
J
H
E
P
0
5
(
2
0
2
2
)
0
9
2

Published for SISSA by Springer

Received: November 2, 2021

Accepted: April 22, 2022

Published: May 16, 2022

From quantum groups to Liouville and dilaton

quantum gravity

Yale Fana and Thomas G. Mertensb

aTheory Group, Department of Physics, University of Texas at Austin,

Austin, TX 78712, U.S.A.
bDepartment of Physics and Astronomy, Ghent University,

Krijgslaan, 281-S9, 9000 Gent, Belgium

E-mail: yalefan@gmail.com, thomas.mertens@ugent.be
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element (or Whittaker function) of Uq(sl(2,R)) and review its applications to Liouville

gravity. We then derive the corresponding matrix element for Uq(osp(1|2,R)) and apply it

to explain structural features of N = 1 Liouville supergravity. We show that this matrix

element has the following properties: (1) its q → 1 limit is the classical OSp+(1|2,R)

Whittaker function, (2) it yields the Plancherel measure as the density of black hole states

in N = 1 Liouville supergravity, and (3) it leads to 3j-symbols that match with the coupling

of boundary vertex operators to the gravitational states as appropriate for N = 1 Liouville

supergravity. This object should likewise be of interest in the context of integrability of

supersymmetric relativistic Toda chains. We furthermore relate Liouville (super)gravity

to dilaton (super)gravity with a hyperbolic sine (pre)potential. We do so by showing that
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Uq(osp(1|2,R)).
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Figure 1. Left: wavefunction ψR,νµ(g) in a mixed parabolic basis as a two-boundary state. Right:

two-boundary slicing of the disk.

1 Introduction and overview

Jackiw-Teitelboim (JT) gravity in two dimensions [1–26] lies at the heart of the recent

renaissance in the study of lower-dimensional gravitational models. Exploiting its first-order

formulation in terms of sl(2,R) BF theory [27–30], many amplitudes in this theory can be

explicitly and exactly computed [31–33].

An important ingredient in the computation of gravitational amplitudes in BF language

is the following representation matrix element of sl(2,R):

ψR,νµ(g) ≡ 〈R, ν| g |R,µ〉 , (1.1)

where both indices µ and ν are fixed in a “mixed parabolic basis.” This fixing originates

from the holographic boundary conditions, known from the work of Brown and Henneaux

on 3d gravity [34] and applied to pure 3d gravity in [35, 36]. This basis is called “mixed”

because the bra and ket of this equation are constrained by different parabolic generators

of sl(2,R):

E+ |R,µ〉 = −µ |R,µ〉 , (E−)† |R, ν〉 = ν |R, ν〉 , µ, ν > 0, (1.2)

where we write {H,E+, E−} for the Cartan-Weyl basis of sl(2,R). These matrix ele-

ments play the role of wavefunctions on Cauchy slices with both endpoints at holographic

boundaries, as shown in figure 1 (left).

This description in terms of representation matrix elements can be derived directly in

the BF or 2d Yang-Mills language [32]. In particular, the fixing of the representation indices

corresponds to considering a particular coset of the underlying SL(2,R) structure.1 One can

then utilize this slicing on different surfaces with boundaries to compute different amplitudes

in these gravity models. An example is the disk amplitude shown in figure 1 (right).

In the mathematical literature, matrix elements with the particular parabolic con-

straints (1.2) are called Whittaker functions [38–41]. Due to their importance for gravita-

tional calculations with holographic boundaries, we will sometimes also call them gravi-

tational matrix elements. These representation matrix elements are constructed from states

that diagonalize the parabolic generators as in (1.2): these states are called Whittaker vectors.

1In fact, one starts with a slightly different algebraic structure than a group: it was argued in [31, 32, 37]

to be the positive subsemigroup SL+(2,R), whereas [33] considers a particular limit of the universal cover of

SL(2,R).
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A surprising recent development is that a variety of different gravitational models

also exhibit the same structure as in JT gravity. This observation applies in particular

to Liouville gravity amplitudes in the fixed-length basis [42, 43], where the gravitational

matrix element in question is a Whittaker function of (the modular double of) the quantum

group Uq(sl(2,R)). Using this matrix element, one can for instance determine the disk

boundary tachyon two-point function in Liouville gravity:

BβM
BβM

`1

`2

= 〈BβM
BβM

〉`1,`2
. (1.3)

The real parameter βM corresponds to the matter label of the primary operator in the

matter CFT, with weight ∆βM
= βM (q + βM ) where q = 1/b− b. The boundary tachyon

vertex operators BβM
are separated by length segments of length `1 and `2. The resulting

Liouville gravity amplitude can be written explicitly as

〈BβM
BβM

〉`1,`2
=

∫ +∞

0
ds1 ds2 ρ(s1)ρ(s2)e−`1

cosh 2πbs1
2πb2 sin πb2 e−`2

cosh 2πbs2
2πb2 sin πb2

× Sb(βM ± is1 ± is2)

Sb(2βM )
, (1.4)

where ρ(s) = sinh(2πbs) sinh
(

2πs
b

)

is the density of states. More details on this notation, and

how one obtains this amplitude from the non-critical string, are summarized in appendix A.

Compared to [42], these length segments are measured using a rescaled version of the

Liouville metric that we will later want to identify with the physical boundary metric in

a dilaton gravity theory with sinh potential. The relation between the boundary lengths

measured in these different metrics is a simple rescaling:2

κ`L =
`

2πb2 sin πb2
, κ =

√

µ

sin πb2
, (1.5)

where `L is the length measured using the Liouville metric and ` is the physical boundary

length of the dilaton gravity model, as we will explain in the main text; µ is the Liouville

bulk cosmological constant. The object on the second line of (1.4) is the coupling coefficient

(or vertex function) of the boundary operators to the gravitational states, and is the main

ingredient in this expression. The ± symbols on the second line indicate that one takes the

product of four copies of the function, each with a different combination of signs.

The structure of the full equation (1.4) is identical to that of the JT gravity boundary

two-point function determined in [12], and indeed, there exists a double-scaling limit in

which b → 0 that recovers precisely the JT gravity amplitudes. This connection to JT

gravity was first pointed out for the disk partition function in the context of the minimal

2In the JT limit b → 0, this relation becomes `L = `JT

2π2b4κ
, reproducing the scaling of [42] that matches

with JT dilaton gravity amplitudes.
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string in [16], and then thoroughly investigated and extended in [42]. See also [24, 44, 45] for

relevant recent work. From the group theory perspective, the quantum group Uq(sl(2,R))

turns back into its classical Lie algebra sl(2,R), as we will explain in depth. For JT

gravity [31], Liouville gravity [42], and JT supergravity [37], it was shown that the object

on the second line of (1.4) has a group-theoretic interpretation as the square of a 3j-symbol

where one uses two mixed parabolic matrix elements (Whittaker functions) and one discrete

operator insertion.

It has been proposed that N = 1 Liouville supergravity satisfies similar properties [43].

Since N = 1 JT supergravity and its amplitudes are described by a BF theory based on

the osp(1|2,R) superalgebra [37, 46–48],3 the relevant group-theoretic structure for N = 1

Liouville supergravity would seem to be Uq(osp(1|2,R)).4 However, a lack of independent

knowledge of the relevant representation matrix elements of Uq(osp(1|2,R)) in the available

literature prevented us from making the comparison more explicit.

In this work, we resolve this problem. In particular, we generalize the group-theoretic

arguments of [53] to the N = 1 supersymmetric case to compute the mixed parabolic matrix

element of (the modular double of) Uq(osp(1|2,R)). Our result is:

ψε,±
s,gµgν

(x) = e−πisx
∫ +∞

−∞
dζ giζ

µ g
iζ+2is
ν e−πi ε

2
(ζ2+2sζ)e−πiζx (1.6)

× [SNS(−iζ)SR(−2is− iζ) ± SR(−iζ)SNS(−2is− iζ)] ,

where s is the representation label of the continuous series irreps of Uq(osp(1|2,R)), while

g2
µ and g2

ν are the (suitably rescaled) eigenvalues of the parabolic generators (1.2) in a sense

that we will explain below. The ε superscript parametrizes different deformations of the

same underlying classical Whittaker function. A priori, ε may be any real number, but we

will focus on ε = ±1 to make contact with the particular deformation relevant to Liouville

supergravity. The ± superscript labels the pair of Whittaker functions that are present

in a group with a nontrivial sCasimir operator in the scentre of the universal enveloping

algebra, such as OSp(1|2,R). Finally, the objects SNS and SR on the second line are suitable

supersymmetric extensions of the well-known double sine function Sb (see appendix B.1).

Proving this formula is our first goal in this work.

As mentioned, our motivation for this calculation stems from the application to N = 1

Liouville supergravity. In particular, in [43], the fixed-length boundary tachyon two-point

function on the disk was found to be

〈BβM
BβM

〉`1,`2
=

∫ +∞

0
ds1 ds2 ρ(s1)ρ(s2)e

−`1
sinh2 πbs1

16 sin2 πb2
2 e

−`2
sinh2 πbs2

16 sin2 πb2
2 (1.7)

×
[

SR(βM ±i(s1+s2))SNS(βM ±i(s1−s2))

SNS(2βM )

+
SNS(βM ±i(s1+s2))SR(βM ±i(s1−s2))

SNS(2βM )

]

,

3See [25, 49–51] for various other perspectives on N = 1 JT supergravity.
4Interestingly, a different q-deformation is required when studying double-scaled supersymmetric SYK

models [52].
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where ρ(s) = cosh(πs
b ) cosh(πbs). The right-hand side contains our new choice of length

parameter, which is again rescaled compared to the Liouville length as5

κ2`L =
`

16 sin2 πb2

2

, κ =

√

2µ

cos πb2

2

, (1.8)

where µ is the super-Liouville bulk cosmological constant. The left-hand side comes

from transforming super-Liouville amplitudes [54] to the fixed-length basis. We refer to

appendix A for some of the details of this procedure.6 The matter label βM corresponds to

the weight ∆βM
= 1

2βM (q + βM ) of a primary operator in the matter SCFT.

In this work, as an application of our newly determined Whittaker function (1.6) of

Uq(osp(1|2,R)), we will show that the vertex function in N = 1 Liouville supergravity has

a similar interpretation as that in JT (super)gravity and Liouville gravity. In particular,

the quantity on the second line of (1.7) is equal to

∫ +∞

−∞
dxψε

s1
(x)ψε

s2
(x)∗e−βM πx, (1.9)

up to unimportant prefactors. Moreover, the density of states ρ(s) in (1.7) is computed to

be the Plancherel measure of this same Whittaker function:
∫ +∞

−∞
dxψε

s1
(x)ψε

s2
(x)∗ =

δ(s1 − s2)

ρ(s1)
. (1.10)

Finally, the energy variable in the exponentials multiplying the lengths `i is precisely the

Casimir operator of these same representations of Uq(osp(1|2,R)).

Having understood the relation between the representation-theoretic objects appearing

in amplitudes such as (1.7), it remains to explain why they appear in the first place. Doing

so requires understanding the Liouville (super)gravity theory directly from a Lagrangian

perspective, and thereby identifying the relevant quantum (super)group as a symmetry. A

natural language for achieving such an understanding is that of the (graded) Poisson sigma

model description of dilaton gravity, where the quantization of the model (in a physical

sense) entails passing to the quantized version of the Poisson algebra. For the particular case

of a hyperbolic sine dilaton (pre)potential, this procedure results in either the Uq(sl(2,R))

or the Uq(osp(1|2,R)) quantum algebra as the quantized charge algebra.7 Understanding

this approach is the second goal of this work.

The remainder of this work is structured as follows.

In section 2, we compute the mixed parabolic matrix element for the bosonic quantum

group Uq(sl(2,R)), reproducing the results of [53] from a perspective more amenable to super-

symmetrization. In section 3, which comprises the main part of this work, we calculate the

5The b → 0 limit of (1.8) is `L = `
4π2b4κ2 , and the length parameter ` is directly identified with the JT

dilaton supergravity length scale `JT in this limit [43].
6This corresponds to a choice η = +1 of local fermionic boundary condition. We refer to [54–56] for more

details on the super-Liouville SCFT ingredients of this result.
7Notice that the words “quantum” and “quantized” in this sentence correspond to different procedures:

by “quantum algebra,” we mean the q-deformed algebra, whereas by “quantized charge algebra,” we mean

the algebra of symmetry charges of the physically quantized (in ~) dynamical system.

– 4 –
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mixed parabolic matrix element (or Whittaker function) of Uq(osp(1|2,R)). The result (1.6)

was already stated above, and will be checked and matched to supergravity results.

To better understand the origin of this quantum group symmetry, we give arguments

in section 4 as to how Liouville gravity and N = 1 Liouville supergravity relate to dilaton

(super)gravity with a sinh (pre)potential, which can in turn be written as a (graded) Poisson

sigma model, finally unveiling the Uq(sl(2,R)) or Uq(osp(1|2,R)) quantum group structure.

This section can be read independently of the somewhat more technical preceding sections.

We conclude in section 5 with some open problems and speculations on the bigger

picture.

As mentioned above, appendix A provides some background material on Liouville gravity

and supergravity. Appendices B, C, D, E, and F contain some additional complementary

material that is not required to understand the main story.

2 Uq(sl(2,R)) gravitational matrix element

In this section and the next, we present the calculation of the Whittaker function from a

group-theoretic perspective. This section deals with the bosonic case, first discussed in [53].

The next section follows with the supersymmetric generalization. By their nature, both

this section and the next are rather technical.

The Whittaker vectors and resulting Whittaker function of Uq(sl(2,R)) were determined

by Kharchev, Lebedev, and Semenov-Tian-Shansky [53] using a carrier space for the

representations of the quantum group that is slightly different than the usual one of Ponsot

and Teschner [57–59]. We first demonstrate how one can translate the results of [53] into a

more convenient carrier space, akin to the one used in [57–59], which leads to slightly more

elegant expressions for the Whittaker vectors. The resulting Whittaker function is the same,

since it depends solely on the representation labels and not on the precise construction

underlying it. The main benefit of reformulating the calculation in this way is that it

facilitates the supersymmetric generalization in section 3.

2.1 q-deformed algebra: definition and classical limits

We first define the quantum group Uq(sl(2,R)) and its self-dual continuous series represen-

tations. In particular, we will compare different realizations of these in the literature, and

take the classical limit (q → 1) whenever possible to develop intuition for these objects.

The q-deformed SL(2,R) algebra consists of three generators K,E+, E− satisfying the

following commutator relations:

KE± = q±1E±K, [E+, E−] =
K2 −K−2

q − q−1
=

sin 2πb2H

sin πb2
, (2.1)

where K = qH and q = eπib2
is the deformation parameter. Compatibility of a ∗-relation

with this algebra requires b2 ∈ R, such that q is a phase factor.

– 5 –
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The Casimir operator C that commutes with all generators is given by

(

2πib2

q − q−1

)

C =
(q + q−1)(K2 +K−2)

2(q − q−1)2
+

1

2
E−E+ +

1

2
E+E− (2.2)

= E−E+ +
qK2 + q−1K−2

(q − q−1)2
. (2.3)

The prefactor can be chosen arbitrarily at this point, and we have made a specific choice

that will turn out to be natural from the dilaton gravity perspective.

The continuous series representations of this quantum algebra can be constructed on the

space of entire functions, restricted to the real line R, with suitable asymptotic restrictions

specified in [53] that allow one to drop “pieces at infinity” when doing contour deformations.

On this space, we define the action of the shift operator:

T∆f(t) ≡ f(t+ ∆), t ∈ R. (2.4)

Kharchev et al. [53] then define the following set of generators:8

K = −ieπibαTib/2,

E+ = − qe2πbt

q − q−1

(

e−2πibα − e2πibαTib

)

, (2.5)

E− =
e−2πbt

q − q−1
(1 − T−ib) ,

which can be readily shown to satisfy (2.1). We have defined the quantity α = Q/2 + is,

where Q ≡ b+ 1/b and s ∈ R denotes the representation label. With this value of α, and

with respect to the inner product

(f, g) ≡
∫

R
dt e2πQtf(t)g(t), (2.6)

the above operators satisfy the following hermiticity conditions:

K† = K, (E+)† = −E+, (E−)† = −E−. (2.7)

Identifying K = qH, one has H† = −H.

The representations thus constructed are precisely the continuous series representations

of Uq(sl(2,R)). These irreps are distinguished as being the unique representations for which

the carrier space is simultaneously the carrier space of the continuous series representations

of the dual quantum algebra, which is found by setting b → 1/b in all of the relations above.

(Following common convention, we will always denote dual generators with tildes, e.g., K̃,

Ẽ, etc.) For this reason, they are called self-dual. This means that one can think of them

as nontrivial representations of the modular double [57, 58, 60–63]

Uq(sl(2,R)) ⊗ Uq̃(sl(2,R)), (2.8)

8We have set λthere = −2αhere in order to have α = +Q/2 + is with s ∈ R as the representation label.

We also set Kthere = −K−2, Ethere = E−, Fthere = −E+.

– 6 –
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where q̃ = eπi/b2
, and where the generators (K2, E+, E−) commute with the dual generators

(K̃2, Ẽ+, Ẽ−). This “modular-doubled” quantum group is a natural object to consider and

has been studied in many different contexts in the literature. One illuminating property

is that operators that commute with both quantum algebras must be scalar. This is the

q-analogue of Schur’s lemma, which shows that combining the quantum group with its dual

into the modular double seems to give the most natural q-analogue of classical group theory.

The carrier space construction (2.5) has the benefit of having a well-known classical

limit b → 0, which we now explain. We relate the carrier space coordinate t to a new

half-space coordinate x by x = e2πbt. Setting α = 1/2b − bj, we obtain the Borel-Weil

realization of sl(2,R):

Ĥ = x∂x − j,

Ê+ = −x2∂x + 2jx, (2.9)

Ê− = ∂x,

satisfying

[H,E±] = ±E±, [E+, E−] = 2H, (2.10)

where j = −1/2 + ik with k ∈ R. The quadratic Casimir is9

C ≡ 1

2
E+E− +

1

2
E−E+ +H2 = j(j + 1) = −1

4
− k2. (2.11)

We emphasize that the coordinate x lives on R+ due to the exponential mapping relating t

and x. We hence immediately land on the positive subsemigroup SL+(2,R), for which the

carrier space coordinate is positive: x > 0. This is the most direct way of appreciating the

link between the q-deformed modular double quantum group and the positive subsemigroup

in the classical limit.

The realization (2.9) of sl(2,R) exponentiates to

(g ◦ f)(x) = (bx+ d)2jf

(

ax+ c

bx+ d

)

, (2.12)

which defines the principal series representations of SL+(2,R) (ad− bc = 1, a, b, c, d > 0).

However, we will not adhere to this particular choice of carrier space for the continuous

series irreps in this work. It is instead convenient to write α = 1/2b+ λ with λ = b/2 + is.

Now we apply the following isomorphism that preserves the algebra (2.1):

K = e−2πλtKe2πλt,

E+ = qe−2πλtE+e2πλtK, (2.13)

E− = e−2πλtE−e2πλtK−1,

9Note that the b → 0 limit of the operator (2.2) is 1
2
E+E− + 1

2
E−E+ +H2 + 1

4
, where the constant term

is conventionally dropped for the Casimir of sl(2,R) as written.

– 7 –
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thus obtaining new generators K,E+, E−. This maps the carrier space with inner prod-

uct (2.6) to the more “symmetric” carrier space L2(R). Explicitly, the generators become:

K = Tib/2,

E+ = −e2πbt e
πibλTib/2 − e−πibλT−ib/2

q − q−1
, (2.14)

E− = e−2πbt e
−πibλTib/2 − eπibλT−ib/2

q − q−1
.

This is almost the same set of generators used in [57–59], the only differences being that

λ = b/2 + is and the hermiticity conditions. Indeed, with the new inner product

(f, g) ≡
∫

R
dt f(t)g(t), (2.15)

these new operators satisfy the same hermiticity conditions as in (2.7):10

K† = K, (E+)† = −E+, (E−)† = −E−, (2.16)

provided that λ = b/2 + is with s ∈ R.

Setting K = qH , the operator H is explicitly:

H =
1

2πb
∂t. (2.17)

The Casimir operator (2.2) in this representation is given by

C = −cos 2πb(λ− b/2)

2πb2 sin πb2
= − cosh 2πbs

2πb2 sin πb2
. (2.18)

As b → 0, we have C → −k2 where s = −bk (again dropping the constant). The expres-

sion (2.18) appears in the arguments of the exponential functions in (1.4).

Upon setting x = e2πbt and λ = −bj, we find that in the classical b → 0 limit, (2.14)

reduces to:

Ĥ = x∂x,

Ê+ = −x2∂x + jx, (2.19)

Ê− = ∂x +
j

x
,

satisfying the sl(2,R) algebra (2.10) with Casimir C = j(j + 1). These operators are

antihermitian on R+ with respect to the measure dµ(x) = dx/x:

∫ +∞

0

dx

x

(

f(x)Og(x)
)

=

∫ +∞

0

dx

x

(

−Of(x)g(x)
)

, (2.20)

provided that j = −1/2 + ik with k ∈ R.

10The generators used in [57–59] with λ = Q/2 + is, on the other hand, satisfy

K† = K, (E+)† = E+, (E−)† = E−,

with the same inner product (2.15).

– 8 –
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Exponentiating the realization (2.19) of the sl(2,R) algebra leads to the following group

action on functions on R+:

(g ◦ f)(x) =
(ax+ c)j(bx+ d)j

xj
f

(

ax+ c

bx+ d

)

. (2.21)

One can indeed prove that this group representation is unitary for j = −1/2 + ik in the

sense that11

∫ +∞

0

dx

x
(g ◦ f1)∗(x)(g ◦ f2)(x) =

∫ +∞

0

dx

x
f∗

1 (x)f2(x), (2.22)

where the transformation of the 1/x in the measure precisely compensates for the new

pieces in (2.21) compared to (2.12).

The isomorphism (2.13) between the different realizations reduces in the classical b → 0

limit to the following equivalence of differential operators preserving the sl(2,R) algebra:

Ĥ = xjĤx−j ,

Ê+ = xjÊ+x−j , (2.23)

Ê− = xjÊ−x−j .

This gives a convenient way to relate (2.12) and (2.21).

2.2 Whittaker vectors and Whittaker function

Let us now determine the Whittaker vector by diagonalizing E+ and demanding it to be a

simultaneous eigenvector of the dual (b → 1/b) quantum group.

For a rank-one Lie algebra, as stated in (1.2), the Whittaker vector is defined as

diagonalizing the generator E+ associated with the positive root:

E+φ(t) = −µφ(t). (2.24)

When generalizing to the q-deformed algebra, there is a one-parameter family of extensions

given by diagonalizing the same generator up to a possible action by the Cartan generator:

E+φα(t) = −µq2αHφα(t), α ∈ R. (2.25)

The resulting solution to this equation is not unique. However, in the case of the modular

double, one needs to combine this relation with its dual (b → 1/b), which turns out to be

far more restrictive and leads to a more-or-less unique solution. We will exemplify this

phenomenon further on. A simultaneous eigenvector of both E+ and Ẽ+ can be found for

a suitable relation between the eigenvalues as follows:

E+φ+

α(t) = −i gb

q − q−1
q2αHφ+

α(t), (2.26)

Ẽ+φ+

α(t) = −i g1/b

q̃ − q̃−1
q2αH̃φ+

α(t), (2.27)

where g is a parameter that we call the eigenvalue of the modular double quantum group.

11Up to subtleties involving the boundaries of integration.
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Inserting the explicit expressions (2.14), we obtain the finite difference equations

eπibλφ+

α

(

t+
ib

2

)

− e−πibλφ+

α

(

t− ib

2

)

= igbe−2πbtφ+

α(t+ ibα), (2.28)

eπiλ/bφ+

α

(

t+
i

2b

)

− e−πiλ/bφ+

α

(

t− i

2b

)

= ig1/be−2πt/bφ+

α

(

t+
iα

b

)

. (2.29)

The additional quantum parameter α represents a freedom akin to ordering ambiguities in

quantization. To find the solution, we can Fourier-transform these difference equations by

writing φ+

α(t) in terms of F (−iζ) in a 1:1 fashion as

φ+

α(t) = e−2πλt
∫

C
dζ giζF (−iζ)eπiαζ2

e−2πiζ(t−sα). (2.30)

The difference equations then reduce to:12

2 sin(πbζ)F (ζ) = F (ζ + b), (2.31)

2 sin

(

πζ

b

)

F (ζ) = F

(

ζ +
1

b

)

, (2.32)

which form the pair of functional equations satisfied by the double sine function Sb(ζ). We

get a unique solution, up to overall normalization, if we make the following assumptions:

• F is continuous.

• b and 1/b are incommensurate.

We can appreciate these conditions as follows. If one imposes only the first relation (2.31),

then one is free to multiply any solution F by any periodic function in ζ with period b,

such as ek sin(2πmζ/b). This possibility is excluded when accounting for the second relation,

provided that b is sufficiently generic. If, e.g., b = 1, then both equations are the same

and there is clearly no unique solution. But if b and 1/b are incommensurate and hence

b2 6= p′/p for coprime p′, p ∈ N, then one can use the above relations successively to provide

a dense covering of ζ ∈ R. Combining this with the continuity of F determines F up to a

single value, e.g., F (b), or the overall normalization factor. We choose this normalization at

this point to match with the Whittaker vectors of SL+(2,R) in the b → 0 limit [31, 32].

Starting with a finite value of F (b),13 we can apply (2.31) successively to find that

the function F (ζ) has zeros at ζ = Q + nb + m/b for n,m ∈ Z≥0 and simple poles at

12The first functional equation is the q-deformation of the classical recursion relation Γ(z + 1) = zΓ(z) for

the gamma function, which, with an additional log-convexity assumption, is enough to prove uniqueness in

that case. In our case, adding the second functional equation will be sufficient. This equation “scales away”

and hence becomes vacuous in the b → 0 limit.
13If F (b) is zero, then the zeros at ζ = Q+ nb+m/b for n,m ∈ Z≥0 are double zeros. But then “doubling

back” shows that one has (at least simple) zeros at ζ = Q+ nb+m/b for n,m ∈ Z, which is again dense in

R. If F (b) is infinity, then the poles at ζ = −nb − m/b for n,m ∈ Z≥0 are double poles. Again reversing

direction shows that all points ζ = −nb−m/b for n,m ∈ Z are (at least simple) poles, making the function

infinite almost everywhere.

– 10 –



J
H
E
P
0
5
(
2
0
2
2
)
0
9
2

z

C

Figure 2. The contour C used to define φ+

α(t).

ζ = −nb−m/b for n,m ∈ Z≥0.14 It can be smoothly extended to a meromorphic function

on the complex plane, the double sine function Sb(ζ) defined in appendix B.1.

Notice that if b2 ∈ Q, then the above is still a solution to the system of equa-

tions (2.31), (2.32); it is just not automatically unique. In Liouville gravity language, this

case corresponds to the minimal string where the matter sector is a (p′, p) minimal model.

The solution can hence be written as a contour integral in terms of λ = b
2 + is:

φ+

α(t) = e−2πλt
∫

C
dζ giζSb(−iζ)eπiαζ2

e−2πiζ(t−sα). (2.33)

The contour C follows the real axis above the poles of the function Sb(−iζ) (figure 2).15

At this point, we can already take the classical limit b → 0:

φ+

α(t(x)) → 1

2π
e2πbtj

∫

C
duΓ(−iu)gibu(2πb2)−iue−2πibtu = xje− µ

x , (2.34)

where j = −1/2 + ik and we have set g = (2πb2µ)1/b. This limiting function indeed satisfies

Ê+φ+

α(x) = −µφ+

α(x) with Ê+ given in (2.19), which can also be seen by taken the b → 0

limit of the eigenvalue problem (2.26).

Likewise, the Whittaker vector diagonalizing (E−)† is:

φ−
α(t) = e+2πλt

∫

C
dζ giζSb(−iζ)eπiαζ2

e2πiζ(t+sα). (2.35)

Classically, this becomes

φ−
α(t(x)) → x−je−νx, g = (2πb2ν)1/b, (2.36)

which satisfies (Ê−)†φ−
α(x) = νφ−

α(x) with Ê− given in (2.19).

14It is straightforward to show that these are the only zeros and poles of the solution. Suppose that to

accuracy ε, we can write a given real number x as x = nεb+mε/b for nε,mε ∈ Z: |x− nεb−mε/b| < ε. We

drop the ε subscript from here on. If nm > 0, then one lands on one of the known cases: x is either a simple

pole or a simple zero of F , or x = b or x = 1/b, which yield finite values for F . When nm < 0, one is in

the generic case. One can get to this case by first finding x = nb, for which F is nonzero by consecutive

applications of (2.31), followed by m applications of (2.32) in the reverse direction, which again gives finite

multiplicative factors at each step.
15One can check that this is the correct contour by plugging (2.33) back into (2.28) and checking that it

is a solution. After some manipulation and substitution in the integral, this requires on the left-hand side a

deformation of the contour downward from ib to the real axis without any pole-crossing to match with the

right-hand side. This in turn requires the contour to pass above all of the poles of the double sine function.
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The Whittaker function is found by computing the following inner product, where the

Cartan element is the only nontrivial entry:

ψε
s(x) ≡ eπbx

∫

R
dt φ−

α1
(t)e2φHφ+

α2
(t) = eπbx

∫

R
dt φ−

α1
(t)φ+

α2
(t+ x). (2.37)

Here, H is the translation operator in (2.14) given by (2.17), and we have set x = φ/πb.

This expression depends only on the difference ε ≡ α1 − α2, as will become clear. The

prefactor eπbx is a choice that will allow us to work with a flat measure on x-space.

Again, let us first examine the classical limit, for which we get (now with the half-space

coordinate x = e2πbt, not to be confused with the x in the previous paragraph):

1

2πb
e−2ikφ

∫

R+

dx

x
x−2ike−νxe−e−2φµ/x =

1

πb

(

ν

µ

)ik

K2ik(2
√
νµe−φ). (2.38)

Up to the prefactor of 1
2πb , this is the known Whittaker function for SL+(2,R), where the

φ-coordinate parametrizes the single Cartan direction on the coset manifold, with a flat

measure dµ(φ) = dφ.

Now to the q-deformed case. Inserting (2.33) and (2.35) into (2.37), the t-integral boils

down to
∫

dt e−2πit(ζ+ζ̃+2s) = δ(ζ + ζ̃ + 2s), (2.39)

leading to the Whittaker function

e−2πisx
∫

C
dζ giζ

µ g
iζ+2is
ν Sb(−iζ)Sb(−iζ − 2is)e−πiα1(ζ+2s)2

eπiα2ζ2
e2πiα1s(ζ+2s)e2πiα2sζe−2πiζx

(2.40)

or:16

ψε
s(x) = e−2πisx

∫

C
dζ giζ

µ g
iζ+2is
ν Sb(−iζ)Sb(−iζ − 2is)e−πiε(ζ2+2sζ)e−2πiζx. (2.41)

We indeed see that the final result depends only on the difference ε = α1 − α2. Importantly,

the Whittaker vectors themselves depend on the precise way in which we realize the

representation (they depend on the auxiliary coordinate t), whereas the Whittaker function

is independent of this choice and depends only on the underlying algebra and representation.

Indeed, comparing our results to those of [53], the Whittaker vectors (2.33) and (2.35) are

different, but the Whittaker function (2.41) is the same, up to redefining x → −x.17

16Using the limiting values

Sb(bx) → 1√
2π

(2πb2)x−1/2Γ(x), Sb

(

1

2b
+ bx

)

→ 2x−1/2

and the definition

Kν(z) =
1

4πi

(

z

2

)ν
∫ +i∞

−i∞

dtΓ(t)Γ(t− ν)
(

z

2

)−2t

,

we match onto the classical Whittaker function (2.38):

lim
b→0

ψε
s

(

φ

πb

)

=
1

πb

(

ν

µ

)ik

K2is/b

(

2
√
νµe−φ

)

.

17Curiously, the realization used in [53] and written above in (2.5) leads to the Whittaker function in

the so-called Gauss-Euler integral representation, while we obtain it directly in the Mellin-Barnes integral

representation, which is of more interest when comparing to the relativistic Toda chain expressions of [53].
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The Whittaker function (2.41) is a solution to the Casimir eigenvalue equation, which

reads in this case as follows (the translation operators below act on x rather than t):
(

Tib + T−ib + gb
µg

b
νq

εe−2πbxT−ibε

)

f(x) = 2 cosh(2πbs)f(x). (2.42)

In the b → 0 limit, this reduces to a Schrödinger equation for a particle in an exponential

potential, with solution (2.38). Of course, this second-order ODE has two independent

solutions, the second one being a modified Bessel function of the first kind. It is interesting

to derive the analogue of this solution in the q-deformed setting. We do so in appendix D.

2.3 3j-symbols or vertex functions

We now compute the 3j-symbols relevant for gravitational calculations. For this purpose,

next to the above self-dual continuous series representation matrix elements, we also need a

discrete representation matrix element with eigenvalue zero for the parabolic generators

(E± = 0). It is actually quite easy to write down a solution to the finite difference

equations (2.28) that meets these demands:

φ+(t) = e−2πλt, φ−(t) = e+2πλt. (2.43)

Applying the Cartan generator to this state and dismissing a constant factor, we get:

ψdiscrete(x) = e−2πλx. (2.44)

Now taking two continuous irrep Whittaker functions (2.41) and one discrete series Whittaker

function (2.44) (with representation label λ = βM ), the resulting mixed parabolic 3j-symbol

was calculated in [42] as the group (coset) integral

∫ +∞

−∞
dxψε

s1,gµgν
(x)ψε

s2,gµgν
(x)∗e−2πβM x =

(

gν

gµ

)is1−is2
1

(gνgµ)βM

Sb(βM ± is1 ± is2)

Sb(2βM )
,

(2.45)

for ε = ±1. To match this expression with the coupling coefficients in bosonic Liouville

gravity (the second line of (1.4)) that describe the coupling of an operator insertion to an

in- and an out-state, we set gµ = gν equal to an arbitrary constant.

Taking the b → 0 limit of both sides of (2.45), we obtain the equality

(

1

2
√
νµ

)2h
1

(πb)3

(

ν

µ

)ik1−ik2
∫

R
dxK2ik1(ex)K2ik2(ex)e2hx (2.46)

=

(

ν

µ

)ik1−ik2 1

(νµ)h(2πb)3

Γ(h± ik1 ± ik2)

Γ(2h)
,

which leads to the JT gravity vertex functions if we set µ = ν = 1 by convention. This

constraint corresponds to the Brown-Henneaux gravitational coset constraints imposed at

the holographic boundary. It would be interesting to obtain a similar understanding of the

analogous gµ = gν constraint in Liouville gravity. Presumably, one route would be through

its formulation as a deformed dilaton gravity model. We come back to this reformulation of

Liouville (super)gravity in terms of dilaton (super)gravity in section 4.
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2.4 Plancherel measure

Finally, we can take the limit where βM → 0 in the 3j-symbol squared expressions (2.45).

We set βM = ε as a regulator. Since Sb(ε) → 1
2πε and diverges, the resulting expression (2.45)

vanishes. An exception occurs when s1 = ±s2. Considering the integral over s1 and applying

the q-deformed first Barnes lemma (B.6), we find

∫ +∞

−∞
ds1

Sb(ε± is1 ± is2)

Sb(2ε)
=
Sb(2ε)Sb(2is2)Sb(−2is2)Sb(2ε)

Sb(2ε)Sb(4ε)
= 2Sb(2is2)Sb(−2is2).

(2.47)

From this, we get the identity

lim
ε→0

Sb(ε± is1 ± is2)

Sb(2ε)
=

δ(s1 − s2)

4 sinh(2πbs2) sinh
(

2πs2
b

) , s1, s2 > 0, (2.48)

or
∫ +∞

−∞
dxψε

s1
(x)ψε

s2
(x)∗ =

δ(s1 − s2)

4 sinh(2πbs2) sinh
(

2πs2
b

) , (2.49)

from which we read off the Plancherel measure:

ρ(s) ∼ sinh(2πbs) sinh

(

2πs

b

)

. (2.50)

This is indeed the measure in the result (1.4), thereby completing our identification of the

ingredients of (1.4) with suitable group-theoretic objects.

Our next goal will be to perform the analogous computations for Uq(osp(1|2,R)).

3 Uq(osp(1|2,R)) gravitational matrix element

In this section, we generalize the previous arguments to the supergroup Uq(osp(1|2,R)).

Our main results are the Whittaker vectors (3.33) and the Whittaker function (3.44).

3.1 q-deformed algebra: definition and classical limits

The Uq(osp(1|2,R)) quantum algebra consists of three generators K,F+, F−, the latter two

of which are fermionic, satisfying the relations:18

KF± = q± 1
2F±K, {F+, F−} = − K2 −K−2

8(q1/2 − q−1/2)
= −sin 2πb2H

8 sin πb2

2

. (3.1)

18In the math literature, one typically uses instead

kf± = q±1f±k, {f+, f−} =
k − k−1

q − q−1
,

which is related to our conventions by

k = K2, f± = ±2
√

2(q1/2 + q−1/2)−1/2F±.

Our conventions are related to those in [59], up to rescalings of F± and with Q and C chosen such that the

b → 0 limit agrees with the classical osp(1|2,R) algebra, as we elaborate on below.
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Again, K = qH and q = eπib2
. This algebra has a sCasimir element Q that commutes with

K and anticommutes with F±, given by the expression [64]

(

1

q1/2+q−1/2

)

Q = [F−,F+]+
K2+K−2

8(q1/2+q−1/2)
=
q1/2K2−q−1/2K−2

4(q−q−1)
+2F−F+. (3.2)

It squares to an element commuting with K and F±, the Casimir of the algebra:

(

1

q1/2+q−1/2

)2

C =
qK4+q−1K−4−2

16(q−q−1)2
− (qK2+q−1K−2)F−F+

2(q1/2+q−1/2)
−4(F−)2(F+)2, (3.3)

with relation

Q2 = C. (3.4)

In the classical limit b → 0, this algebra becomes the osp(1|2,R) Lie superalgebra:19

[H,F±] = ±1

2
F±, {F+, F−} = −1

2
H, (3.5)

where we include the bosonic generators E± via the definitions {F±, F±} ≡ ∓1
2E

±. The

(s)Casimir operators then reduce to those of osp(1|2,R):

1

2
Q → F−F+ − F+F− +

1

8
=

1

2
H + 2F−F+ +

1

8
, (3.6)

C − 1

16
→ H2 +

1

2
(E+E− + E−E+) + (F+F− − F−F+), (3.7)

adjusting for constant factors and terms.

The continuous series representations can be found by acting on the graded Hilbert

space L2(R1|1), where we write the functions in the representation space as:

f(t, ϑ) ∈ L2(R1|1), f(t, ϑ) ≡ fB(t) + ϑfT(t) ≡
(

fB(t)

fT(t)

)

. (3.8)

The generators are then defined in terms of t-translation operators as follows:

K = Tib/2

(

1 0

0 1

)

, (3.9)

F+ =
1

2
√

2
eπbt









0
e

iπbλ
2 Tib/2−e− iπbλ

2 T−ib/2

q1/2−q−1/2

e
iπbλ

2 Tib/2+e− iπbλ
2 T−ib/2

q1/2+q−1/2 0









, (3.10)

F− = − 1

2
√

2
e−πbt









0
e− iπbλ

2 Tib/2−e
iπbλ

2 T−ib/2

q1/2−q−1/2

e− iπbλ
2 Tib/2+e

iπbλ
2 T−ib/2

q1/2+q−1/2 0









. (3.11)

One readily checks that these satisfy (3.1).

19In [37], we called this the opposite superalgebra, since all anticommutators have an extra minus sign

compared to the usual osp(1|2,R) algebra. The principal series representations are defined by exponentiating

this opposite superalgebra. The discrepancy comes from the fact that for finite irreps, the generators are

supermatrices with bosonic entries, whereas for the principal series representations, one uses Grassmann-

valued differential operators.
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These generators were first written down in [59, 65] and shown to generate the continuous

self-dual representations of Uq(osp(1|2,R)). These are again simultaneous representations

of the quantum group and its dual b → 1/b (see also [66]), forming the modular-doubled

quantum group:

Uq(osp(1|2,R)) ⊗ Uq̃(osp(1|2,R)). (3.12)

As in the case of Uq(sl(2,R)) (section 2), we set λ = b/2 + is as the representation label

and impose suitable hermiticity conditions with respect to the inner product

(f, g) ≡
∫

R
dt dϑ f(t, ϑ)g(t, ϑ). (3.13)

The generator K satisfies K = K†, and the two fermionic generators satisfy a somewhat

modified hermiticity constraint. If the functions fB(t) and fT(t) in the function space (3.8)

are even, then we require the following hermiticity constraint for F+:20

(F+)† =
1

2
√

2
eπbt









0 − e
iπbλ

2 Tib/2−e− iπbλ
2 T−ib/2

q1/2−q−1/2

e
iπbλ

2 Tib/2+e− iπbλ
2 T−ib/2

q1/2+q−1/2 0









, (3.14)

where the top right entry picks up a minus sign but the bottom left entry does not. There

is an analogous relation for F−. These are the same hermiticity relations as those found

in [37] for osp(1|2,R), and we will indeed see that in the b → 0 limit here as well.

For completeness, the bosonic elements E± ≡ ∓4(F±)2 can be explicitly computed as:

E+ =
−e2πbt

2(q − q−1)













q1/2(eiπbλTib + 1)

− q−1/2(e−iπbλT−ib + 1)
0

0
q1/2(eiπbλTib − 1)

− q−1/2(e−iπbλT−ib − 1)













, (3.15)

E− =
e−2πbt

2(q − q−1)













q−1/2(e−iπbλTib + 1)

− q1/2(eiπbλT−ib + 1)
0

0
q−1/2(e−iπbλTib − 1)

− q1/2(eiπbλT−ib − 1)













. (3.16)

These bosonic elements are antihermitian: (E+)† = −E+ and (E−)† = −E−, just as for

Uq(sl(2,R)) (as discussed in section 2).

The (s)Casimir elements (3.2) and (3.3) are readily evaluated to be

Q =
sin πb(λ− b/2)

4 sin πb2

2

(

1 0

0 −1

)

=
i sinh πbs

4 sin πb2

2

(

1 0

0 −1

)

, (3.17)

C =
sin2 πb(λ− b/2)

16 sin2 πb2

2

(

1 0

0 1

)

= − sinh2 πbs

16 sin2 πb2

2

(

1 0

0 1

)

, (3.18)

20There are related statements when the parity of fB or fT is different, but for the purposes of computing

the Whittaker vectors further on, we will only require this particular case.
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which satisfy the relation (3.4). This expression for C matches the energy variables in the

exponentials in (1.7), up to a conventional minus sign in the definition of C.

To match with the classical b → 0 limit, we identify λ = −2bj and x = e2πbt. In this

limit, the quantum algebra leads to the following “symmetric” realization of the principal

series representations of osp(1|2,R):

Ĥ =

(

x∂x 0

0 x∂x

)

, (3.19)

F̂+ =
1

2
√

2

(

0 2x3/2∂x − 2jx1/2

x1/2 0

)

, (3.20)

F̂− = − 1

2
√

2

(

0 2x1/2∂x + 2jx−1/2

x−1/2 0

)

, (3.21)

Ê+ =

(

−x2∂x + (j − 1
2)x 0

0 −x2∂x + jx

)

, (3.22)

Ê− =

(

∂x + (j − 1
2)x−1 0

0 ∂x + jx−1

)

, (3.23)

which satisfy the Lie superalgebra

[H,E±] = ±E±, [E+, E−] = 2H,

[H,F±] = ±1

2
F±, [E±, F∓] = −F±, (3.24)

{F+, F−} = −1

2
H, {F±, F±} = ∓1

2
E±,

with sCasimir
1

2
Q = F−F+ − F+F− +

1

8
= −

(

j

2
+

1

8

)

(

1 0

0 −1

)

. (3.25)

The generators Ĥ, Ê+, Ê− are antihermitian on R+ provided that j = −1/4 + ik/2 with

k ∈ R, so we indeed recover the principal series representations of OSp+(1|2,R). The odd

generators F̂± satisfy the same modified version of hermiticity when acting on functions on

superspace that have bosonic components, just like (3.14) above. We refer to Footnote 27

of [37] for the corresponding statement regarding the Borel-Weil realization of osp(1|2,R).

It is possible to write down a different realization of these q-deformed representations that

limits to the standard Borel-Weil realization of osp(1|2,R). We present this in appendix C.

3.2 Whittaker vectors and Whittaker function

To find the Whittaker vector, we will “diagonalize” the fermionic generator F+. The

bosonic generator E+ = −4(F+)2 is then automatically diagonalized as well. Writing the

superspace Whittaker vector as

Φα(t, ϑ) = φα,B(t) + ϑφα,T(t) =

(

φα,B(t)

φα,T(t)

)

, (3.26)
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we define the Whittaker vector of the modular double of Uq(osp(1|2,R)) as the solution to

the following eigenvalue problem:

F+φ+

α,T(t) =
i

2
√

2

εgb

q1/2 − q−1/2
q2αHφ+

α,B(t), F+φ+

α,B(t) =
1

2
√

2

εgb

q1/2 + q−1/2
q2αHφ+

α,T(t),

F̃+φ+

α,T(t) =
i

2
√

2

εg1/b

q̃1/2 − q̃−1/2
q2αH̃φ+

α,B(t), F̃+φ+

α,B(t) =
1

2
√

2

εg1/b

q̃1/2 + q̃−1/2
q2αH̃φ+

α,T(t),

(3.27)

where we have the freedom to choose a sign ε = ±1 while leaving invariant the eigenvalue

of E+ = −4(F+)2. Indeed, applying (3.27) twice, we get

E+Φ+

α(t) = − i

2

g2b

q − q−1
qαq4αHΦ+

α(t), (3.28)

Ẽ+Φ+

α(t) = − i

2

g2b

q̃ − q̃−1
q̃αq̃4αHΦ+

α(t), (3.29)

which form the analogues of the bosonic relations (2.26). Strictly speaking, (3.27) is not

a diagonalization. We simply demand that the transformation of the top component be

proportional to the bottom component, and vice versa. The proportionality factor is not

the same in both cases, but upon squaring to get the bosonic generator, one does get a

genuine diagonalization. For such a system, it is always possible to rescale the eigenvectors

to obtain a genuine diagonalization problem for either the quantum group or its dual, but

not for both. This is why we prefer to write (3.27) as above for the general case. When

comparing with the classical b → 0 results, the dual quantum group scales out, and it is

convenient to rescale the eigenvectors as follows:

φ′+

α,T(t) ≡ (8πb2)1/4

(

q1/2 − q−1/2

i(q1/2 + q−1/2)

)1/4

φ+

α,T(t),

φ′+

α,B(t) ≡ (8πb2)1/4

(

i(q1/2 + q−1/2)

q1/2 − q−1/2

)1/4

φ+

α,B(t). (3.30)

This maps the first eigenvalue system in (3.27) into a genuine diagonalization problem:

F+φ′+

α,T(t) =
εgb

2
√

2

√

i

q − q−1
q2αHφ′+

α,B(t), F+φ′+

α,B(t) =
εgb

2
√

2

√

i

q − q−1
q2αHφ′+

α,T(t),

(3.31)

with the same proportionality factor in both equations.

The full eigenvalue problem (3.27) can be written explicitly as the following set of

coupled difference equations:

e
πibλ

2 φ+

α,T

(

t+
ib

2

)

− e− πibλ
2 φ+

α,T

(

t− ib

2

)

= iεgbe−πbtφ+

α,B(t+ ibα),

e
πibλ

2 φ+

α,B

(

t+
ib

2

)

+ e− πibλ
2 φ+

α,B

(

t− ib

2

)

= εgbe−πbtφ+

α,T(t+ ibα),

e
πiλ
2b φ+

α,T

(

t+
i

2b

)

− e− πiλ
2b φ+

α,T

(

t− i

2b

)

= iεg
1
b e− πt

b φ+

α,B

(

t+
iα

b

)

,

e
πiλ
2b φ+

α,B

(

t+
i

2b

)

+ e− πiλ
2b φ+

α,B

(

t− i

2b

)

= εg
1
b e− πt

b φ+

α,T

(

t+
iα

b

)

, (3.32)
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where the last two equations are the b → 1/b counterparts of the first two. The solution to

the system (3.32) is:

φ+

α,B(t) = e−πλt
∫

C
dζ giζSR(−iζ)e 1

2
πiαζ2

e−πiζ(t−sα), (3.33)

φ+

α,T(t) = ε+e
−πλt

∫

C
dζ giζSNS(−iζ)e 1

2
πiαζ2

e−πiζ(t−sα), (3.34)

where the contour C is the same as in the bosonic case in section 2.2. The supersymmetric

double sine functions are defined by

SNS(x) = Sb

(

x

2

)

Sb

(

x

2
+
Q

2

)

, SR(x) = Sb

(

x

2
+
b

2

)

Sb

(

x

2
+

1

2b

)

, (3.35)

and they satisfy the fundamental shift properties

SNS(x+ b) = 2 cos

(

πbx

2

)

SR(x), SNS

(

x+
1

b

)

= 2 cos

(

πx

2b

)

SR(x),

SR(x+ b) = 2 sin

(

πbx

2

)

SNS(x), SR

(

x+
1

b

)

= 2 sin

(

πx

2b

)

SNS(x). (3.36)

One can prove uniqueness of this solution in the same way as in the bosonic case of

section 2.2. Assuming continuity and incommensurability of 2b and 1/2b, one proves directly

that the Fourier transform of the system (3.32) leads to the shift relations (3.36) of the

supersymmetric double sine functions, which have a unique solution up to a single overall

normalization.

In the classical b → 0 limit, we set gµ = (4πb2µ)
1
2b and gν = (4πb2ν)

1
2b , and we obtain

for the Whittaker vectors (3.30) upon inserting the solutions (3.33) and (3.34) that

φ′+

α,B(t) →
√

2µxj−1/2e− µ
x , (3.37)

φ′+

α,T(t) → xje− µ
x , (3.38)

which match with a direct diagonalization of the differential operator (3.20): F̂+Φ′+(t) =√
µ

2 Φ′+(t).

Analogously, we get when diagonalizing (F−)† that

φ−
α,B(t) = e+πλt

∫

C
dζ giζSR(−iζ)e 1

2
πiαζ2

eπiζ(t+sα), (3.39)

φ−
α,T(t) = ε−e

+πλt
∫

C
dζ giζSNS(−iζ)e 1

2
πiαζ2

eπiζ(t+sα). (3.40)

As mentioned above, these solutions automatically diagonalize E+ and (E−)†.
Next, we define the Whittaker function by evaluating the integral

ψε,±
s,gµgν

(x) ≡ e
πbx

2

∫

dt dϑΦ−
α1

(t, ϑ)e2πbxHΦ+

α2
(t, ϑ)

= e
πbx

2

∫

dt dϑΦ−
α1

(t, ϑ)Φ+

α2
(t+ x, ϑ) (3.41)

= e
πbx

2

∫

dt
(

ε+φ
−
α1,B(t)φ+

α2,T(t+ x) + ε−φ
−
α1,T(t)φ+

α2,B(t+ x)
)

,
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where we have used the definition (2.17) of H. This leads to two independent Whittaker

functions, depending on whether ε+ and ε− have the same or opposite signs. These two cases

are denoted by the ± superscript on the left-hand side. We choose to set ε+ = 1 and match

ε− with the sign on the left.

One can immediately obtain a system of difference equations satisfied by the Whittaker

function by inserting the sCasimir Q:

e
πbx

2

∫

dt dϑΦ−(t, ϑ)e2πbxHQΦ+(t, ϑ) = − i sinh πbs

4 sin πb2

2

ψε,∓
s (x), (3.42)

where we used the expression (3.17). Inserting instead (3.2), and utilizing that the Whittaker

vectors diagonalize F+ for the ket and (F−)† for the bra, we obtain the equality

(

eib∂x − e−ib∂x

q1/2 − q−1/2
∓ igb

µg
b
ν

q1/2 − q−1/2
e−πbx

)

ψε=0,±
s (x) = − i sinh πbs

sin πb2

2

ψε=0,∓
s (x). (3.43)

For simplicity, we have set ε = 0 here. By explicitly computing the Whittaker function, we

will check that it is a solution to this system of difference equations.

Evaluating the integral (3.41) requires a calculation identical to the one presented above

for the bosonic case. The result is our proposal for the Whittaker function of Uq(osp(1|2,R)):

ψε,±
s,gµgν

(x) = e−πisx
∫ +∞

−∞
dζ giζ

µ g
iζ+2is
ν e−πi ε

2
(ζ2+2sζ)e−πiζx (3.44)

× [SNS(−iζ)SR(−2is− iζ) ± SR(−iζ)SNS(−2is− iζ)] .

This function satisfies a system of difference equations:21

(

Tib − T−ib − igb
µg

b
νe

−πbxqε/2T−ibε

)

ψε,+
s,gµgν

(x) = 2 sinh πbsψε,−
s,gµgν

(x),
(

Tib − T−ib + igb
µg

b
νe

−πbxqε/2T−ibε

)

ψε,−
s,gµgν

(x) = 2 sinh πbsψε,+
s,gµgν

(x), (3.45)

which match with (3.43), as announced before. Combining them, we obtain the decoupled

second-order difference equation(s)

(

T2ib + T−2ib − 2 + g2b
µ g

2b
ν e

−2πbxq2εT−2ibε (3.46)

± igb
µg

b
νe

−πbxqε/2(q − 1)T−ib(ε+1)

± igb
µg

b
νe

−πbxqε/2(1 − q−1)T−ib(ε−1)

)

ψε,±
s,gµgν

(x) = 4 sinh2 πbsψε,±
s,gµgν

(x).

This equation can be found by applying the sCasimir Q again to the difference equa-

tion (3.43), and is interpretable as the Casimir eigenvalue equation obtained by applying the

expression (3.3) for C directly. In the b → 0 limit, all of these equations become differential

21For convenience, we note that

2 sinh(πb(ζ + s)) = 4 cosh
πb

2
(ζ + 2s) sinh

πbζ

2
+ 2 sinh πbs

= 4 sinh
πb

2
(ζ + 2s) cosh

πbζ

2
− 2 sinh πbs.
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equations, and in particular, the Casimir equation reduces to a Schrödinger problem for a

particle in a Morse potential [37].

The expression (3.44) has the correct classical b → 0 limit, as we already pointed out

in [37]. We define the new variables

ζ = 2ibt, x = φ/πb, s = −bk. (3.47)

The double sine functions (3.35) have the following small-b limits:

SNS(bx) → 1√
2π

2
x
2 (2πb2)

x
2

− 1
2 Γ

(

x

2

)

, (3.48)

SR(bx) → 1√
2π

2
x
2

− 1
2 (2πb2)

x
2 Γ

(

x

2
+

1

2

)

. (3.49)

Using the integrals

eikφ
∫

iR
dtΓ(t)Γ(t+ ik + 1/2)e2φt = 4πie−φ/2K−ik−1/2(2e−φ), (3.50)

eikφ
∫

iR
dtΓ(t+ 1/2)Γ(t+ ik)e2φt = 4πie−φ/2K−ik+1/2(2e−φ), (3.51)

we reproduce the OSp+(1|2,R) Whittaker functions:

ψε,±
s,gµgν

(x) → e−φ/2(µν)1/4
(

µ

ν

)ik/2(

Kik+1/2(2
√
µνe−φ)±K−ik+1/2(2

√
µνe−φ)

)

, (3.52)

as determined before in section 4.3 of [37].

3.3 3j-symbols or vertex functions

Let us now evaluate
∫ +∞

−∞
dxψε

s1,gµgν
(x)ψε

s2,gµgν
(x)∗e−βM πx. (3.53)

Just as in the bosonic case, we focus on the particular deformation where ε = ±1. Only

these values seem to reproduce the Liouville (super)gravity amplitudes; the deeper reason

for this eludes us. The result of this calculation should yield the vertex function of N = 1

Liouville supergravity boundary correlators. Mimicking the argument in the bosonic case,

we start with
∫ +∞

−∞
dx eπix(−s1+s2−ζ1+ζ2)−βM πx = 2δ(−ζ1 + ζ2 − s1 + s2 + iβM ). (3.54)

We get four terms of the type

e−πi ε
2

(β2
M −s2

1+s2
2+2is1βM )

∫ +∞

−∞
dζ1 e

πεβM ζ1 (3.55)

× SNS(−iζ1)SR(−iζ1 − 2is1)SNS(iζ1 + is1 − is2 + βM )SR(iζ1 + is1 + is2 + βM ),

where the other terms have other combinations of SNS and SR on the second line. In order

to evaluate this integral, we make use of a q-deformed supersymmetric version of the Barnes
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identity, which we provide in appendix B.2. In particular, using (B.13), we can express the

integral as a sum of two terms:

∫ +∞

−∞
dx ψε

s1,gµgν
(x)ψε

s2,gµgν
(x)∗e−2βM πx (3.56)

=

(

gµ

gν

)is2−is1 4

(gµgν)βM

[

SR(βM ± i(s1 + s2))SNS(βM ± i(s1 − s2))

SNS(2βM )

+
SNS(βM ± i(s1 + s2))SR(βM ± i(s1 − s2))

SNS(2βM )

]

.

Upon setting gµ = gν , this indeed coincides with the vertex function obtained in N = 1

Liouville supergravity [43] and written in equation (1.7).

3.4 Plancherel measure

We can also take the limit where βM → 0. Since SNS(ε) → 1
πε , the above vertex function

becomes zero except when s1 = ±s2. Setting βM = ε and then taking the integral over the

s1-variable, we obtain:

∫ +∞

−∞
ds1

[

SR(ε± i(s1 + s2))SNS(ε± i(s1 − s2))

SNS(2ε)
+
SNS(ε± i(s1 + s2))SR(ε± i(s1 − s2))

SNS(2ε)

]

=
2SNS(2ε)SR(2is2)SR(−2is2)SNS(2ε)

SNS(4ε)SNS(2ε)
= 4SR(2is2)SR(−2is2), (3.57)

where we again used the q-Barnes superlemma (B.13). Hence the quantity in brackets has

δ-function support:

lim
ε→0

[

SR(ε± i(s1 + s2))SNS(ε± i(s1 − s2))

SNS(2ε)
+
SNS(ε± i(s1 + s2))SR(ε± i(s1 − s2))

SNS(2ε)

]

=
δ(s1 − s2)

2 cosh πs2
b cosh πbs2

, s1, s2 > 0. (3.58)

This confirms that no insertion is present in this limit, and that the Whittaker functions

defined above give the Plancherel measure in the sense that

∫ +∞

−∞
dxψε

s1,gµgν
(x)ψε

s2,gµgν
(x)∗ =

2δ(s1 − s2)

cosh πs2
b cosh πbs2

. (3.59)

This Plancherel measure defines the density of black hole states in the gravitational

interpretation of this model:

ρ(s) ∼ cosh

(

πs

b

)

cosh(πbs), (3.60)

as found in equation (1.7).

In the study of N = 1 Liouville supergravity, there is a second sector of amplitudes

where the local fermionic boundary condition at the boundary of the disk is ψ = ηψ̄ with

η = −1 and ψ is the spin-1/2 field accompanying the Liouville field. We refer the reader

to [43] for the precise amplitudes in this second sector where η = −1. We have chosen
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η = +1 everywhere for our story up to this point, since only this sector makes contact with

osp(1|2,R) objects in the b → 0 limit. For the η = −1 sector, one obtains instead a linear

combination of sl(2,R) objects in the b → 0 limit. This suggests that if these amplitudes

have a quantum group interpretation in terms of representation theory, then it must be

one without a classical b → 0 counterpart. We have not reached a satisfying understanding

of this situation. Nonetheless, we can guess a “Whittaker function” that does the job in

producing the correct super-Liouville amplitudes. We present it in appendix E.

4 Liouville gravity as 2d dilaton gravity

In the previous two sections, we uncovered the underlying Uq(sl(2,R)) and Uq(osp(1|2,R))

structure of bosonic and N = 1 supersymmetric Liouville gravity amplitudes, respectively.

In this section, we attempt to explain this structure by reinterpreting the Liouville gravity

model directly in terms of dilaton (super)gravity with a modified (relative to JT) dilaton

potential, after which we perform the quantum analysis of this theory in the Poisson sigma

model framework and uncover the same q-deformed algebra as a symmetry.

4.1 From Liouville gravity to dilaton gravity

There is a relatively direct way to relate Liouville gravity to dilaton gravity models [42, 67]

(see also [68, 69]). In the bosonic case, the argument was presented in appendix F of [42],

and we summarize it here.

The starting point is the Lagrangian description of Liouville gravity, for which we

provide some review in appendix A. In this language, the argument proceeds by writing the

matter sector in terms of a timelike Liouville field.22 The Liouville and matter sectors then

have a bulk action

S =
1

4π

∫

Σ
d2x

[

(∇̂φ)2 + 4πµe2bφ
]

+
1

4π

∫

Σ
d2x

[

−(∇̂χ)2 + 4πµMe2bχ
]

, (4.1)

where we have chosen a flat reference metric ĝ for simplicity. Classically, the relation

between sinh dilaton gravity and Liouville gravity is [42]

φ = ρ/b− πbΦ, χ = ρ/b+ πbΦ, (4.2)

mapping the Liouville field φ and the timelike Liouville field χ into the conformal factor

of the dilaton gravity metric ds2 = e2ρdz dz̄ and the dilaton field Φ. The bulk action then

becomes, with µM = −µ:23

S = −
∫

d2x ∂µΦ∂µρ− 2µ

∫

d2x e2ρ sinh 2πb2Φ (4.3)

= −1

2

∫

d2x
√
g [ΦR+W (Φ)] −

∮

dx
√
hΦK, (4.4)

22This might seem like a restriction; in particular, the minimal models are at first sight not contained

in this description. However, recent work has shown how, in the bosonic case, the minimal models can be

described using timelike Liouville CFT [70].
23The bc ghost CFT that accompanies the non-critical string is also present in this dilaton gravity language,

arising from gauge-fixing the dilaton gravity metric to conformal gauge.
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whereW (Φ) = sinh 2πb2Φ
sin πb2 provided that we identify the bulk Liouville cosmological constant as

µ =
1

4 sin πb2
=⇒ κ ≡

√

µ

sin πb2
=

1

2 sin πb2
. (4.5)

For the N = 1 supersymmetric case, if we work directly in superspace, then we can

proceed in an almost identical fashion. Describing the ĉm < 1 matter sector of the N = 1

Liouville supergravity model with a timelike version of the super-Liouville CFT, we write

the matter + Liouville sector in superspace as:

S =
1

4π

∫

d2x d2θ
[

DΦLD̄ΦL + 8πµebΦL

]

− 1

4π

∫

d2x d2θ
[

DχD̄χ+ 8πµebχ
]

. (4.6)

Defining the field combinations

ΦL = Σ/b− 2πbΦ, χ = Σ/b+ 2πbΦ, (4.7)

we can rewrite the action in a suggestive way as:

S = −2

∫

d2x d2θ
[

DΣD̄Φ + 2µeΣ sinh 2πb2Φ
]

. (4.8)

The supercurvature R+− is defined in terms of the superconformal parameter Σ as

R+− ≡ 2e−ΣDD̄Σ, (4.9)

which, after a partial integration, allows us to finally write:

S = −
∫

d2x d2θ E
[

ΦR+− + 4µ sinh 2πb2Φ
]

− 2

∮

dx dθΦK, (4.10)

where E = e+Σ is the superdeterminant of the superzweibein. Since (the bulk piece of) a

generic 2d dilaton supergravity model can be written as

S = −
∫

d2x d2θ E [ΦR+− + u(Φ)] , (4.11)

we are led to claim that N = 1 Liouville supergravity is a dilaton supergravity model with

a hyperbolic sine prepotential u(Φ) = sinh(2πb2Φ)/(4 sin πb2

2 ) if we identify the Liouville

cosmological constant as follows:

µ =
1

16 sin πb2

2

=⇒ κ ≡
√

2µ

cos πb2

2

=
1

2
√

sin πb2
. (4.12)

We can view this choice of µ as a choice of scale in Liouville gravity that allows for a direct

comparison to the underlying quantum group, and that has a clean b → 0 limit to N = 1

JT supergravity.

Just as in the bosonic gravity model, the above argument remains to be clarified further,

which we postpone to future work. Instead, we will present indirect evidence that this

specific dilaton (super)gravity theory indeed makes contact with statements about Liouville

(super)gravity. To achieve this goal, we next review how generic dilaton gravity models

have a useful interpretation in terms of nonlinear gauge theory.
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4.2 From dilaton gravity to Poisson sigma models

A theory of 2d dilaton gravity, in turn, admits a group-theoretic description as a Poisson

sigma model [71–75]. See also [76, 77] for some recent generalizations.

In the bosonic case, we start with the second-order formulation of dilaton gravity and

rewrite it in first-order variables, introducing the zweibein e and the spin connection ω:

S =
1

2

∫

d2x
√−g (ΦR+W (Φ)) (4.13)

=

∫ [

Φ dω +
1

4
W (Φ)εabea ∧ eb +Xa(dea + εa

bω ∧ eb)

]

, (4.14)

where gµν = ηabeaµebν and ω is torsion-free. In this subsection, we work in Lorentzian

signature (as will be convenient for our later discussion of quantization), with ε01 = +1.

This theory can be identified with a topological Poisson sigma model with three-dimensional

target space, of the type

S =

∫ (

Ai ∧ dX i +
1

2
P ij(X)Ai ∧Aj

)

, (4.15)

where Ai = (e0, e1, ω) and Xi = (X0, X1,Φ). We read off the Poisson algebra

{

X0, X1
}

PB

=
W (X2)

2
,

{

Xa, X2
}

PB

= εabX
b. (4.16)

For W (Φ) = 2Φ, this becomes the so(2, 1) Lie algebra. Defining the “lightcone generators”

E± ≡ −X0 ±X1 and setting H ≡ X2, we get:

{

H,E±}
PB

= ±E±,
{

E+, E−
}

PB

= 2V (H), (4.17)

where

V (H) ≡ 1

2
W (H) (4.18)

is a rescaled version of the dilaton potential W . For V (H) = H, this becomes the sl(2,R)

Lie algebra.

Next, we write down the equations for the case of supergravity. The component form

of the action (4.11) is

L = Φ dω +Xa(dea + εa
bωeb + 2iψ̄γaψ) −

(

2uu′ − iu′′

16
χ̄χ

)

εabeaeb

+ 4iuψ̄γ3ψ + iu′χ̄eaγ
aψ + iχ̄

(

dψ +
1

2
ωγ3ψ

)

. (4.19)

This is to be compared with the generic form of a graded Poisson sigma model:

S =

∫ (

Ai ∧ dX i − 1

2
Ai ∧AjP

ji(X)

)

, (4.20)

where the fields Ai and Xi and, by extension, P ji(X) are graded fields. Namely, some of

the components are even variables while some are odd. We have written this action with a
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specific ordering of the factors [74, 75]. It is equivalent to (4.15) only for even fields, but

differs from that action when the fields are graded. Identifying the 3|2-dimensional target

space coordinates as

Xi ≡ (Xa, χα,Φ), Ai ≡ (ea, iψ̄α, ω), (4.21)

we can read off the relevant graded Poisson tensor.24 The nonlinear Poisson algebra

describing N = 1 dilaton supergravity has five generators X0, X1, χ0, χ1,Φ, with the

following graded bracket relations [74, 75]:

{

χα, χβ}

PB
= Pαβ = −8iu(γ3)αβ − 4iXa(γa)αβ ,

{

Xa,Φ
}

PB
= P a2 = εabX

b,
{

χα,Φ
}

PB
= Pα2 = −1

2
(γ3χ)α, (4.22)

{

Xa, χα}

PB
= P aα = u′(γaχ)α,

{

Xa, Xb}

PB
= P ab = −εab

(

4uu′ +
1

8i
u′′χ̄αχ

α
)

,

in terms of a single superpotential function u(Φ). Defining the lightcone variables

χα =

(

χ+

χ−

)

, X± = ±X0 −X1, (4.23)

one can rewrite this algebra into a more suggestive form by defining

F± ≡ χ±/(4
√
i), E± ≡ X±/2, H ≡ Φ, (4.24)

which yields:

{

F+, F+}

PB
=

1

2
E+,

{

F−, F−}
PB

= −1

2
E−,

{

F+, F−}
PB

=
1

2
u(H),

{

H,F±}
PB

= ±1

2
F±,

{

H,E±}
PB

= ±E±,

{

E±, F∓}
PB

= −u′(H)F±,
{

E±, F±}
PB

= 0,

{

E+, E−}
PB

= 2(u(H)u′(H) + u′′(H)F−F+). (4.25)

We will later on recognize this Poisson superalgebra as the classical limit of the q-deformed

algebra of osp(1|2,R) for a specific choice of u(H). This will require a quantization of the

Poisson sigma model. Before going there, however, we present one more classical argument

that sheds light on the asymptotic gravitational boundary conditions we are using.

24We use the following realization of the 2d Dirac algebra:

(γ0)α
β =

(

0 −1

1 0

)

= −iσ2, (γ1)α
β =

(

0 1

1 0

)

= σ1, (γ3)α
β ≡ γ1γ0 =

(

1 0

0 −1

)

= σ3

for a 2d space where a = 0, 1 and ηab = diag(−,+), as well as the raised versions:

(γ0)αβ =

(

1 0

0 1

)

, (γ1)αβ =

(

1 0

0 −1

)

, (γ3)αβ =

(

0 −1

−1 0

)

,

where indices are raised and lowered with εαβ = εαβ =

(

0 1

−1 0

)

.
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4.3 Semiclassical black hole first law

Using the above results, we can directly compare the semiclassical ~ → 0 interpretation of

Liouville supergravity amplitudes with classical black hole physics in the dilaton supergravity

model (4.11). As a warmup, we first redo the bosonic case presented in [42] but using our

rescaled length variables (as mentioned in the introduction). We start with the fixed-length

disk amplitude without any operator insertions. This can be found by letting βM → 0

in (1.4), using the results of section 2.4:

〈1〉` =

∫

ds e−` cosh 2πbs
2πb2 sin πb2 sinh 2πbs sinh

2πs

b
(4.26)

∼
∫ ∞

0
dE e−`E sinh

(

1

b2
arccosh

(

(2πb2 sin πb2)E
)

)

. (4.27)

We now interpret this expression as a thermal partition function with ` = β = T−1, the

inverse temperature, and with the density of states ρ(E) explicitly visible on the second

line. Approximating sinh ∼ 1
2 exp, we get the saddle-point equation

√

E2 − 1

(2πb2 sin πb2)2
=
T

b2
. (4.28)

As a check, in the JT limit b → 0, we set E = 1
2πb2 sin πb2 + EJT and obtain

√

EJT

π2b4
=
T

b2
=⇒ EJT = π2T 2, (4.29)

which is the well-known JT gravity black hole first law [3, 8, 10], upon setting the Schwarzian

coupling coefficient to C = 1/2 and dropping an arbitrary offset E0. The coefficient C

contains information on the rate of divergence of the dilaton field at the boundary [4–6],

and defines the specific model under consideration. We will choose conventions below for

generic dilaton gravity models that reproduce the value C = 1/2 in the JT limit.

Given a bosonic dilaton potential W (Φ) as in (4.13), up to diffeomorphisms, one can

always bring the 2d metric and dilaton to the form [78, 79]25

ds2 = 4A(r)dt2 +
dr2

A(r)
, Φ(r) = r, (4.30)

where the asymptotic region is r → +∞ (for which the boundary condition on the dilaton

field is fixed as above)26 and where

A(r) =

∫ r

rh

dr′W (r′), (4.31)

25One can identify the conformal factor e2ρ = 4A(r) immediately, since the purely radial coordinate

transformation drnew = dr
2A(r)

maps the metric to conformal form.
26More generally, one is allowed the asymptotics Φ(r) = ar as r → +∞; the value of a defines the model

at hand. We have also included an extra factor of 4 in gtt compared to [78, 79], which is a simple rescaling

of the time coordinate t. This is a possibility that is closely related to the choice of a. All of these options

in the JT gravity regime (b → 0) correspond to a choice of Schwarzian coupling coefficient C. They can be

mapped to a choice of prefactor for the boundary Hamiltonian in the Poisson sigma model framework that

we develop below.
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with r = rh being the location of the black hole horizon. This black hole has an energy-

temperature relation fully determined by knowledge of the dilaton potential as:

E =

∫ W −1(2πT )

W (Φ) dΦ + E0. (4.32)

For instance, for JT gravity where W (Φ) = 2Φ, we immediately get E = π2T 2 if we set

E0 = 0. Starting with our E(T ) relation (4.28), we can solve for the dilaton potential in a

unique fashion:

V (Φ) =
1

2
W (Φ) =

sinh 2πb2Φ

2 sin πb2
. (4.33)

Using this dilaton potential, we write down the Euclidean bulk metric and dilaton field:

ds2 =
4(cosh 2πb2r − cosh 2πb2rh)

2πb2 sin πb2
dt2 +

2πb2 sin πb2

cosh 2πb2r − cosh 2πb2rh
dr2, Φ(r) = r.

(4.34)

From this, we can read off the asymptotics of the fields in terms of boundary conditions.

The metric component gtt diverges as r → ∞. In the same vein as in aAdS holography, we

define lengths ` as measured by the boundary theory using the t-coordinate: d` ≡ dt.

It is instructive to show agreement between this boundary behavior and the rescaling of

length variables as discussed in the introduction. From (4.2), we get the following relation

between lengths:

`L ≡
∫ 2

1
ebφ = e−πb2Φ

∣

∣

∣

∂

∫ 2

1
eρ, (4.35)

where the dilaton field Φ needs to take a constant value along the boundary in order for

the boundary lengths, as measured using the different metrics, to be proportional for any

choice of boundary segment. From (4.34), we get the divergent asymptotics

eρ|r→∞ = lim
r→+∞

eπb2r

√
πb2 sin πb2

. (4.36)

Crucially, this divergence perfectly cancels with the dilaton asymptotics of (4.34), yielding

the finite result for the rescaling that relates the length measured in the Liouville metric to

the length measured using the boundary metric dt in (4.34):

`L =
`√

πb2 sin πb2
. (4.37)

Notice that the relation for the timelike Liouville field χ in (4.2) then implies the boundary

condition

ebχ
∣

∣

∣

∂
∼ lim

r→+∞
e2πb2r → +∞. (4.38)

This Dirichlet boundary condition is precisely the vacuum (or ZZ-) brane boundary condition.

This is indeed the boundary condition for χ that we describe in appendix A.27

27One can also think of it as an infinite-length boundary condition when interpreting the timelike Liouville

CFT in a similar fashion as the spacelike CFT: `χ ≡
∫ 2

1
ebχ → +∞.
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The above analysis was classical. In quantum Liouville gravity amplitudes, we must

use the rescaling between lengths of (1.5). However, reinstating units of ~, the Liouville pa-

rameter κ is actually κ =
√

µ~/ sin(πb2~) [80]. Using that κ →
√

µ/πb2 in the semiclassical

~ → 0 limit and inserting the value of µ from (4.5), we see that (1.5) matches with (4.37)

in the ~ → 0 limit. An interesting aspect of this matching is that the rescaling of lengths is

itself ~-dependent, with the correct matching to the classical black hole analysis occurring

only in the semiclassical ~ → 0 limit, as should be the case.

We now move on to N = 1 dilaton supergravity. The Liouville supergravity disk

amplitude can be found by letting βM → 0, and using the results of section 3.4, we get:

〈1〉` =

∫ +∞

0
ds e

−` sinh2 πbs

16 sin2 πb2
2 cosh πbs cosh

πs

b

∼
∫ +∞

0

dE√
E
e−`E cosh





1

b2
arcsinh





√

16E sin2 πb
2

2







 . (4.39)

In the ~ → 0 thermodynamic limit, we need to use the classical ~ → 0 limit of the

Casimir (4.87) when going from the first to the second line and to evaluate the integral

at large s, for which we can approximate cosh ∼ 1
2 exp. The saddle-point relation for the

above integral then yields the semiclassical black hole first law for E(T ):28

√

E2 +
E

16 sin2 πb2

2

=
T

2b2
. (4.40)

We will now show that we can reproduce this first law directly from a classical black

hole solution in the N = 1 dilaton supergravity model with precisely the sinh dilaton

superpotential (4.73).

For the semiclassical saddle solution, the fermions (dilatino and gravitino) are turned

off, and the discussion boils down to that for the bosonic subsector given above. The

resulting bosonic potential V (Φ) is related to the prepotential by

V (Φ) = u(Φ)u′(Φ), (4.41)

as can be seen by comparing the last relation of (4.25) to the analogous bosonic rela-

tion (4.17).

Defining a shifted energy variable Ẽ ≡ E + E0 with E0 = (32 sin2 πb2

2 )−1, the first

law (4.40) can be rewritten as
√

Ẽ2 − E2
0 =

T

2b2
, (4.42)

which is of the same form as the bosonic black hole first law written in [42]. From this, we

can immediately write down the dilaton potential:

W (Φ) =
πb2

8 sin2 πb2

2

sinh(4πb2Φ), (4.43)

28Compared to the result of [43], we used the rescaled energy and length variables in the introduction,

and additionally corrected some missing factors of 2 compared to that work.
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which reproduces (4.40) when inserted into (4.32) and upon setting E0 = (32 sin2 πb2

2 )−1.

We then have the corresponding prepotential

u(Φ) =
sinh(2πb2Φ)

4 sin πb2

2

, (4.44)

which indeed matches the superspace proposal and prepotential displayed in (4.10). Hence,

starting with this dilaton potential, we indeed agree with the semiclassical first law derived

using purely Liouville supergravity techniques in [43].

4.4 The (graded) Poisson sigma model

We next analyze the graded Poisson sigma model in more detail, and uncover the precise

way in which the q-deformed algebra is realized. The punchline is that the governing

Uq(sl(2,R)) or Uq(osp(1|2,R)) quantum (super)group appears upon quantizing the target

space Poisson structure of the Poisson sigma model.29

The Poisson sigma model: classical analysis. Consider the (graded) Poisson sigma

model on a half-space:

S =

∫ (

Ai ∧ dX i − 1

2
Ai ∧AjP

ji(X)

)

=

∫

d2x
(

−A1i∂0X
i +A0i(∂1X

i −A1jP
ji(X))

)

,

(4.45)

where i = 1, . . . ,m and m is the dimension of the target space M. M is equipped with a

graded Poisson bracket:

{

Xi, Xj
}

PB

= P ij(X), P ij = −(−)σiσjP ji, ∂R
` P

[ij|P `|k] = 0, (4.46)

the latter relations being (anti)symmetry and the Jacobi identity required for the definition

of the bracket operation. σi = 0, 1 is the grading of the field Xi. The ordering of the

different objects in (4.45) is important.

The action (4.45) is invariant under the local nonlinear symmetry transformations30

δX i = −εjP ji, (4.47)

δAi = −dεi +Ajεk∂
R
i P

kj , (4.48)

written in terms of the right derivative. This nonlinear symmetry algebra for the particular

case of dilaton (super)gravity was first discovered in [71, 72] without the reinterpretation in

terms of a topological Poisson sigma model. See appendix F for some further remarks on

this point of view.

The global part of this symmetry transformation leads to m conserved charges. We

derive here the classical charge algebra that they satisfy, in particular accommodating

29The Poisson sigma model language was recently used in [81] to address universality of wormholes for

quantum-mechanical systems that include, in particular, all dilaton (super)gravity models.
30Specifically, δ(Ai ∧ dXi − 1

2
Ai ∧AjP

ji(X)) = −dεi ∧ dXi.

– 30 –



J
H
E
P
0
5
(
2
0
2
2
)
0
9
2

Grassmann-valued variables. A convenient reference for the canonical structure of the

bosonic model is [82]. The variables Xi and A1i are canonically conjugate:

πXi(x) ≡ ∂LL

∂(∂0Xi)
= −(−)σiA1i, (4.49)

where we conventionally take the left derivative for the fermionic variables. This leads to

the canonical brackets31

{

A1i(x), Xj(y)
}

= (−)σiδj
i δ(x− y), (4.50)

and A0 plays the role of a Lagrange multiplier enforcing the first-class constraints

∂1X
i −A1jP

ji(X) = 0, i = 1, . . . ,m. (4.51)

For a half-space, these constraints can be integrated into the relations

xi ≡ Xi(0) = −
∫ +∞

0
duA1j(u)P ji(X(u)). (4.52)

This shows that the field Xi(u) has only a single degree of freedom on the half-line [0,+∞).

Together with the conjugate fields A1i(u), this in turn shows that the phase space is finite-

dimensional of dimension 2m. This illustrates that the model is topological, with degrees of

freedom that can be thought of as living on the boundary line.

Using the canonical brackets (4.50), we can derive the following relation for the boundary

variables xi:

{

xi, xj
}

=

{

−
∫ +∞

0
duA1k(u)P ki(X(u)), Xj(0)

}

(4.53)

= −(−)σiσk(−)σk

∫ +∞

0
duP ki(X(u))

{

A1k(u), Xj(0)
}

= P ij(x), (4.54)

which hence satisfy the Poisson algebra of the target space, but now as a canonical phase

space algebra. The Noether charges associated with the global nonlinear transformations

are given by

Qi ≡
∫

dxδiXjπXj = (−)σj

∫ +∞

0
duP ij(X(u))A1j(u) = −

∫ +∞

0
duA1j(u)P ji(X(u)) =xi.

(4.55)

Being identified with the xi, these charges therefore satisfy the nonlinear Poisson alge-

bra (4.54) as well:32

{

Qi, Qj
}

= P ij(Q). (4.56)

31Following [83], we have {p, q} = −1, in this specific order, for both commuting and anticommuting

variables.
32For a linear symmetry algebra, the Noether charges always satisfy the same canonical algebra as the

underlying Lie algebra. This is no longer generically true for a nonlinear symmetry algebra. However, the

above shows that it is true by explicit computation for the Poisson sigma model.
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The Poisson sigma model: classical Casimirs. For the above system, the Hamilto-

nian vanishes, and these charges are trivially conserved quantities. If a nontrivial boundary

Hamiltonian can be added, then it must commute with these charges:

dQi

dt
=
{

H,Qi
}

= 0, (4.57)

and it is a Casimir of the algebra.

We can write explicit expressions for these Casimirs. First, consider the bosonic

dilaton gravity model, for which we have a three-dimensional target space with coordinates

Xi ≡ (E+, E−,H) and Poisson algebra (4.17). For an arbitrary potential V (H), the rank

of the Poisson tensor P ij is two, and there is a single independent Casimir function that

can be chosen as [84]

C(X) = E+E− + 2

∫ H

V (y) dy. (4.58)

It can be explicitly checked to satisfy the relation
{C, Xi

}

= ∂C
∂XjP

ji = 0.33

Of particular interest in this work is the specific potential V (H) = sinh 2πb2H
2 sin πb2 . For

this choice, the Poisson algebra (4.17) is almost the same as the quantum algebra (2.1),

up to some factors of i that we will explain later when quantizing. This choice has the

corresponding Casimir:

Hbdy = C(X) = E+E− +
cosh 2πb2H

2πb2 sin πb2
. (4.59)

For N = 1 dilaton supergravity, whose 3|2-dimensional target space has coordinates

Xi ≡ (F+, F−, E+, E−,H), the Casimir function can be written analogously [74, 75]:

C(X) = E+E− +

∫ H

(2uu′ + 2u′′F−F+) dy = E+E− + 2u′(H)F−F+ + u(H)2, (4.60)

satisfying
{C, Xi

}

= ∂RC
∂XjP

ji = 0.

Specializing to the particular case of u(H) = sinh 2πb2H

4 sin πb2

2

, one finds:

Hbdy = C(X) = E+E− +
πb2 cosh 2πb2H

sin πb2

2

F−F+ +
sinh2 2πb2H

16 sin2 πb2

2

. (4.61)

For ordinary Lie algebras, it is well-known that one can always perform a global rotation

to align a given vector in the Lie algebra along the Cartan directions. For example, for

SU(2), one conventionally aligns the spin vector along the z-direction, hence parametrizing

the quadratic Casimir as J2
x +J2

y +J2
z = J2

z = j2, where we introduce the classical spin label

33A simple example is that of a linear Poisson structure, where one formally makes contact with the

BF framework of JT gravity with Lie algebra sl(2,R) and C(X) = TrX2 yields the required boundary

Hamiltonian [13] in terms of the Cartan-Killing metric. However, it is important to stress that the right-hand

side of (4.58) is commutative at this stage, and one only makes contact with the actual quadratic Casimir of

the Lie group after quantizing.
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j. For quantum groups, we can analogously consider only “turning on” the H-direction.34

This leads to a classical description of the Casimir as:

bosonic: C(H) = 2

∫ H

V (y) dy =
cosh 2πb2H

2πb2 sin πb2
, (4.62)

N = 1 supersymmetric: C(H) = u(H)2 =
sinh2 2πb2H

16 sin2 πb2

2

. (4.63)

Here, we think of H as a c-number, analogous to the spin label j in the undeformed

b → 0 limit. We will come back to this interpretation further on, when we compare to the

quantized formulas.

The Poisson sigma model: quantization. Upon quantizing the model, we replace

Poisson brackets with commutators, and the charge algebra (4.56) becomes a commutator

algebra of Hermitian charges (Q̂i)† = Q̂i:35

[

Q̂i, Q̂j
]

?
= i~P̂ ij(Q̂). (4.64)

However, when the Poisson tensor is nonlinear, ordering ambiguities can appear here. In

particular, the above commutator must satisfy the Jacobi identity, which is different than

the previous one since now:

[

P̂ ij(Q̂), Q̂k
]

6= i~∂R
` P̂

ij(Q̂)P̂ `k(Q̂). (4.65)

Instead, one has a more complicated “ordered” version of the derivative. Moreover, consis-

tency with hermiticity of the charges requires

(P̂ ij(Q̂))† = P̂ ij(Q̂), i, j = 1, . . . ,m. (4.66)

It is important not to confuse this physical quantization in ~ with the mathematical

“quantization” or q-deformation of the underlying algebraic structure. Both of these occur

independently and concurrently in this section.

For the specific case of bosonic dilaton gravity, the algebra itself does not need to

change thanks to the internal commutativity of each entry in the Poisson tensor of (4.17):

PH±(X) = ±E±, P+−(X) = 2V (H). (4.67)

Moreover, since V (·) is a real function, (4.66) is also satisfied, and one finds the quantized

charge algebra (~ = 1):

[

Ĥ, Ê±
]

= ±iÊ±,
[

Ê+, Ê−
]

= 2iV (Ĥ). (4.68)

34This can be motivated, e.g., in the context of the q-deformed 2d Yang-Mills (YM) or BF models to

find explicit expressions for amplitudes through “abelianization” [85, 86]. We make some comments on this

perspective in the current context in the concluding section 5.
35We are following the “constrain first” approach to constrained quantum systems, since we have already

implemented (4.51) at the classical level.
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For the particular case where

V (Ĥ) =
sinh 2πb2Ĥ

2 sin πb2
, (4.69)

and upon identifying the Hermitian charges with the antihermitian generators via Ĥ = iH

and Ê± = iE±, the resulting algebra becomes precisely (2.1):

[H,E±] = ±E±, [E+, E−] =
sin 2πb2H

sin πb2
. (4.70)

Thus we conclude that:

The conserved charges in the Poisson sigma model description of dilaton gravity

with potential (4.69) satisfy an algebra that can be identified with the Uq(sl(2,R))

algebra.

Next, we consider N = 1 dilaton supergravity, for which the nonlinear commutator

algebra is different from the corresponding classical Poisson algebra (4.25). In particular,

consistency with the noncommutative version of the Jacobi identity requires, in addition to

the “seed” commutation relations

[

Ĥ, F̂±
]

= ± i~

2
F̂±,

{

F̂+, F̂−
}

=
i~

2
u(Ĥ),

{

F̂±, F̂±
}

= ± i~

2
Ê±, (4.71)

also the modified relations:36

[

Ê+, F̂−
]

= 2

(

u

(

Ĥ − i~

2

)

− u(Ĥ)

)

F̂+,

[

Ê−, F̂+
]

= 2

(

u(Ĥ) − u

(

Ĥ +
i~

2

))

F̂−, (4.72)

[

Ê+, Ê−
]

= 4

(

u(Ĥ) − u

(

Ĥ − i~

2

))

u(Ĥ)

+
8

i~

(

u

(

Ĥ − i~

2

)

− 2u(Ĥ) + u

(

Ĥ +
i~

2

))

F̂−F̂+.

One checks explicitly that these expressions satisfy the hermiticity property (4.66), consistent

with a set of Hermitian charges Ĥ, F̂±, Ê±.37

For the specific choice where

u(Ĥ) =
sinh 2πb2Ĥ

4 sin πb2

2

, (4.73)

and upon setting Ĥ = iH, F̂± = iF±, and Ê± = iE±, this algebra becomes the q-deformed

algebra (3.1) of Uq(osp(1|2,R)) but with a sign flip in the anticommutator, as should be

36Note that f(Ĥ)F̂± = F̂±f(Ĥ ± i~
2

), which follows inductively from the first relation in (4.71).
37This corresponds to defining the adjoint of a product of graded operators as (AB)† = (−)σAσBB†A†. For

odd variables, this definition of conjugation corresponds to the order-preserving convention for Grassmann

numbers (ϑiϑj)∗ = ϑ∗
i ϑ

∗
j that was used in [37].
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the case (~ = 1):38

[H,F±] = ±1

2
F±,

{

F+, F−
}

=
sin 2πb2H

8 sin πb2

2

,
{

F±, F±} = ±1

2
E±. (4.74)

This is our main statement:

The conserved charges in the Poisson sigma model description of N = 1 dilaton

supergravity with prepotential (4.73) satisfy an algebra that can be identified with

the Uq(osp(1|2,R)) algebra.

As a check of (4.71) and (4.72), the classical ~ → 0 limit yields back the right-hand

side of the Poisson algebra (4.25):

{

F+, F−
}

=
i~

2
u(H),

{

F±, F±} = ± i~

2
E±,

[

H,F±] = ± i~

2
F±,

[

E±, F∓] = −i~u′(H)F±,
[

E+, E−
]

= 2i~(u(H)u′(H) + u′′(H)F−F+). (4.75)

The Poisson sigma model: quantum Casimirs. For bosonic dilaton gravity, whereas

the right-hand side of the Poisson algebra (4.17) remains identical after quantizing, the

Casimir function does get modified upon quantization. Instead of (4.58), the result is

C(X̂) ∼ 1

2
Ê+Ê− +

1

2
Ê−Ê+ + f(Ĥ), (4.76)

where f is the solution to the linear difference equation39

f(H + i~) − f(H) = i~(V (H + i~) + V (H)). (4.77)

38This is the usual superalgebra rather than the opposite superalgebra. The former is relevant when

understanding discrete or finite-dimensional representations (such as those used in defining the Lagrangian

of the BF model), whereas the latter is relevant when understanding the continuous representations whose

generators are Grassmann-valued operators.
39It is easy to see that the general solution can be written as a particular solution (depending on V ) plus

a periodic (or homogeneous) function with periodicity i~. Let us write down the general solution in more

detail. Denoting the right-hand side by s(H), the function f can be written in closed form in terms of the

Z-transform of s as:

f(i~H) = Z−1

[

Z[s](z)

z − 1

]

(i~H).

The Z-transform is defined as Z[s](z) =
∑+∞

n=−∞
s(n)z−n. The solution (4.77) is unique up to a choice of

f(0) and upon assuming H ∈ N. To analytically continue to non-integer H and satisfy (4.77), one has the

ambiguity of adding an arbitrary periodic function. This piece, however, is the homogeneous (source-free)

part of the solution. Imagining one could write down a solution for an arbitrary V (H), we can for instance

isolate the homogeneous piece by setting V = 0 and choose to remove it.
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In the classical ~ → 0 limit, this equation reduces to df/dH = 2V (H), which is (4.58). For

the potential of interest V (H) = sinh 2πb2H
2 sin πb2 , the result of solving this equation is:

Ĥbdy = C(X̂) = −sin πb2~

πb2~

(

1

2
Ê+Ê− +

1

2
Ê−Ê+

)

− cosπb2~

2πb2 sin πb2
cosh 2πb2Ĥ (4.78)

= −sin πb2~

πb2~
Ê−Ê+ − cosh 2πb2(Ĥ + i~

2 )

2πb2 sin πb2
, (4.79)

where we have used a carefully chosen normalization. This is a specifically ordered version

of the classical ~ → 0 result (4.59), and matches with (2.2) upon using Ĥ = iH since the

quantized symmetry algebra (4.70) is precisely the Uq(sl(2,R)) algebra.

The last way of writing this expression has all raising operators on the right and

lowering operators on the left. When computing its expectation value in a highest-weight

state of a finite-dimensional irrep as

〈l.w.| C(X̂) |h.w.〉 , (4.80)

we hence extract only the last term, where we set h as the Ĥ eigenvalue of the state. This

is the q-analogue of the statement that the classical SU(2) Casimir j2 is replaced by j(j+ 1)

when quantizing, which is proven by elementary techniques in a similar fashion. It is useful

to compare the classical description of the Casimir (4.62) to this quantized description:

classical (~ → 0): −cosh 2πb2hcl

2πb2 sin πb2
, (4.81)

quantum: −cosh 2πb2(h+ i~
2 )

2πb2 sin πb2
. (4.82)

We now compare the quantized result (4.82) to the explicit result (2.18) for the continuous

series irreps. We can identify h directly with the representation label λ by h = − i
bλ where

λ = b~
2 + is. In the semiclassical ~ → 0 limit, we get h → hcl = − i

bλcl where λcl = is, in

agreement with (4.81).

This shift is expected in the undeformed b → 0 limit: for the group SL(2,R), it

corresponds to setting either j = ik or j = −1/2 + ik, where the −1/2 shift is a one-loop

effect from the perspective of Borel-Weil-Bott coadjoint orbit quantum mechanics as a

tool for reproducing group theory. More generally, this is a shift of the weight vector

by the Weyl vector, which has been studied extensively in physics language in many

works; see, e.g., [87, 88]. In the end, when plugging the correct values of λ into the above

expressions, (4.81) and (4.82) are identical.

For a general N = 1 dilaton supergravity model, we can write down an analogous

ansatz for a sCasimir operator as

Q(X̂) ∼ F̂−F̂+ + f(Ĥ), (4.83)

where demanding that this expression commutes with Ĥ and anticommutes with F̂± leads

to the linear difference equation

f(H) + f(H − i~/2) = − i~

2
u(H). (4.84)
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Plugging the solution into (4.83) and squaring leads to an operator C = Q2 that commutes

with all generators for a general prepotential u(H).

For the specific case u(Ĥ) = sinh 2πb2Ĥ

4 sin πb2

2

, we obtain the suitably scaled sCasimir operator

Q(X̂) =
i sinh πb2(2Ĥ + i~

2 )

4 sin πb2

2

− 4

~
cos

πb2~

2
F̂−F̂+, (4.85)

leading to the following explicit expression for the Casimir operator C:

Ĥbdy = C(X̂) = −
sinh2

(

πb2(2Ĥ + i~
2 )
)

16 sin2 πb2

2

−
sin(πb2~) cosh

(

2πb2(Ĥ + i~
2 )
)

~ sin πb2

2

F̂−F̂+

− 16

~2
cos2 πb

2~

2
(F̂−)2(F̂+)2. (4.86)

Since the quantized algebra (4.74) is precisely that of Uq(osp(1|2,R)), this Casimir operator

is related to (3.3) by Ĥ = iH and F̂± = iF± after including the explicit ~ dependence.

This represents a specifically ordered version of the classical ~ → 0 expression (4.61),

as can be immediately seen. Notice also that the sCasimir operator Q in (4.85) does not

have a good ~ → 0 limit. This is because there is no such object in a Poisson superalgebra.

Taking the expectation value of this operator in a highest-weight state 〈l.w.| C(X̂) |h.w.〉,
we again distill only the first term, and we find an explicit expression for the Casimir on any

particular representation space in terms of the c-number eigenvalue h of Ĥ. It is again useful

at this point to compare the classical expression (4.63) with the resulting quantized one:

classical (~ → 0): −sinh2 2πb2hcl

16 sin2 πb2

2

, (4.87)

quantum: −sinh2 2πb2(h+ i~
4 )

16 sin2 πb2

2

. (4.88)

For the continuous series irreps, we can identify the quantum expression (4.88) with the

explicit result in (3.18) by setting h = − i
2bλ where λ = b~

2 + is. In the semiclassical limit

where h → hcl = − 1
2bλcl with λcl = is, we reproduce (4.87). Notice that in terms of s, both

of these expressions are identical.

This completes our discussion of the quantization of the model.

5 Discussion and open problems

In this work, we have investigated the quantum-group-theoretic properties that underlie

Liouville (super)gravity models. An important role is played by a special representation

matrix element known as the Whittaker function. We provided details on how this object

leads to Liouville gravity amplitudes. As our main result, we presented an explicit group-

theoretic computation of this mixed parabolic matrix element for the q-deformation of

OSp(1|2,R), which is relevant to N = 1 Liouville supergravity. We provided several a

posteriori checks of this proposal, and explained how it is included in a calculation of

boundary operator insertions in Liouville supergravity.
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We moreover explained the presence of this quantum group directly from the symmetry

algebra at the Lagrangian level when using the Poisson sigma model description of dilaton

gravity. We gave several arguments for the equivalence between Liouville (super)gravity

and sinh dilaton (super)gravity.

There is clearly much left to explore. We end here by stating some open problems and

speculations, for which we defer the full treatment to future work.

Relation to integrability techniques. Representation matrix elements of mixed

parabolic type have appeared before in the context of integrability of open Toda chains [89]

and their “relativistic” (or q-deformed) counterparts [90]. For these models, simultaneous

eigenfunctions of the N -Toda Hamiltonians (and their duals) can be found by applying

the quantum inverse scattering method (QISM) to obtain eigenfunctions written in the

Mellin-Barnes integral representation [53, 91–93]; see also [94]. These eigenfunctions coincide

with Whittaker functions as constructed purely from conventional representation theory

techniques. In our work, we have applied the representation theory framework to find the

supersymmetric q-deformed Whittaker functions of the simplest supergroup OSp(1|2,R).

We moreover showed that they solve a system of finite difference equations (3.45). It would

be interesting to learn whether integrability techniques could be applied to supersymmetric

Toda systems to provide an alternative derivation of these Whittaker functions. More

broadly, as far as we know, this is — next to the Toda chain systems — only the second

time that these particular representation matrix elements have appeared in a direct physical

context. It would be interesting to see whether integrability techniques could be applied to

more deeply understand these gravitational systems.

As an immediate example, we have been focusing only on the 2-Toda chains (N = 2),

whereas relatively explicit answers for the Whittaker functions have been constructed for

general N . The eigenfunctions of these N -Toda chain models can then be viewed as the

required ingredients for computations in higher-spin sl(N) JT and Liouville gravity. We

leave this as an open avenue for the future.

q a root of unity. When q is a root of unity, and specifically when b2 = p′/p with p′ = 2, it

is well-known that the representation theory of quantum groups is more involved in the sense

that some highest- (or lowest-) weight irreps become reducible but indecomposable due to the

appearance of additional relations of the type (E±)p = 0 [95] (see [96] for a nice review). For

the modular double (2.8), however, next to it not having either a highest- or lowest-weight

irrep (and hence invalidating the presence of the above relations), it is impossible for both q

and q̃ to be roots of unity simultaneously. Since the representations of the modular double

are defined to be simultaneous representations of both quantum groups, no additional irreps

appear, and one is left with only the continuous self-dual representations to figure as the

complete set of states in gravitational calculations even when q is a root of unity.

We have indeed seen this in [42, 43]: the case that q is an odd root of unity corresponds

to the (2, p) minimal string with p odd, for which the structure of the amplitudes (1.4)

is similar. In particular, the Whittaker function is still the same as for generic values of

q. The special features of the representation theory for q a root of unity do play a role,

though, for the minimal string: the boundary operator insertions are taken from a discrete

– 38 –



J
H
E
P
0
5
(
2
0
2
2
)
0
9
2

set of values for which Sb(2βM ) diverges. In detail, βM = −bj where j = 0, 1
2 , . . . ,

k
2 and

and q = e
2πi

p = e
2πi
k−2 . This range of values for boundary operators (the Kac table) is in

one-to-one correspondence with the integrable representations of ̂sl(2,R)k, or with the type

II finite-dimensional representations of Uq(sl(2,R)).

Even though the irreps of the modular double do not qualitatively change when q is a

root of unity, there are some features worth mentioning. When constructing the Whittaker

vectors for the continuous representations in sections 2 and 3, we found that the system of

difference equations (e.g., (2.28)) only has a unique solution (up to normalization) when q

is not a root of unity. The solutions given in those sections are still valid, but there might

exist more exotic solutions when q is a root of unity.

Gravitational boundary conditions. The importance of the mixed parabolic matrix

elements in JT (super)gravity is immediate since they implement the asymptotic AdS

boundary conditions of Brown and Henneaux [34, 36]. These asymptotic conditions were

originally derived in (2 + 1)d, but JT gravity is a direct spherical dimensional reduction and

hence inherits the same boundary conditions. Liouville (super)gravity, on the other hand, is

different; in the bosonic case, it was argued in [42] and reviewed above to correspond to a

dilaton gravity theory with a sinh dilaton potential. We have argued for a similar statement

in the supersymmetric case. The classical solutions of these dilaton gravity models can

be interpreted as Yang-Baxter deformations of the JT solutions [97, 98], and in particular,

the asymptotics is drastically modified, with a curvature singularity at the holographic

boundary. It would be interesting to better understand this asymptotic behavior in the

context of holography. It is tempting to speculate that one can understand this in terms of

a q-deformed boundary CFT (see, e.g., [99]), but more work is needed. Can we reason along

these lines to understand why the same mixed parabolic representation matrix elements

appear to play a role here?

Relation to q-deformed BF description? Aside from the Poisson sigma model La-

grangian discussed in section 4, there is a second description that seems to come closer to

reproducing the actual structure of amplitudes: this is q-deformed BF theory [85, 86].

Let us try to set up the problem a bit more explicitly. For simplicity, we focus on

the bosonic model governed by Uq(sl(2,R)). One way to write down a Lagrangian for the

q-deformed BF model is to make the B-field periodic in the undeformed BF model:

SBF =

∫

Tr(BF ), B ∼ B +
2i

b2
. (5.1)

The calculation of the disk partition function proceeds by abelianization of the B-field,

after which the periodicity constraint on B causes the Jacobian of this procedure to “q-

deform.” For compact groups, this Jacobian becomes the quantum dimension dimq R of

the representation R appearing in amplitudes. For noncompact sl(2,R), the problem is to

find a way to end up with the continuous measure ρ(s) = sinh 2πbs sinh 2πs
b in terms of the

s-label of the continuous series irreps.
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Secondly, we add the classical boundary Hamiltonian (4.59):40

S∂ =

∮

Hbdy(B), Hbdy(B) = B+B− +
cosh 2πb2BH

2πb2 sin πb2
, (5.2)

where (B+, B−, BH) are the three sl(2,R) components of B. The abelianization procedure

mentioned above [85, 86] effectively sets B+ = B− = 0 and reduces the calculation to an

integral over the Cartan contribution BH . This reduces the above Casimir to its classical

description (4.62), and was in fact a motivation for writing that expression in the first place.

The result of this calculation should then be directly matched with Liouville gravity

amplitudes [42]. It would be interesting to fill in the details of this argument.

It is important to emphasize that we implement two independent modifications compared

to the undeformed case: the periodicity of B (following [85]), and the change of boundary

Hamiltonian from a quadratic function to a hyperbolic-cosine function. More broadly,

earlier work has classified which ingredients in 2d YM amplitudes (the measure, the Casimir,

the exponential) become q-deformed [100], and it would be interesting to understand how

and why Liouville (super)gravity (or sinh dilaton (super)gravity) requires these specific

deformations of the JT amplitudes.

A direct Lagrangian rewriting of the q-deformed BF model (5.1)–(5.2) as the specific

dilaton gravity model (4.4) or in terms of its Poisson sigma model description would shed

significant light on these results.

3d gravity. It has been known for a long time that calculations in pure 3d gravity,

when described in Chern-Simons language, are likewise governed by q-deformed SL(2,R)

ingredients (see, e.g., [101, 102]). However, there are some differences. In particular, when

computing the solid torus amplitude (which is the 3d analogue of the 2d disk diagram), one

finds that the Casimir contribution is not q-deformed but the measure ρ(s) is.41

The fact that the Casimir operator is not q-deformed in 3d gravity amplitudes can be

appreciated rather quickly by writing out the Chern-Simons action on a solid torus M in

(t, r, φ)-coordinates as:

SCS =
k

4π

∫

M
d3x εµνρ Tr

(

Aµ∂νAρ +
2

3
AµAνAρ

)

(5.3)

=
k

2π

∫

M
Tr (Aφ(∂tAr − ∂rAt) +Ar∂φAt +Aφ[At, Ar]) +

k

4π

∮

∂M
TrA2

t ,

imposing the boundary condition At = Aφ|∂M. This action dimensionally reduces to the

2d BF action upon identifying B ≡ Aφ and setting ∂φ = 0. In particular, one can already

see the appearance of the boundary Hamiltonian in the form of the quadratic Casimir, and

not in terms of a q-deformed version of it. We leave further investigation to future work.

40This term will break large gauge invariance, as it should. Gauge transformations that vanish at the

boundary are preserved.
41This calculation will be reported elsewhere.
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h

Figure 3. Deformed JT gravity disk amplitude with two boundary operators, interpretable as

undeformed JT gravity with a gas of defects localized in the interior of the disk (blue blob).

Arbitrary dilaton gravity models. Recent work [79, 103, 104] has analyzed deforma-

tions of JT gravity. These deformations correspond to modified dilaton potentials of the type

W (Φ) = 2Φ +
∑

i

εie
−αiΦ, π < αi < 2π. (5.4)

Such potentials preserve the JT asymptotics as Φ → ∞, which, owing to the coordinate

choice of (4.30) where Φ = r, matches with the asymptotic AdS2 region r → +∞. Am-

plitudes in such models can be found by series-expanding the corrections and interpreting

them as a gas of defects (of the type studied in [105]) within JT gravity. The result is a

modified density of states that incorporates this defect gas. It is not difficult to convince

oneself, again by series-expanding the deformation, that a similar procedure is possible

when including boundary operators (figure 3).

The result is that in any amplitude with multiple boundary operators, one only replaces

the density factors by the deformed ones:

ρJT(k) = k sinh(2πk) → ρdef(k), (5.5)

where ρdef(k) is given in [103, 104]. The vertex functions (or 3j-symbols) and propagation

factors in the amplitude are the same as for undeformed JT gravity. This observation was

also made in [106], and argued to hold even when including higher-genus corrections.

Liouville (super)gravity provides an exception to these statements, since the 3j-symbols

that we require there (2.45) are not those appearing in JT gravity amplitudes (2.46). The

interpretation is that the dilaton (pre)potential of Liouville (super)gravity does not fall into

the class of JT deformations of (5.4), due to the asymptotics of the sinh function.

This set of observations has an intuitive bulk interpretation. The vertex functions

themselves are drawn as three-vertices at the holographic boundary (figure 3). Since the gas

of defects for the deformations (5.4) does not reach the actual boundary, these local three-

vertices do not feel the deformation. However, if the gas of defects does reach the boundary,

as it does when viewing Liouville (super)gravity as a deformation of JT (super)gravity, then

the resulting vertex functions are different. This leads to a division of dilaton gravity models

into different classes, where all entries within a given class have the same dilaton asymptotics

and hence the same set of vertex functions, but different densities of states.42 This is espe-

cially intriguing when combined with the Poisson sigma model description of section 4, in

which generic dilaton potentials lead to nonlinear symmetry algebras and apparently similar

42It would be interesting to collect evidence for this classification, e.g., by looking at the set of deformations

that preserve the sinh asymptotics of Liouville gravity [107].
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structures for the amplitudes, even though there is no particularly useful known group struc-

ture underlying the generic case. It would be interesting to understand this situation better.

From gauge theory to gravity. Locally, lower-dimensional gravity is described by a

gauge theory. Globally, however, there are mismatches that need to be properly appreciated

before making detailed comparisons. Let us interpret our results from this perspective.

The analysis of sections 2 and 3 required explicit knowledge of the modular double of

the quantum group Uq(osp(1|2,R)), and not just the quantum group itself. In section 4, we

saw no indication of this modified structure. This observation parallels what happens in the

undeformed case [37], where manipulations at the level of the Lagrangian and its symmetry

group are insensitive to global algebraic information. This information is contained in the

precise path integration cycle for the gauge field Aµ in the Poisson sigma model (PSM)

description or the q-deformed BF description mentioned above. The restriction is enforced

by demanding that the gauge field Aµ correspond to smooth geometries (no punctures or

cusps) [108, 109], which can be done very explicitly in 2d. See, e.g., section 4.1 of [37] for

an intuitive argument. In the undeformed case, the more precise algebraic structure that

implements this smoothness constraint is the positive subsemigroup, which can in turn be

found as the b → 0 limit of the modular double of the quantum group Uq(sl(2,R)). This

was the main motivation for pursuing the subsemigroup approach in [31, 32, 37].43

Next to this modification of the algebraic structure, a second modification is necessary

to make contact with gravity: one needs to take into account the overcounting induced by

large diffeomorphisms. For JT gravity, this is done in the context of hyperbolic geometry,

and is baked into the definition of Weil-Petersson volumes [16, 110]. For Liouville gravity,

in the particular case where the matter sector is the (2, p) minimal model with p an odd

integer, an analogous statement was made in [42] in terms of a q-deformation of these

Weil-Petersson volumes. This modification is required to make contact with the description

of the theory in terms of Hermitian matrix models.

Finally, a third step is to sum over topologies by hand. This is not natural from the

gauge theory perspective, but it is easy to accommodate at least at the perturbative level

in the genus expansion.

Our discussion implies that all three steps for going from gauge theory to gravity (re-

stricting the algebraic structure, modding out by large diffeomorphisms, and summing over

topologies) are also necessary in the specific case of Liouville gravity. From the dilaton gravity

perspective, both JT and Liouville gravity simply correspond to specific choices of dilaton po-

tential. Therefore, it is natural to conjecture more generally that going from q-deformed BF

or PSM amplitudes to dilaton gravity amplitudes requires the same three-step modification.44

We summarize the multi-step process to go from gauge theory to gravity in table 1.

43We remark that going to the modular double might look like an expansion instead of a reduction of the

model, but it has been shown [57, 58, 61–63] that the nontrivial irreducible representations of the modular

double consist only of the continuous representations studied in sections 2 and 3, and are hence in fact a

subset of those of the quantum group that one started with.
44As preliminary evidence, performing the second and third steps is natural whenever one needs to match

onto a matrix model description. And indeed, at least for the dilaton gravity models of the class (5.4), it

was proven in [103, 104] that these models are dual to matrix integrals.
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Start with gauge theory SL(2,R) BF Uq(sl(2,R)) q-BF or PSM

Step 1

Restrict to smooth geometries

positive subsemigroup

SL+(2,R)

modular double

Uq(sl(2,R)) ⊗ Uq̃(sl(2,R))

Step 2

Remove large diffeos
Weil-Petersson volumes q-Weil-Petersson volumes

Step 3

Sum over topologies
ad hoc ad hoc

End with gravity JT gravity Liouville gravity

Table 1. Passage from gauge theory to gravity as a multi-step process.
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A Liouville (super)gravity: setup and fixed-length amplitudes

We recall here the definition of 2d Liouville gravity and supergravity, as well as the

computation of fixed-length amplitudes therein.

The non-critical string is defined by coupling a 2d CFT described by the action SM [χ; g]

to the gravitational fields as

Z =
∑

topologies

∫ DgDχ
Vol(Diff)

e−SM [χ;g]−µ0

∫

Σ
d2z

√
g, (A.1)

where a bare cosmological constant term has been added. It is well-known that upon going

to conformal gauge gµν = e2bφĝµν , where ĝ is a reference metric, and taking into account

the conformal anomaly, the action reduces to a sum of three 2d CFTs: SL +SM +Sgh, with

vanishing conformal anomaly cL + cM + cgh = 0. The three pieces are as follows:

• The Liouville action describing the conformal factor of the 2d geometry:

SL =
1

4π

∫

Σ
d2x

[

(∇̂φ)2 +QR̂φ+ 4πµe2bφ
]

+
1

2π

∮

∂Σ
dx
[

QK̂φ+ 2πµBe
bφ
]

, (A.2)

where Q = b+ 1/b and cL = 1 + 6Q2 > 25. For our purposes, we added a boundary

term with boundary cosmological constant µB, allowing for Neumann-like boundary

conditions on φ describing a piece of FZZT-brane on which the worldsheet can end.

• The matter 2d CFT with cM = 1 − 6q2 where q = 1/b− b. For the purposes of this

paper, it is convenient to parametrize it as a timelike Liouville CFT:

SM [χ] =
1

4π

∫

Σ
d2x

[

−(∇̂χ)2 − qR̂χ+ 4πµMe2bχ
]

− 1

2π

∮

∂Σ
dx qK̂χ , (A.3)
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where we take Dirichlet boundary conditions on the field χ → ∞ on any boundary.

This corresponds to the vacuum brane boundary condition.

• The bc ghost CFT Sgh with cgh = −26.

We are interested in boundary vertex operators. Within the Liouville parametrization

above, primary CFT operators are constructed as:

Liouville : eβφ ∆β = β(Q− β), (A.4)

Matter : eβM χ ∆βM
= βM (q + βM ), (A.5)

such that we get the open string tachyon vertex operators by gravitationally dressing the

matter part as

BβM
∼
∮

∂Σ
dx eβM χeβφ ' ceβM χeβφ (A.6)

with the restriction that ∆βM
+ ∆β = 1, which leads to β = b− βM .45 Amplitudes with

insertions of these vertex operators on different geometries can then be computed, in

principle, using string theory techniques.

From the 2d gravity perspective, we can obtain amplitudes of fixed boundary length by

Fourier transforming any amplitude as

−i
∫

iR
dµB e

µB`L · · · , (A.7)

since by (A.2), we bring down a factor of δ(`L − ∫

ebφ) in the path integral, where
∫

ebφ is

precisely the boundary length as measured by the 2d metric gµν that we started with.

The extension to Liouville supergravity proceeds along similar lines. We only point out

some of the differences here.

Starting with any 2d matter SCFT and coupling to 2d supergravity, we can reach the

combined action SL + SM + Sgh in terms of the N = 1 super-Liouville CFT, the matter

SCFT that we started with, and the bc and βγ ghost systems. The total central charge

again vanishes, cL + cM + cgh = 0, where cgh = −15 in this case.

Similarly as in the bosonic case, we can construct worldsheet diffeomorphism-invariant

boundary operator insertions as

B =
(

ce−ϕ)e
β
2

φe
βM

2
χ, (A.8)

where now ∆β = 1
2β(Q−β) and ∆βM

= 1
2βM (q+βM ), restricted according to ∆β + ∆βM

=

1/2. The solution is again β = b− βM . The factor of ce−ϕ is the ghost piece of the vertex

operator. However, the open string tachyon vertex operators of interest here can be written

as follows:

BβM
=
(

ce−ϕ)
[

e
β
2

φe
βM

2
χ + (superpartner)

]

, (A.9)

where we added the worldsheet superpartner of the operator in a particular linear combina-

tion. It was observed in [43] that it is this combined boundary operator whose amplitudes

behave well in the fixed-length basis.

45The solution β = 1/b+ βM is related by a Liouville reflection β → Q− β.
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For the super-Liouville part, one can analogously define FZZT boundary conditions

and, from there, transform to the fixed-length basis in the original metric:

−i
∫

C
dµB e

µ2
B`L · · · , C = µ2

B − µ : −i∞ → +i∞, (A.10)

where the integration is performed along the half-hyperbola C in the µB-plane. This again

brings down a factor of δ(`L − ∫

ebφ) in the functional integral.

B Special functions and identities

We collect and define here the double sine functions and Barnes identities that we need in

the main text.

B.1 Double sine functions Sb(x)

The Barnes double gamma function Γ2(z|ω1, ω2) is defined by the series expression

log Γ2(z|ω1, ω2) ≡




d

dt

+∞
∑

n1,n2=0

1

(z + ω1n1 + ω2n2)t





∣

∣

∣

∣

∣

∣

t=0

. (B.1)

The “b-deformed” gamma function Γb(x) is conventionally defined so that Γb(Q/2) = 1:

Γb(x) ≡ Γ2(x|b, b−1)

Γ2(Q/2|b, b−1)
. (B.2)

It satisfies the shift properties

Γb(x+ b) =

√
2πbbx−1/2

Γ(bx)
Γb(x), Γb(x+ 1/b) =

√
2πb−x/b+1/2

Γ(x/b)
Γb(x). (B.3)

The double sine function Sb(x) is then constructed as

Sb(x) ≡ Γb(x)

Γb(Q− x)
, (B.4)

which satisfies the defining functional relations

Sb(Q−x) = 1/Sb(x), Sb(x+b) = 2sinπbxSb(x), Sb

(

x+
1

b

)

= 2sin
πx

b
Sb(x). (B.5)

The double sine functions satisfy the following q-deformed generalization of the first Barnes

lemma:
∫ +∞

−∞
dτ eπτ(α+β+γ+δ)Sb(α+ iτ)Sb(β + iτ)Sb(γ − iτ)Sb(δ − iτ) (B.6)

= eπi(αβ−γδ)Sb(α+ γ)Sb(α+ δ)Sb(β + γ)Sb(β + δ)

Sb(α+ β + γ + δ)
.

In section 3, we require the combinations

SNS(x) = Sb

(

x

2

)

Sb

(

x

2
+
Q

2

)

, SR(x) = Sb

(

x

2
+
b

2

)

Sb

(

x

2
+

1

2b

)

, (B.7)
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which satisfy

SNS(Q− x) = 1/SNS(x), SR(Q− x) = 1/SR(x), (B.8)

as well as the crucial functional shift relations

SNS(x+ b) = 2 cos

(

πbx

2

)

SR(x), SNS

(

x+
1

b

)

= 2 cos

(

πx

2b

)

SR(x), (B.9)

SR(x+ b) = 2 sin

(

πbx

2

)

SNS(x), SR

(

x+
1

b

)

= 2 sin

(

πx

2b

)

SNS(x).

B.2 q-deformed supersymmetric Barnes identity

For external indices ρA,B,C = 0, 1, as well as S0(x) = SR(x) and S1(x) = SNS(x), we have

the q-deformed supersymmetric Barnes identity [59]:

∑

σ=0,1

∫ +∞

−∞
dτ e− πτ

2
(α+β+γ+δ)SρA+σ(α+ iτ)SρB+σ(β + iτ)SρC+σ(γ − iτ)S1+σ(δ − iτ)

= 2e− iπ
2

(αβ−γδ)SρA+ρC+1(α+ γ)SρA(α+ δ)SρB+ρC+1(β + γ)SρB (β + δ)

SρA+ρB+ρC (α+ β + γ + δ)
.

(B.10)

Addition of indices takes place modulo 2. It is convenient for later reference to unpack this

identity into

∫ +∞

−∞
dτ e− πτ

2
(α+β+γ+δ) × [SR(α+ iτ)SR(β + iτ)SNS(γ − iτ)SNS(δ − iτ)

+ SNS(α+ iτ)SNS(β + iτ)SR(γ − iτ)SR(δ − iτ)]

= 2e− iπ
2

(αβ−γδ)SR(α+ γ)SR(α+ δ)SR(β + γ)SR(β + δ)

SNS(α+ β + γ + δ)
(B.11)

and

∫ +∞

−∞
dτ e− πτ

2
(α+β+γ+δ) × [SNS(α+ iτ)SNS(β + iτ)SNS(γ − iτ)SNS(δ − iτ)

+ SR(α+ iτ)SR(β + iτ)SR(γ − iτ)SR(δ − iτ)]

= 2e− iπ
2

(αβ−γδ)SNS(α+ γ)SNS(α+ δ)SNS(β + γ)SNS(β + δ)

SNS(α+ β + γ + δ)
(B.12)

and

∫ +∞

−∞
dτ e− πτ

2
(α+β+γ+δ) × [SR(α+ iτ)SNS(β + iτ)SR(γ − iτ)SNS(δ − iτ)

+ SNS(α+ iτ)SR(β + iτ)SNS(γ − iτ)SR(δ − iτ)]

= 2e− iπ
2

(αβ−γδ)SNS(α+ γ)SR(α+ δ)SR(β + γ)SNS(β + δ)

SNS(α+ β + γ + δ)
. (B.13)

It is this last identity that we need in section 3.
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C Alternative realization of the Uq(osp(1|2,R)) continuous series

An alternative realization of the algebra

KF± = q± 1
2F±K,

{

F+, F−
}

= − K2 −K−2

8(q1/2 − q−1/2)
, (C.1)

mirroring the bosonic realization (2.5) studied in [53], is found by setting

K = e−πib2jTib/2

(

1 0

0 q1/2

)

, (C.2)

F+ =







0 −1
2e

2πbt q1/2e2iπb2j+q3/2e−2iπb2jTib

q1/2+q−1/2

1
4

e2iπb2j−e−2iπb2jTib

q1/2−q−1/2 0






, (C.3)

F− =





0 1
2

q1/2+q−1/2T−ib

q1/2+q−1/2

−1
4e

−2πbt −1+T−ib

q1/2−q−1/2 0



 , (C.4)

where α = 1/2b− 2bj as in the quantum algebra (2.5) in the main text.

Expanding these operators in the b → 0 limit, we obtain the differential operators

Ĥ =

(

x∂x − j 0

0 x∂x − j + 1/2

)

= x∂x +
1

2
ϑ∂ϑ − j, (C.5)

F̂+ =

(

0 −1
2x

−1
2x∂x + j 0

)

= −1

2
x∂ϑ − 1

2
xϑ∂x + jϑ, (C.6)

F̂− =

(

0 1
2

1
2∂x 0

)

=
1

2
(∂ϑ + ϑ∂x) , (C.7)

Ê+ =

(

−x2∂x + 2jx 0

0 −x2∂x + 2jx− x

)

= −x2∂x − xϑ∂ϑ + 2jx, (C.8)

Ê− =

(

∂x 0

0 ∂x

)

= ∂x, (C.9)

which constitute the infinitesimal version of the group action of OSp+(1|2,R) on

L2(R+1|1) [37]:

(g · f)(x, ϑ) = (bx+ d+ δϑ)2jf

(

ax+ c+ βϑ

bx+ d+ δϑ
,−αx+ γ − eϑ

bx+ d+ δϑ

)

. (C.10)

This is the Borel-Weil realization of the principal series representations of OSp+(1|2,R),

defined on L2 functions on the super half-line R+1|1 ≡ {(x, ϑ) |x > 0}.

This construction mirrors the results (2.9) in the bosonic case. It would be interesting

to develop the story from the perspective of this carrier space.

D q-deformed BesselI function

The classical modified Bessel function of the first kind can be written as

Iα(x) =
1

2πi

∫

C
dt

Γ(−t)
Γ(α+ t+ 1)

i2t
(

x

2

)2t+α

=
+∞
∑

n=0

1

n! Γ(n+ α+ 1)

(

x

2

)2n+α

, (D.1)
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t z

C

C

Figure 4. Left: contour C used to define Iα(x). Right: contour C used to define the q-deformed

version Iε
α(x).

where the second equality results from picking up the residues from the poles of the Γ(−t)
in the right half-plane. The initial contour C runs from infinity at −π/2 < arg(t) < 0 to

infinity at 0 < arg(t) < π/2, encircling the origin, as in figure 4 (left).

Since Iα(x) is real for α ∈ R, we can write it equivalently as

Iα(x) =
1

2πi

∫

C
dt

Γ(−t)
Γ(α+ t+ 1)

cosπt

(

x

2

)2t+α

. (D.2)

In this form, one readily proves the equality46

Kα(x) =
π

2 sin πα
(I−α(x) − Iα(x)) . (D.3)

We define the q-deformed BesselI function by the integral

Iε
α(x) ≡ be−απx

∫

C
dζ giζ

µ g
iζ+α
ν

Sb(−iζ)
Sb(iζ + α+ b)

cosh
πζ

b
e−πiε(ζ2−αiζ)e−2πiζx, (D.4)

with the contour C of figure 4 (right).

Using the elegant residue formula

Res Sb|x=−mb−n/b =
b

2π

(−)n+m+nm

Sb(mb+ n/b+ b)
, (D.5)

the integral (D.4) can be evaluated by contour deformation into the lower half-plane:

Iε
α(x) = b2

+∞
∑

n,m=0

(−)n+m+nmg
mb+n/b
µ g

mb+n/b+α
ν

Sb(bm+ n/b+ b)Sb(bm+ n/b+ α+ b)
e−(2mb+2n/b+α)πx

+ b2
+∞
∑

n,m=0

(−)n+m+nmg
mb+n/b−α+1/b
µ g

mb+n/b+1/b
ν

Sb(bm+ n/b+ b)Sb(
2
b + bm+ n/b− α+ b)

e−(2mb+2/b+2n/b−α)πx.

(D.6)

The classical b → 0 limit can also be calculated directly, and indeed yields the usual BesselI

function (φ = πbx):

lim
b→0

Iα(x) = Iα
b

(

2
√
µνe−φ). (D.7)

46Namely, by using the Euler reflection formula, and a shift t → t+ α. After combining both integrals,

one can move the contour to follow iR, to the left of the origin.
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One can see this either from the Mellin-Barnes integral representation of (D.4) or from the

Taylor series expansion (D.6),47 yielding back the classical formulas (D.1).

The function (D.4) is an eigenfunction of the finite difference equation
(

Tib + T−ib + gb
µg

b
νq

εe−2πbxT−εib

)

f(x) = 2 cosπbα f(x), (D.8)

where we left the parameter ε arbitrary (corresponding to different quantizations of the

same underlying classical problem). We are most interested in the cases ε = ±1 and ε = 0.48

The second eigenfunction of this finite difference equation is

Kε
α,M (x) = bπe−απx

∫ +∞

−∞
dζ giζ

µ g
iζ+α
ν Sb(−iζ)Sb(−α− iζ)e−πiε(ζ2+2sζ)e−2πiζx, (D.9)

which is the usual q-deformed BesselK. Writing the q-deformed BesselI as (D.4), we have

the q-deformed relation

Kε
α(x) =

π

2 sin πα
b

(Iε
−α(x) − Iε

α(x)
)

, (D.10)

generalizing the classical version (D.3). Satisfying this relation can be viewed as a require-

ment for any candidate q-deformation of the BesselI function.

The limit gb
µg

b
ν → 0 allows for a truncation of the series (D.6) to the n = m = 0 term

of the first line, and gives an exponential function:

lim
gb

µgb
ν→0

Iα(x) =
bgα

ν

Sb(α+ b)
e−απx. (D.11)

We do not care about the prefactor since this can be absorbed into a redefinition of the

operator of interest.

As b → 0, the difference equation (D.8) limits to (φ = πbx):

(

−∂2
φ + µνe2φ

)

f(φ) = −α2

b2
f(φ), (D.12)

with independent solutions

Iα
b

(

2
√
µνe−φ), Kα

b

(

2
√
µνe−φ). (D.13)

D.1 Extension to Uq(osp(1|2,R))

Let us try to generalize this discussion to the case of Uq(osp(1|2,R)). We look for a second so-

lution to the system of difference equations (3.45), aside from (3.44). We propose the function

ψε,±
α,gµgν

(x) ≡ be−απx
∫

C
dζ giζ

µ g
iζ+α
ν e−πi ε

2
(ζ2−αiζ)e−πiζx (D.14)

×
(

SNS(−iζ)
SNS(iζ + α+ b)

cosh
πζ

2b
± SR(−iζ)
SR(iζ + α+ b)

sinh
πζ

2b

)

,

47We need to set n = 0 in the latter evaluation, since the poles with n 6= 0 from the Sb function are shifted

to infinity in the classical limit. The poles resulting in the second line of (D.6) (arising from the zeros of Sb

in the denominator of (D.4)) also shift to infinity.
48The relevant Whittaker function for Liouville gravity turns out to have ε = ±1, whereas the ε = 0 case

is the simplest toy example.
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which satisfies the same pair of difference equations as before:

(

Tib − T−ib − igb
µg

b
νe

−πbxqε/2T−iεb

)

ψε,+
α,gµgν

(x) = −2i sin πbαψε,−
α,gµgν

(x), (D.15)
(

Tib − T−ib + igb
µg

b
νe

−πbxqε/2T−iεb

)

ψε,−
α,gµgν

(x) = −2i sin πbαψε,+
α,gµgν

(x). (D.16)

A quick way to see this is to rewrite (D.14) as

ψε,±
α (x) = 2be−απx

∫

C
dζ giζ

µ g
iζ+α
ν e−πi ε

2
(ζ2−αiζ)e−πiζx (D.17)

×
(

SNS(−iζ)SR(−iζ − α) cos

(

π

2b
(−iζ − 2α)

)

cosh
πζ

2b

± SR(−iζ)SNS(−iζ − α) sin

(

π

2b
(−iζ − 2α)

)

sinh
πζ

2b

)

.

This expression is almost the same as that for the Whittaker function (3.44), up to setting

α = is and the presence of the hyperbolic functions cosh and sinh. The latter map into

one another under ζ → ζ + ib. Hence this is a solution to the finite difference equations

as long as the same is true of the Whittaker function (3.44), which we already know.

In the gb
µg

b
ν → 0 limit of (D.14), the pole at ζ = 0 dominates the first term (just

like in the bosonic case) and the pole at ζ = −ib dominates the second term. This leads

schematically to the function

#e−παx + #e−π(α+b)x, (D.18)

which will also be seen in the classical limit (D.19).

In the classical limit, where we let φ = πbx, gµ = (4πb2µ)
1
2b , gν = (4πb2ν)

1
2b , we get

ψε,±
α (x) →

√

e−φ

2

(

I−1/2+ α
b

(

2
√
µνe−φ

)

± I1/2+ α
b

(

2
√
µνe−φ

))

, (D.19)

which, for z = 2
√
µνe−φ, is the set of functions solving the second-order ODE

(

−z2∂2
z − z∂z ± z + z2

)

ψ(z) = −α2ψ(z). (D.20)

E Whittaker function in the η = −1 sector

We can emulate our construction of amplitudes in the η = −1 sector by considering the

following ad hoc “Whittaker function” given by the expression

ψ̃ε,±
s,gµgν

(x) = e−πisx
∫ +∞

−∞
dζ giζ

µ g
iζ+2is
ν e−πi ε

2
(ζ2+2sζ)e−πiζx (E.1)

× [SNS(−iζ)SNS(−2is− iζ) ± SR(−iζ)SR(−2is− iζ)] .

The only difference between this expression and (3.44) is the combination of SNS and SR

appearing on the second line.
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These functions satisfy the following system of difference equations:49

(Tib + T−ib) ψ̃
ε,+
s,gµgν

(x) − gb
µg

b
νe

−πbxqε/2T−iεbψ̃
ε,−
s,gµgν

(x) = 2 cosh πbs ψ̃ε,−
s,gµgν

(x), (E.2)

(Tib + T−ib) ψ̃
ε,−
s,gµgν

(x) + gb
µg

b
νe

−πbxqε/2T−iεbψ̃
ε,+
s,gµgν

(x) = 2 cosh πbs ψ̃ε,+
s,gµgν

(x). (E.3)

It would be interesting to understand whether there exists a proper group-theoretic origin

of these functions. If so, it would need to involve q-deformation in an essential way, since

the underlying classical superalgebra osp(1|2,R) does not contain this additional freedom.

These “Whittaker functions” satisfy the orthogonality property

∫ +∞

−∞
dx ψ̃ε,±

s1,gµgν
(x)ψ̃ε,±

s2,gµgν
(x)∗ =

4δ(s1 − s2)

sinh πs2
b sinh πbs2

, (E.4)

from which one finds a Plancherel measure ρ(s) ∼ sinh πs
b sinh πbs quite similar to that in

the bosonic Uq(sl(2,R)) scenario.

F Nonlinear Lie (super)algebras

An alternative to the language of (graded) Poisson sigma models is that of nonlinear

(super)gauge theory. Namely, a theory of 2D dilaton (super)gravity can be viewed as a

gauge theory based on a nonlinear Lie (super)algebra [71, 72, 111]. We briefly review this

terminology here.

It is important to note that, from the Poisson algebra point of view, all of the nonlinear

Lie algebras below describe “classical” Poisson brackets, before quantization of the Poisson

structure. Therefore, in all equations that present an abstract bracket on the left-hand side,

the multiplication operation on the right-hand side is (graded-)commutative.

Nonlinear gauge theory. A nonlinear Lie algebra with basis {T i} is specified by a

generalized Lie bracket

[T i, T j ] = P ij(T ), (F.1)

where P ij = −P ji is a polynomial. Multiplication takes place in the polynomial ring of the

{T i}, and is hence commutative. The generalized Jacobi identity reads

∂`P
[ijP k]` = 0. (F.2)

An ordinary Lie algebra with structure constants f ijk is recovered upon setting P ij(T ) =

f ijkTk.

49For convenience, we note that

2 cosh(πb(ζ + s)) = 4 sinh
πb

2
(ζ + 2s) sinh

πbζ

2
+ 2 cosh πbs

= 4 cosh
πb

2
(ζ + 2s) cosh

πbζ

2
− 2 cosh πbs.
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The minimal field content of a nonlinear gauge theory consists of an adjoint scalar Xi

and a gauge field Ai. A nonlinear gauge transformation with parameter ε takes the form

δX i = −P ji(X)εj ,

δAi = −dεi − ∂iP
jk(X)Ajεk. (F.3)

In two dimensions, there exists an invariant action of the form S =
∫

Ω where

Ω ≡ XidAi +
1

2
P jk(X)Aj ∧Ak, (F.4)

δΩ = d((P jk(X) −Xi∂iP
jk(X))Ajεk).

The equations of motion following from (F.4) are Fi = 0 and DX i = 0, where we define the

field strength and covariant derivative by

Fi = dAi +
1

2
∂iP

jk(X)Aj ∧Ak, (F.5)

DX i = dX i + P ij(X)Aj . (F.6)

Note that

δFi = −∂iP
jk(X)Fjεk −DX`∂`∂iP

jk(X) ∧Ajεk, (F.7)

δ(DX i) = −DXk∂kP
ji(X)εj . (F.8)

In particular, the field strength Fi transforms inhomogeneously, where the inhomogeneous

terms vanish in the case of a linear gauge theory. By (F.2), the commutator algebra of the

transformations (F.3) closes on shell with respect to the action (F.4).

Liouville gravity with dilaton potential (4.33) is a nonlinear gauge theory with gauge

algebra Uq(sl(2,R)) (q = eπib2
). The connection between sinh dilaton gravity and nonlinear

q-gauge theory was already observed in [98]. In the limit b → 0, we obtain JT gravity with

V (Φ) = Φ, whose first-order action is that of an sl(2,R) BF theory.

Nonlinear supergauge theory. A nonlinear Lie superalgebra with basis {T i} takes the

form

[T i, T j ] = P ij(T ), (F.9)

where the bracket is Z2-graded and P ij = −(−)σiσjP ji. Multiplication takes place in the Z2-

graded polynomial ring of the {T i}. “Classically,” the graded Jacobi identity takes the form
∑

cyc(ijk)

(−)σiσkP i`∂`P
jk = 0,

∑

cyc(ijk)

(−)σiσk∂R
` P

ijP `k = 0, (F.10)

written in terms of left or right derivatives, respectively.50 When we take derivatives to

act from the left (right), we write variations on the left (right) so as to obtain the correct

signs when anticommuting fermionic quantities.

50These relations correspond to two equivalent ways of writing the “quantum” graded Jacobi identity:

0 = (−)σiσk [Ti, [Tj , Tk]] + (−)σj σi [Tj , [Tk, Ti]] + (−)σkσj [Tk, [Ti, Tj ]]

= (−)σj σi [[Tj , Tk], Ti] + (−)σkσj [[Tk, Ti], Tj ] + (−)σiσk [[Ti, Tj ], Tk].
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Our nonlinear gauge transformations are now

δX i = −εjP ji(X),

δAi = −dεi +Ajεk∂
R
i P

kj(X). (F.11)

We have the invariant action S =
∫

Ω where

Ω ≡ dAiX
i − 1

2
Ai ∧AjP

ji(X), (F.12)

δΩ = d
(

Ajεk
(

∂R
i P

kj(X)Xi − P kj(X)
))

.

Note that the “BF-type” action (F.12) differs by a total derivative from the graded Poisson

sigma model action (4.45) used in the main text:

Ω − d(AiX
i) = Ai ∧ dX i − 1

2
Ai ∧AjP

ji(X). (F.13)

If all fields are bosonic, then the preceding formulas reduce to the bosonic ones.

N = 1 Liouville supergravity with dilaton prepotential (4.44) is a nonlinear supergauge

theory with gauge superalgebra Uq(osp(1|2,R)) (q = eπib2
). In the limit b → 0, we obtain

N = 1 JT supergravity with u(Φ) = Φ, whose first-order action is that of an osp(1|2,R)

BF theory.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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