.G0/. Since H acts faithfully in the cohomology H�.M.G0//, as
pointed out above, H is a subquotient of �1

�
L.ƒ.G0//

�
; namely, it is a quotient of the

subgroup h�t .x/; �t .y/i. The argument for L.ƒ.G0// is identical, and this concludes
the required statement for Hurwitz groups H.

Finally, to conclude the general statement, let G be an arbitrary finite group and
assume the result holds for Hurwitz groups, which is proven above. Then G is a
subgroup of the alternating group An for large enough n 2 N. By [28, Section 3] —
see also [80] — An is a Hurwitz group G.C / for n � 168, and thus G injects into such
a Hurwitz group G.C /.20 The argument above thus implies that G is a subquotient for
�1

�
L.ƒ.G0//

�
and L.ƒ.G0//. Hence, the choice of weave ƒ.G0/ completes the proof

of Theorem 6.3.

We do not know whether or not a result analogous to Theorem 6.3 holds for 1–
dimensional Legendrian knots ƒ � .S3; �st/. That could be a good question in low-
dimensional contact topology. Any answer — positive or negative — would be of
interest.

There is a complement to Theorem 6.3 for certain groups G of infinite order, including
nonabelian groups such as PSL.2; Z/, by using results of the first author. Indeed, the
Legendrian weave associated to the 4–graph G.�/ with the eighteen concentric circles

� D .�1; �2; �1; �2; �1; �2; �1; �2; �1; �2; �1; �2; �1; �2; �1; �2; �1; �2/

represents a 3–component Legendrian link ƒ.G.�// of 2–spheres. The geometric
Br3–braid action constructed in [18], modulo its center Z.Br3/, acts faithfully on the
flag moduli space M

�
ƒ.G.�//

�
. This flag moduli space is described in Example 6.2.

20Note that An for n � 168 is a subgroup of Am for a greater m � n, and thus all cases An are covered.
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Then [18, Theorem 1.1] shows that the modular group PSL.2; Z/ acts faithfully on the
cluster charts for the space obtained by forgetting the monodromies in the Grothendieck
resolution M

�
ƒ.G.�//

�
. Hence, PSL.2; Z/ is a subquotient of �1

�
L
�
ƒ.G.�//

��
and

L
�
ƒ.G.�//

�
for these Legendrian weaves ƒ.G.�//.

6.3 Flag moduli and bipartite graphs

In Section 3, we introduced the construction of a 3–graph G � C associated to an
embedded eponymous bipartite graph G. This subsection explains how to compute flag
moduli spaces for such 3–graphs.

We will employ a useful notation, local to this subsection. If a; b 2 V 3 are distinct
vectors in a 3–dimensional vector space V, we denote by ab the unique 2–plane spanned
by a and b. Similarly, given two 2–planes A; B;� V 3, the intersection A\B will be
denoted by AB.

At a hexagonal vertex, traveling between opposite faces requires crossing three edges
of alternating colors, and thus opposite faces are assigned completely transverse flags
AD .a; A/D aA and BD .b; B/D bB. Note that a single such pair .A;B/ determines
the remaining four regions, by Lemma 5.6: if crossing red–blue–red from A to B, the
flags in succession are .a; A/, .AB; A/, .AB; B/ and .b; B/. If crossing blue–red–blue,
the flags are .a; A/, .a; ab/, .b; ab/ and .b; B/. This is depicted as follows:

.a; A/

.b; B/

.a; ab/

.AB; B/

.AB; A/

.b; ab/
�

�

a

b

AB

ab

A

B

Now consider an edge of the bicubic graph G. In the associated 3–graph, this edge
generates two hexagonal vertices which are connected by two adjacent edges of different
colors. This local configuration is said to be a hexagonal edge. Let us denote the two
flags on opposite regions along the axis connecting the hexagonal vertices by AD aA

and C D cC. Let B be the flag in the interior region of the hexagonal edge, transverse
to both A and C. There are two further conditions on the flag B:

AB � C; c � ab:
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The Weyl group W.A2/ Š S3 is the symmetric group on three elements, and thus there
are six possible relative positions for the two flags A; C 2 GL3=B. Here we consider
the case of a finite field k D Fq . In a hexagonal edge, the relative position of the two
outer flags A and C is restricted:

Lemma 6.4 The two outer flags A and C in a hexagonal edge must coincide or be
completely transverse. In addition , with A and C fixed , the number of choices of flag
B in the interior of the hexagonal edge is q3 in the case AD C, and q � 1 in the case
A¤ C.

Proof Let us analyze their possible relative positions, labeled according to the elements
W.A2/ D f0; 1; 2; 12; 21; 121g:

� Type 0 (C DA) Then the conditions are automatic, and B is simply transverse
to AD C. There are q3 such choices.

� Type 1 (c D a, C ¤A) The second condition is then automatic, but C � aD c

and C � AB means C D A. This is a contradiction.
� Type 2 (c ¤ a, C D A) The first condition is then automatic, but c � C D A

and c � ab means c D a. This is a contradiction.
� Type 12 (a ¤ c, C ¤ A but a � C ) Then a � C and AB � C means C D A

This is a contradiction.
� Type 21 (a ¤ c, C ¤ A but c � A) Then c � A and c � ab means c D a.

This is a contradiction.
� Type 121 In this case, the flag B is determined by either equivalent choice: a

line b in ac not equal to a or c (then B is the plane bAC ) or a plane B containing
AC not equal to A or C (then b is acB). The number of such choices is q � 1.

Therefore, this flag B has either q3 or q � 1 internal degrees of freedom, respectively,
after fixing the outer flags A and C to be either equal or completely transverse. The
other configurations have no solutions.

We now apply Lemma 6.4 and the discussion above to prove Theorem 1.5 in the
introduction.

6.4 Nonisotopic links of Legendrian spheres

Let n 2 N and consider the bipartite ladder graph Ln � S2 depicted in Figure 83,
bottom. The number n 2 N denotes half the number of square faces, and the right
and left sides of the bipartite graph are identified in S2. In particular, S2 n Ln has
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Figure 83: Bottom: the bipartite ladder graph Ln, where the right and left
sides are identified after n rungs. Top: the 3–graph Ln associated to Ln.

2nC2 connected components, 2n squares and two 2–disks, at the north and south poles
of S2. We consider its associated 3–graph Ln � S2, as described in Section 3, which
is shown in Figure 83, top. The Legendrian weave ƒ.Ln/ � .J 1.S2/; �st/ consists of a
3–component link of Legendrian 2–spheres, independent of n 2 N.

Note that the Legendrian link ƒ.Ln/� .J 1.S2/; �st/ is smoothly isotopic to the surface
unlink, as the codimension of this smooth embedding is 3. We now show that the
Legendrian isotopy type of the Legendrian link ƒ.Ln/ � .J 1.S2/; �st/ is different for
each n2N. This will be achieved by counting the number of points of their flag moduli
spaces M.Ln/ over a finite field. The precise statement reads:

Theorem 1.5 Let Ln � S2 be the .2n/–runged ladder graph and Fq a finite field , with
q a prime power. Then the flag moduli space M.Ln/ has orbifold point count

jM.Ln/.Fq/j D
q2n�3 � qn�2 C qn�1 C q � 1

.q � 1/2
:

Hence , the Legendrian surface links ƒ.Ln/ and ƒ.Lm/ are Legendrian isotopic if and
only if n D m.

Proof Let us consider the two flags A; C 2 GL.3; C/=B located in the strata corre-
sponding to the neighborhoods of the north and south poles. We have shown these flags
in Figure 84. The flags in the vertical regions will be denoted by Bi for 0 � i � 2n�1,
with the cyclic condition B0 D B2n.

By Lemma 6.4, the existence of the flags Bi in the vertical hexagonal edges for
0 � i � 2n � 1, as in Figure 84, implies that the relative position of A and C must
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AD .a; A/

.a; ‹/ .‹; A/ .a; ‹/ .‹; A/ .a; ‹/ .‹; A/ .a; ‹/

Bi BiC1 BiC2 BiC3

C D .c; C /

.c; ‹/ .‹; C / .c; ‹/ .‹; C / .c; ‹/ .‹; C / .c; ‹/

Figure 84: The flag configuration at a point of the flag moduli space M.Ln/,
where AD .a; A/, C D .c; C / are the inner and outer flags. Observe that the
choice of A and C partially fills the flags in the horizontal eye-shaped regions.

either be trivial, i.e. AD C, or completely transverse, i.e. the projective lines A ¤ C

are distinct, and a … C and c … A. The Fq–count is divided into these two cases.

First, let us consider the case where A and C are completely transverse, i.e. they belong
to the Bruhat GL.3; C/–orbit labeled by w D .12/.23/.12/ 2 W.A2/. We claim that,
after choosing the flag B0 D .b; B/, the remaining flags Bi for 1 � i � 2n � 1 are
uniquely determined. The resulting flag configuration is shown in Figure 85.

Let us prove this. Since A and C are completely transverse, they determine the flags
.AC; A/ and .a; ac/ in the horizontal eye-shaped spaces in the upper row, and the flags
.AC; C / and .c; ac/ in the corresponding horizontal spaces along the bottom. The
additional choice of B0 D .b; B/ determines the flags .AC; B/ and .b; ac/ in the left
and right regions adjacent to that of B0. Note that B ¤ ac and b 2 B \ ac. Similarly,
b ¤AC and the two points AC; b 2 P2 span the line B. The flag B1 must have b 2 P2

as its point, and its line must contain AC; b 2 P2. Hence the flag B1 D .b; B/ is
uniquely determined, and coincides with B0. By analogous reasoning, B1 determines

.a; A/

.a; ac/ .AC; A/ .a; ac/ .AC; A/ .a; ac/ .AC; A/ .a; ac/

.b; ac/ .AC; B/ .b; ac/ .AC; B/ .b; ac/ .AC; B/ .b; ac/

.b
;B

/

.b
;B

/

.b
;B

/

.b
;B

/

.b
;B

/

.b
;B

/

.c; C /

.c; ac/ .AC; C / .c; ac/ .AC; C / .c; ac/ .AC; C / .c; ac/

Figure 85: Flag configuration at a point of the flag moduli space M.Ln/

in the case A D .a; A/ is completely transverse to C D .c; C /. For these
configurations, the choice of flag .b; B/ uniquely determines the point in the
flag moduli.
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C
B A

A\C

a b
c ac

B1 A

b2

b3 B3

B2

b1a

Figure 86: Left: the projective flags A, C and BD .b; B/ in the case A and C
are completely transverse. Right: the configuration of projective flags in the
case AD C, where admissible flags .b1; B1/, .b2; B1/, .b2; B2/, .b3; B2/ and
.b3; B3/ are depicted.

the flag .AC; B/ on the adjacent region at its right, and hence the line in B2 must be B.
Since the point in B2 must be the intersection B \ ac, we conclude B2 D .b; B/ and
thus B2 D B1 D B0. Iteratively applying these two steps, we show that Bi D B0 for
all 1 � i � 2n � 1. The cyclic condition B0 D B2n is automatically verified in this
case. In conclusion, in this completely transverse case, the choices are the three flags
A, B1 and C, being pairwise completely transverse. This configuration is depicted in
Figure 86, left.

The counts over a finite field are

jPGL.3; Fq/j D
.q3 � 1/.q3 � q/.q3 � q2/

q � 1
;

jP2.Fq/j D jP2.Fq/�j D
q3 � 1

q � 1
D q2

C q C 1;

and a projective line P1.Fq/ has qC1 points. Also, note that there are jP1.Fq/jDqC1

choices of lines through a point. Now, the choice of the flag AD .a; A/ gives a count of
jP2.Fq/j � jP1.Fq/j. The choice of the completely transverse flag C D .c; C / gives q3,
as we must have a … C, and c 2 C but c ¤ A\C. The line B in the third transverse
flag B0 D .b; B/ must contain the point A\C, and its point b D B \ ac is uniquely
determined by the choice of such a B. Since B must be distinct from A and C, we get
q � 1 choices for the line B. This yields a total count of

..1C q C q2/.1C q// � .q3/ � .q � 1/

.1C q C q2/.q3 � q/.q3 � q2/
D

1

q�1
;
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.a;A/

.a;ab1/ .AB1;A/ .a;ab2/ .AB2;A/ .a;ab3/ .AB3;A/ .a;ab4/

.b1;ab1/ .AB1;B1/ .b2;ab2/ .AB2;B2/ .b3;ab3/ .AB3;B3/ .b4;ab4/

.b
1
; B

1
/

.b
2
;B

1
/

.b
2
;B

2
/

.b
3
; B

2
/

.b
3
;B

3
/

.b
4
; B

3
/

.a;A/

.a;ab1/ .AB1;A/ .a;ab2/ .AB2;A/ .a;ab3/ .AB3;A/ .a;ab4/

Figure 87: Flag configuration at a point of the flag moduli space M.Ln/ in
the case AD C. For these configurations, the sequence of flags .bi ;Bi / are
part of the choice that determine the points in the flag moduli.

for the case where the flags A and C are completely transverse. Thus, A, B0 and C can
be fixed, mutually completely transverse, and a factor of .q � 1/�1 remains.

Second, let us consider the case where AD C. In this case, the flags Bi for 1 � i � n

will not all be equal. We proceed with the same systematic analysis as before. The
initial choice is B1 D .b1; B1/, and this determines the flags .b1; ab1/ and .AB1; B1/

in the left and right adjacent regions of B1. In turn, this determines the line in B2 to
be B1 � P2. The point in B2 remains undetermined at this stage, and this is a choice
of b2 2 B2, with a count of q, since b2 2 B1 and b2 ¤ A \ B1. This is depicted in
Figure 85. The choice of the point b2 2 B2 readily determines the point in the flag B3,
whose line is undetermined. There are exactly q choices for a line B2 � P2 in B3, as it
must contain b2 and be different from B1. This is an iterative process, where the count
of choices that determine the flag Bi for 2 � i � n is exactly q, either because of the
choice of a point or a line. The flag configuration is depicted in Figure 87.

At this stage of the case AD C, we need to impose the cyclic condition B0 DB2n given
by the ladder graph. This is not automatic, and it will actually reduce the naive count
of q2n for the choices of Bi for 0 � i � 2n� 1. Let us use the PGL.3; Fq/ symmetry
to fix the flags AD C and B0. We will now use affine coordinates, so the flag A will be
understood as a line a � F3

q and a plane A� F3
q . Thus, we assume that the line a � F3

q

in A is spanned by
�

1
0
0

�
and the plane A � C3 is the kernel of the covector .0; 0; 1/,

and the flag B0 is given by
�

0
0
1

�
and .1; 0; 0/. Note that this flag configuration has a

residual isotropy group isomorphic to .F�
q /2, and we will divide our count for fixed A

and B0 by the isotropy factor of .q � 1/2.

Let us parametrize the remaining degrees of freedom for flags Bi for 1 � i � B2n�1 by
the choice of coordinates xi 2 Fq and ai 2 Fq respectively used for each line bi and
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plane Bi for 1 � i � n. By labeling lines and planes by their normalized vectors and
covectors, we obtain the description

b0 D

0@0

0

1

1A ; B0 D .1; 0; 0/;

b1 D

0@ 0

x1

1

1A ; B0 D .1; 0; 0/;

b1 D

0@ 0

x1

1

1A ; B1 D .1; a1;�a1x1/;

b2 D

0@ �a1x2

x1Cx2

1

1A ; B1 D .1; a1;�a1x1/;

b2 D

0@ �a1x2

x1Cx2

1

1A ; B2 D .1; a1Ca2;�a1x1�a2.x1Cx2//;

b3 D

0@�a1x2�.a1Ca2/x3

x1Cx2Cx3

1

1A ; B2 D .1; a1Ca2;�a1x1�a2.x1Cx2//;

b3 D

0@�a1x2�.a1Ca2/x3

x1Cx2Cx3

1

1A ; B3 D
�
1; a1Ca2Ca3;

�a1x1�a2.x1Cx2/�a3.x1Cx2Cx3/
�
;

:::
:::

bk D

0B@�
Pk

iD2

�Pi�1
jD1 aj

�
xiPk

jD1 xj

1

1CA ; Bk D

�
1;

kX
jD1

aj ;�

kX
iD1

ai

� iX
jD1

xj

��
:

Since the dot product is Bk � bk D 0 for all 1 � k � n, the 2–planes Bk contain the
points bk , as required. Define the new variables

˛i D

iX
jD1

aj ; yi D xiC1; X D

nX
jD1

xj ;

and the vectors ˛ D .˛1; ˛2; : : : ; ˛n�1/ and y D .y1; : : : ; yn�1/. This is an allowed
change of variables, as it is a triangular and invertible transformation. The equation
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B0 D B2n gives four equalities. Two of the equalities are ˛n D 0 and X D 0. The third
equation reads

˛ �y D 0; i.e.
n�1X
iD1

˛iyi D 0:

The fourth equation, imposed by the vanishing of the third coordinate of B2n, is
dependent on the first three equations, as b2n 2 B2n. We are now in position to count
solutions of this system over Fq:

(i) Suppose that the vector ˛ 2 .Fq/n�1 is nonvanishing. There are qn�1 � 1 such
possibilities for ˛. Then the equation ˛ �y D 0 imposes exactly one linear relation
among the yi variables for 1� i �n�1. This yields a choice of qn�2 possibilities
for the vector y. The contribution in this case is thus .qn�1 � 1/qn�2.

(ii) Suppose that instead ˛ D 0 is the zero vector. Then the equation ˛ � y D 0 is
vacuous. The choice of an arbitrary vector y 2 Fn�1

q completes the count with a
factor of qn�1.

In conclusion, the case AD C yields a total count of

.qn�1 � 1/qn�2 C qn�1

.q � 1/2
:

Finally, adding together the two cases for the relative position of the two flags A and C,
we obtain a finite field count of

jM.Ln/.Fq/j D
1

q�1
C

.qn�1 � 1/qn�2 C qn�1

.q � 1/2

D
q2n�3 � qn�2 C qn�1 C q � 1

.q � 1/2
:

Note also that the proof of Theorem 1.5 shows that the moduli space of n–gons Mn

[83; 94] admits an embedding into our flag moduli space M.Ln/.C/. In the next
section, we will consider N –graphs G � D2 with nonempty boundary @G ¤ ¿, which
feature prominently in our study of Lagrangian fillings through N –graphs G.

7 Microlocal monodromies and Lagrangian fillings

This section explains how to use N –graphs G in order to study 2–dimensional exact
Lagrangian cobordisms between 1–dimensional Legendrian links in .S3; �st/ — in
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particular, the study of their exact Lagrangian fillings. Briefly, the Legendrian mutations
we developed in Section 4 will be used to construct Lagrangian fillings, and we use
microlocal monodromies — and the connection to cluster algebras — to distinguish
them. The proof of Theorem 1.8, using these two steps to build infinitely many distinct
Lagrangian fillings for a class of Legendrian knots, is also given here.

7.1 Exact Lagrangian cobordisms

We have heretofore focused on the study of Legendrian surfaces in an ambient 5–
dimensional contact manifold. In fact, the theory of N –graphs and Legendrian weaves
that we have developed is also useful for studying exact Lagrangian fillings of 1–
dimensional Legendrian links ƒ � .S3; �st/ and, more generally, exact Lagrangian
cobordisms between such Legendrian links. This is also the context in which applica-
tions to both spectral networks and Soergel calculus should arise.

There are two advantages to studying exact Lagrangian fillings L of @L� .S3; �st/ from
the perspective of N –graphs. First, the manipulation of their Hamiltonian isotopy class
L� .D4; !st/ becomes combinatorial, as do operations such as Polterovich surgery (see
Theorem 4.10). Second, the computation of cluster coordinates for the augmentation
variety Aug.ƒ/ associated to the Legendrian link @L D ƒ � .S3; �st/ is accessible.

Remark 7.1 The cluster structures in the coordinate rings of Aug.ƒ/ have proven to
be an effective method for proving new results for Legendrian knots in the 3–sphere
[111; 18]. We do not know how to prove these cited results using Floer-theoretic
methods (such as the Legendrian DGA [25; 45]), nor is there currently a Floer-theoretic
description21 for the cluster coordinates induced by an exact Lagrangian filling L �

.D4; !st/.

In this section we present the context in which Legendrian weaves ƒ.G/ provide exact
Lagrangian cobordisms. This is a viewpoint that we will use extensively in the reminder
of the article, including Section 8 and the appendix.

7.1.1 The geometric setup Let .R5; �st/ have coordinates .x; y; z; s; t/ 2 R5 with
contact 1–form ˛st D es.dz � y1 dx1/ � dt , and let � W .R5; �st/ ! .R4; �st/ be the

21As far as we know, this remains an open question even if the exact Lagrangian filling is given by a
pinching sequence [37; 97; 96].
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projection �.x; y; z; s; t/ D .x; y; z; s/. Consider the contact 3–planes .R3
l
; �st/ WD

ft D 1; s D lg � R5 and choose two Legendrians ƒ1 � .R3
1; �st/ and ƒ2 D .R3

2; �st/.
Suppose that ƒ � .R5; �st/ is a Legendrian surface with isotropic boundaries @ƒ D

ƒ1 tƒ2, where ƒ1 D ƒ\ .R3
1; �st/ and ƒ2 D ƒ\ .R3

2; �st/.

The crucial geometric fact is that the projection �.ƒ/ � .R4; �st/ is an immersed
exact Lagrangian, whose immersion points are in bijection with the Reeb chords of
ƒ� .R5; ˛st/. In particular, if the Legendrian surface ƒ� .R5; �st/ has no Reeb chords,
then the Lagrangian image �.ƒ/ � .R4; �st/ is an embedded exact Lagrangian with
boundary ƒ1 tƒ2. It is readily verified that �.ƒ/ is an exact Lagrangian cobordism
from ƒ1 to ƒ2 (and not vice versa). The particular case of ƒ1 D ¿ yields exact
Lagrangian fillings of ƒ2.

In line with the constructions in this article, the Legendrians ƒ1; ƒ2 � .R3; �st/ that
we study arise from positive braids — see [18, Section 2] — and thus can be described
as satellites of the standard Legendrian unknot ƒst � .R3; �st/. The description in
the paragraph above is then modified as follows. Consider

�
J 1.S1 � Œ1; 2�/; �st

�
, two

Legendrian links

ƒ1 �
�
J 1.S1

� f1g/
�
; ƒ2 �

�
J 1.S1

� f2g/
�
;

and a Legendrian surface ƒ �
�
J 1.S1 � Œ1; 2�/; �st

�
such that

ƒ\
�
J 1.S1

� f1g/
�
D ƒ1; ƒ\

�
J 1.S1

� f2g/
�
D ƒ2:

Now suppose that the surface ƒ has no Reeb chords, then the Lagrangian projection
�.ƒ/ � .J 1S1 �R; �st/ in the symplectization of .J 1S1; �st/ provides an exact La-
grangian cobordisms from ƒ1 to ƒ2. The case in which ƒ1 D¿ can be compactified to
.J 1D2; �st/ in the

�
J 1.S1 �f1g/; �st

�
end, which symplectically corresponds to adding

a standard symplectic 4–disk .D4; �st/ in the concave end of the symplectization, i.e.
as an exact symplectic filling of .S3; �st/. Diagrammatically, this implies that we can
describe exact Lagrangian fillings of a positive Legendrian braid ƒ2 Dƒ.ˇ/� .S3; �st/

in .D4; !st/ by drawing N –graphs in D2 whose free edges meet the boundary according
to a positive braid word ˇ. Here ƒ.ˇ/ denotes the standard satellite of the Legendrian
in .J 1S1; �st/ whose front in S1 �R is given by the positive braid (word) ˇ.

In short, exact Lagrangian fillings between Legendrian links can be studied via the
spatial wavefronts of their Legendrian lifts to the contactization, and the techniques we
have developed for Legendrian surfaces can be applied. In particular, we can use our
diagrammatic N –graph calculus to study and distinguish exact Lagrangian cobordisms.
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(i) (ii)

2

1

(iii)

2 1

Reeb chord

(iv)

Figure 88: Left: two free 2–graphs, (i) and (ii). Right: two 2–graphs, (iii)
and (iv), whose woven front must have a Reeb chord. Each of the fronts
associated to the nonfree two 2–graph can be woven with exactly one Reeb
chord, as indicated. In both cases, the green lines depict the two sheets of
a woven front and the orange segments indicate the distance between these
sheets. On the left, these length of the distance grows as we approach the
boundary, whereas for the 2–graph (iii) there must be a maximum for this
distance, forcing a Reeb chord.

7.1.2 Free N –graphs Let Gˇ be the set of N –graphs on a 2–disk D2 with boundary
braid word ˇ. As stated above, in order to construct embedded exact Lagrangian fillings
L � .D4; !st/ for ƒ.ˇ/ � .S3; �st/ as N –graphs G � D2 in Gˇ , we must have that
the Legendrian weave ƒ.G/ � .R5; �st/ has no Reeb chords. Let us introduce the
following:

Definition 7.2 An N –graph G � D2 is said to be free if its associated Legendrian
front †.G/ can be woven with no Reeb chords.

In this section many of the N –graphs G � D2 can be checked to be free by direct
inspection.

Example 7.3 Let G � D2 be a 2–graph such that .D2 n G/=.@D2 \ .D2 n G// is
simply connected. Then G is free if and only if G has no faces contained in the interior
of D2. Figure 88 shows four examples of 2–graphs.

The two 2–graphs (i) and (ii) in Figure 88 are free. For that, consider a smooth 1–
dimensional foliation of D2nG whose leaves are open intervals and such that the closure
of each leaf intersects @D2. The radial-like yellow foliations depicted in Figure 88, left,
suffice. Then choose a woven front for such 2–graphs such that the differences between
the heights of the two sheets of the front strictly increase along each of the leaves
of this foliation, being 0 at G and having positive value at @D2. These woven fronts
do not have Reeb chords, as the functions giving the differences of heights between
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the sheets do not have critical points. In contrast, such foliations do not exist for the
two 2–graphs (iii) and (iv) in Figure 88, as D2 nG contains a region whose closure
is contained in the interior of D2. It can be shown that any front woven with respect
to (iii) or (iv) must have a Reeb chord and there exists a woven front with a minimal
number of Reeb chords, one per interior face of G.

From the perspective of Lagrangian fillings, the 2–graph (i) in Figure 88 is an embedded
(exact) Lagrangian filling for the 2–component standard unlink, which is the union
of two disjoint Lagrangian disks D2 [ D2. The 2–graph (ii) yields the embedded
Lagrangian filling for the standard unknot, which is the standard flat Lagrangian disk
D2 � D4. This stands in contrast with the immersed Lagrangian fillings represented by
(iii) and (iv). The 2–graph (iii) is an immersed exact Lagrangian annulus with boundary
the 2–component standard unlink, and (iv) is an immersed exact Lagrangian once-
punctured 2–torus filling the standard Legendrian unknot. In general, the following
criterion is useful:

Lemma 7.4 Let G �D2 be a free N –graph. Then the N –graph �.G/�D2, obtained
from G by performing a Legendrian mutation at any I–cycle or Y–tree of G is also free.

Proof Consider the 2–graph mutation at a monochromatic i–edge of an N –graph G.
Let Op.e/ be a neighborhood of a monochromatic edge e in a free N –graph. The
2–graph mutation along the 1–cycle 
e can then be performed by the exchange in
Figure 89, which builds on Figure 60, left. Since both 2–graphs G and �e.G/ in
the exchange coincide in a neighborhood of the boundary, we can force that the
front woven with respect to �e.G/ coincides identically — not just up to homotopy
of Legendrian fronts — with the given front †.G/ woven with respect to G. Let us
choose a 1–dimensional foliation in D2 with respect to G, as in Example 7.3, such
that the difference between the heights of any pair of sheets in the woven front strictly
increase (or decreases) as we move along the sheets of the foliations away from G.
(This foliation exists because G is free.) We have depicted such a foliation for G in
Figure 89.

In order to guarantee that �e.G/ is free, we construct a front †.�e.G// woven with
respect to �e.G/ as follows: This new front is identical to that of G near the boundary
of the neighborhood of the monochromatic edge, and the j th sheets for †.�e.G//

coincide with those of †.G/ except for the sheets corresponding to j D i; iC1. The i th

and .iC1/st sheets of †.�e.G// are woven according to �e.G/ such that the difference
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G

e

�e.G/

Figure 89: Mutation for an N –graph G along a monochromatic i–edge e.
The mutated graph �e.G/ admits a woven front †.�e.G// which coincides
with any front †.G/ woven with respect to G near the boundary of the neigh-
borhood Op.e/. The yellow foliation near the boundary fixes the difference
between the i th and .iC1/st sheets in both fronts †.G/ and †.�e.G//. This
foliation is extended to the interior in two different ways, yellow or red,
depending on the graph being G or �e.G/.

in heights between the i th and the .iC1/st sheets increases (or decreases) strictly along
the 1–dimensional red foliation as we move away from �e.G/ as shown in Figure 89,
right. Since the red foliation is drawn to coincide with the yellow foliation at the
boundary of the neighborhood Op.e/, this is consistent with the sheets coinciding
in that neighborhood. Given that the leaves of the 1–dimensional red foliation are
intervals with a free end, it is possible to build such a front, meeting the condition that
the difference of heights between i th and .iC1/st strictly increases (or decreases). In
addition, we can draw the front †.�e.G// so that the slopes of each sheet are arbitrarily
close to the slopes of †.G/. This guarantees that �e.G/ is free, as required.

For a general N –graph mutation along an I– or Y–cycle, it suffices to observe that
Sections 4.8 and 4.9 show that such mutations are given by a composition of Legendrian
Reidemeister moves, as presented in Section 4.1, and mutations along monochromatic
edges. Legendrian Reidemeister moves are local, relative to the boundary, and can be
performed without ever introducing Reeb chords. Thus an N –graph mutation �.G/ of
a free G is free if the statement holds for 2–graph mutations, which we have already
proven above.

Lemma 7.4 allows us to perform Legendrian mutations to the N –graph and obtain po-
tentially new embedded exact Lagrangian fillings. Examples of this are now illustrated.
We will implicitly apply Lemma 7.4 in Section 7.3, in order to realize cluster mutations
as N –graph mutations of embedded exact Lagrangian fillings.
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7.1.3 Explicit examples of Lagrangian fillings For the case of free 2–graphs on
a disk D2, this immediately yields that the max-tb Legendrian .2; n/–torus positive
link ƒ.2; n/ has at least a Catalan Cn number worth of exact Lagrangian fillings
[37; 97; 112; 119]. This is because Cn counts binary trees, which are equivalent to free
2–graphs. These exact Lagrangian fillings are distinguished, up to Hamiltonian isotopy,
through the use of cluster coordinates; see Section 7.2.1. Now, the ability to increase
N 2 N greatly expands22 the class of Legendrian links for which their Lagrangian
fillings can be studied with N –graph calculus, including all Legendrian positive braids
ƒ.ˇ/ with ˇ 2 BrCN for any N 2 N.

First example Recently, the first examples of Legendrian links with infinitely many
exact Lagrangian fillings were described in [18]. We exhibit them here in terms of
3–graphs. For any .p; q/ 2 N2, the max-tb Legendrian .p; q/–torus positive link
ƒ.p; q/ � .S3; �st/ is the satellite of the braid �.�1�2 � � � �p�1/q� along the standard
Legendrian unknot, where � D �p 2 Sp is the p–stranded half-twist. Let us now
illustrate how to diagrammatically visualize these infinitely many Lagrangian fillings
for the Legendrian link ƒ.3; 6/.

Remark 7.5 Similar p–graphs can be drawn for ƒ.p; q/ for all .p; q/ 2 N2 and they
produce infinitely many Lagrangian fillings if p � 3 and q � 6 or .p; q/D .4; 4/; .4; 5/.
Alternatively, infinitely many exact Lagrangian fillings for ƒ.p; q/ � .S3; �st/ with
p�4 and q�7 can also be readily constructed from those of ƒ.3; 6/ [18, Corollary 1.5].

Consider the braid word ˇ D .�1�2/9 D �.�1�2/6� in the 1–jet space .J 1S1; �st/,
where � D �3 2 S3 is the 3–stranded half-twist � D �1�2�1. This braid ˇ can be
depicted as a set of points in the circle S1 labeled with two colors, corresponding to
�1 and �2. Figure 90 shows this braid ˇ in two circles, the inner circle S1 � f1g and
outer circle S1 � f2g in the annulus S1 � Œ1; 2�. These two marked circles are labeled
by ƒ.3; 6/, as the Legendrian link associated to the marking ˇ is the .3; 6/–Legendrian
link ƒ.3; 6/.

The 3–graph G � S1 � Œ1; 2� depicted in Figure 90 describes a Legendrian surface
ƒ.G/ � .J 1S1 � Œ1; 2�; �st/ with boundary ƒ.3; 6/tƒ.3; 6/. By increasing the slope

22This is particularly relevant for the study of exact Lagrangian fillings, as it is expected that any ƒ.ˇ/

with ˇ 2 BrC2 has only finitely many exact Lagrangian fillings, and we will show in Theorem 7.14 that this
is not the case already for N D 3.
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ƒ.3; 6/

�.ƒ.G//

ƒ.3; 6/

Figure 90: Legendrian weave whose Lagrangian projection defines an infinite-
order element in the fundamental group of the space of Legendrian links
isotopic to ƒ.3; 6/. In particular, this Lagrangian concordance has infinite
order in the Lagrangian concordance monoid. Infinitely many Lagrangian
fillings for ƒ.3; 6/, and all torus links ƒ.n; m/ with n � 3 and m � 6, are
obtained by concatenating this 3–graph.

in the radial direction, the Legendrian surface ƒ.G/ can be assumed to have no Reeb
chords, and thus �.ƒ.G// is an exact Lagrangian cobordism from ƒ.3; 6/ to itself.
Since the graph G has no trivalent vertices, ƒ.G/ has the topology of ƒ.3; 6/� Œ1; 2�

and it is in fact an exact Lagrangian concordance. The remarkable property of the
3–graph G, and its Lagrangian projection �.ƒ.G//, is stated in the following:

Theorem 7.6 [18] The 3–graph exact Lagrangian concordance in Figure 90 has
infinite order. In particular , for any fixed exact Lagrangian filling of ƒ.3; 6/, iterated
concatenation of this 3–graph yields infinitely many Lagrangian fillings of the Legen-
drian link ƒ.3; 6/ � .S3; �st/.

In fact, it is possible to describe the entire faithful modular PSL.2; Z/–representation
in [18] with the diagrammatics of 3–graphs. Similarly, the diagrammatics of 4–graphs
give explicit spatial wavefronts for the M0;4–worth of the (Legendrian lift of the)
Lagrangian fillings for the Legendrian link ƒ.4; 4/ � .S3; �st/. The nontriviality, and
infinite order, of this Lagrangian concordance is detected by studying its action on the
cluster structure of the coordinate ring of the moduli space of isomorphism classes of
simple objects in Shƒ.3;6/.R

2/.
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L1

L2

�

II

�

L3

L4

Figure 91: Four 3–graphs representing exact embedded Lagrangian fillings
for the max-tb .3; 3/–torus link ƒ.3; 3/.

Second example Let us address the following question: given a positive braid ˇ and
the Legendrian link ƒ D ƒ.�ˇ�/, how do we diagrammatically produce an N –graph
which represents an embedded exact Lagrangian filling for ƒ � .S3; �st/?

Let us begin with a simple example, with ˇ D �2 D .�1�2/3 the full twist, which is
smoothly the .3; 3/–torus link. The game is to draw �i –edges along the boundary @D2

of a (planar) 2–disk D2 according to the braid word ˇ and complete these edges to an
N –graph G inside D2. The only rule is that the Legendrian weave ƒ.G/ should not
have Reeb chords, or else it would yield an immersed Lagrangian filling, and thus we
require G to be free.

Consider the free 3–graph G1 in Figure 91, top left. This represents an embedded exact
Lagrangian filling L1 of the max-tb Legendrian .3; 3/–torus link ƒ.3; 3/Dƒ.�ˇ�/D

ƒ.�4/. We can now apply the Legendrian mutation moves in Theorem 4.21 in order to
produce another Lagrangian filling L2 which is not Hamiltonian isotopic to the exact La-
grangian filling L2. (Note that L1 and L2 are smoothly isotopic relative to their bound-
aries, and L2 will be also embedded thanks to Lemma 7.4.) In Figure 91 we perform
a Lagrangian disk surgery on L1 along a Lagrangian 2–disk which bounds the 1–cycle
in H1.L1; Z/ graphically given by the Y–cycle surrounded by the dashed green curve.

At this stage we can manipulate L2 with Theorem 4.2; in this case, Figure 91, top right
to bottom left, shows how to apply Move II to push-through a hexagonal vertex through
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a trivalent vertex (as indicated by the green arrow). This is an interesting move because
it makes a new 1–cycle for L2 readily visible, as represented by the blue monochromatic
edge in Figure 91, bottom left, surrounded by a dashed green curve. We can perform
Lagrangian surgery at this monochromatic edge, as in Theorem 4.21, to obtain another
exact Lagrangian filling L3, also embedded by Lemma 7.4. It is immediate that L1

and L3 are not not Hamiltonian isotopic to L2, as the cluster coordinates associated to
these 3–graphs, as explained in Section 7.2.1, show that L1 and L3 are not Hamiltonian
isotopic. In conclusion, the 3–graphs in Figure 91 represent three distinct embedded
exact Lagrangian fillings for ƒ.3; 3/.

Third example Let us illustrate what a generic 3–graph diagram like for a positive
braid ˇ 2 BrC3 . The pictures in the case of ˇ 2 BrCN for N � 3 are alike, with as many
as N � 1 colors instead. Let us consider a random braid

ˇ D .�1�2�1/�2
2 �2

1 �2
2 �3

1 �3
2 .�1�2�1/;

which has no particular significance to us. To obtain exact Lagrangian fillings, we draw
blue and red edges around a circle S1 � R2, according to �1 or �2, and construct 3–
graphs with no Reeb chords and these boundary constraints. Figure 92 shows four free
3–graphs Gi for i 2 Œ1; 4� such that the Lagrangian projections �

�
�.ƒ.Gi //

�
� .D4; !st/

are embedded exact Lagrangian fillings which are distinct up to Hamiltonian isotopy
for i ¤ j with i; j 2 Œ1; 4�.

Remark 7.7 From our experience drawing 3–graphs, the pictures in Figure 92 accu-
rately represent the generic appearance of exact Lagrangian fillings described by free
3–graphs. We presently do not know any example of a Lagrangian filling for a positive
braid which does not arise as an N –graph, for some N 2 N.

Remark 7.8 There exists a technique for producing many such free N –graphs G, filling
ˇ–boundary conditions at a circle and thus representing embedded exact Lagrangian
fillings. This is work by the first author and others [19], which in particular proves that
any Legendrian link ƒ.ˇ/ arising from a positive braid ˇ 2 BrCN admits an embedded
Lagrangian filling whose Legendrian lift is a Legendrian weave. In precise terms, it
can be proven that for each triangulation of a jˇj–gon, one can assign a free N –graph
which represents an embedded Lagrangian filling of ˇ, where jˇj is the length of the
positive braid ˇ.
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(i) �1 �1

�1

�1

�1

�1

�1

�1

�1

�1

�1
�1

�1

�1

�1

�1

�1

�1

(ii) �1 �1

�1

�1

�1

�1

�1

�1

�1

�1

�1
�1

�1

�1

�1

�1

�1

�1

(iii) �1 �1

�1

�1

�1

�1

�1

�1

�1

�1

�1
�1

�1

�1

�1

�1

�1

�1

(iv) �1 �1

�1

�1

�1

�1

�1

�1

�1

�1

�1
�1

�1

�1

�1

�1

�1

�1

Figure 92: Four exact embedded Lagrangian fillings for the braid ˇ in the
example on page 3706. Their satellites in .R4; !st/ are smoothly isotopic
relative to their boundaries, but not Hamiltonian isotopic.

7.2 Microlocal monodromies and cluster structures

In this section, we demonstrate how notions of cluster theory are borne out with N –
graphs. This is an important ingredient in showing that microlocal monodromies can
be used to distinguish exact Lagrangian fillings, as we do in Section 7.3 and as has
been mentioned previously.

To orient the discussion, we recall that the cluster structures on the Fock–Goncharov
moduli spaces of framed local systems described in [48] were given a sheaf-theoretic
description in [110; 111]. In these works, the spectral surface associated to a bipartite
graph, as defined in [62, Section 2.2], is described symplectically as an exact Lagrangian
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filling of the zigzag Legendrian curve. In the case of bipartite graphs associated to an
N –triangulation, as in [62, Section 1], the zigzag curves isotope to concentric circles
around the vertices of the triangulation, and the singular support of such a configuration
translates to the data of a local system with a monodromy-invariant flag at each vertex.
Sheaf quantization [66] then implies that local systems on the exact filling embed as a
cluster chart of objects, the chart being provided by the bipartite graph (and its dual
quiver), and the cluster coordinates given by microlocal monodromies. The intersection
form in H1.L; Z/, or its negative, corresponds to the skew-symmetric bilinear form in
cluster theory. For us, the crucial point is that we can represent all these Lagrangian
fillings by N –graphs, as in the diagrammatics of Section 7.1, and the cluster coordinates
can be read directly from the N –graph, as we will now explain.

Remark 7.9 In [119], the case of Legendrian surfaces defined by trivalent 2–graphs
was studied, giving a sheaf-theoretic description of the constructions in [32]. In this
setting, the microlocal monodromy functor �mon induces, at the level of moduli of
objects, a morphism from the sheaf moduli space to the cluster chart defined by the
triangulation dual to the 2–graph. The image is a (holomorphic) Lagrangian in a
(holomorphic) symplectic leaf, as in [32], in a manner compatible with quantization of
algebra of functions.23 Furthermore, in that work, the potential describing the local
exact structure of the Lagrangian was interpreted as a generator of BPS states or disk
invariants, following the analysis of Aganagic and Vafa [1; 2]. Here we generalize
some of the constructions to N –graphs, N � 2.

In this article, the Legendrian surfaces are described by N –graphs, a more complex
construction, but we will now explain how the basic features should persist. That
is, the microlocal monodromy functor allows us to read cluster coordinates for the
moduli spaces of isomorphism classes of simple objects in Shƒ.R2/ or, equivalently,
augmentation varieties directly from N –graphs with boundary ƒ. Examples of these
constructions are provided below.

7.2.1 Microlocal monodromies as cluster coordinates By definition, microlocal
monodromy is a functor

�mon W Shƒ ! Loc.ƒ/

23In work in progress with Linhui Shen, the second author will develop the relation to cluster theory more
systematically, and prove Lagrangianicity of the moduli space.
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a

b

c

d
e

Figure 93: Neighborhood of a monochromatic edge e with the data deter-
mining a constructible sheaf F. As we show, the microlocal monodromy
�mon.F / along the 1–cycle 
.e/ is given by the cross-ratio ha; b; c; d i.

from the category Shƒ of sheaves microsupported on the Legendrian surface ƒ, as
defined in Section 5.3, to the category of local systems on ƒ [112]. This functor carries
microlocal rank-1 sheaves F 2 Sh1

ƒ, i.e. simple sheaves, to rank-1 local systems on the
surface ƒ. Since it is locally defined, the monodromy of the local system �mon.F /

around a loop 
 2 H1.ƒ/ can be evaluated by restricting the constructible sheaf F to
an annular tubular neighborhood of 
 . Below, these annuli are depicted as thin purple
loops. In short, the calculation for Legendrian weaves can be done using the microlocal
monodromy functor �mon as it is used for knots, as described in [112].

The main point in these computations is that the stalk �mon.F /j� at a point � 2 ƒ is
the cone of the restriction map corresponding to �, and for flags this is the inclusion of
subspaces, whence cones become cokernels. The transversality of adjacent flags ensures
that these cokernels propagate as a local system. Let us now perform these calculations
for a 1–cycle 
 2 H1.ƒ; Z/, starting at the I–cycle represented by a monochromatic
edge.

Let us consider a monochromatic edge with label �i , as depicted in Figure 93.

Near such a monochromatic edge, a sheaf object in a simply connected face is specified
by the data of a quadruple of flags. Each of these flags has the same subspaces F j in
each region for j ¤ i , and for j D i we additionally require the data in each region of
a line l in the 2–dimensional space V WD F iC1=F i�1. This is the data of four lines
a; b; c; d � V, as specified in Figure 93. Restricted to the purple oval shown, we have
a cylindrical braid of type ˇ D �4

i , where �i is the lift of the transposition �i from the
Coxeter group SN to the braid group BrN . Given the prescribed transversality imposed
by the flag moduli of an N –graph, we further know that the cyclic chain of inequalities
a ¤ b ¤ c ¤ d ¤ a holds. We thus have the chain of isomorphisms of cokernels

a Š V=b Š c Š V=d Š a;
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� �

�

.a; A/.c; C /

.b; B/

.a; a
b/

.b; a
b/

.c; bc/

.b; bc/

.c
;a

c
/

.a
;a

c
/

Figure 94: Neighborhood of a Y–cycle with the data determining a con-
structible sheaf F. As we compute, the microlocal monodromy �mon.F /

along the associated 1–cycle 
 is given by the triple ratio of the three trans-
verse flags.

which computes the microlocal monodromy. In this case, the isomorphism that we
obtain is the cross-ratio

ha; b; c; d i D
a^b

b^c
�
c^d

d^a

of the four lines a, b, c and d , and it is equal to the cluster coordinate associated to the
1–cycle 
 as prescribed in [48, Section 9].

Let us now consider the cluster coordinate associated to a Y–cycle, which is a new
type of 1–cycle, as it only appears for N � 3. Figure 94 depicts a Y–cycle, drawn as a
purple circle, along with the data determining a constructible sheaf in a neighborhood
of this 1–cycle.

Following the notation in Section 6, we denote by ab the unique plane containing the
two lines a and b, while AB denotes the intersection of the planes A and B. The braid
associated to the Y–cycle 
 , as drawn by the purple circle in Figure 94, is given by
ˇ D .�i�iC1�i /

3, where �i corresponds to the crossing coming from a �i –edge. By
considering the 3–dimensional vector space V WDF iC2=F i�1, a given flag is specified
by a line and a plane in V. Since the word �i�iC1�i represents the half-twist � for
flags on V, and �i�iC1�i is the Coxeter element in S3, the complete data specifying a
constructible sheaf near the Y–cycle is given by three transverse flags .a; A/, .b; B/ and
.c; C / in V. In this notation, the line is written in lower case and the covector defining
the plane in upper case; thus, .a; A/ determines a flag. Now, the microlocal monodromy
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� �

�

�

.a; A/.c; C /

.b; B/

.a; a
b/

.b; a
b/

.c; bc/

.b; bc/

.c
;a

c
/

.a
;a

c
/

.b; B 0/

Figure 95: The geometric setup before performing a Legendrian mutation at
the Y–cycle, where the cluster coordinate associated to the monochromatic
edge is given by the cross-ratio hB; bc; ab; B 0i.

functor �mon along 
 is computed as the composition of the isomorphisms

a Š V=B Š c Š V=A Š b Š V=C Š a:

Let va 2 a, vb 2 b, vc 2 c and vd 2 d be nonzero vectors defining the corresponding
1–dimensional lines. Then the parallel transport from a to c in this basis is given
by the quotient B.a/=B.c/, where B.a/ is the pairing between the vector va and the
covector B. Iterating these isomorphisms, we conclude that the microlocal monodromy
along the Y–cycle is given by

h.a; A/; .b; B/; .c; C /i WD
B.a/C.b/A.c/

B.c/C.a/A.b/
:

This expression is precisely the triple product of transverse flags as defined in [48],
and thus we have shown that the microlocal monodromy along a Y–cycle determines a
cluster coordinate.

7.2.2 Legendrian mutations are cluster transformations The coordinate transfor-
mations upon Legendrian mutations can also be computed, as we will demonstrate in an
example. The conclusion is that Legendrian mutations induce cluster transformations.
The case of a monochromatic edge follows from the analysis in [119; 111], and
we now study the mutation at a Y–cycle. To do so, consider the local geometry
shown in Figure 95. We want to compute how the cluster coordinate associated to the
unique monochromatic (blue) edge — as in Section 7.2.1 — changes as we perform a
Legendrian mutation along the Y–cycle specified by the unique hexagonal vertex.
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�

�� �

� .a; ab/

.b; ab/

.A
B;A

/
.A

B;B
/

.c; bc/

.b; bc/

.BC;B/
.BC;C/

.c
;a

c
/

.a
;a

c
/

.A
C

;C
/

.A
C

;A
/

.b; B 0/

.a; A/.c; C /

.b; B/

Figure 96: The result of applying a Legendrian mutation to Figure 95 along
the Y–cycle, along with the data of a constructible sheaf.

The monochromatic blue edge has monodromy the cross-ratio z WD hB; bc; ab; B 0i of
the four planes in the projective line of planes containing b. (This can be computed
directly or by intersecting the four lines with any transverse line; see Section 7.2.1.)
Now, after Legendrian mutation at the Y–cycle, the resulting 3–graph is shown in
Figure 96.

The 1–cycle determined by the blue monochromatic edge in Figure 95 becomes a
(bichromatic edge) 1–cycle contained in the 3–graph shown in Figure 97, which is
itself a piece of Figure 96, in its upper right corner.24

� � .b; B 0/

.b; B/

.AB;B/

.AB; A/

.AC; A/

.a; A/

.a;ab/

.b; ab/

Figure 97: Local geometry near the 1–cycle after mutation.

24The trivalent blue vertex in Figure 97 is the unique trivalent blue vertex in Figure 96. The trivalent red
vertex in Figure 97 is the rightmost trivalent red vertex in Figure 96.
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� � .b; B 0/

.b; B/

.b; bAC /

.b; ab/

Figure 98: The constructible sheaf near the 1–cycle after Legendrian mutation
and Move II. The new coordinate is thus the cross-ratio hB; bAC; ab; B 0i.

By applying Move II, we can push the red trivalent vertex in Figure 97 through the
hexavalent vertex. This allows us to represent the 1–cycle as a monochromatic edge
again, as shown in Figure 98.

The required conclusion, stating that the new cross-ratio z0 D hB; bAC; ab; B 0i is
obtained by a cluster transformation, follows from this:

Lemma 7.10 Let x D h.a; A/; .b; B/; .c; C /i be the triple ratio of flags and z D

hB; bc; ab; B 0i the cross-ratio of lines. Denote by z0 D hB; bAC; ab; B 0i the new
microlocal monodromy. Then

z0 D z.1C x/:

Proof By PGL3–invariance, we may assume that

a D

0@1

0

0

1A ; b D

0@0

0

1

1A ; c D

0@ 1

�1

1

1A ;

A D .0; 0; 1/; B D .1; 0; 0/; C D .1; 1C x; x/:

Since the cross-ratio z is prescribed, we find that B 0 D .z; 1; 0/, and similarly

AC D

0@1C x

�1

0

1A :

This implies that bAC D .1; 1C x; 0/, and thus z0 D z.1C x/.

Note that z0 D z.1C x/ in Lemma 7.10 is the transformation expected for a cluster-X
transformation.25 This concludes that a Legendrian mutation at the Y–cycle induces a

25The rule for a cluster-X transformation upon mutating at loop k is that the monodromy zi transforms to
1=zk if i D k and otherwise z0i D zi .1C z

�sgn�ik

k
/��ik , where �i;k is the skew-symmetric cluster form.

We get agreement on the nose if we make this form the negative of the intersection pairing.
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cluster transformation for the microlocal monodromy coordinate at the monochromatic
blue edge in Figure 95. The computation is analogous if we choose a different blue
monochromatic edge to be added near the Y–cycle. In particular, if we had chosen
instead the blue edge attaching at the lower right of the Y–cycle and pointing upward,
and again called its monodromy z, then we would have A0 D .0; z; 1/ and would obtain

z0 D hab; aBC; A; A0
i D z

�
1C

1

x

��1
;

in agreement with the cluster transformation.26

Example 7.11 (flip of an N –triangulation) Let .C; �/ be a punctured surface C, � an
ideal triangulation and � 0 an ideal triangulation obtained from � by a flip. Denote
by tN (resp. t 0N ) the N –triangulation refinement of � (resp. � 0). It is an exercise to
show that the Legendrian weave ƒ.G.t 0N // differs from ƒ.G.tN // by a sequence of�
NC1

3

�
2–graph mutations [62, Proposition 1.1], i.e. ƒ.G.t 0N // can be obtained from

ƒ.G.tN // by performing
�
NC1

3

�
Legendrian mutations along 1–cycles represented by

monochromatic edges.

For instance, Figure 9 of [62] translates into four monochromatic edge mutations for a
flip in an N D 3–triangulation, as we have depicted in Figure 99. We can see how to
perform the corresponding moves for 3–triangulations with 3–graphs. Indeed, referring
to the notation in Figure 105, perform a monochromatic edge mutation at z and w,
then perform Move III, a flop of the two trivalent and two hexagonal vertices in the
center, and proceed with a mutation at the remaining two monochromatic edges. In
conclusion, the constructions of this paper can therefore be used to give a geometric
understanding of the intermediate quivers arising when flipping N –triangulations.

7.3 N –graph realization of quiver mutations

In this subsection we explain how to use N –graphs in order to construct infinitely
many Lagrangian fillings for certain Legendrian links in the standard contact 3–
sphere .S3; �st/. These Lagrangian fillings are distinguished by the microlocal mon-
odromies/cluster coordinates in Section 7.2.

Let ˇ 2 BrCN be a positive braid, with a fixed braid word w.ˇ/. Consider an N –
graph G � D2 on the 2–disk such that the labels of the edges of G near @D2, read

26The case x D�1 is not a generic configuration of flags, since in this case c 2 ab, and thus is not in the
domain of the birational cluster map.
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� .�2/

III

� .�2/

Figure 99: Flip in a 3–triangulation realized as four monochromatic edge mu-
tations. In general, the Legendrian weaves associated to two N –triangulations
which differ by a flip of the underlying (1–)triangulation differ by a sequence
of
�

NC1
3

�
such 2–graph mutations. Note the Move III flop isotopy in between

the two mutation pairs.

cyclically, form the word w.ˇ/. Following Section 7.1, the Lagrangian projection
L.G/ D �

�
�.ƒ.G//

�
� .R4; !st/ of �.ƒ.G// � .R5; �st/ is an exact Lagrangian filling

of the Legendrian link ƒ.ˇ/ � .S3; �st/ associated to the positive braid ˇ. All the
N –graphs G �D2 which feature in this subsection will be free, and thus the Lagrangian
projections are embedded; equivalently, ƒ.G/ has no Reeb chords.

Now consider a free N –graph G � D2, b1.G/ WD rk
�
H1.ƒ.G/; Z/

�
and a basis

B D fŒ
1�; : : : ; Œ
b1.G/�g

for H1.ƒ.G/; Z/ Š Zb1.G/ or, equivalently, a basis for the first homology group of
its Lagrangian projection L.G/. For a choice of basis B, we denote by Q.B/ the
intersection quiver of the 1–cycles 
i for i 2 Œ1; b1.G/�. The vertices vi of the quiver
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Q.B/ are in bijection with elements of the homology basis B, and the number of
arrows between two distinct vertices vi and vj is given by the geometric intersection
number j
i \ 
j j. The direction of each arrow is given by the sign of each geometric
intersection, and there are no loops, i.e. no edges from a vertex vi to itself. The quiver
obtained by mutation of a quiver Q at the vertex vi will be denoted by �i .Q/.

We will study the realization of quiver mutations, algebraic in nature, as Legendrian
mutations of free N –graphs, which are geometric. Suppose that there exists a subset
B� of classes Œ
i � for i 2 Œ1; k� for some k � b1.G/ such that 
i 2B� is represented by
a 3–graph cycle with no multiplicity. That is, each 1–cycle 
i is represented by either
a Y–cycle, a tree, a monochromatic edge I–cycle or a long edge. Let fx1; : : : ; xkg be
the cluster coordinates associated to f
1; : : : ; 
kg via microlocal monodromies, as in
Section 7.2.1.

Remark 7.12 In general, this set of cluster coordinates fx1; : : : ; xkg is only a partial
subset of the entire cluster seed fx1; : : : ; xb1.G/g for H1.L.G/; Z/. The ability to
work with a subset is an advantage that allows for our methods to be applied in more
generality. From the viewpoint of cluster algebras, the vertices of Q.B/ which are not
in Q.B�/ are to be considered as frozen vertices, and the variables fxkC1; : : : ; xb1.G/g

as frozen coordinates.

By Section 4.8, and Lemma 7.4, we can perform a Legendrian mutation at 
i 2 B�

and obtain a free N –graph �i .G/. The intersection quiver Q.�i .B// associated
to the mutated basis �i .B/ is the mutated quiver �i .Q.B//. The 1–cycle in the
mutated graph �i .G/ corresponding to 
j 2 B, under mutation at 
i , is denoted by
�i .
j /. By Section 7.2.2, the cluster coordinate associated to �i .
j / is given by
the j th coordinate in the cluster transformation of fx1; : : : ; xb1.G/g at xi . Therefore,
the exact Lagrangian filling represented by the free N –graph �i .G/ has intersection
quiver �i .Q.B// and cluster coordinates obtained by mutation of the cluster seed
fx1; : : : ; xb1.G/g for L.G/ at xi . In conclusion, if the 1–cycles are represented by
trees, performing one quiver (or cluster seed) mutation as a Legendrian mutation is
possible, and the microlocal monodromies after the Legendrian mutation accurately
reflect cluster mutation.

Remark 7.13 The challenging aspect of the geometric side is that iterating this
procedure is not necessarily possible, or at least readily accessible. This aspect is not

Geometry & Topology, Volume 26 (2022)



Legendrian weaves: N –graph calculus, flag moduli and applications 3717

reflected in the algebra of quiver mutations (or cluster coordinate mutations) since, by
definition, two opposite edges between vertices are canceled.27

The technology of 3–graphs and their mutations, as developed in Section 4.8, allows
us to iterate Legendrian mutations in an abundance of cases, including arbitrarily high
genus. We will illustrate explicit cases in which an infinite sequence of quiver mutations
can be realized as an infinite sequence of N –graph mutations. These cases can be
inserted in (infinitely many) other examples, and the first consequence is the production
of new families of Legendrian links with infinitely many exact Lagrangian fillings:

Theorem 7.14 Let ƒs;t D ƒ.ˇs;t / � .S3; �st/ be the Legendrian link given by the
standard satellite of the positive braid

ˇs;t D .�3
1 �2/.�3

1 �2
2 /s�3

1 �2.�2
2 �3

1 /t .�2�3
1 /.� tC1

2 �2
1 �sC2

2 /; s; t 2 N; s; t � 1:

Then ƒs;t � .S3; �st/ admits infinitely many embedded exact Lagrangian fillings in
.D4; �st/ realized as 3–graphs Gs;t � D2 and their Legendrian mutations.

Proof The argument is uniform for all s; t 2 N and all the difficulties, and their
solutions, are already present for the simplest case.28 Let us thus assume s D t D 1

for now. First, we need to construct a free 3–graph G D G1;1 which represents a
Lagrangian filling for the Legendrian link ƒ.ˇ/ associated to ˇ D ˇ1;1. This 3–graph
is shown in Figure 100.

The exact Lagrangian L.G/ associated to G is a genus-4 surface with two boundary
components, and thus b1.G/ D 9. Let us consider the subset B� D f
1; 
2; 
3; 
4; 
5g

given by the following 1–cycles: 
1 is represented by the yellow 1–cycle in Figure 100,
which is a tree of Y–pieces, and 
2, 
3, 
4 and 
5 are represented by monochromatic
edges, in purple in Figure 100. In addition, we consider the 1–cycle 
6 represented
by the monochromatic edge, in green. The intersection quiver Q D Q.B� [f
6g/ is
given by the quiver drawn in Figure 100. The quiver Q is of infinite mutation type, as
it is associated29 to a hyperbolic Coxeter diagram [79, Table 1]. In fact, we claim that

27In previous attempts to geometrically iterate Lagrangian mutations, such as [110, Section 2], this
obstruction manifests itself as embedded curves becoming immersed upon performing Dehn twists, a
problem which presently has no known solution.
28We thank Dylan Thurston for useful discussions on quivers and their mutations, in particular for
providing the infinite sequence of mutations that we use in this proof.
29Precisely, the quiver Q corresponds to the rank-6 paracompact hyperbolic Coxeter group xL5 D

Œ3Œ1;1;1;1;1��.
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2
3

6
4

5

1

Figure 100: The 3–graph G and the initial quiver Q.

the sequence of quiver mutations �sn
, where

sn D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

1 if n � 1 mod 5;

2 if n � 2 mod 5;

3 if n � 3 mod 5;

4 if n � 4 mod 5;

5 if n � 5 mod 5;

is an infinite sequence of quiver mutations. Indeed, each time we apply the sequence
of mutations �5�4�3�2�1, the number of arrows from the vertex v1 to v6 increases
by two, and the number of arrows from vi to v6 for i 2 Œ2; 5� increases by one. In
particular, at the kth iteration there are 2k C 1 arrows from v1 to v6 and k arrows from
vi to v6 for i 2 Œ2; 5�. Now we reach the core of the issue, which is realizing this
infinite sequence of quiver mutations as Legendrian mutations of 3–graphs. For that,
we observe the following two properties:

Let us perform a Legendrian mutation along the Y–tree which represents the 1–cycle 
1.
The resulting 3–graph, which is free by Lemma 7.4, is depicted in Figure 101.

Now, upon this Legendrian mutation at 
1 the 1–cycles 
2, 
3, 
4 and 
5 are still
represented by monochromatic edges. These new 1–cycles �1.
2/, �1.
3/, �1.
4/

and �1.
5/ are circled in purple in Figure 101. The figure also displays the mutated
quiver �i .Q.B� [f
6g// and the cycle 
6 in green. Similarly, upon this Legendrian
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2

3

6

4

5

1

Figure 101: Mutated 3–graph �1.G/ at the 1–cycle 
1 (yellow) correspond-
ing to vertex 1 in Q, and its associated intersection quiver �1.Q/.

mutation, the 1–cycle �1.
1/ is still represented by an embedded Y–tree, as depicted
in yellow in Figure 101.

These properties hold true as we now perform Legendrian mutations at the monochro-
matic edges 
2, 
3, 
4 and 
5. The free 3–graph resulting from these four mutations is
drawn in Figure 102.

The claim is that we can iterate the sequence of mutations �5�4�3�2�1 geometrically
as Legendrian mutation of the free 3–graph, and these two properties hold. That is, at
any stage in the sequence of mutations �sn

we have that:

(i) The 1–cycles 
2, 
3, 
4 and 
5 are represented by monochromatic edges.

(ii) The 1–cycle 
1 is represented by an embedded Y–tree, with no multiplicities.

In fact, the Y–tree representing 
1 always has exactly four Y–pieces. These four pieces
have been surrounded by a dashed pink circle in Figures 100–104. The two items above
can be readily verified, as follows. The behavior of the mutated 3–graph near each of
the monochromatic edges is as depicted in Figure 103.
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2

3

6

4

5
.�3/

1

Figure 102: Mutated 3–graph �5�4�3�2�1.G/ and its associated intersec-
tion quiver �5�4�3�2�1.Q/.

It thus follows that 
i for i 2 Œ2; 5� remains a monochromatic edge upon any iteration of
the 3–graph mutation �5�4�3�2�1. Similarly, according to the Legendrian mutation
rules of Section 4.8, each Y–piece of the Y–tree representing 
1 itself mutates to a
Y–piece, and mutating at 
2, 
3, 
4 and 
5 preserves this property. Thus the pattern
persists upon any iteration. The two properties (i) and (ii) now allow us to perform the
sequence of mutations �sn

up to any point in the sequence. For instance, the sequence
of mutations �1�5�4�3�2�1 applied to G leads to the 3–graph in Figure 104.


i

�1 �i
D

Figure 103: The effect of the sequence of mutations �5�4�3�2�1 near the
monochromatic edges 
i for i 2 Œ2; 5�. The only mutations from these five
that affect 
i are �1 and �i .
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2 3 4 5

1

2
3

6
4

5

.�2/
.�2/

.�2/.�2/

.�3/

1

Figure 104: Mutated 3–graph �1�5�4�3�2�1.G/ and its associated inter-
section quiver �1�5�4�3�2�1.Q/.

In order to pairwise distinguish the exact Lagrangian fillings associated to the sequence
of 3–graphs .�sn

�sn�1
� � ��1/.G/, up to Hamiltonian isotopy, we use the microlocal

monodromies fx1; x2; x3; x4; x5; x6g along the 1–cycles 
i for i 2 Œ1; 6� and their
mutations. By Section 7.2.2, the cluster seed fx1; x2; x3; x4; x5; x6g associated to
the quiver Q mutates to the cluster seed associated to .�sn

�sn�1
� � ��1/.Q/ upon

performing the Legendrian 3–graph mutations .�sn
�sn�1

� � ��1/.G/. Since the quivers
.�sn

�sn�1
� � ��1/.Q/ are distinct and so are the associated cluster seeds, it follows that

the associated Lagrangian fillings are distinct. This concludes the proof for s D t D 1.

The general case s; t 2 N is proven with the same argument. Indeed, the free 3–graph
G1;1 in Figure 100 generalizes to a 3–graph whose boundary is ˇs;t , just by adding s

copies of the leftmost pattern in G1;1, to the left, and t copies of the rightmost pattern
in G1;1, to the right. In this general case, it is still true that 
1 is represented30 by a
Y–tree and the remaining f
2; 
3; : : : ; 
s; 
sC1; : : : ; 
sCtC3g cycles are represented by
monochromatic edges. The argument is then identical, with the infinite sequence of
mutations given by

sn D i if n � i .mod s C t C 3/ with 1 � i � s C t C 3:

30In this case the Y–tree has s C t C 2 Y–pieces, s C 1 to the left and t C 1 to the right of the base root.

Geometry & Topology, Volume 26 (2022)



3722 Roger Casals and Eric Zaslow

The reader can directly verify that this is an infinite sequence of mutations, as the
multiplicity of the arrows to the cycle 
sCtC4 — generalizing the green cycle 
6 in
Figure 100 — increases as we apply the mutations �sCtC3�sCtC2 � � ��2�1.

Remark 7.15 For s D t D 1, the sequence �sn
never mutates at the 1–cycle 
6, i.e. at

the sixth vertex v6 in Q. It is nevertheless crucial to include 
6 in the quiver as well
as the cluster variable x6, with its subsequent mutations. The 1–cycle 
6 is initially
represented by an embedded curve in the 3–graph, but this curve develops immersed
points as we iterate the sequence of mutations �sn

according to Section 4.8. This
still allows us to define the cluster coordinate associated to it but we would not be
able to mutate along such a 1–cycle just with the rules developed in Section 4.8. (The
argument for Theorem 7.14 does not require mutating at v6.)

The Legendrian links in Theorem 7.14 are relatively simple. For instance, the Legen-
drian knot associated to ˇ1;1 is genus-4 two-component link. One of the components
is an unknot and the other is the .2; 7/–torus knot 71. Note that ƒ.ˇ1;1/ is (smoothly)
distinct from the .3; 6/–torus link that the first author studied in [18], which also has
genus 4. Thus, not only does Theorem 7.14 bring a new method to construct infinitely
many Lagrangian fillings, but it in fact provides new Legendrian links with infinitely
many Lagrangian fillings.

Remark 7.16 The xL5 quiver that we used in Theorem 7.14 appears as a subquiver of
the intersection quiver for several other positive braids. Following Lukas Lewark’s posi-
tive braid table,31 each of the positive genus-6 braids, 14n5644, 15n118169, 16n144958,
16n149517, 16n173894, 16n175324 and 16n339638, to name a few, contain xL5 in their
intersection quiver. We believe that an argument similar to Theorem 7.14 should
prove that the max-tb representative of each of these links has infinitely many exact
Lagrangian fillings.

Finally, the contrast between Theorem 7.14 and [18, Corollary 1.5] is interesting.
The former constructs an infinite family of Lagrangian fillings for a Legendrian link
by directly using Legendrian mutations, which are themselves distinguished by their
effect — as cluster mutations — on the microlocal monodromies. The latter result
is entirely about constructing infinite-order Lagrangian concordances, coming from
Legendrian loops of positive braids, and the infinite family of Lagrangian fillings is a
byproduct of this construction. In particular, N –graph calculus should apply to much

31Braids and trees, available at http://lewark.de/lukas/braids.html.
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more general Legendrian links, and does not require knowing about the existence of an
infinite-order element in their Lagrangian concordance monoid.

8 Moduli space for N –triangles and nonabelianization

In this final section, we focus on N –graphs associated to N –triangulations, as intro-
duced in Section 3. This class of N –graphs G yields Legendrian weaves ƒ.G/ whose
Lagrangian projections are related to the Goncharov–Kenyon conjugate Lagrangian
surfaces [63; 111]. These Lagrangian surfaces have also appeared in the context of
Gaiotto, Moore and Neitzke’s spectral networks [53; 89]. In particular, we prove
Theorem 1.9, which computes the flag moduli space M.G/ for G any N –triangle tN ,
matching the algebraic results in [54, Section 8; 48, Section 9].

8.1 Flag moduli space of the N –triangle

Let us compute the flag moduli space associated to the N –graph G.tN / of an N –
triangle tN , as we defined in Section 3.2 (see Figure 15). The result reads as follows:

Theorem 8.1 Let G.tN / be the N –graph associated to an N –triangle tN . The flag
moduli space of G.tN / is an

�
N�1

2

�
–dimensional complex torus , i.e.

M.tN ; G.tN /I k/ Š .k�/.
N�1

2 /:

This rest of this subsection is devoted to the proof of Theorem 8.1. The statement
of Theorem 8.1 is an instance of how incidence geometry problems connect to the
contact topology of Legendrian surfaces. Indeed, although our proof is entirely within
projective geometry, the conclusion from Theorem 8.1 ought to be read as the fact that
the moduli space M.tN ; G.tN /I k/ is parametrized by the toric coordinates provided by
the holonomies Hom

�
H1

�
ƒ.G.tN /; Z/

�
; k�

�
. For k D C, this complex torus should

be related to the complex torus appearing in Fock and Goncharov [48; 47] in their
study of cluster varieties; see [76, Theorem 8.3].

Theorem 8.1 can also be interpreted as follows. The triangle tN is topologically a disk
D2 with boundary a circle @D2 D S1. The Legendrian weave

ƒ.G.tN // � .J 1.D2/; �st/

has a Lagrangian projection L WD �
�
ƒ.G.tN //

�
, which is an exact Lagrangian sub-

manifold, where � W J 1.D2/ ! T �D2 is the projection along the standard (vertical)
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Reeb flow. The Lagrangian L has boundary in T �D2jS1 Š J 1.S1/, and it is checked
that @L is the cylindrical Legendrian braid �3, where � is the half-twist positive braid
corresponding to a longest word in the Weyl group, i.e. the Garside element. Since
G.tN / is free, L is an embedded exact Lagrangian filling of @L. Now, by looking at
the boundary circle S1 and considering the moduli space à la [112], we conclude that
the moduli space of Lagrangian fillings should carry a cluster structure: the flag moduli
space M.tN ; G.tN /I k/ is one such chart.

In fact, by an argument akin to Lemma 5.6, the flags at two vertices of the triangle
tN determine the flags along the edge they bound, and therefore the flags along the
boundary circle ıD2 D S1 must be determined by the flags at the vertices, themselves
three mutually completely transverse flags in the flag variety B. This space of triples
of mutually transverse flags is one of the Richardson varieties R.32 Now, by the
PGLN –action, two totally transverse flags can be put in standard position, B and B�,
with residual symmetry the Cartan H of diagonal matrices up to scale. Then the moduli
space R=H is a cluster variety and the exact Lagrangian filling L provides a cluster
chart via its moduli of local systems

Loc.L/ Š Hom
�
H1

�
ƒ.G.tN /; Z/

�
; k�

�
Š .k�/.

N�1
2 /:

This torus can be checked to agree with that of Theorem 8.1. Note also that, following
Section 7, many other cluster charts and exact Lagrangian fillings can be found by
performing N –graph mutations. Let us now prove our result:

Proof of Theorem 8.1 Let us argue by induction on N, where the base case N D 2

follows from the fact that PGL2 acts transitively on triples of distinct points. Let us
assume that

M.tN ; G.tN /I k/ Š .k�/.
N�1

2 /

for the N –graph of an N –triangle. Consider an .NC1/–triangle with one side being an
arbitrary fixed preferred base, and thus the row associated to this base contains 2N � 3

triangles. It is combinatorially apparent that the complement of this row in tNC1 is in
fact an N –triangle tN , and thus we can construct tNC1 by adding this base row to tN .
This combinatorial splitting is translated into a containment of an N –graph G.tN /

within G.tNC1/. Let us describe this splitting in the .NC1/–graph by providing its
construction starting from the N –graph G.tN /.

32We thank Ian Le for many discussions on the Richardson variety.
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Start with the N –graph G.tN / — see Section 3.2 — and consider the
�
N
2

�
edges in-

tersecting the base side of tN . The edges are depicted vertically and the base side
horizontally; see Figure 15. These are �i –edges for i D 1; : : : ; N � 1 with exactly
N � 1� k �k–edges. The .NC1/–graph G.tNC1/ can be described in the following
N stages:

(1) First, insert an .N�1; N /–hexagonal point in the unique �N�1–edge in the base
side of G.tN /. The �N –edge aligned with the previously existing �N�1–edge is
continued down vertically. The remaining two �N –edges are extended horizontally,
respectively to the left and to the right, and the remaining two �N�1–edges are continued
down diagonally, in the south-east and south-west directions respectively.

(2) Second, continue down the �i –edges for i D 1; : : : ; N, until the two �N�1–edges
intersect with the two originally existing �N�2–edges. In the moment of collision,
insert two .N�2; N�1/–hexagonal vertices at the intersection point matching the two
incoming �N�1– and �N�2–trajectories. We extend the two �N�1–edges adjacent to
the incoming �N�2–edges horizontally to the left and to the right.

The remaining two pairs of three edges, each with two �N�2–edges and a �N�2–edge,
are continued down, with the �N�1–edges continued vertically and the �N�2–edges
continued diagonally in the south-east or south-west directions, accordingly.

(3) Iteratively, we proceed as follows in the l th stage for 2 � l � N � 1. We continue
down the �i –edges for i D 1; : : : ; N, and at this stage the only edges being continued
diagonally down are �N�lC1–edges. There are 2l�2 such edges, which can be gathered
in two groups, internal and external.

By definition, there are two external edges, which are the leftmost and rightmost
�N�lC1–edges, respectively continuing south-west and south-east. For these two
external edges, we insert two .N�l; N�lC1/–hexagonal and describe the N –graph
as described in stage (2). The 2l � 4 internal �N�lC1–edges, which continue down
diagonally, ought to intersect with �N�l–edges, which continue down vertically.

For the 2.l � 2/ internal edges, there are l � 2 such intersections, since an intersection
occurs for each pair. For each such an intersection, insert an .N�l; N�lC1/–hexagonal
vertex, and continue the outgoing three edges down as described by the local model
for the hexagonal vertex. Hence, for each of these hexagonal vertices, the outgoing
�N�lC1–edge continues vertically down whereas the two �N�l–edges continue down
diagonally. Thus, at the l th stage we have inserted exactly l .N�l; N�lC1/–hexagonal
points.
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(4) In the N th stage, all �i –edges for 2 � i � N continue down vertically and we are
left with 2.N � 1/ �1–edges continuing diagonally. In line with the previous stages,
there are two external �1–edges and 2.N � 2/ internal edges. Insert two �1–trivalent
vertices at the end of the two external �1–edges. The internal edges will meet in
consecutive pairs at N � 2 intersection points. In this final stage we insert a �1–vertex
in each of these intersection points, and continue the remaining �1–edge vertically
down.

Let us now compute the flag moduli space M.tN ; G.tNC1/I k/ using this inductive
construction of G.tNC1/. A crucial fact to be used is Lemma 5.6, i.e. at a hexagonal
vertex, four consecutive flags uniquely determine the remaining two flags. Let us
assume that we have chosen a point in M.tN ; G.tN /I k/ and we thus have the data of
a flag F in PN for each open region in D2 nG.tN /. This data needs to be considered
in the moduli space of flags, given that G.tNC1/ is an .NC1/–graph, and thus we fix
an embedding i0 W PN ! PNC1 and the corresponding inclusion PGLN � PGLNC1.
Let us then start the construction G.tNC1/ from G.tN / by stages, as described above,
and prove the statement in Theorem 8.1.

In the first stage, the flag data at the inserted .N�1; N /–hexagonal point in the �N�1–
edge is uniquely determined by a choice of a codimension-2 projective subspace H 2

in PN, transverse to i0.PN /. Note that the intersection of H 2 and i0.PN / is uniquely
determined by the flag data coming from M.tN ; G.tN /I k/. We claim that this choice
in the first stage can be absorbed by the symmetry group PGLNC1.

In order to understand the symmetry group, it is convenient to represent an element in
PGLNC1 via the projective matrix26666664

a1;1 a1;2 � � � a1;N a1;NC1

a2;1 a2;2 � � � a2;N a2;NC1
:::

:::
: : :

:::
:::

aN;1 aN;2 � � � aN;N aN;NC1

aNC1;1 aNC1;2 � � � aNC1;N aNC1;NC1

37777775 ;

where the subgroup PGLN � PGLNC1 is defined by

PGLN D fA 2 PGLNC1 W aNC1;NC1 D 1; ai;NC1 D aNC1;i D 0 for 1 � i � N g:

In these coordinates, we can assume that the subgroup K � PGLNC1 fixing our fixed
hyperplane i0.Pn/ � PN�1 is cut out by the equations

K WD fA 2 PGLNC1 W aNC1;i D 0; 1 � i � N g:
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Thus, the remaining PGLNC1 symmetries (once the flag moduli space M.tN ; G.tN /I k/

is fixed, and thus the symmetries of PGLN have been used) consist of projective
transformations of the form26666664

a1;1 a1;2 � � � a1;N c1

a2;1 a2;2 � � � a2;N c2

:::
:::

: : :
:::

:::

aN;1 aN;2 � � � aN;N cN

0 0 � � � 0 cNC1

37777775 ;

where the ai;j are fixed for 1� i; j �N and the ci 2k for 1� i �N and cNC1 2k� are
free. Then, in this coordinate system, we can assume that the choice of the codimension-
2 projective subspace H 2 uses the gauge provided by c1; c2 2 k.

In the second stage, two .N�2; N�1/–hexagonal vertices are inserted. For each of
them, the flag data is fixed by induction in three out of the six regions near the hexagonal
vertex. Hence, there is a choice of a codimension-3 projective subspace H 3 in each
of these two vertices. Let us fix one of these choices by using the free coordinate
c3 2 k and notice that the other choice has an a priori moduli of k. Nevertheless, the
�N�3–edge that interacts with the �N�2–edges in the third stage forces that moduli
to be k�, since the two newly chosen flags must be �N�3–transverse. Thus in the
second stage we have used the symmetry provided by c3 2 k and we are left with a k�

contribution to the flag moduli.

In the l th stage for 3 � l � N � 1, we proceed inductively as follows. We partition the
.N�l; N�lC1/–hexagonal vertices inserted in this stage into two groups: external,
containing two of them, and internal, containing l � 2 of them. By definition, the two
external .N�l; N�lC1/–hexagonal vertices are the leftmost and rightmost vertices.
Each of these two external vertices have flags fixed in three out of the six regions,
by the process in the .l�1/st stage. Thus, as in the second stage, there is exactly one
choice of flag at each of these .N�l; N�lC1/–hexagonal vertices which determines
each of their respective neighborhoods. This corresponds to a choice of codimension-l
projective subspace H lC1 in accordance with the incidence conditions imposed by the
given flags. Proceeding as in the second stage, we fix one of these choices with the
free variable clC1 and the remaining choice contributes k� to the flag moduli.

The l � 2 internal .N�l; N�lC1/–hexagonal vertices have flags fixed in four out
of the six regions, given the process in the .l�1/st stage. By Lemma 5.6, these
hexagonal vertices are uniquely determined in their neighborhoods. Thus, although
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the k� contribution of one of the external hexagonal vertices interacts with an internal
vertex, no contributions to the flag moduli space come directly from the internal vertices.

The argument then develops iteratively in the above manner until the .N�1/st stage is
completed. The last N th stage consists of the insertion of N �1–trivalent vertices. Fol-
lowing the same pattern as before, only the two external trivalent vertices contribute to
the flag moduli, since each of the internal trivalent vertices have their three surrounding
flags determined at the .N�1/st stage. In this last stage, the variables ci for 1 � i � N

have been fixed and the only remaining degree of free symmetry is cNC1 2 k�. Let us
use this symmetry to fix the choice in one of the two external trivalent vertices, and
thus the contribution of this last stage to the flag moduli space is the k� choice of the
remaining point coming from the remaining external trivalent vertex.

The conclusion in the statement Theorem 8.1 now follows by gathering the contributions
of the flag moduli space at each stage. Indeed, the first stage has no contribution, whereas
each of the N � 1 stages, from the second to the N th stage, has a k� flag moduli space
contribution. By the inductive hypothesis, the desired flag moduli space is

M.tNC1; G.tNC1/I k/ ŠM.tN ; G.tN /I k/� .k�/N�1

Š .k�/.
N�1

2 /
� .k�/N�1

Š .k�/.
N
2 /;

which corresponds to the statement, as required.

Remark 8.2 The inductive combinatorial description of G.tNC1/ in terms of G.tN /

used in the proof of Theorem 8.1 can be used to provide a third alternative definition
of the local N –graph G.tN /, in addition to the descriptions introduced in Section 3.2.

8.1.1 Tetrahedral triangulations at N D 3 and N D 4 Let us study the Legendrian
weaves ƒ.G.�// and flag moduli space M.S2; G.�// associated to 3– and 4–graphs
G.�/ for the tetrahedral 3– and 4–triangulations � of the 2–sphere S2. The case N D 2

has been discussed in Section 6.1, where ƒ.G/ Š T2
c is the Legendrian Clifford torus

and M.G/ Š P1 n f0; 1;1g. Let us denote the pair of pants P1 n f0; 1;1g by H .

Let us consider the 3–graph G.3/ D G.� .3// � S2 associated to the tetrahedral 3–
triangulation � .3/ of the 2–sphere S2, according to the construction in Section 3. We
want to compute its flag moduli space M.G/. This will be done directly by using the N –
graph calculus computations in Section 4. Indeed, it is proven in Section 4.6 that in this
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case the (satellite of the) Legendrian weave ƒ.G/ is Legendrian isotopic to the four-fold
connected sum of the Clifford torus T2

c . Hence, we obtain that M.S2; G.3// Š H 4.
From the description in Theorem 8.1, we are also giving a contact geometric proof of
the following:

Corollary 8.3 [48] The moduli of four generic flags in C3 is isomorphic to H 4.

The same argument, using N –graph calculus, also allows us to study the flag moduli
space M.S2; G.4//, where G.4/ D G.� .4// � S2 is the 4–graph associated to the
tetrahedral 4–triangulation � .4/ of the 2–sphere S2. It is left as an exercise for the
reader to use Theorem 8.1 and conclude that M.S2; G.4// is isomorphic, as an algebraic
variety, to

M.S2; G.4//

D f.z1; w1; : : : ; z5; w5/ 2 .C�/9
W .1� �/wizi � zi C 1 D 0; 1 � i � 5g � .H /4;

where � D 1� z1z2z3z4z5 2 C�. The exercise is solved in [32, Section 6.3.2] in the
language of the 3–dimensional N D 2 superconformal field theory T4Œ�; …�.

8.2 A computation of the nonabelianization map

We conclude the main body of the manuscript by exploring the relationship between
Legendrian weaves and the works [48; 1; 2; 95] in some explicit examples. In particular,
we present a case in which the nonabelianization map featured in [53; 54] can be
realized by the microlocal monodromies associated to constructible sheaves microlocally
supported along Legendrian weaves.

The context is described as follows. Let .C; �N / be a polygon endowed with an ideal N –
triangulation �N , and choose a wavefront for ƒ.G.�N // with no Reeb chords such that
the Lagrangian projection is a smooth exact Lagrangian L embedded in the cotangent
bundle .T �C; �st/. This Lagrangian projection L has a sheaf quantization [88] to a
rank-N sheaf on C with no singular support, i.e. a local system in C. Now, of course,
all local systems on polygons are trivial, but the crucial point is that the Lagrangian
covering gives a preferred33 basis for the fibers of the local system, which can undergo
changes à la handle-slides in the Morse context; see [66]. Here, the Lagrangian
covering is given by the restriction �jL W L ! C of the projection � W T �C ! C onto

33In the Floer-theoretic language of the Fukaya category, the basis elements are the intersections of the
exact Lagrangian with the cotangent fibers.
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z
y

x
w

Figure 105: The 3–graph associated to an adjacent pair of 3–triangles. The
monodromies along the four 1–cycles are labeled x, y, z and w.

the zero section. Now, the N –graphs and the microlocal monodromies, as discussed in
Section 7.2, precisely encode these changes. In our context, the nonabelianization map
is the construction that recovers the constructible sheaf from its microlocal monodromy.

We illustrate this in the following example. Figure 105 shows the 3–graph G associated
to two adjacent 3–triangles. Suppose that we are given a local system on ƒ.G/. Denote
by x and y the two monodromies of the corresponding Legendrian weave around the
two Y–cycles, and by z and w the two microlocal monodromies along the two I–cycles
represented by the two (red) monochromatic edges.

The Legendrian weave ƒ.G/ is a thrice-punctured genus-1 surface and these four
1–cycles are a basis for H1.ƒ.G/; Z/. We would like to reconstruct the flag data,
specifying a constructible sheaf, from the monodromies x, y, z and w of the local
system. Indeed, this will realize the nonabelianization map [53] from rank-1 local
systems on the (spectral, or conjugate) Lagrangian — parametrized by monodromies —
to decorated rank-2 local systems on the base surface. Since the base surface here is
contractible, the only degrees of freedom are the choices of flags at vertices. The map
is computed as follows.

Let .a; A/, .b; B/ and .c; C / be the flags at the vertices of the left triangle, and let
.d; D/ be the remaining flag. We would like a birational map from the monodromies
.x; y; z; w/ to the choice of flags. By using the PGL3–action, we may assume .a; A/,
.b; B/ and .c; C / are as in Section 7.2.2, with triple product x. Then the flag .c; D/

is determined by the cross-ratios z and w and the triple product y. For instance,
z is the cross-ratio hb; BC; AB; BDi while we find w D ha; AD; AB; AC i. These
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determine D, whence the triple product y fixes d 2 D. Direct computation shows

d D

0@�.x=q/.1C x/

x.1Cy/

�py.1C x/

1A ; D D .pq; p.1C x/; x/:

This thus recovers [48; 95] from the perspective of N –graphs.

Example: tetrahedron with 3–triangulation

Let us conclude this subsection by analyzing the genus-4 Legendrian weave ƒ in
Section 4.6 from the microlocal perspective. We also compute, following [119], the
primitive which characterizes (a discrete cover of) M.G/ as an exact Lagrangian
subvariety. Following [1; 2], this primitive — the superpotential of an effective 4–
dimensional theory — is interpreted as a generating function of BPS numbers, and
should have integrality properties. We check this for this example.

Consider the tetrahedron with its unique 3–triangulation, as in Section 4.6, which
gives rise to a 3–graph G. An object in the category of simple constructible sheaves
Sh1

ƒ.G/.S
2 �R; ƒ/0 microlocally supported along ƒ.G/ is defined by a four-tuple of

transverse flags in V Š C3, placed at the vertices of the tetrahedron, as in Figure 94.

Note that there are 4 � 3 D 12 total nodes, and the Legendrian surface indeed has genus
g D 4. We therefore have 2g D 8 cluster variables, specified by the monodromies
around each of the eight loops, which themselves are a basis for H1.ƒ.G/; Z/ Š Z8.
Four of the monodromies are the triple ratios along the faces. Let us label the faces
by the three unordered vertices it contains, eg we write x123 for the monodromy of
the loop determined by the minimal triangle at the center of the face (123): it is the
triple ratio of the three flags at vertices 1, 2 and 3. There are 4 � 3 D 12 more edge
monodromies, but we will find 4 � 2 D 8 relations among all these 16 total, giving eight
independent monodromies as expected for a genus-4 surface. Let us compute the edge
monodromies.

First, following [119], for each edge e we define a corresponding coordinate xe to be
the negative of the cross-ratio.34 Now there are two relations for each vertex: first, the
product of the edge coordinates around the encircling triangular face is unity; second,
the product of edge and Y–monodromies encircling the vertex at a greater distance is

34We believe the sign appears due to the fact that we should be considering twisted local systems, i.e. lifts
to the circle bundle of the surface that have monodromy �1 over the circle fibers, as in [48; 53, Section 10].
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unity. There are thus eight independent coordinates, and we can take two from each of
the triangles surrounding the four vertices. Let us then write

x12 D�
w1 ^ v4

v4 ^ v2

v2 ^ v3

v3 ^w1

for the coordinate associated to the edge of the triangle encircling vertex 1 and traversing
the one-simplex of the triangulation between vertices 1 and 2, where vi for i 2 Œ1; 4�

are generators of lines and wi are generators for planes (thought of as antisymmetric
two-vectors) — and likewise for the other edges. Then the relation for the triangle
encircling vertex 1 is x12x13x14 D 1, and likewise for the other vertices. Recall that
we have similarly denoted by x123 the inverse of the coordinate corresponding to the
Y–cycle in the face containing vertices 1, 2 and 3 — and likewise for the coordinates
xijk for i; j; k 2 Œ1; 4�. For the first vertex we have the unital relation

x123x21x142x41x134x31 D 1;

and likewise for the other three vertices. This expresses the flag moduli in terms of
generators, given by xij and xijk and relations, as above.

Let us verify that these coordinates define a (holomorphic) Lagrangian embedding
of the flag moduli space M.G/ associated to the genus-4 Legendrian ƒ.G/ into the
moduli space of framed local systems for C D S2. The symplectic 2–form is computed
from the intersection form to be

! D�d log x12 ^ d log x13 C d log x23 ^ d log x24 � d log x34 ^ d log x31

C d log x41 ^ d log x42:

We can directly compute the four relations

x12 D
�1

1Cx13
; x24 D

�1

1Cx23
; x34 D

�1

1Cx31
; x42 D

�1

1Cx41
;

which readily imply that the embedding of the flag moduli space M.G/ in each of
the cluster charts for the moduli space of framed local systems is Lagrangian. This
holomorphic Lagrangian M.G/ is in fact exact and we can compute a primitive
function W for the restriction of the Liouville 1–form �st. This would allow us to write
M.G/ as the graph �dW of the 1–form dW in this chart. This primitive encodes the
BPS states associated to some Lagrangian filling, given by the Lagrangian projection
of ƒ.G/, determined by a phase and a framing (implicit here) as in [119, Section 4.8];
see also [1; 2]. For that, we define the variables

U1 D�x13; V1 D�x12; U2 D�x23; V2 D�x24;

U3 D�x31; V3 D�x34; U4 D�x41; V4 D�x42:
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Also, recall that, if we have U CV �1 D 1 with U D eu and V D ev , then we can write

v D�log.1�U / D @uLi2.U /:

Hence, since we have UiCV �1
i D1 for all i , with symplectic 2–form !D

P
i dui^dvi ,

we conclude that M.G/ D �dW , where

W.U1; U2; U3; U4/ D

4X
iD1

Li2.Ui /:

This computation for the BPS potential is in line with the results in [119, Section 5].

Finally, let us review how geometric methods, as developed in Section 4, would lead to
this result. Instead of the algebraic computation above, we could have directly used
the diagrammatic calculus, as in Section 4.6, and deduced that our Legendrian weave
ƒ.G/ Š #4

iD1 T2
c is the Legendrian connected sum of four Clifford 2–tori T2

c . Since
the generating function of BPS numbers for T2

c is given by one dilogarithm Li2.U /, by
direct computation, and the potential W is additive under connected sum, we could have
directly deduced that W.U1; U2; U3; U4/ D

P4
iD1 Li2.Ui /. This concludes that our

algebraic computation above is consistent with the contact topology of the underlying
Legendrian weave.

Appendix Soergel calculus and Legendrian weaves

In this appendix, we provide a construction and a concise speculation regarding the
symplectic geometrization of Soergel calculus via Legendrian weaves. The following
discussion owes a good deal to B Elias and E Gorsky, as explained in the introduction,
to whom we are very grateful. Soergel calculus, as developed by Elias, M Khovanov
and G Williamson [39; 40], provides a diagrammatic presentation of the category of
Soergel bimodules, which itself categorifies the Hecke algebra. The similarities between
Elias’ diagrammatic calculus and our Legendrian weaves are apparent. Legendrian
weaves can be understood as a geometric approach to the study of the algebra of certain
complexes of Soergel bimodules. We explain this below.

Remark A.1 Soergel bimodules are essential to categorifications of knot invariants
[103; 115; 73; 39]. The link between these and moduli spaces of sheaves for Legendrian
braid closures was described in [112, Section 6]. From this perspective, it is not
unnatural to seek a connection between planar Soergel structures and planar structure
defined by Legendrian weaves, the 2–dimensional version of braids.
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The category of Soergel bimodules is the Karoubi completion of the subcategory of Bott–
Samelson bimodules, arising as the equivariant cohomology of a closed Bott–Samelson
variety, and thus it suffices to understand the relation to this latter class of bimodules.
The key connection between the present work and Soergel bimodules is that a subclass
of Legendrian weaves yields exact Lagrangian cobordisms between Legendrian links,
which are themselves represented as positive braids. The moduli space of microlocal
constructible sheaves supported on a singular compactification of a positive braid is a
closed Bott–Samelson variety, and our Legendrian weaves, understood as Lagrangian
cobordisms — and singularly compactified — induce morphisms between these closed
Bott–Samelson varieties.

Thus, we are able to geometrize the diagrammatics of Soergel calculus by considering
the D�

4 –singularity for the trivalent vertices in [39; 40], the A3–swallowtail singularity
for the univalent vertex and the A3

1–singularity for their hexagonal vertices. (The
Soergel calculus we geometrize corresponds to the m D 2 Coxeter exponent.)

Remark A.2 Exact Lagrangian cobordisms are directed, due to the convexity direc-
tionality in symplectic topology. The dissonance arises from the fact that, as of today,
Soergel calculus only considers closed Bott–Samelson varieties, whereas the moduli
space of microlocal sheaves supported on a positive braid is an open Bott–Samelson
variety. Thus, the Soergel calculus is geometrized by singular compactifications of
our Legendrian weaves, and our Legendrian weave calculus, without compactification,
should naturally induce a Soergel calculus for open Bott–Samelson varieties.

For instance, the A3–Zamolodchikov relation from Soergel calculus corresponds to the
A4

1–Reidemeister move in Legendrian weave calculus, as depicted in Figure 106.

Now, let us consider two positive braids ˇ1; ˇ2 2 BrCn for some n 2 N, and their
associated Legendrian (long) links ƒ.ˇ1/; ƒ.ˇ2/ � .J 1Œ0; 1�; �st/ [18, Section 2]. A
Legendrian weave ƒ � .J 1.Œ0; 1�� Œ1; 2�/; �st/ with no Reeb chords and boundaries
ƒ.ˇ1/ at Œ0; 1��f1g and ƒ.ˇ2/ at Œ0; 1��f2g yields an embedded and exact Lagrangian
cobordism L.†/ from ƒ.ˇ1/ to ƒ.ˇ2/ in the symplectization of .J 1Œ0; 1�; �st/, as in
Section 7. In particular, each trivalent vertex †.Gtri/ and hexagonal vertex †.Ghex/

yield the following exact Lagrangian cobordism:

(i) The Lagrangian projection L.Gtri/ of the Legendrian weave ƒ.Gtri/ is a La-
grangian cobordism from the Legendrian tangle ƒ.ˇ1/ given by one crossing in
two strands ˇ1 D�i to the Legendrian tangle ƒ.ˇ2/ given by two crossing in two
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Figure 106: Contact isotopy among Legendrian weaves, relative to the
boundaries. The lack of Reeb chords allows us to interpret these as exact
Lagrangian cobordisms between the positive braids �iC1�i �i�1�iC1�i �iC1

and �i�1�i �i�1�iC1�i �i�1. The fact that these Lagrangian cobordisms are
Hamiltonian isotopic implies that the morphism induced between the associ-
ated Bott–Samelson bimodules must coincide.

strands ˇ1 D �2
i , where i 2N is labeling the transposition �i of the edges of Gtri.

Smoothly, this is a saddle cobordism obtained by an index-1 handle attachment
to the Lagrangian cone ƒ.ˇ1/� Œ0; "� in the symplectization for " 2 RC small.

(ii) The Lagrangian projection L.Ghex/ of the Legendrian weave ƒ.Ghex/ is a
Lagrangian concordance from the Legendrian tangle ƒ.ˇ1/ given by three
crossings in three strands ˇ1 D �i�iC1�i to the Legendrian tangle ƒ.ˇ2/ given
by ˇ2 D �iC1�i�iC1, where i 2 N is labeling the transpositions �i and �iC1 in
the edges of Ghex. Smoothly, this is a Lagrangian surface obtained by graphing
a Reidemeister three move.

For simplicity, let us suppose that the relative homology H1.L; @�LIZ/, which we
denote by H1.L/, is a free Z–module and the surface L is spin, as is verified for the
two local cobordisms above. An exact Lagrangian cobordism L� .J 1Œ0; 1�; �st/� Œ1; 2�

from ƒ.ˇ1/ to ƒ.ˇ2/ yields an algebraic map

ˆL W �M.ƒ.ˇ1// !M.ƒ.ˇ2//;

where �M.ƒ.ˇ1// is an algebraic .C�/b1.L/–bundle over M.ƒ.ˇ1//, and M.ƒ.ˇ//

denotes the moduli space of microlocal rank-1 objects in the dg category of microlocal
sheaves in Œ0; 1��R microlocally supported on ƒ.ˇ/, as described in [18, Section 3;
111; 112].
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Remark A.3 In the Floer-theoretic context, the map ˆL is obtained by applying the
contravariant functor Hom. � ; k/ in the category of dg algebras to the morphism

ˆFl
L WA.ƒ.ˇ2// !A.ƒ.ˇ1//˝Z ZŒH1.L/�

of the Legendrian contact dg algebras A.ƒ.ˇ// associated to Legendrian links ƒ.ˇ/.
The Floer-theoretic map ˆFl

L is described in [37; 97], and it is a count of holomorphic
strips whose boundary homology classes are encoded in ZŒH1.L/�. To ease the
geometry, we have tensored by the flag moduli space map ˆL above, CŒH1.L/� Š

ZŒH1.L/� ˝Z C, to base change the Spec.ZŒH1.L/�/–bundle to a complex variety�M.ƒ.ˇ1//.

The relation to Soergel calculus now arises because the moduli space of simple micro-
local sheaves M.ƒ.ˇ1// is (explicitly) isomorphic to the open Bott–Samelson variety
associated to ˇ, also known as the Broué–Michel variety of ˇ [112; 120; 18]. Let R D

H�.B/ denote the cohomology of the complete flag variety for GL.N; C/ for N 2 N,
and Bsi

the Bott–Samelson Soergel .R˝R/–bimodule associated to a permutation
si 2 SN in the Weyl group SN of GL.N; C/. The Rouquier complex Ti WD ŒBsi

! R�

will be denoted by Ti for all i 2 N. Consider a braid

ˇ D

lY
jD1

�ij ; 1 � ij � k � 1;

where �i1
is the leftmost crossing in the front diagram of the Legendrian braid, and

the crossings are read from left to right. Then the (singular) compactly supported
cohomology of algebraic variety M.ƒ.ˇ// is described by the tensor product

Tˇ D Ti1
˝R Ti2

˝R � � � ˝R Til
;

of Rouquier complexes.

Remark A.4 Should the reader be interested in the closure of the Legendrian ƒ.ˇ/ �

.J 1S1; �st/, instead of the long link .J 1Œ0; 1�; �st/, the cohomology of the corresponding
moduli space M.ƒ.ˇ// is obtained by applying Hochschild homology to the above
complex Tˇ . In particular, H�

�
M.ƒ.ˇ//

�
coincides with the triply graded homology

of the knot associated to ˇ or, equivalently, Khovanov–Rozansky link homology; see
[112, Theorem 6.14].

In conclusion, the geometric map ˆL W �M.ƒ.ˇ1// !M.ƒ.ˇ2// functorially induces

H�
c .ˆL/ W H�

c

� �M.ƒ.ˇ1//
�
! H�

c

�
M.ƒ.ˇ2//

�
;
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which is a map of (products of) Rouquier complexes yTˇ1
! Tˇ2

, where yTˇ1
is the

compactly supported cohomology of �M.ƒ.ˇ1//, which contains the information of
the compactly supported cohomology Tˇ1

of the open Bott–Samelson variety for ˇ1.

Now, applying this to the two Lagrangian cobordisms associated to the trivalent vertices
Gtri and the hexagonal vertices Ghex, we obtain the following two maps:

(i) The map ˆL.Gtri/ W Tsi
˝ H�.S1/ ! Tsi

˝R Tsi
, where i labels the �i –edges

of Gtri, and we have identified the fiber bundle �M.ƒ.ˇ1//Š .ƒ.ˇ1//�C� with
the Cartesian product, as in this case the bundle is topologically trivial. The fact
that there is one copy of C�DS1�R corresponds to the fact that the Lagrangian
cobordism L.Gtri/ has a unique index-1 critical point and its cocore carries the
data C�.

(ii) The map ˆL.Ghex/ W Tsi
˝ TsiC1

˝ Tsi
! TsiC1

˝ Tsi
˝ TsiC1

, where in this
case �M.ƒ.ˇ1// Š M.ƒ.ˇ1// as the Lagrangian L.Ghex/ is a cylinder and
H1.L/ Š f0g is trivial.

In conclusion, the above discussion can summarized according to the following tenet:

Principle A.5 Let Tˇ1
and Tˇ2

be the Rouquier complexes associated to positive
braids ˇ1 and ˇ2 and ‰ W Tˇ1

! Tˇ2
the morphism given by a graph G‰ with only

(upwards) trivalent and hexagonal morphisms in (open) Soergel calculus. Then the
Lagrangian projection of the Legendrian weave ƒ.G‰/ yields an embedded exact
Lagrangian cobordism L from ƒ.ˇ1/ to ƒ.ˇ2/ and a geometric map

ˆL W �M.ƒ.ˇ1// ! ƒ.ˇ2/

such that H�
c .ˆL/ D ‰.

The difference between the principle above and a theorem lies in the correct definition
of open Soergel calculus, of which we are not aware at this stage. That said, since
the trivalent and the hexagonal vertices are two of the main building blocks for closed
Soergel calculus, the above construction provides a potential symplectic geometrization
of open Soergel calculus, associated to Rouquier complexes, instead of Soergel bi-
modules. In particular, in the context of open Bott–Samelson varieties, the Lagrangian
cobordisms above indicate the need for additional data from H1.L/DZjV j in specifying
a morphism, where jV j is the number of trivalent vertices. The development of open
Soergel calculus, the computations establishing that our geometric maps induce the
expected algebraic maps, as well as the Lagrangian description of the univalent vertex,
will be the subject of upcoming and more algebraic work.
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