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ABSTRACT: We investigate the underlying quantum group symmetry of 2d Liouville and
dilaton gravity models, both consolidating known results and extending them to the cases
with N = 1 supersymmetry. We first calculate the mixed parabolic representation matrix
element (or Whittaker function) of Uy(sl(2,R)) and review its applications to Liouville
gravity. We then derive the corresponding matrix element for U,(0sp(1]2,R)) and apply it
to explain structural features of N' =1 Liouville supergravity. We show that this matrix
element has the following properties: (1) its ¢ — 1 limit is the classical OSp™*(1|2,R)
Whittaker function, (2) it yields the Plancherel measure as the density of black hole states
in A/ = 1 Liouville supergravity, and (3) it leads to 3j-symbols that match with the coupling
of boundary vertex operators to the gravitational states as appropriate for A = 1 Liouville
supergravity. This object should likewise be of interest in the context of integrability of
supersymmetric relativistic Toda chains. We furthermore relate Liouville (super)gravity
to dilaton (super)gravity with a hyperbolic sine (pre)potential. We do so by showing that
the quantization of the target space Poisson structure in the (graded) Poisson sigma model
description leads directly to the quantum group Uy(s[(2,R)) or the quantum supergroup
Uy(osp(1]2, R)).
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Figure 1. Left: wavefunction ¢ ., (g) in a mixed parabolic basis as a two-boundary state. Right:
two-boundary slicing of the disk.

1 Introduction and overview

Jackiw-Teitelboim (JT) gravity in two dimensions [1-26] lies at the heart of the recent
renaissance in the study of lower-dimensional gravitational models. Exploiting its first-order
formulation in terms of s[(2,R) BF theory [27-30], many amplitudes in this theory can be
explicitly and exactly computed [31-33].

An important ingredient in the computation of gravitational amplitudes in BF language
is the following representation matrix element of s[(2,R):

Yrwu(9) = (R, V| g|R, 1), (1.1)

where both indices 1 and v are fixed in a “mixed parabolic basis.” This fixing originates
from the holographic boundary conditions, known from the work of Brown and Henneaux
on 3d gravity [34] and applied to pure 3d gravity in [35, 36]. This basis is called “mixed”
because the bra and ket of this equation are constrained by different parabolic generators
of sl(2,R):

EY|R,p) =—p|R,p), (E)'Rv)=vIRv), pv>0, (1.2)

where we write {H, E*T, E~} for the Cartan-Weyl basis of s[(2,R). These matrix ele-
ments play the role of wavefunctions on Cauchy slices with both endpoints at holographic
boundaries, as shown in figure 1 (left).

This description in terms of representation matrix elements can be derived directly in
the BF or 2d Yang-Mills language [32]. In particular, the fixing of the representation indices
corresponds to considering a particular coset of the underlying SL(2,R) structure.! One can
then utilize this slicing on different surfaces with boundaries to compute different amplitudes
in these gravity models. An example is the disk amplitude shown in figure 1 (right).

In the mathematical literature, matrix elements with the particular parabolic con-
straints (1.2) are called Whittaker functions [38—41]. Due to their importance for gravita-
tional calculations with holographic boundaries, we will sometimes also call them gravi-
tational matriz elements. These representation matrix elements are constructed from states
that diagonalize the parabolic generators as in (1.2): these states are called Whittaker vectors.

'n fact, one starts with a slightly different algebraic structure than a group: it was argued in [31, 32, 37)
to be the positive subsemigroup SL* (2, R), whereas [33] considers a particular limit of the universal cover of
SL(2,R).



A surprising recent development is that a variety of different gravitational models
also exhibit the same structure as in JT gravity. This observation applies in particular
to Liouville gravity amplitudes in the fixed-length basis [42, 43], where the gravitational
matrix element in question is a Whittaker function of (the modular double of) the quantum
group Uy(sl(2,R)). Using this matrix element, one can for instance determine the disk
boundary tachyon two-point function in Liouville gravity:

4y

Bg,, Bg,, = <BBMB,81W>£17£2 : (1.3)

b

The real parameter [5j; corresponds to the matter label of the primary operator in the
matter CFT, with weight Ag,, = By(q+ Ba) where g = 1/b — b. The boundary tachyon
vertex operators Bg,, are separated by length segments of length ¢; and f3. The resulting
Liouville gravity amplitude can be written explicitly as

cosh 27bsq ) cosh 27bsg

+o0
(BB ey 0, = / dsy dsy p(s1)p(s2)e” HatTsnm? ¢ 2 amil inm?
’ 0

Sb(,BM + isl + iSQ)
Sy(28Mm) ’

(1.4)

where p(s) = sinh(27bs) sinh (2%{5) is the density of states. More details on this notation, and
how one obtains this amplitude from the non-critical string, are summarized in appendix A.
Compared to [42], these length segments are measured using a rescaled version of the
Liouville metric that we will later want to identify with the physical boundary metric in
a dilaton gravity theory with sinh potential. The relation between the boundary lengths
measured in these different metrics is a simple rescaling:?

4 p
_ Pt 1.
by 2mh? sin b2’ a sin b2’ (1.5)

where /1, is the length measured using the Liouville metric and £ is the physical boundary
length of the dilaton gravity model, as we will explain in the main text; u is the Liouville
bulk cosmological constant. The object on the second line of (1.4) is the coupling coefficient
(or vertex function) of the boundary operators to the gravitational states, and is the main
ingredient in this expression. The 4+ symbols on the second line indicate that one takes the
product of four copies of the function, each with a different combination of signs.

The structure of the full equation (1.4) is identical to that of the JT gravity boundary
two-point function determined in [12], and indeed, there exists a double-scaling limit in
which b — 0 that recovers precisely the JT gravity amplitudes. This connection to JT
gravity was first pointed out for the disk partition function in the context of the minimal

2In the JT limit b — 0, this relation becomes ¢1, = %Jm?;, reproducing the scaling of [42] that matches
with JT dilaton gravity amplitudes.



string in [16], and then thoroughly investigated and extended in [42]. See also [24, 44, 45] for
relevant recent work. From the group theory perspective, the quantum group U,(sl(2,R))
turns back into its classical Lie algebra sl(2,R), as we will explain in depth. For JT
gravity [31], Liouville gravity [42], and JT supergravity [37], it was shown that the object
on the second line of (1.4) has a group-theoretic interpretation as the square of a 3j-symbol
where one uses two mixed parabolic matrix elements (Whittaker functions) and one discrete
operator insertion.

It has been proposed that N' = 1 Liouville supergravity satisfies similar properties [43].
Since N/ = 1 JT supergravity and its amplitudes are described by a BF theory based on
the osp (1|2, R) superalgebra [37, 46-48],% the relevant group-theoretic structure for ' = 1
Liouville supergravity would seem to be U,(0sp(1|2,R)).* However, a lack of independent
knowledge of the relevant representation matrix elements of U, (0sp(1|2,R)) in the available
literature prevented us from making the comparison more explicit.

In this work, we resolve this problem. In particular, we generalize the group-theoretic
arguments of [53] to the NV = 1 supersymmetric case to compute the mixed parabolic matrix
element of (the modular double of) U,(0sp(1|2,R)). Our result is:

. +o0 o ) . A
Ui (@) = T [ gt gl e (s mica (1.6)
x [Sns(—i¢)Sr(—2is — iC) & Sr(—i¢)Sns(—2is — i()]

where s is the representation label of the continuous series irreps of Ug(0sp(1]2,R)), while
gi and g2 are the (suitably rescaled) eigenvalues of the parabolic generators (1.2) in a sense
that we will explain below. The € superscript parametrizes different deformations of the
same underlying classical Whittaker function. A priori, e may be any real number, but we
will focus on € = £1 to make contact with the particular deformation relevant to Liouville
supergravity. The + superscript labels the pair of Whittaker functions that are present
in a group with a nontrivial sCasimir operator in the scentre of the universal enveloping
algebra, such as OSp(1|2,R). Finally, the objects Sxs and Sg on the second line are suitable
supersymmetric extensions of the well-known double sine function Sy (see appendix B.1).
Proving this formula is our first goal in this work.

As mentioned, our motivation for this calculation stems from the application to N' =1
Liouville supergravity. In particular, in [43], the fixed-length boundary tachyon two-point
function on the disk was found to be

¢ sinh2 mbsy _ sinh2 Tbso

oo 1 2 mb2 2 6sin2 Tb2
BaBondnn= [ dsidsaplsplsle oot e o (1.7)

Sr(Bm £i(s1+52))Ns(Bm £i(s1—52))
Sns(26m)
n SNs(,BM:l:i(Sl +82))SR(5Mii(81 —82))
Sns(28m) ’
3See [25, 49-51] for various other perspectives on N' = 1 JT supergravity.

“nterestingly, a different g-deformation is required when studying double-scaled supersymmetric SYK
models [52].




where p(s) = cosh(%?) cosh(nbs). The right-hand side contains our new choice of length
parameter, which is again rescaled compared to the Liouville length as®
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(1.8)

where p is the super-Liouville bulk cosmological constant. The left-hand side comes
from transforming super-Liouville amplitudes [54] to the fixed-length basis. We refer to
appendix A for some of the details of this procedure.® The matter label 53; corresponds to
the weight Ag,, = %6M(q + Br) of a primary operator in the matter SCFT.

In this work, as an application of our newly determined Whittaker function (1.6) of
Ug(osp(1]2,R)), we will show that the vertex function in ' = 1 Liouville supergravity has
a similar interpretation as that in JT (super)gravity and Liouville gravity. In particular,
the quantity on the second line of (1.7) is equal to

+oo
| da @y, (@), (19)
—00
up to unimportant prefactors. Moreover, the density of states p(s) in (1.7) is computed to
be the Plancherel measure of this same Whittaker function:

+o0 —_
[ e, o = 2 ) (1.10)
Finally, the energy variable in the exponentials multiplying the lengths ¢; is precisely the
Casimir operator of these same representations of U, (osp(1]2,R)).

Having understood the relation between the representation-theoretic objects appearing
in amplitudes such as (1.7), it remains to explain why they appear in the first place. Doing
so requires understanding the Liouville (super)gravity theory directly from a Lagrangian
perspective, and thereby identifying the relevant quantum (super)group as a symmetry. A
natural language for achieving such an understanding is that of the (graded) Poisson sigma
model description of dilaton gravity, where the quantization of the model (in a physical
sense) entails passing to the quantized version of the Poisson algebra. For the particular case
of a hyperbolic sine dilaton (pre)potential, this procedure results in either the U,(s((2,R))
or the U,(0sp(1]2,R)) quantum algebra as the quantized charge algebra.” Understanding
this approach is the second goal of this work.

The remainder of this work is structured as follows.

In section 2, we compute the mixed parabolic matrix element for the bosonic quantum
group Ugy(sl(2,R)), reproducing the results of [53] from a perspective more amenable to super-
symmetrization. In section 3, which comprises the main part of this work, we calculate the

®The b — 0 limit of (1.8) is ¢y, = ﬁ, and the length parameter ¢ is directly identified with the JT
dilaton supergravity length scale £;7 in this limit [43].

This corresponds to a choice 77 = +1 of local fermionic boundary condition. We refer to [54-56] for more
details on the super-Liouville SCFT ingredients of this result.

"Notice that the words “quantum” and “quantized” in this sentence correspond to different procedures:
by “quantum algebra,” we mean the g-deformed algebra, whereas by “quantized charge algebra,” we mean
the algebra of symmetry charges of the physically quantized (in 7) dynamical system.



mixed parabolic matrix element (or Whittaker function) of U, (0sp(1]2,R)). The result (1.6)
was already stated above, and will be checked and matched to supergravity results.

To better understand the origin of this quantum group symmetry, we give arguments
in section 4 as to how Liouville gravity and A/ = 1 Liouville supergravity relate to dilaton
(super)gravity with a sinh (pre)potential, which can in turn be written as a (graded) Poisson
sigma model, finally unveiling the U,(s[(2,R)) or Ug(osp(1|2,R)) quantum group structure.
This section can be read independently of the somewhat more technical preceding sections.

We conclude in section 5 with some open problems and speculations on the bigger
picture.

As mentioned above, appendix A provides some background material on Liouville gravity
and supergravity. Appendices B, C, D, E, and F contain some additional complementary
material that is not required to understand the main story.

2 U,(sl(2,R)) gravitational matrix element

In this section and the next, we present the calculation of the Whittaker function from a
group-theoretic perspective. This section deals with the bosonic case, first discussed in [53].
The next section follows with the supersymmetric generalization. By their nature, both
this section and the next are rather technical.

The Whittaker vectors and resulting Whittaker function of U, (sl(2, R)) were determined
by Kharchev, Lebedev, and Semenov-Tian-Shansky [53] using a carrier space for the
representations of the quantum group that is slightly different than the usual one of Ponsot
and Teschner [57-59]. We first demonstrate how one can translate the results of [53] into a
more convenient carrier space, akin to the one used in [57-59], which leads to slightly more
elegant expressions for the Whittaker vectors. The resulting Whittaker function is the same,
since it depends solely on the representation labels and not on the precise construction
underlying it. The main benefit of reformulating the calculation in this way is that it
facilitates the supersymmetric generalization in section 3.

2.1 g-deformed algebra: definition and classical limits

We first define the quantum group Uy(sl(2,R)) and its self-dual continuous series represen-
tations. In particular, we will compare different realizations of these in the literature, and
take the classical limit (¢ — 1) whenever possible to develop intuition for these objects.
The g-deformed SL(2,R) algebra consists of three generators K, E™, E~ satisfying the
following commutator relations:
K?—-K™? sin2rb’H

KE* = ¢*'E*K Et E = = 2.1
q ) [ ’ ] q_q_1 SiIlﬂ'b2 ’ ( )

where K = ¢/ and ¢ = e™” is the deformation parameter. Compatibility of a *-relation

with this algebra requires b? € R, such that g is a phase factor.



The Casimir operator C that commutes with all generators is given by

27ib? qg+qg H(K2+K2%) 1 1 _
(q_q4>c:( 2@%@_”2 )+2E ET 4+ SE'E (2.2)
K2 —IK—Q
— EfEJr + q + q (23)

(¢—q1)?
The prefactor can be chosen arbitrarily at this point, and we have made a specific choice
that will turn out to be natural from the dilaton gravity perspective.

The continuous series representations of this quantum algebra can be constructed on the
space of entire functions, restricted to the real line R, with suitable asymptotic restrictions
specified in [53] that allow one to drop “pieces at infinity” when doing contour deformations.
On this space, we define the action of the shift operator:

Taf(t)=ft+A4), teR (2.4)
Kharchev et al. [53] then define the following set of generators:®

. miba
K = —ie T‘ib/27
eZﬂ'bt

gt =1
q—q

e—27rbt

5_ = q_qfl (1 _T—ib)7

. <€—27riba _ ezmbaTib) 7 (2.5)

which can be readily shown to satisfy (2.1). We have defined the quantity o = Q/2 + is,
where @ = b+ 1/b and s € R denotes the representation label. With this value of «, and
with respect to the inner product

(f.9)= [ de e FDg(0) (26)
the above operators satisfy the following hermiticity conditions:
K'=K, ENY=-£F, (E)=-€". (2.7)

Identifying K = ¢’, one has H' = —H.

The representations thus constructed are precisely the continuous series representations
of Uy(sl(2,R)). These irreps are distinguished as being the unique representations for which
the carrier space is simultaneously the carrier space of the continuous series representations
of the dual quantum algebra, which is found by setting b — 1/b in all of the relations above.
(Following common convention, we will always denote dual generators with tildes, e.g., K,
E, etc.) For this reason, they are called self-dual. This means that one can think of them
as nontrivial representations of the modular double [57, 58, 60-63]

U, (s1(2, R)) ® Ug(sl(2, R)), (2.8)

8We have set Athere = —20here in order to have a = +Q/2 + is with s € R as the representation label.
We also set Kinere = =K 72, Etnere = £, Fipere = —E7.



where § = e™/ b2, and where the generators (K2, £, £7) commute with the dual generators
(162, £t € 7). This “modular-doubled” quantum group is a natural object to consider and
has been studied in many different contexts in the literature. One illuminating property
is that operators that commute with both quantum algebras must be scalar. This is the
g-analogue of Schur’s lemma, which shows that combining the quantum group with its dual
into the modular double seems to give the most natural g-analogue of classical group theory.

The carrier space construction (2.5) has the benefit of having a well-known classical
limit b — 0, which we now explain. We relate the carrier space coordinate ¢ to a new
half-space coordinate x by z = €™, Setting a@ = 1/2b — bj, we obtain the Borel-Weil
realization of sl(2,R):

H =20, — j,
ET = 220, + 2jx, (2.9)
é_ = 8:1:7
satisfying
[H, E*) = +E*, [EY,E7] = 2H, (2.10)

where j = —1/2 + ik with k € R. The quadratic Casimir is”

C=

1 1
E+E—+§E—E++H2:j(j+1):_Z—k;Q_ (2.11)

N =

We emphasize that the coordinate z lives on R™ due to the exponential mapping relating ¢
and x. We hence immediately land on the positive subsemigroup SL*(2,R), for which the
carrier space coordinate is positive: x > 0. This is the most direct way of appreciating the
link between the g-deformed modular double quantum group and the positive subsemigroup
in the classical limit.

The realization (2.9) of s[(2, R) exponentiates to

(90 0)(w) = o+ @ f (205).

2.12
bxr +d ( )

which defines the principal series representations of SL™(2,R) (ad — bc =1, a,b,c,d > 0).

However, we will not adhere to this particular choice of carrier space for the continuous
series irreps in this work. It is instead convenient to write a = 1/2b+ A with A = b/2 + is.
Now we apply the following isomorphism that preserves the algebra (2.1):

K= 6727r/\tK627r)\t
gt = q€_27r/\tE+627r>\tK, (213)

— =27t p— 2wt —1
E =e E e ™K,

9Note that the b — 0 limit of the operator (2.2) is %EJFE* + %EfEJr +H?+ i where the constant term
is conventionally dropped for the Casimir of sl[(2,R) as written.



thus obtaining new generators K, E+, E~. This maps the carrier space with inner prod-
uct (2.6) to the more “symmetric” carrier space L?(R). Explicitly, the generators become:

K = 711'1)/27
67rib/\T~ _ e‘”bAT_~
E+ — _627rbt ib/2 — Zb/2’ (214)
q—4q
B 6—27rbt 6—7rzb)\Ttib/2 _ eTrzb)\T_ib/Q
q—q!

This is almost the same set of generators used in [57-59], the only differences being that
A =b/2 +is and the hermiticity conditions. Indeed, with the new inner product

(f.9)= [ a7 g0, (215)
these new operators satisfy the same hermiticity conditions as in (2.7):°
K' =K, (ENY =—-E*,  (E) =-E", (2.16)

provided that A = b/2 + is with s € R.
Setting K = ¢', the operator H is explicitly:

1

H=—0,. 2.17
orb " ( )

The Casimir operator (2.2) in this representation is given by

cos 2mb(\ — b/2) cosh 27bs
_ _ _ 2.1

¢ 2mb? sin wb2 27mb? sin wb2 (2.18)
As b — 0, we have C — —k? where s = —bk (again dropping the constant). The expres-

sion (2.18) appears in the arguments of the exponential functions in (1.4).
Upon setting = €™ and A = —bj, we find that in the classical b — 0 limit, (2.14)
reduces to:

H = z0,,
Et = —2%0, + ju, (2.19)
E_ — ax + la
X

satisfying the sl(2,R) algebra (2.10) with Casimir C = j(j + 1). These operators are
antihermitian on R™ with respect to the measure du(r) = dx/z:

/0+°° d?x (F@0g(@)) = /0+Oo " (~Of@)g(@)). (2.20)

X

provided that j = —1/2 + ik with k£ € R.

°The generators used in [57-59] with A = Q/2 + is, on the other hand, satisfy
K'=K, (BN =£" (B =E,

with the same inner product (2.15).



Exponentiating the realization (2.19) of the s[(2,R) algebra leads to the following group
action on functions on R*:

(ax + c)? (bx + d)? <a:v + c)
= 4 . 2.21
(90 f)(w) Sy (e (2:21)
One can indeed prove that this group representation is unitary for j = —1/2 + ik in the
sense that!!
oo dx . toodr
| Hwonr@ige @ = [ S ri@ih), (222

where the transformation of the 1/z in the measure precisely compensates for the new
pieces in (2.21) compared to (2.12).

The isomorphism (2.13) between the different realizations reduces in the classical b — 0
limit to the following equivalence of differential operators preserving the s[(2,R) algebra:

H= xjﬁ:n_j,
Et =alEta, (2.23)
E =B 277,

This gives a convenient way to relate (2.12) and (2.21).

2.2 Whittaker vectors and Whittaker function

Let us now determine the Whittaker vector by diagonalizing £+ and demanding it to be a
simultaneous eigenvector of the dual (b — 1/b) quantum group.

For a rank-one Lie algebra, as stated in (1.2), the Whittaker vector is defined as
diagonalizing the generator ET associated with the positive root:

E*o(t) = —uo(t). (2.24)

When generalizing to the g-deformed algebra, there is a one-parameter family of extensions
given by diagonalizing the same generator up to a possible action by the Cartan generator:

Etoo(t) = —ug® oo (t), a€R. (2.25)

The resulting solution to this equation is not unique. However, in the case of the modular
double, one needs to combine this relation with its dual (b — 1/b), which turns out to be
far more restrictive and leads to a more-or-less unique solution. We will exemplify this
phenomenon further on. A simultaneous eigenvector of both E+ and Et can be found for
a suitable relation between the eigenvalues as follows:

b
E*o,(t) = —z‘#qw%(w, (2.26)
~ 1/b 5
E*o(t) = —i- ﬁ =177 0(0) (2.27)

where ¢ is a parameter that we call the eigenvalue of the modular double quantum group.

1Up to subtleties involving the boundaries of integration.



Inserting the explicit expressions (2.14), we obtain the finite difference equations

", (t + ;) — e g, (t = ;) = ighe 2™ (¢ + iba), (2.28)
miA/b g+ AN w4 i>:~ 1/b_—2mt/b - < m)

The additional quantum parameter « represents a freedom akin to ordering ambiguities in
quantization. To find the solution, we can Fourier-transform these difference equations by
writing ¢;, () in terms of F'(—i() in a 1:1 fashion as

¢&(t) — 6—27T>\t/ dC giCF(_iC)eﬂiaC26—27ri((t—soc). (230)
C
The difference equations then reduce to:'?

2sin(mbC)F(¢) = F(C + b), (2.31)
2sin (?) F()=F (C + i) , (2.32)

which form the pair of functional equations satisfied by the double sine function S;(¢). We
get a unique solution, up to overall normalization, if we make the following assumptions:

e F'is continuous.
e band 1/b are incommensurate.

We can appreciate these conditions as follows. If one imposes only the first relation (2.31),
then one is free to multiply any solution F' by any periodic function in { with period b,
such as eFsin(2mm¢/b) - This possibility is excluded when accounting for the second relation,
provided that b is sufficiently generic. If, e.g., b = 1, then both equations are the same
and there is clearly no unique solution. But if b and 1/b are incommensurate and hence
b% # p' /p for coprime p’,p € N, then one can use the above relations successively to provide
a dense covering of ¢ € R. Combining this with the continuity of F' determines F' up to a
single value, e.g., F'(b), or the overall normalization factor. We choose this normalization at
this point to match with the Whittaker vectors of SL™(2,R) in the b — 0 limit [31, 32].
Starting with a finite value of F(b),'® we can apply (2.31) successively to find that

the function F(¢) has zeros at ( = Q + nb+ m/b for n,m € Z>( and simple poles at

12The first functional equation is the g-deformation of the classical recursion relation I'(z + 1) = 2I'(2) for
the gamma function, which, with an additional log-convexity assumption, is enough to prove uniqueness in
that case. In our case, adding the second functional equation will be sufficient. This equation “scales away”
and hence becomes vacuous in the b — 0 limit.

131f F(b) is zero, then the zeros at ¢ = Q 4+ nb+m/b for n,m € Z> are double zeros. But then “doubling
back” shows that one has (at least simple) zeros at { = Q + nb+ m/b for n,m € Z, which is again dense in
R. If F(b) is infinity, then the poles at { = —nb — m/b for n,m € Z> are double poles. Again reversing
direction shows that all points ( = —nb — m/b for n,m € Z are (at least simple) poles, making the function
infinite almost everywhere.
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Figure 2. The contour C used to define ¢; (t).

¢ = —nb—m/bfor n,m € Z>.** It can be smoothly extended to a meromorphic function
on the complex plane, the double sine function S,(¢) defined in appendix B.1.

Notice that if 4> € Q, then the above is still a solution to the system of equa-
tions (2.31), (2.32); it is just not automatically unique. In Liouville gravity language, this
case corresponds to the minimal string where the matter sector is a (p’, p) minimal model.

The solution can hence be written as a contour integral in terms of A = g ~+ s:

«

b (t) _ e—27r)\t / d(giCSb(—iC)emo‘CQ6_27”'4(75_50‘). (2'33)
C

The contour C follows the real axis above the poles of the function Sy(—i¢) (figure 2).'
At this point, we can already take the classical limit b — 0:

1 A . A , .
oL (t(z)) — Q—e%bt] / duT (—iu) g™ (2mb?) e 2mbtu — gie=5 (2.34)
™ C

where j = —1/2 4 ik and we have set g = (27b? M)l/ b, This limiting function indeed satisfies
Et¢r(x) = —pgy,(x) with ET given in (2.19), which can also be seen by taken the b — 0
limit of the eigenvalue problem (2.26).

Likewise, the Whittaker vector diagonalizing (E~)T is:

¢o¢(t) _ €+27r)\t/ d¢ gi{Sb(_iC)em'aCQeQm’((t—i—sa)_ (2'35)
C
Classically, this becomes
balt(@)) > 2 leT, g = @mb) P, (2.36)
which satisfies (E~)t¢, (z) = vo, (z) with E~ given in (2.19).

141¢ is straightforward to show that these are the only zeros and poles of the solution. Suppose that to
accuracy €, we can write a given real number = as © = neb + me/b for ne, me € Z: | — neb — me/b| < e. We
drop the € subscript from here on. If nm > 0, then one lands on one of the known cases: x is either a simple
pole or a simple zero of F, or z = b or = 1/b, which yield finite values for F. When nm < 0, one is in
the generic case. One can get to this case by first finding x = nb, for which F' is nonzero by consecutive
applications of (2.31), followed by m applications of (2.32) in the reverse direction, which again gives finite
multiplicative factors at each step.

'50ne can check that this is the correct contour by plugging (2.33) back into (2.28) and checking that it
is a solution. After some manipulation and substitution in the integral, this requires on the left-hand side a
deformation of the contour downward from ib to the real axis without any pole-crossing to match with the
right-hand side. This in turn requires the contour to pass above all of the poles of the double sine function.
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The Whittaker function is found by computing the following inner product, where the
Cartan element is the only nontrivial entry:

vi@) =™ [ o Do, (1) = e [ dto, Do, t+a).  (237)

Here, H is the translation operator in (2.14) given by (2.17), and we have set x = ¢/mb.
This expression depends only on the difference € = a1 — as, as will become clear. The

b

prefactor €™ is a choice that will allow us to work with a flat measure on x-space.

Again, let us first examine the classical limit, for which we get (now with the half-space

coordinate z = e?™* not to be confused with the z in the previous paragraph):
L —oike / AT _oif _yp —e20psr 1 (V)““ _
2h * =— =) Koun(2 ). 2.38
27Tbe R+ X r € € b 1 sz( \/ﬁe ) ( )

Up to the prefactor of ﬁ, this is the known Whittaker function for SL™(2,R), where the
¢-coordinate parametrizes the single Cartan direction on the coset manifold, with a flat
measure du(¢) = de.

Now to the g-deformed case. Inserting (2.33) and (2.35) into (2.37), the t-integral boils
down to

/ dt e 2mHCHR2) — (¢ 4 F 4 2g), (2.39)
leading to the Whittaker function
e—27risz / dC gffgi“mssb(*iC)Sb(*iC - 22»8)6—7ria1 (§+25)267ria2§2 627r2'oqs((+28) 62m’a25§6—27m{x
C

(2.40)

OI’Z16

S

we(l,) _ e—27risa: / d¢ glifgli/{-&-%ssb(_ic)sb(_ic o Qis)e—ﬂis(C2+28§)e—27ri<x' (2'41)
C

We indeed see that the final result depends only on the difference € = a; — ag. Importantly,
the Whittaker vectors themselves depend on the precise way in which we realize the
representation (they depend on the auxiliary coordinate t), whereas the Whittaker function
is independent of this choice and depends only on the underlying algebra and representation.
Indeed, comparing our results to those of [53], the Whittaker vectors (2.33) and (2.35) are
different, but the Whittaker function (2.41) is the same, up to redefining x — —xz.7

16Using the limiting values

1 2\e—1/2 (i ) x—1/2
Sy (bx) — Wor (27b7) I'(x), Sy % +bx) —2

K, (2) = ﬁ (g)y /Hw dtT(OT(t - v) @)_Qt,

100

we match onto the classical Whittaker function (2.38):

ik
e £>_i v . e
z%l—r{(l)d)s (7rb Comh \ p Kais/ (2 vie )

and the definition

17Curiously, the realization used in [53] and written above in (2.5) leads to the Whittaker function in
the so-called Gauss-Euler integral representation, while we obtain it directly in the Mellin-Barnes integral
representation, which is of more interest when comparing to the relativistic Toda chain expressions of [53].
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The Whittaker function (2.41) is a solution to the Casimir eigenvalue equation, which
reads in this case as follows (the translation operators below act on z rather than t):

(T + Tois + ghgba’e ™ Tine) f(x) = 2cosh(2mbs) f (). (2.42)

In the b — 0 limit, this reduces to a Schrodinger equation for a particle in an exponential
potential, with solution (2.38). Of course, this second-order ODE has two independent
solutions, the second one being a modified Bessel function of the first kind. It is interesting
to derive the analogue of this solution in the g-deformed setting. We do so in appendix D.

2.3 3j-symbols or vertex functions

We now compute the 3j-symbols relevant for gravitational calculations. For this purpose,
next to the above self-dual continuous series representation matrix elements, we also need a
discrete representation matrix element with eigenvalue zero for the parabolic generators
(E* = 0). It is actually quite easy to write down a solution to the finite difference
equations (2.28) that meets these demands:

¢+(t) — 6—27T)\t, ¢7(t) — e+2ﬂ'At' (243)
Applying the Cartan generator to this state and dismissing a constant factor, we get:
wdiscrete(x) _ e—27r)\x‘ (2'44)

Now taking two continuous irrep Whittaker functions (2.41) and one discrete series Whittaker
function (2.44) (with representation label A\ = B,/), the resulting mixed parabolic 3j-symbol
was calculated in [42] as the group (coset) integral

181 —1S ) .
/+OO dx s ()9S (w)*e_QWﬁMx _ (9 o 1 Sy(Bar £ is1 L isg)
> o Ty ' (gugu)Pm Sy (281r1) ’

(2.45)
for e = £1. To match this expression with the coupling coefficients in bosonic Liouville
gravity (the second line of (1.4)) that describe the coupling of an operator insertion to an
in- and an out-state, we set g, = g, equal to an arbitrary constant.

Taking the b — 0 limit of both sides of (2.45), we obtain the equality

1 1 (V)Zkl k2/ d.fUKQik ((EI)[(QZ']C (ex)e%x (2.46)
2yvp ) (wh)® \p R ' ?

<1/>iklik2 1 [(h + ik & iks)
(vp)h

w (27b)3 I'(2h) ’

which leads to the JT gravity vertex functions if we set © = v = 1 by convention. This
constraint corresponds to the Brown-Henneaux gravitational coset constraints imposed at
the holographic boundary. It would be interesting to obtain a similar understanding of the
analogous g,, = g, constraint in Liouville gravity. Presumably, one route would be through
its formulation as a deformed dilaton gravity model. We come back to this reformulation of
Liouville (super)gravity in terms of dilaton (super)gravity in section 4.
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2.4 Plancherel measure

Finally, we can take the limit where 33; — 0 in the 3j-symbol squared expressions (2.45).
We set By = € as a regulator. Since Sp(€) — ﬁ and diverges, the resulting expression (2.45)
vanishes. An exception occurs when s; = +s9. Considering the integral over s; and applying
the g-deformed first Barnes lemma (B.6), we find

S1 == 2Sb(2i52)Sb(—2i52).

/+°° Sp(e kisy £isz)  Sp(2€)Sy(2is2)Sy(—2i52)5(2¢)

oo Sp(2¢) Sp(2€)Sp(4e) (2.47
2.47
From this, we get the identity
lim Sel€E i1 £is2) Ols1 = s2) . 51,82 >0, (2.48)
=0 Sp(2€) 4 sinh(27bsg) sinh (27252)
or . 5 )
o0 S1 — 89
dx 5, (z)5, (x)" = ; (2.49)
/foo ! ? 4 sinh(27bss) sinh (2”%)
from which we read off the Plancherel measure:
2
p(s) ~ sinh(27bs) sinh <7brs) . (2.50)

This is indeed the measure in the result (1.4), thereby completing our identification of the
ingredients of (1.4) with suitable group-theoretic objects.
Our next goal will be to perform the analogous computations for Ug(osp(1]2,R)).

3 U,(osp(1|2,R)) gravitational matrix element

In this section, we generalize the previous arguments to the supergroup Ug,(osp(1]2,R)).
Our main results are the Whittaker vectors (3.33) and the Whittaker function (3.44).

3.1 g-deformed algebra: definition and classical limits

The U, (osp(1]2,R)) quantum algebra consists of three generators K, F*, F~, the latter two

of which are fermionic, satisfying the relations:'®
K? - K2 in 27 H
KF* =g¢fiF*K,  (FF F}=-— =TT (3.0)
8(611/2 —q_1/2) 88111%
13Tn the math literature, one typically uses instead
E—k~!

kff=q¢ K, {fN )=

q—q*’
which is related to our conventions by

k’:Kz, fi :iQ\@(ql/z—Fq_l/Q)_l/QFi.

Our conventions are related to those in [59], up to rescalings of F* and with Q and C chosen such that the
b — 0 limit agrees with the classical o0sp(1]2,R) algebra, as we elaborate on below.
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Again, K = ¢ and ¢ = ™ This algebra has a sCasimir element Q that commutes with

K and anticommutes with F'£, given by the expression [64]

1 T K2+K_2 B q1/2K2_q—1/2K—2 -
<ql/2+q_1/2>Q_[F F ]+8(q1/2+q—1/2)_ =g +2FFT.  (3.2)

It squares to an element commuting with K and F*, the Casimir of the algebra:
< 1 )2 gK*+q 'K -2 (¢K?4+¢ 'K ?)F F*
g2 +q1/2 16(q—q—1)2 2(q1/2+q1/2)

AFTPHFT)?, (3.3)

with relation

Q% =cC. (3.4)
In the classical limit b — 0, this algebra becomes the osp(1]2,R) Lie superalgebra:!?
1 1
[H,F*| = +F%,  {F",F"}=—_H, (3.5)

where we include the bosonic generators E* via the definitions {F*, F*} = :F%Ei. The
(s)Casimir operators then reduce to those of osp(1]2,R):

lg L PRt —FtP i lgiop s 1, (3.6)
2 8 2 8
1 1
C-15 — WH+5ETE +EEY)+(FF —FF), (3.7)

adjusting for constant factors and terms.
The continuous series representations can be found by acting on the graded Hilbert
space LQ(RM), where we write the functions in the representation space as:

t

F(t) € @Y, f(9) = folt) +02(0) = (;Eti) . (39

T

The generators are then defined in terms of ¢-translation operators as follows:
1|0
iTbA _imbA

1 O e 2 sz//2_e j szb/2
F+ — bt — _ qi2—g-1/2 ’ 310
2\/§6 e Tib/2+6_%T7ib/2 0 ( )

A 2yq 12
_ambA imbA
1 0 € 2 sz/2_€ 2 T—zb/2
Fm=———e ™ | — ,. q'/2—q" /7 . 3.11
2\/56 e Tib/2+eﬂTbAT—ib/2 ( )
/21 ¢ 172 0

One readily checks that these satisfy (3.1).

¥1p [37], we called this the opposite superalgebra, since all anticommutators have an extra minus sign
compared to the usual 0sp(1]2,R) algebra. The principal series representations are defined by exponentiating
this opposite superalgebra. The discrepancy comes from the fact that for finite irreps, the generators are
supermatrices with bosonic entries, whereas for the principal series representations, one uses Grassmann-
valued differential operators.
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These generators were first written down in [59, 65] and shown to generate the continuous
self-dual representations of Ug(0sp(1]2,R)). These are again simultaneous representations
of the quantum group and its dual b — 1/b (see also [66]), forming the modular-doubled
quantum group:

Ug(osp(1]2,R)) ® Ug(osp(1]|2,R)). (3.12)

As in the case of Uy(sl(2,R)) (section 2), we set A = b/2 + is as the representation label
and impose suitable hermiticity conditions with respect to the inner product

(f.g) = /Rdt 49 F (&, D)g(t, 9). (3.13)

The generator K satisfies K = KT, and the two fermionic generators satisfy a somewhat
modified hermiticity constraint. If the functions fg(¢) and fr(¢) in the function space (3.8)
are even, then we require the following hermiticity constraint for F+:20

iTbA _imb
1 0 e 2 Tippp—e 2 T s
bt - 1/2_,—1/2
(FH)t = e" FEDN —7mhx T ) (3.14)
2v/2 e 2 Tpjote 2 T )2 0
12 1q-1/2

where the top right entry picks up a minus sign but the bottom left entry does not. There
is an analogous relation for F~. These are the same hermiticity relations as those found
in [37] for osp(1]2,R), and we will indeed see that in the b — 0 limit here as well.

For completeness, the bosonic elements E* = F4(F*)? can be explicitly computed as:

q1/2<e’iﬂ'b)\/1'vib + 1)

< 0
_ 27bt _—1/2 —zwaT ) 1
pt=_—°_ ¢ e ~io + 1) /2, inbX ; (3.15)
2q— ) . (T, 1)
_ q—l/Q(e—wrb)\T_ib _ 1)
¢ V2 (e T, 1) .
—27bt _1/2 ivrb)\T . 1
Em = - e Lo+ 1) =172, —imbX (3.16)
2(¢—q7") 0 q (e Ty — 1)
. q1/2(627rb)\T7ib - 1)
These bosonic elements are antihermitian: (E+)T = —E+ and (E~)! = —E~, just as for
U,(sl(2,R)) (as discussed in section 2).
The (s)Casimir elements (3.2) and (3.3) are readily evaluated to be
sinwb(A —b/2) (1] 0 tsinhmbs (1| 0
g A2 (10 _ ishhrhe (10) .17
4sin T3~ 0‘—1 4 sin T3~ 0‘—1

= sin? wb(\ — b/2) <1O> _ sinh? s <10> 7 (3.18)

16sn2 72 \0[1)  16sin2 7 \ 0[1

20There are related statements when the parity of fg or fr is different, but for the purposes of computing
the Whittaker vectors further on, we will only require this particular case.

~16 -



which satisfy the relation (3.4). This expression for C matches the energy variables in the
exponentials in (1.7), up to a conventional minus sign in the definition of C.

To match with the classical b — 0 limit, we identify A = —2bj and z = *™. In this
limit, the quantum algebra leads to the following “symmetric” realization of the principal
series representations of osp(1|2,R):

N 20| 0
H_( 0 x8w>’ (3.19)

1 0 [22%/20, — 2jx'/?
Ft= VA 5 , (3.20)
. 1 0 [22120, + 2ja— 1/
= “5v3 \o 7] ; , (3.21)
2 - 1
pr_ (T +G=g)a] O (3.22)
0 ‘—:c28$ +jz )’
b (Pt G=gat 0 (3.23)
0 0; + ja1 )"
which satisfy the Lie superalgebra
[H,E*f]=+E*,  [Et,E7]|=2H,
1
[H,F*) = i§Fi, [E* FF] = —F*, (3.24)
1 1
{Ft F~} = —5H, {F% F*} = ¢§Ei,
with sCasimir
1 1 i 1\ [(1]o0
—Q=FF"—FtF +-=—- < ) . 3.25
29 *3 SRy AN (3:25)

The generators H, E*, E~ are antihermitian on R* provided that j = —1/4 + ik/2 with
k € R, so we indeed recover the principal series representations of OSp™ (1|2, R). The odd
generators ['F satisfy the same modified version of hermiticity when acting on functions on
superspace that have bosonic components, just like (3.14) above. We refer to Footnote 27
of [37] for the corresponding statement regarding the Borel-Weil realization of osp(1|2,R).

It is possible to write down a different realization of these g-deformed representations that
limits to the standard Borel-Weil realization of osp(1|2,R). We present this in appendix C.

3.2 Whittaker vectors and Whittaker function

To find the Whittaker vector, we will “diagonalize” the fermionic generator F'*. The
bosonic generator ET = —4(F1)? is then automatically diagonalized as well. Writing the
superspace Whittaker vector as

Ba(t, 9) = bap(t) + Ddant) = (;‘;8 ) , (3.26)

17 -



we define the Whittaker vector of the modular double of Ug(0sp(1]2,R)) as the solution to
the following eigenvalue problem:

b b
+ + _ ? Eg 2aH + + + _ ]' Eg 2aH +
F ¢a,T(t) = 22 q1/2 — q_1/2q ¢a,13(t)7 F (ba,B(t) = 22 q1/2 T q_1/2q ¢a,T(t)a
- ; 1/b . 5 1 1/b N
+ ¢ Eg + + Eg +
F ¢y, (1) Moo n(t), Foun(t) 2 g (1),

T 92§ 2 —G 12 T 9242 + q—1/zq

(3.27)

where we have the freedom to choose a sign € = +1 while leaving invariant the eigenvalue
of E* = —4(F7*)2. Indeed, applying (3.27) twice, we get

+ + ? g2b (6% 4OCH +
E (I)oz(t) = _§q — q‘l qq (I)a(t)a (328)
-+ &+ Z ng ~a ~daH F+
E (I)oz(t) = _§q~ _ ('jil qq (I)oz(t)a (329)

which form the analogues of the bosonic relations (2.26). Strictly speaking, (3.27) is not
a diagonalization. We simply demand that the transformation of the top component be
proportional to the bottom component, and vice versa. The proportionality factor is not
the same in both cases, but upon squaring to get the bosonic generator, one does get a
genuine diagonalization. For such a system, it is always possible to rescale the eigenvectors
to obtain a genuine diagonalization problem for either the quantum group or its dual, but
not for both. This is why we prefer to write (3.27) as above for the general case. When
comparing with the classical b — 0 results, the dual quantum group scales out, and it is
convenient to rescale the eigenvectors as follows:

12 172 \ /4
8 _ n1/4 (4 q .
,a,T(t) = (87Tb ) / (z(q1/2 +q_1/2)> ¢a,T(t)a

o120 —1/2y\ M4
A _ g '~ +q N
;,B(t) = (87Tb2)1/4 ( (q1/2 _ q_1/2 )> ¢a,B(t)’

This maps the first eigenvalue system in (3.27) into a genuine diagonalization problem:

(3.30)

b : b ;
Fraé' (t) = €g 4 20H 11, 0, Frol () = €g 7
¢a,T< ) 2\/§ q-— q_lq (ba,B( ) ¢a,B( ) 2\/5 q— q_l

el (1),
(3.31)

with the same proportionality factor in both equations.
The full eigenvalue problem (3.27) can be written explicitly as the following set of
coupled difference equations:

T b T b
" - (t—i— ;) +e bA o ( 22> _ egbe_”bt%éﬂ(t—i-zba),
i ) i 7 = Q0
€ 21’/\ ¢&,T (t + Qb) —e 21}‘# ,T (t - 2[)) = Zeg%eth(b&’B (t + b) )
i Z s ’L s ’LO[
e 5 ¢);{,B (t + 2()) + efibkd)&,B (t — 2b> = eg%efftgba’T (t + 5 ) , (3.32)
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where the last two equations are the b — 1/b counterparts of the first two. The solution to
the system (3.32) is:

Banlt) =™ [ dC g S (~ig)etmioctemicti=sa) (3.33)
C
(b&T(t) _ 6,€7ﬂ->\t / dC giCSNS(_ic)e%ﬂia<2e—7ﬂf(t78a)7 (334)
’ C

where the contour C is the same as in the bosonic case in section 2.2. The supersymmetric
double sine functions are defined by

Sws(z) = sb( >Sb( +§>, SR(x):Sb<§+g>Sb(§+21b>, (3.35)

and they satisfy the fundamental shift properties
b 1
Sns(z +b) = 2cos <7r2:1c) Sr(z), SNS <:E + b> = 2cos < 2b> Sr(z),

Sr(z +b) = 2sin ( 1;3:) Sns (), Sk (a; + ll)> = 2sin (gb) Sns(x). (3.36)

One can prove uniqueness of this solution in the same way as in the bosonic case of
section 2.2. Assuming continuity and incommensurability of 2b and 1/2b, one proves directly
that the Fourier transform of the system (3.32) leads to the shift relations (3.36) of the
supersymmetric double sine functions, which have a unique solution up to a single overall
normalization.

In the classical b — 0 limit, we set g, = (47b%u )2b and g, = (4nb*v )2b and we obtain
for the Whittaker vectors (3.30) upon inserting the solutions (3.33) and (3.34) that

L) = 2uad e (3.37)
Bon(t) = ale 5, (3.38)

which match with a direct diagonalization of the differential operator (3.20): F+®" (t) =
D (1)

Analogously, we get when diagonalizing (F ™) that
¢o¢ B(t) — €+Tl')\t / dc giCSR(_ig)eéwia<2eﬂ'i<(t+sa), (339)
’ C
Ga2(t) = € ™ / d¢ g% Ss(—iC)eamiac? mis(ttsa) (3.40)
' C

As mentioned above, these solutions automatically diagonalize E* and (E~)T.
Next, we define the Whittaker function by evaluating the integral

mh B (+ Q) 2mbx }
vet  (2) = e / dtd0 S, (t, 0)e 1, (t,0)

_ ”b’”/dtdﬁ@ (&), (t+ 2, 9) (3.41)

¥ [ dt (€ Far @it +2) + € Gy x D0t +2))
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where we have used the definition (2.17) of H. This leads to two independent Whittaker
functions, depending on whether €, and ¢ have the same or opposite signs. These two cases
are denoted by the + superscript on the left-hand side. We choose to set ¢, = 1 and match
€ with the sign on the left.

One can immediately obtain a system of difference equations satisfied by the Whittaker
function by inserting the sCasimir Q:

z sinh 7wbs

s / dt dO T (1, 0)e2™H Q- (¢, 9) — e VT (2), (3.42)
4 sin

where we used the expression (3.17). Inserting instead (3.2), and utilizing that the Whittaker
vectors diagonalize F* for the ket and (F~)' for the bra, we obtain the equality

etz _ g=ibs ing,’i b =0+ isinhwbs

- =Y, e — = 9:F

< qt/2 — g~ 1/2 T g2 — q71/26 s (z) = — Ok (). (3.43)
2

For simplicity, we have set € = 0 here. By explicitly computing the Whittaker function, we
will check that it is a solution to this system of difference equations.

Evaluating the integral (3.41) requires a calculation identical to the one presented above
for the bosonic case. The result is our proposal for the Whittaker function of U, (0sp(1]2,R)):

Vg, (@) = €T / T g gis s 5 ((H280) o miCa (3.44)
—0o0

x [Sns(—iC)Sr(—2is — i¢) £ Sr(—iC)Sns(—2is — i()] .

This function satisfies a system of difference equations:?!

(T — Ty — ighgbe ™ /> T e ) Y5 o, () = 2sinh wbs vy, (),

(To = T + ighgbe ™ 2T e ) Y5y o, () = 2sinh wbs UCF | (), (3.45)

which match with (3.43), as announced before. Combining them, we obtain the decoupled
second-order difference equation(s)

(Toip + T2 — 2 + gzbggb 2L 2T e (3.46)
+ighabe ™" g (¢ — )T ip(es1)
+ighgbe ™ q P (1 — ¢ )T jye)) VS o, (1) = dsinh® wbs E | ().
This equation can be found by applying the sCasimir Q again to the difference equa-

tion (3.43), and is interpretable as the Casimir eigenvalue equation obtained by applying the
expression (3.3) for C directly. In the b — 0 limit, all of these equations become differential

21For convenience, we note that

2sinh(7b(¢ + s)) = 4 cosh %b(g + 2s) sinh %bg + 2sinh wbs

= 4sinh %b(( + 2s) cosh %bC — 2sinh wbs.
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equations, and in particular, the Casimir equation reduces to a Schrédinger problem for a
particle in a Morse potential [37].

The expression (3.44) has the correct classical b — 0 limit, as we already pointed out
in [37]. We define the new variables

¢ = 2ibt, xr = ¢/mb, s = —bk. (3.47)

The double sine functions (3.35) have the following small-b limits:

1 x Z
Sws(bz) — m25(2wb2)5‘%1“ <”2“°> , (3.48)
Su(br) — ——25% (2mp?)5T (””'“” + 1) (3.49)
R NG 27 32)" '
Using the integrals
eko /R dtT(4)T (¢ + ik + 1/2)e* = dmie 2Ky /9(2¢79), (3.50)
etkd /R dtT(t+ 1/2)D(t + ik)e®” = dmie 2Ky 11 /2(2¢79), (3.51)

we reproduce the OSp™(1]|2, R) Whittaker functions:

ik/2
Gk (@)= e () (‘:) (Kiks1/22vimme ) £ K g1 pp(2y/e ™)), (3.52)
as determined before in section 4.3 of [37].

3.3 3j-symbols or vertex functions

Let us now evaluate

—+o00
/ Az S, o o (DU, o 0 (@) e P, (3.53)

—0o
Just as in the bosonic case, we focus on the particular deformation where ¢ = +1. Only
these values seem to reproduce the Liouville (super)gravity amplitudes; the deeper reason
for this eludes us. The result of this calculation should yield the vertex function of AV =1
Liouville supergravity boundary correlators. Mimicking the argument in the bosonic case,
we start with

+o0 .
/ dx emx(751+527§1+§2)7ﬁMﬂx = 2(5(—C1 4+ (o — 81+ 52+ ZﬂM) (3.54)

—00

We get four terms of the type

e Ti5 (B —si+s5+2is18) /+OO d¢y emePm (3.55)

—00

X SNs(—igl)SR(—igl — 2i81)SNs(icl + 181 — 189 + ﬂM)SR(iQ + 181 + 1S9 + 5M)7

where the other terms have other combinations of Syg and Sg on the second line. In order
to evaluate this integral, we make use of a g-deformed supersymmetric version of the Barnes
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identity, which we provide in appendix B.2. In particular, using (B.13), we can express the
integral as a sum of two terms:

+oo
|0 @0 g, )2 (3.56)
_ (ﬂl)iszisl 4 Sr(Bm £ i(s1+ s2))Sns(Bm £i(s1 — s2))
9v (gugu)ﬁM SNS(2ﬁM)
i SNs(ﬁM + 2'(51 -+ SQ))SR(ﬁM + i(Sl — 82))
Sns(28n)

Upon setting g, = g», this indeed coincides with the vertex function obtained in N =1
Liouville supergravity [43] and written in equation (1.7).

3.4 Plancherel measure

We can also take the limit where 53, — 0. Since Sns(€) — %, the above vertex function
becomes zero except when s; = £s9. Setting Sj; = € and then taking the integral over the
s1-variable, we obtain:

—+00
/ d81
—00

Sr(e £i(s1+ s2))Sns(e £i(s1 — s2)) n Sns(eti(s1 + s2))Sr(e £i(s1 — s2))

_ 25ns(2€)Sr(2is2) Sk (—2iss)Sns(2€) , ,
- S (4€)Sns(2¢€) = 45R(2is2) Sr(—2is2), (3.57)

where we again used the ¢g-Barnes superlemma (B.13). Hence the quantity in brackets has
d-function support:

i Sr(e £ i(s1 + s2))Sns(eti(s1 —s2))  Sns(e £ i(sy + s2))Sr(e £ i(s1 — s2))
im +
e—0 Sns(2€) Sns(2€)
_ (5(81 — Sg)
2 cosh 2 cosh mhsy’

81,892 > 0. (3.58)

This confirms that no insertion is present in this limit, and that the Whittaker functions
defined above give the Plancherel measure in the sense that
/ +oo 20 (81 — 82)

€ € *
T ()Y 0, (2) = cosh T2 cosh mbsy |

(3.59)

This Plancherel measure defines the density of black hole states in the gravitational
interpretation of this model:

p(s) ~ cosh <7;8) cosh(mbs), (3.60)

as found in equation (1.7).

In the study of N' = 1 Liouville supergravity, there is a second sector of amplitudes
where the local fermionic boundary condition at the boundary of the disk is ¢ = ni with
n = —1 and 9 is the spin-1/2 field accompanying the Liouville field. We refer the reader
to [43] for the precise amplitudes in this second sector where n = —1. We have chosen
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1 = +1 everywhere for our story up to this point, since only this sector makes contact with
0sp(1]2,R) objects in the b — 0 limit. For the n = —1 sector, one obtains instead a linear
combination of s[(2,R) objects in the b — 0 limit. This suggests that if these amplitudes
have a quantum group interpretation in terms of representation theory, then it must be
one without a classical b — 0 counterpart. We have not reached a satisfying understanding
of this situation. Nonetheless, we can guess a “Whittaker function” that does the job in
producing the correct super-Liouville amplitudes. We present it in appendix E.

4 Liouville gravity as 2d dilaton gravity

In the previous two sections, we uncovered the underlying Uy(sl(2,R)) and Ugy(osp(1]2,R))
structure of bosonic and N = 1 supersymmetric Liouville gravity amplitudes, respectively.
In this section, we attempt to explain this structure by reinterpreting the Liouville gravity
model directly in terms of dilaton (super)gravity with a modified (relative to JT) dilaton
potential, after which we perform the quantum analysis of this theory in the Poisson sigma
model framework and uncover the same g-deformed algebra as a symmetry.

4.1 From Liouville gravity to dilaton gravity

There is a relatively direct way to relate Liouville gravity to dilaton gravity models [42, 67]
(see also [68, 69]). In the bosonic case, the argument was presented in appendix F of [42],
and we summarize it here.

The starting point is the Lagrangian description of Liouville gravity, for which we
provide some review in appendix A. In this language, the argument proceeds by writing the
matter sector in terms of a timelike Liouville field.?? The Liouville and matter sectors then
have a bulk action

_ 1 2 [ )2 2 i/g_AQ 2by
5—47r/2da:[(v(f>) + 4drpe }+47r Zdac[ (Vx)~ + 4dmppre }, (4.1)

where we have chosen a flat reference metric § for simplicity. Classically, the relation
between sinh dilaton gravity and Liouville gravity is [42]

¢ =p/b— wbd, X = p/b+ b, (4.2)

mapping the Liouville field ¢ and the timelike Liouville field x into the conformal factor

of the dilaton gravity metric ds?> = e*dz dz and the dilaton field ®. The bulk action then

becomes, with gy = —p:?3

S = —/d21: 0,0 p — 2,u/d2$ % sinh 276 ® (4.3)

- _% / d*z/g (PR + W (®)] — 7{ dzvVh ®K, (4.4)

22This might seem like a restriction; in particular, the minimal models are at first sight not contained
in this description. However, recent work has shown how, in the bosonic case, the minimal models can be
described using timelike Liouville CFT [70].

Z3The be ghost CFT that accompanies the non-critical string is also present in this dilaton gravity language,
arising from gauge-fixing the dilaton gravity metric to conformal gauge.
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where W (®) = sinh 2m)?d provided that we identify the bulk Liouville cosmological constant as

sin b2
m 1
= . 4.5
V sin7b?  2sin wb? (4.5)

For the N/ = 1 supersymmetric case, if we work directly in superspace, then we can

= K

#= 4 sin b2

proceed in an almost identical fashion. Describing the ¢, < 1 matter sector of the N' =1
Liouville supergravity model with a timelike version of the super-Liouville CFT, we write
the matter + Liouville sector in superspace as:

S = ﬁ /d2w d*0 [D@LZ_)(I)L + 87r,uebq)L] - ﬁ /d2ﬂv d%e [Dxl_)x + 87r,uebx} . (4.6)
Defining the field combinations
O =3/b—27wbP, X =X/b+27bd, (4.7)
we can rewrite the action in a suggestive way as:
S=-2 / d*z d*0 | DED® + 2pe” sinh 27073 . (4.8)
The supercurvature R _ is defined in terms of the superconformal parameter X as
R,_=2e"*DDY, (4.9)
which, after a partial integration, allows us to finally write:

S =— / @z d*0 B DR, + 4psinh 27620 — 2 ]f dzd) DK, (4.10)

where E = e is the superdeterminant of the superzweibein. Since (the bulk piece of) a
generic 2d dilaton supergravity model can be written as

S = —/d%; POE[OR,_ +u(®)], (4.11)

we are led to claim that A" = 1 Liouville supergravity is a dilaton supergravity model with
a hyperbolic sine prepotential u(®) = sinh(27b*®) /(4 sin “71’2) if we identify the Liouville
cosmological constant as follows:

! — 2 ! (4.12)
= K = . )
H 16 sin ng cos % 2+/sin mb?

We can view this choice of p as a choice of scale in Liouville gravity that allows for a direct

comparison to the underlying quantum group, and that has a clean b — 0 limit to N =1
JT supergravity.

Just as in the bosonic gravity model, the above argument remains to be clarified further,
which we postpone to future work. Instead, we will present indirect evidence that this
specific dilaton (super)gravity theory indeed makes contact with statements about Liouville
(super)gravity. To achieve this goal, we next review how generic dilaton gravity models
have a useful interpretation in terms of nonlinear gauge theory.
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4.2 From dilaton gravity to Poisson sigma models

A theory of 2d dilaton gravity, in turn, admits a group-theoretic description as a Poisson
sigma model [71-75]. See also [76, 77| for some recent generalizations.

In the bosonic case, we start with the second-order formulation of dilaton gravity and
rewrite it in first-order variables, introducing the zweibein e and the spin connection w:

S = % / d?z/—g (PR + W (®)) (4.13)

1
= / [<I> dw + ZW(@)e“bea Aep + X deq + €°w N ey) |, (4.14)

where g, = nabeweby and w is torsion-free. In this subsection, we work in Lorentzian
signature (as will be convenient for our later discussion of quantization), with €' = 41.
This theory can be identified with a topological Poisson sigma model with three-dimensional
target space, of the type

S = / (Ai AdX + %Pij(X)Ai A A]) , (4.15)

where A4; = (e, e1,w) and X = (X X1, ®). We read off the Poisson algebra

{XO,Xl} :W(XQ), {X“,XZ} = % X0, (4.16)

PB 2 PB
For W (®) = 2®, this becomes the s0(2,1) Lie algebra. Defining the “lightcone generators”
E* = — X0+ X' and setting H = X2, we get:
+ + -
{H,E*}, = +E* {E*,E }PB = 2V (H), (4.17)

where

V(H) = ~W(H) (4.18)

is a rescaled version of the dilaton potential W. For V(H) = H, this becomes the sl(2,R)
Lie algebra.

Next, we write down the equations for the case of supergravity. The component form
of the action (4.11) is

16

_ 1
+ diupy ) + v’ xeay ) + ix <d1,/} + 2w73¢> . (4.19)

./
L =®dw+ X%dey + €,°wep, + 2ipy,1)) — <2uu' - wxx) e®eqep

This is to be compared with the generic form of a graded Poisson sigma model:
1 y
S = / (Ai AdX = S A; A AjPﬂ(X)) , (4.20)

where the fields 4; and X? and, by extension, P/*(X) are graded fields. Namely, some of
the components are even variables while some are odd. We have written this action with a
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specific ordering of the factors [74, 75]. It is equivalent to (4.15) only for even fields, but
differs from that action when the fields are graded. Identifying the 3|2-dimensional target
space coordinates as

Xi= (X x*,®), A = (eq, itha,w), (4.21)

we can read off the relevant graded Poisson tensor.?? The nonlinear Poisson algebra
describing N/ = 1 dilaton supergravity has five generators X% X' x? x!, ®, with the
following graded bracket relations [74, 75]:

DTy = P = =8iu(y)™ — 4iXa (),

1
(X, ®} ~=P?=e"X", {x*, @} =P = —5( 3%, (4.22)
1
{Xa,on}PB — poo — Ul(’}’aX)a, {Xa7Xb}pB _ Pab _ _eab (4uu/ + Siulliaxa> ’

in terms of a single superpotential function u(®). Defining the lightcone variables
X® = <X> . Xt=+x0_ x1, (4.23)
X

one can rewrite this algebra into a more suggestive form by defining

Fr=\*/aVi), Et=X%/2, H=09, (4.24)
which yields:
1 o 1 _ 1
(F*,F*},, =SB, (P F =3B {FFF ), = qulh),
H,F¥} = ilFi, H,E®} = +E*,
PB 2 PB

{E* FF} =—u/(H)F*, {E* Ff} =0,
{ET,E"} _ =2(u(H)W(H)+u"(H)F~F"). (4.25)

We will later on recognize this Poisson superalgebra as the classical limit of the ¢-deformed
algebra of osp(1|2,R) for a specific choice of w(H). This will require a quantization of the
Poisson sigma model. Before going there, however, we present one more classical argument
that sheds light on the asymptotic gravitational boundary conditions we are using.

24We use the following realization of the 2d Dirac algebra:

0-1 01 10
0 B _ 7—'2 1 B: = 1 3 6: 10: =
(") —(1 0)— o, (7)a (10) o' (7a” =7M (0_1) o

for a 2d space where a = 0,1 and 74, = diag(—, +), as well as the raised versions:

() = (é ?) () = (é _01>7 (%)°° = (_01 ‘01),

01
where indices are raised and lowered with €. = B = < 10 >
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4.3 Semiclassical black hole first law

Using the above results, we can directly compare the semiclassical A — 0 interpretation of
Liouville supergravity amplitudes with classical black hole physics in the dilaton supergravity
model (4.11). As a warmup, we first redo the bosonic case presented in [42] but using our
rescaled length variables (as mentioned in the introduction). We start with the fixed-length
disk amplitude without any operator insertions. This can be found by letting Sy — 0
n (1.4), using the results of section 2.4:

cosh 27bs ™8
1), = /ds ¢ “am?sinm? sinh 27bs smh - (4.26)
1
~ / dE e=*F sinh < arccosh ((27rb2 sin wbz)E)> . (4.27)
0 b?

We now interpret this expression as a thermal partition function with £ = 8 = T, the
inverse temperature, and with the density of states p(F) explicitly visible on the second
line. Approximating sinh ~ %exp, we get the saddle-point equation

1 T
E?2— = . 4.2
\/ (27b2sinwh2)2 b2 (4.28)

As a check, in the JT limit b — 0, we set E =

1 .
b2 sin 7b2 + EJT and obtain

|E T
WTﬁ = = Ep=rT (4.29)

which is the well-known JT gravity black hole first law [3, 8, 10], upon setting the Schwarzian
coupling coefficient to C' = 1/2 and dropping an arbitrary offset Fy. The coefficient C
contains information on the rate of divergence of the dilaton field at the boundary [4-6],
and defines the specific model under consideration. We will choose conventions below for
generic dilaton gravity models that reproduce the value C'=1/2 in the JT limit.

Given a bosonic dilaton potential W (®) as in (4.13), up to diffeomorphisms, one can
always bring the 2d metric and dilaton to the form [78, 79]%°

dr?
A(r)’

ds® = 4A(r)dt* + O(r)=r, (4.30)

where the asymptotic region is 7 — 400 (for which the boundary condition on the dilaton
field is fixed as above)? and where

_ /r &' W ('), (4.31)

#0ne can identify the conformal factor e*” = 4A(r) immediately, since the purely radial coordinate

transformation drpew = maps the metric to conformal form.

dr
2A(r

Z6More generally, one is z(iliowed the asymptotics ®(r) = ar as r — 400; the value of a defines the model
at hand. We have also included an extra factor of 4 in g¢ compared to [78, 79], which is a simple rescaling
of the time coordinate ¢. This is a possibility that is closely related to the choice of a. All of these options
in the JT gravity regime (b — 0) correspond to a choice of Schwarzian coupling coefficient C. They can be
mapped to a choice of prefactor for the boundary Hamiltonian in the Poisson sigma model framework that

we develop below.
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with r = rp, being the location of the black hole horizon. This black hole has an energy-
temperature relation fully determined by knowledge of the dilaton potential as:

W—(27T)
E- / W (®) d® + Ep. (4.32)

For instance, for JT gravity where W(®) = 2®, we immediately get E = 7272 if we set
Ep = 0. Starting with our E(T") relation (4.28), we can solve for the dilaton potential in a
unique fashion:

sinh 27b%®

1
V(®) = §W((I)) ~ 2sin7h?

(4.33)

Using this dilaton potential, we write down the Euclidean bulk metric and dilaton field:

2 4(cosh 27b?r — cosh 27b?ry,) | o 2mb? sin wb?
S =
2mb? sin wbH2 cosh 2mb%r — cosh 27b2ry,

dr?, O(r)=r.
(4.34)

From this, we can read off the asymptotics of the fields in terms of boundary conditions.
The metric component gy diverges as r — co. In the same vein as in aAdS holography, we
define lengths £ as measured by the boundary theory using the t-coordinate: df = dt.

It is instructive to show agreement between this boundary behavior and the rescaling of
length variables as discussed in the introduction. From (4.2), we get the following relation
between lengths:

2 5 2
= / e = g7 / e, (4.35)
1 o)1

where the dilaton field ® needs to take a constant value along the boundary in order for

the boundary lengths, as measured using the different metrics, to be proportional for any
choice of boundary segment. From (4.34), we get the divergent asymptotics

wb2r
e
P = lim ———. 4.36
oo = 0 (4.36)
Crucially, this divergence perfectly cancels with the dilaton asymptotics of (4.34), yielding
the finite result for the rescaling that relates the length measured in the Liouville metric to

the length measured using the boundary metric dt in (4.34):

14
Vrb2sin b2

Notice that the relation for the timelike Liouville field x in (4.2) then implies the boundary

0, = (4.37)

condition
2mb2r

ebx‘ ~ lim e — 400. (4.38)

0 r——+00

This Dirichlet boundary condition is precisely the vacuum (or ZZ-) brane boundary condition.
This is indeed the boundary condition for x that we describe in appendix A.?"

2TOne can also think of it as an infinite-length boundary condition when interpreting the timelike Liouville
CFT in a similar fashion as the spacelike CFT: ¢, = flz e — 4o0.
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The above analysis was classical. In quantum Liouville gravity amplitudes, we must
use the rescaling between lengths of (1.5). However, reinstating units of %, the Liouville pa-
rameter s is actually k = /uh/sin(7b2h) [80]. Using that k — +/u/mb? in the semiclassical
h — 0 limit and inserting the value of u from (4.5), we see that (1.5) matches with (4.37)
in the A — 0 limit. An interesting aspect of this matching is that the rescaling of lengths is
itself Ai-dependent, with the correct matching to the classical black hole analysis occurring
only in the semiclassical A — 0 limit, as should be the case.

We now move on to N/ = 1 dilaton supergravity. The Liouville supergravity disk
amplitude can be found by letting Sy — 0, and using the results of section 3.4, we get:

"y sinh? 7bs

+0o0
(1), = / dse 16si® = cosh mbs cosh %
0

+oo JdF 1 2
aE e *F cosh — arcsinh | {/16E sin? o . (4.39)
0o VE b 2

In the 2 — 0 thermodynamic limit, we need to use the classical A — 0 limit of the
Casimir (4.87) when going from the first to the second line and to evaluate the integral
at large s, for which we can approximate cosh ~ %exp. The saddle-point relation for the

above integral then yields the semiclassical black hole first law for E(T):2%

FE T
B2y — = . 4.40
\/ * 16 sin? wa? 202 ( )

We will now show that we can reproduce this first law directly from a classical black
hole solution in the N' = 1 dilaton supergravity model with precisely the sinh dilaton
superpotential (4.73).

For the semiclassical saddle solution, the fermions (dilatino and gravitino) are turned
off, and the discussion boils down to that for the bosonic subsector given above. The
resulting bosonic potential V(®) is related to the prepotential by

V(D) = u(®) (D), (4.41)

as can be seen by comparing the last relation of (4.25) to the analogous bosonic rela-
tion (4.17).
Defining a shifted energy variable £ = E 4 Ey with Ey = (32sin? ng)_l, the first

law (4.40) can be rewritten as
= T
2 2 _
VE? - B} = o5, (4.42)

which is of the same form as the bosonic black hole first law written in [42]. From this, we
can immediately write down the dilaton potential:
b2 . 9
2

8 sin

Z8Compared to the result of [43], we used the rescaled energy and length variables in the introduction,
and additionally corrected some missing factors of 2 compared to that work.
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which reproduces (4.40) when inserted into (4.32) and upon setting Ey = (32 sin? ”71’2)_1.
We then have the corresponding prepotential

sinh(27b?®)
b2

4 sin 5

w(®) = (4.44)

which indeed matches the superspace proposal and prepotential displayed in (4.10). Hence,
starting with this dilaton potential, we indeed agree with the semiclassical first law derived
using purely Liouville supergravity techniques in [43].

4.4 The (graded) Poisson sigma model

We next analyze the graded Poisson sigma model in more detail, and uncover the precise
way in which the g-deformed algebra is realized. The punchline is that the governing
Uq(sl(2,R)) or Ug(osp(1]2,R)) quantum (super)group appears upon quantizing the target
space Poisson structure of the Poisson sigma model.?

The Poisson sigma model: classical analysis. Consider the (graded) Poisson sigma
model on a half-space:

S = / (Ai AdXT = DA AjPﬂ(X)) - / @z (—Audo X' + Ap(O X' — A PT(X))),

(4.45)
where i = 1,...,m and m is the dimension of the target space M. M is equipped with a
graded Poisson bracket:
{x,x7} =PU(X), PT=—(=)nPl af PP (4.46)
PB

the latter relations being (anti)symmetry and the Jacobi identity required for the definition
of the bracket operation. o; = 0,1 is the grading of the field X?. The ordering of the
different objects in (4.45) is important.

The action (4.45) is invariant under the local nonlinear symmetry transformations®’
6X" = —¢; P, (4.47)
0A; = —de; + AjﬁkaiRij, (4.48)

written in terms of the right derivative. This nonlinear symmetry algebra for the particular
case of dilaton (super)gravity was first discovered in [71, 72] without the reinterpretation in
terms of a topological Poisson sigma model. See appendix F for some further remarks on
this point of view.

The global part of this symmetry transformation leads to m conserved charges. We
derive here the classical charge algebra that they satisfy, in particular accommodating

29The Poisson sigma model language was recently used in [81] to address universality of wormholes for
quantum-mechanical systems that include, in particular, all dilaton (super)gravity models.
30Specifically, 6(A; AdX* — 2 A; N A; PP (X)) = —de; N dX".
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Grassmann-valued variables. A convenient reference for the canonical structure of the
bosonic model is [82]. The variables X* and Ay; are canonically conjugate:

orrL

WXi(.%') = W = _(_)UiA1i7 (449)

where we conventionally take the left derivative for the fermionic variables. This leads to
the canonical brackets?!

{A@), X ()} = (-)766(z — ), (4.50)
and Ag plays the role of a Lagrange multiplier enforcing the first-class constraints
NX'— A PP(X)=0, i=1,...,m. (4.51)

For a half-space, these constraints can be integrated into the relations
. . +o0 .
2= XP(0) = — / du Ay (w) PP (X (u). (4.52)
0

This shows that the field X?(u) has only a single degree of freedom on the half-line [0, +00).
Together with the conjugate fields Aj;(u), this in turn shows that the phase space is finite-
dimensional of dimension 2m. This illustrates that the model is topological, with degrees of
freedom that can be thought of as living on the boundary line.

Using the canonical brackets (4.50), we can derive the following relation for the boundary
variables z°:

{ai,07) = {— /0 " duAlk(u)Pki(X(u)),Xj(O)} (4.53)
=~ [

which hence satisfy the Poisson algebra of the target space, but now as a canonical phase

" du PM X () { (). X9(0) ) = Pi(a),  (4.54)

space algebra. The Noether charges associated with the global nonlinear transformations
are given by
+o00 . +o00 . .
du PP (X (u)) A (u) = — / du Ay (w) PP (X (u)) = 2.
0

(4.55)
Being identified with the z, these charges therefore satisfy the nonlinear Poisson alge-
bra (4.54) as well:>?

Qiz/dméinWXf = (—)Uj/o

{@.@} = PY(Q). (4.56)

31Following [83], we have {p,q} = —1, in this specific order, for both commuting and anticommuting

variables.

32For a linear symmetry algebra, the Noether charges always satisfy the same canonical algebra as the
underlying Lie algebra. This is no longer generically true for a nonlinear symmetry algebra. However, the
above shows that it is true by explicit computation for the Poisson sigma model.
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The Poisson sigma model: classical Casimirs. For the above system, the Hamilto-
nian vanishes, and these charges are trivially conserved quantities. If a nontrivial boundary
Hamiltonian can be added, then it must commute with these charges:

dQ’
dt

={H,Q"} =0, (4.57)

and it is a Casimir of the algebra.

We can write explicit expressions for these Casimirs. First, consider the bosonic
dilaton gravity model, for which we have a three-dimensional target space with coordinates
Xt= (E*,E~, H) and Poisson algebra (4.17). For an arbitrary potential V' (H), the rank
of the Poisson tensor P is two, and there is a single independent Casimir function that
can be chosen as [84]

C(X)=ETE™ +2 /H V(y) dy. (4.58)

It can be explicitly checked to satisfy the relation {C, X"} = 8%?]’ pit =033

Of particular interest in this work is the specific potential V(H) =

sinh 27wb* H
2sinwb? - For

this choice, the Poisson algebra (4.17) is almost the same as the quantum algebra (2.1),
up to some factors of i that we will explain later when quantizing. This choice has the
corresponding Casimir:

cosh 2nrb2 H

H, =C(X)=FEtE—4+ ——— |
bdy (X) + 2mh? sin wb?

(4.59)

For N =1 dilaton supergravity, whose 3|2-dimensional target space has coordinates
Xt = (FT,F~,E",E~, H), the Casimir function can be written analogously [74, 75]:

H
C(X)=ETE™ + / (2uu' +2u"F~FT)dy = EYE™ + 20/ (H)F~F* +u(H)? (4.60)

satisfying {C, X'} = g;? Pit = 0.

Specializing to the particular case of u(H) = %7 one finds:
sin o
v mb?cosh2mb?H . sinh?27b*H
Huyqy =C(X)=ETE™ + o FFt T (4.61)
sin "5~ 16 sin? o

For ordinary Lie algebras, it is well-known that one can always perform a global rotation
to align a given vector in the Lie algebra along the Cartan directions. For example, for
SU(2), one conventionally aligns the spin vector along the z-direction, hence parametrizing
the quadratic Casimir as J2 + Jg +J2 = J2 = 52, where we introduce the classical spin label

33A simple example is that of a linear Poisson structure, where one formally makes contact with the
BF framework of JT gravity with Lie algebra sl(2,R) and C(X) = Tr X? yields the required boundary
Hamiltonian [13] in terms of the Cartan-Killing metric. However, it is important to stress that the right-hand
side of (4.58) is commutative at this stage, and one only makes contact with the actual quadratic Casimir of
the Lie group after quantizing.
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4. For quantum groups, we can analogously consider only “turning on” the H-direction.?*

This leads to a classical description of the Casimir as:

cosh 2b> H
ic: =2 4.62
bosonic / Vy = s (4.62)
h? 276 H
N = 1 supersymmetric: C(H) = u(H)* = u (4.63)

. 2
16 sin? %

Here, we think of H as a c-number, analogous to the spin label j in the undeformed
b — 0 limit. We will come back to this interpretation further on, when we compare to the
quantized formulas.

The Poisson sigma model: quantization. Upon quantizing the model, we replace
Poisson brackets with commutators, and the charge algebra (4.56) becomes a commutator
algebra of Hermitian charges (Ql)Jr = Q%

[Qi, Qﬂ} L inP(0). (4.64)

However, when the Poisson tensor is nonlinear, ordering ambiguities can appear here. In
particular, the above commutator must satisfy the Jacobi identity, which is different than
the previous one since now:

[P7(Q), Q% # inof PU(Q)P™(Q). (4.65)

Instead, one has a more complicated “ordered” version of the derivative. Moreover, consis-
tency with hermiticity of the charges requires

(PIQN = PY(Q), i,j=1,...,m. (4.66)

It is important not to confuse this physical quantization in A with the mathematical
“quantization” or g-deformation of the underlying algebraic structure. Both of these occur
independently and concurrently in this section.

For the specific case of bosonic dilaton gravity, the algebra itself does not need to
change thanks to the internal commutativity of each entry in the Poisson tensor of (4.17):

PIX(X)=+FE* P (X)=2V(H). (4.67)

Moreover, since V(+) is a real function, (4.66) is also satisfied, and one finds the quantized
charge algebra (h = 1):

[HEi] = +iB*, [EtE—} = 2%V (H). (4.68)

34This can be motivated, e.g., in the context of the g-deformed 2d Yang-Mills (YM) or BF models to
find explicit expressions for amplitudes through “abelianization” [85, 86]. We make some comments on this
perspective in the current context in the concluding section 5.

35We are following the “constrain first” approach to constrained quantum systems, since we have already
implemented (4.51) at the classical level.
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For the particular case where

. sinh 27b2 H

V(H) = (4.69)

2 sin b2

and upon identifying the Hermitian charges with the antihermitian generators via H=iH
and E* = iE¥, the resulting algebra becomes precisely (2.1):

B sin 272 H

H, E*) = +E* Et E-
[ ’ ] ’ [ ’ ] sin b2

(4.70)

Thus we conclude that:

The conserved charges in the Poisson sigma model description of dilaton gravity
with potential (4.69) satisfy an algebra that can be identified with the Uy(sl(2,R))
algebra.

Next, we consider N’ = 1 dilaton supergravity, for which the nonlinear commutator
algebra is different from the corresponding classical Poisson algebra (4.25). In particular,
consistency with the noncommutative version of the Jacobi identity requires, in addition to
the “seed” commutation relations

N ih oAy S U L ft th s
i, F }zi;F o ARy = D), {FEF }:iEE . (4T

also the modified relations:36

)
) P (4.72)
)

8 ~1h A . iR PN
— H-——)—2uH H+_— ) F F*.
+ih(u( 2) u( )+u< +2)>
One checks explicitly that these expressions satisfy the hermiticity property (4.66), consistent
with a set of Hermitian charges H, B+, B+ 37
For the specific choice where

sinh 27b2 H

. Tl'b2
4 sin B

u(H) = (4.73)

and upon setting H=iH , FE = iF*, and E* = iE*, this algebra becomes the ¢-deformed
algebra (3.1) of Uy(osp(1]2,R)) but with a sign flip in the anticommutator, as should be

36Note that f(H)F* = F*f(H + i) which follows inductively from the first relation in (4.71).

37This corresponds to defining the adjoint of a product of graded operators as (AB)" = (=)74°8 BT AT, For
odd variables, this definition of conjugation corresponds to the order-preserving convention for Grassmann
numbers (9;9;)" = 9709; that was used in [37].
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the case (h = 1):38

1 in27rb2H 1

e e R A e R Ul b e R (R 2
2 8 S1n 5 2

This is our main statement:

The conserved charges in the Poisson sigma model description of N' =1 dilaton
supergravity with prepotential (4.73) satisfy an algebra that can be identified with
the Ug(osp(1]2,R)) algebra.

As a check of (4.71) and (4.72), the classical i — 0 limit yields back the right-hand
side of the Poisson algebra (4.25):

ih

{F+,F—} = Su(H), (F* F*) = i%Ei,
[H,F*] = i%Fi,
[E*, FF] = —ilw/(H)F*,
|E*,B| = 2ih(u(H)u!(H) + " (H)F~F"). (4.75)

The Poisson sigma model: quantum Casimirs. For bosonic dilaton gravity, whereas
the right-hand side of the Poisson algebra (4.17) remains identical after quantizing, the
Casimir function does get modified upon quantization. Instead of (4.58), the result is

~ PN 1.~ A N
C(X)~-ETE™ + 5E—E+ + f(H), (4.76)
where f is the solution to the linear difference equation®’

F(H +ih) — f(H) = ih(V(H + ih) + V(H)). (4.77)

38This is the usual superalgebra rather than the opposite superalgebra. The former is relevant when
understanding discrete or finite-dimensional representations (such as those used in defining the Lagrangian
of the BF model), whereas the latter is relevant when understanding the continuous representations whose
generators are Grassmann-valued operators.

391t is easy to see that the general solution can be written as a particular solution (depending on V) plus
a periodic (or homogeneous) function with periodicity . Let us write down the general solution in more
detail. Denoting the right-hand side by s(H), the function f can be written in closed form in terms of the
Z-transform of s as:

flinH) = 27" [ZM(T)} (ihH).
The Z-transform is defined as Z[s](z) = :zo_oo s(n)z~". The solution (4.77) is unique up to a choice of

f(0) and upon assuming H € N. To analytically continue to non-integer H and satisfy (4.77), one has the
ambiguity of adding an arbitrary periodic function. This piece, however, is the homogeneous (source-free)
part of the solution. Imagining one could write down a solution for an arbitrary V(H), we can for instance
isolate the homogeneous piece by setting V = 0 and choose to remove it.
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In the classical i — 0 limit, this equation reduces to df /dH = 2V (H ), which is (4.58). For

the potential of interest V(H) = %, the result of solving this equation is:

A A sinwh?h /1 ~, ~ 1~ 4 cos Tb2h .
Hygy =C(X)=—"—"——(=ETE™ EE+) - _cosh2nb’H 4.
bay = C(X) wh2h <2 + 2 27b? sin b2 coshuem (4.78)
_ _snmbh g coh 2P +5) (4.79)
mh2h 27mh? sin wb?

where we have used a carefully chosen normalization. This is a specifically ordered version
of the classical i — 0 result (4.59), and matches with (2.2) upon using H = iH since the
quantized symmetry algebra (4.70) is precisely the U,(sl(2,R)) algebra.

The last way of writing this expression has all raising operators on the right and
lowering operators on the left. When computing its expectation value in a highest-weight
state of a finite-dimensional irrep as

(Lw.|C(X) |h.w.), (4.80)

we hence extract only the last term, where we set h as the H eigenvalue of the state. This
is the g-analogue of the statement that the classical SU(2) Casimir j2 is replaced by j(j 4 1)
when quantizing, which is proven by elementary techniques in a similar fashion. It is useful
to compare the classical description of the Casimir (4.62) to this quantized description:

cosh 27b%hy
lassical P ——— 4.81
classical (h — 0) 5l s b2 (4.81)
h2rb?(h + 2
quantum: _cosh2mb(h+5) (4.82)

27h? sin wb?

We now compare the quantized result (4.82) to the explicit result (2.18) for the continuous
series irreps. We can identify h directly with the representation label A by h = —%)\ where
A= % + is. In the semiclassical A — 0 limit, we get h — hq = —%)\Cl where A\ = is, in
agreement with (4.81).

This shift is expected in the undeformed b — 0 limit: for the group SL(2,R), it
corresponds to setting either j = ik or j = —1/2 + ik, where the —1/2 shift is a one-loop
effect from the perspective of Borel-Weil-Bott coadjoint orbit quantum mechanics as a
tool for reproducing group theory. More generally, this is a shift of the weight vector
by the Weyl vector, which has been studied extensively in physics language in many
works; see, e.g., [87, 88]. In the end, when plugging the correct values of X into the above
expressions, (4.81) and (4.82) are identical.

For a general NV = 1 dilaton supergravity model, we can write down an analogous
ansatz for a sCasimir operator as

QX) ~ FTF* + f(H), (4.83)

where demanding that this expression commutes with H and anticommutes with F'* leads
to the linear difference equation
. ih
f(H)+ f(H —ih/2) = _EU(H) (4.84)
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Plugging the solution into (4.83) and squaring leads to an operator C = Q2 that commutes

with all generators for a general prepotential u(H ).

Ty — sinh 2wb2 H

For the specific case u(H) o 2 We obtain the suitably scaled sCasimir operator
sin 5

A isinhrb?(2H + ) 4 7b?h . N
Q) = —— o e FFY 5

2

leading to the following explicit expression for the Casimir operator C:

. 12 2/ F ih : 2 2( 7] ih
7smh (7Tb (2H + 4 )) - sin(wb*h) cosh (27Tb (H+% )) Ppt

Hygy = C(X) =

16sin2 ™2 hsin 7
1 b’h, - .
- rTS o TR (FTP (B2, (4.86)

Since the quantized algebra (4.74) is precisely that of U, (0sp(1]2,R)), this Casimir operator
is related to (3.3) by H = iH and F'* = iF¥* after including the explicit & dependence.
This represents a specifically ordered version of the classical  — 0 expression (4.61),
as can be immediately seen. Notice also that the sCasimir operator Q in (4.85) does not
have a good h — 0 limit. This is because there is no such object in a Poisson superalgebra.
Taking the expectation value of this operator in a highest-weight state (L.w.|C(X) |h.w.),
we again distill only the first term, and we find an explicit expression for the Casimir on any
particular representation space in terms of the c-number eigenvalue h of H. Ttis again useful

at this point to compare the classical expression (4.63) with the resulting quantized one:

sinh? 2wb?he)
classical (h — 0): —————— 4.87
( ) 16 sin? ”%2 ( )
inh? 27b? (h + &
quantum: S er (h+ %) (4.88)

. 2
16 sin? %

For the continuous series irreps, we can identify the quantum expression (4.88) with the
explicit result in (3.18) by setting h = —2%)\ where A = % + is. In the semiclassical limit
where h — hq = —ﬁ)\d with A = is, we reproduce (4.87). Notice that in terms of s, both
of these expressions are identical.

This completes our discussion of the quantization of the model.

5 Discussion and open problems

In this work, we have investigated the quantum-group-theoretic properties that underlie
Liouville (super)gravity models. An important role is played by a special representation
matrix element known as the Whittaker function. We provided details on how this object
leads to Liouville gravity amplitudes. As our main result, we presented an explicit group-
theoretic computation of this mixed parabolic matrix element for the g-deformation of
OSp(1]2,R), which is relevant to A/ = 1 Liouville supergravity. We provided several a
posteriori checks of this proposal, and explained how it is included in a calculation of
boundary operator insertions in Liouville supergravity.
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We moreover explained the presence of this quantum group directly from the symmetry
algebra at the Lagrangian level when using the Poisson sigma model description of dilaton
gravity. We gave several arguments for the equivalence between Liouville (super)gravity
and sinh dilaton (super)gravity.

There is clearly much left to explore. We end here by stating some open problems and
speculations, for which we defer the full treatment to future work.

Relation to integrability techniques. Representation matrix elements of mixed
parabolic type have appeared before in the context of integrability of open Toda chains [89]
and their “relativistic” (or g-deformed) counterparts [90]. For these models, simultaneous
eigenfunctions of the N-Toda Hamiltonians (and their duals) can be found by applying
the quantum inverse scattering method (QISM) to obtain eigenfunctions written in the
Mellin-Barnes integral representation [53, 91-93]; see also [94]. These eigenfunctions coincide
with Whittaker functions as constructed purely from conventional representation theory
techniques. In our work, we have applied the representation theory framework to find the
supersymmetric g-deformed Whittaker functions of the simplest supergroup OSp(1|2,R).
We moreover showed that they solve a system of finite difference equations (3.45). It would
be interesting to learn whether integrability techniques could be applied to supersymmetric
Toda systems to provide an alternative derivation of these Whittaker functions. More
broadly, as far as we know, this is — next to the Toda chain systems — only the second
time that these particular representation matrix elements have appeared in a direct physical
context. It would be interesting to see whether integrability techniques could be applied to
more deeply understand these gravitational systems.

As an immediate example, we have been focusing only on the 2-Toda chains (N = 2),
whereas relatively explicit answers for the Whittaker functions have been constructed for
general N. The eigenfunctions of these N-Toda chain models can then be viewed as the
required ingredients for computations in higher-spin sl(N) JT and Liouville gravity. We
leave this as an open avenue for the future.

q aroot of unity. When ¢ is a root of unity, and specifically when v? = p//p with p’ = 2, it
is well-known that the representation theory of quantum groups is more involved in the sense
that some highest- (or lowest-) weight irreps become reducible but indecomposable due to the
appearance of additional relations of the type (E¥)P = 0 [95] (see [96] for a nice review). For
the modular double (2.8), however, next to it not having either a highest- or lowest-weight
irrep (and hence invalidating the presence of the above relations), it is impossible for both ¢
and ¢ to be roots of unity simultaneously. Since the representations of the modular double
are defined to be simultaneous representations of both quantum groups, no additional irreps
appear, and one is left with only the continuous self-dual representations to figure as the
complete set of states in gravitational calculations even when ¢ is a root of unity.

We have indeed seen this in [42, 43]: the case that ¢ is an odd root of unity corresponds
to the (2,p) minimal string with p odd, for which the structure of the amplitudes (1.4)
is similar. In particular, the Whittaker function is still the same as for generic values of
q. The special features of the representation theory for ¢ a root of unity do play a role,
though, for the minimal string: the boundary operator insertions are taken from a discrete
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1 E and

set of values for which S;(28)/) diverges. In detail, 3y = —bj where j =0, 35,..., 3

2mi 27

and ¢ = e » = e*—2. This range of values for boundary operatwhe Kac table) is in
one-to-one correspondence with the integrable representations of sl(2,R),, or with the type
IT finite-dimensional representations of Ug,(s[(2,R)).

Even though the irreps of the modular double do not qualitatively change when ¢ is a
root of unity, there are some features worth mentioning. When constructing the Whittaker
vectors for the continuous representations in sections 2 and 3, we found that the system of
difference equations (e.g., (2.28)) only has a unique solution (up to normalization) when ¢
is not a root of unity. The solutions given in those sections are still valid, but there might
exist more exotic solutions when ¢ is a root of unity.

Gravitational boundary conditions. The importance of the mixed parabolic matrix
elements in JT (super)gravity is immediate since they implement the asymptotic AdS
boundary conditions of Brown and Henneaux [34, 36]. These asymptotic conditions were
originally derived in (2+ 1)d, but JT gravity is a direct spherical dimensional reduction and
hence inherits the same boundary conditions. Liouville (super)gravity, on the other hand, is
different; in the bosonic case, it was argued in [42] and reviewed above to correspond to a
dilaton gravity theory with a sinh dilaton potential. We have argued for a similar statement
in the supersymmetric case. The classical solutions of these dilaton gravity models can
be interpreted as Yang-Baxter deformations of the JT solutions [97, 98], and in particular,
the asymptotics is drastically modified, with a curvature singularity at the holographic
boundary. It would be interesting to better understand this asymptotic behavior in the
context of holography. It is tempting to speculate that one can understand this in terms of
a g-deformed boundary CFT (see, e.g., [99]), but more work is needed. Can we reason along
these lines to understand why the same mixed parabolic representation matrix elements
appear to play a role here?

Relation to g-deformed BF description? Aside from the Poisson sigma model La-
grangian discussed in section 4, there is a second description that seems to come closer to
reproducing the actual structure of amplitudes: this is g-deformed BF theory [85, 86].

Let us try to set up the problem a bit more explicitly. For simplicity, we focus on
the bosonic model governed by U,(sl(2,R)). One way to write down a Lagrangian for the
g-deformed BF model is to make the B-field periodic in the undeformed BF model:

2i

SBF:/Tr(BF), BB+ (5.1)
The calculation of the disk partition function proceeds by abelianization of the B-field,
after which the periodicity constraint on B causes the Jacobian of this procedure to “g-
deform.” For compact groups, this Jacobian becomes the quantum dimension dim, R of
the representation R appearing in amplitudes. For noncompact s[(2,R), the problem is to
find a way to end up with the continuous measure p(s) = sinh 2wbs sinh 2%5 in terms of the
s-label of the continuous series irreps.

-39 —



Secondly, we add the classical boundary Hamiltonian (4.59):%°

cosh 27b? By

= ¢ Hpay(B Hyay(B) = B1B- + - —5—— o
Sy 7{ bdy( )> bdy( ) + + 27mh2? sin wh2 ’

(5.2)

where (B4, B_, By) are the three s[(2,R) components of B. The abelianization procedure
mentioned above [85, 86] effectively sets By = B_ = 0 and reduces the calculation to an
integral over the Cartan contribution By. This reduces the above Casimir to its classical
description (4.62), and was in fact a motivation for writing that expression in the first place.

The result of this calculation should then be directly matched with Liouville gravity
amplitudes [42]. It would be interesting to fill in the details of this argument.

It is important to emphasize that we implement two independent modifications compared
to the undeformed case: the periodicity of B (following [85]), and the change of boundary
Hamiltonian from a quadratic function to a hyperbolic-cosine function. More broadly,
earlier work has classified which ingredients in 2d YM amplitudes (the measure, the Casimir,
the exponential) become g-deformed [100], and it would be interesting to understand how
and why Liouville (super)gravity (or sinh dilaton (super)gravity) requires these specific
deformations of the JT amplitudes.

A direct Lagrangian rewriting of the g-deformed BF model (5.1)—(5.2) as the specific
dilaton gravity model (4.4) or in terms of its Poisson sigma model description would shed
significant light on these results.

3d gravity. It has been known for a long time that calculations in pure 3d gravity,
when described in Chern-Simons language, are likewise governed by ¢-deformed SL(2,R)
ingredients (see, e.g., [101, 102]). However, there are some differences. In particular, when
computing the solid torus amplitude (which is the 3d analogue of the 2d disk diagram), one
finds that the Casimir contribution is not g-deformed but the measure p(s) is.*!

The fact that the Casimir operator is not g-deformed in 3d gravity amplitudes can be
appreciated rather quickly by writing out the Chern-Simons action on a solid torus M in
(t,r, ¢)-coordinates as:

k 2
Sos = 1 /M 3z P Ty (AM8VAP + SAMAVAp) (5.3)

k k
= o [ T (Aa(Oudr = 0:A40) + A0 Ar  Agl A, A) + Ty A2,

imposing the boundary condition A; = Agl,,,- This action dimensionally reduces to the
2d BF action upon identifying B = A4 and setting d, = 0. In particular, one can already
see the appearance of the boundary Hamiltonian in the form of the quadratic Casimir, and
not in terms of a g-deformed version of it. We leave further investigation to future work.

40This term will break large gauge invariance, as it should. Gauge transformations that vanish at the

boundary are preserved.
41 This calculation will be reported elsewhere.
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Figure 3. Deformed JT gravity disk amplitude with two boundary operators, interpretable as
undeformed JT gravity with a gas of defects localized in the interior of the disk (blue blob).

Arbitrary dilaton gravity models. Recent work [79, 103, 104] has analyzed deforma-
tions of JT gravity. These deformations correspond to modified dilaton potentials of the type

W(®) =20+ ee™®  7<a;<2m (5.4)
7

Such potentials preserve the JT asymptotics as ® — oo, which, owing to the coordinate
choice of (4.30) where ® = r, matches with the asymptotic AdSs region r — +00. Am-
plitudes in such models can be found by series-expanding the corrections and interpreting
them as a gas of defects (of the type studied in [105]) within JT gravity. The result is a
modified density of states that incorporates this defect gas. It is not difficult to convince
oneself, again by series-expanding the deformation, that a similar procedure is possible
when including boundary operators (figure 3).

The result is that in any amplitude with multiple boundary operators, one only replaces
the density factors by the deformed ones:

piT(k) = ksinh(27k) — paet(k), (5.5)

where pger(k) is given in [103, 104]. The vertex functions (or 3j-symbols) and propagation
factors in the amplitude are the same as for undeformed JT gravity. This observation was
also made in [106], and argued to hold even when including higher-genus corrections.

Liouville (super)gravity provides an exception to these statements, since the 3j-symbols
that we require there (2.45) are not those appearing in JT gravity amplitudes (2.46). The
interpretation is that the dilaton (pre)potential of Liouville (super)gravity does not fall into
the class of JT deformations of (5.4), due to the asymptotics of the sinh function.

This set of observations has an intuitive bulk interpretation. The vertex functions
themselves are drawn as three-vertices at the holographic boundary (figure 3). Since the gas
of defects for the deformations (5.4) does not reach the actual boundary, these local three-
vertices do not feel the deformation. However, if the gas of defects does reach the boundary,
as it does when viewing Liouville (super)gravity as a deformation of JT (super)gravity, then
the resulting vertex functions are different. This leads to a division of dilaton gravity models
into different classes, where all entries within a given class have the same dilaton asymptotics
and hence the same set of vertex functions, but different densities of states.*? This is espe-
cially intriguing when combined with the Poisson sigma model description of section 4, in
which generic dilaton potentials lead to nonlinear symmetry algebras and apparently similar

421t would be interesting to collect evidence for this classification, e.g., by looking at the set of deformations
that preserve the sinh asymptotics of Liouville gravity [107].
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structures for the amplitudes, even though there is no particularly useful known group struc-
ture underlying the generic case. It would be interesting to understand this situation better.

From gauge theory to gravity. Locally, lower-dimensional gravity is described by a
gauge theory. Globally, however, there are mismatches that need to be properly appreciated
before making detailed comparisons. Let us interpret our results from this perspective.

The analysis of sections 2 and 3 required explicit knowledge of the modular double of
the quantum group U, (osp(1]|2,R)), and not just the quantum group itself. In section 4, we
saw no indication of this modified structure. This observation parallels what happens in the
undeformed case [37], where manipulations at the level of the Lagrangian and its symmetry
group are insensitive to global algebraic information. This information is contained in the
precise path integration cycle for the gauge field A, in the Poisson sigma model (PSM)
description or the g-deformed BF description mentioned above. The restriction is enforced
by demanding that the gauge field A, correspond to smooth geometries (no punctures or
cusps) [108, 109], which can be done very explicitly in 2d. See, e.g., section 4.1 of [37] for
an intuitive argument. In the undeformed case, the more precise algebraic structure that
implements this smoothness constraint is the positive subsemigroup, which can in turn be
found as the b — 0 limit of the modular double of the quantum group U,(sl(2,R)). This
was the main motivation for pursuing the subsemigroup approach in [31, 32, 37].43

Next to this modification of the algebraic structure, a second modification is necessary
to make contact with gravity: one needs to take into account the overcounting induced by
large diffeomorphisms. For JT gravity, this is done in the context of hyperbolic geometry,
and is baked into the definition of Weil-Petersson volumes [16, 110]. For Liouville gravity,
in the particular case where the matter sector is the (2, p) minimal model with p an odd
integer, an analogous statement was made in [42] in terms of a g-deformation of these
Weil-Petersson volumes. This modification is required to make contact with the description
of the theory in terms of Hermitian matrix models.

Finally, a third step is to sum over topologies by hand. This is not natural from the
gauge theory perspective, but it is easy to accommodate at least at the perturbative level
in the genus expansion.

Our discussion implies that all three steps for going from gauge theory to gravity (re-
stricting the algebraic structure, modding out by large diffeomorphisms, and summing over
topologies) are also necessary in the specific case of Liouville gravity. From the dilaton gravity
perspective, both JT and Liouville gravity simply correspond to specific choices of dilaton po-
tential. Therefore, it is natural to conjecture more generally that going from ¢-deformed BF
or PSM amplitudes to dilaton gravity amplitudes requires the same three-step modification.*4
We summarize the multi-step process to go from gauge theory to gravity in table 1.

43We remark that going to the modular double might look like an expansion instead of a reduction of the
model, but it has been shown [57, 58, 61-63] that the nontrivial irreducible representations of the modular
double consist only of the continuous representations studied in sections 2 and 3, and are hence in fact a
subset of those of the quantum group that one started with.

44 As preliminary evidence, performing the second and third steps is natural whenever one needs to match
onto a matrix model description. And indeed, at least for the dilaton gravity models of the class (5.4), it
was proven in [103, 104] that these models are dual to matrix integrals.
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Start with gauge theory SL(2,R) BF U,(sl(2,R)) ¢-BF or PSM

Step 1 positive subsemigroup modular double
Restrict to smooth geometries SL*(2,R) Uq(sl(2,R)) ® Ug(sl(2,R))
Step 2

Weil-Petersson volumes| ¢-Weil-Petersson volumes
Remove large diffeos

Step 3

Sum over topologies

ad hoc ad hoc

End with gravity JT gravity Liouville gravity

Table 1. Passage from gauge theory to gravity as a multi-step process.
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A Liouville (super)gravity: setup and fixed-length amplitudes

We recall here the definition of 2d Liouville gravity and supergravity, as well as the
computation of fixed-length amplitudes therein.

The non-critical string is defined by coupling a 2d CFT described by the action Sys[x; g]
to the gravitational fields as

P Z / Dg DX o~ Sulxigl—mo [ dQZ\/E’ (A1)
topologies

where a bare cosmological constant term has been added. It is well-known that upon going
to conformal gauge g,, = ezb%w,, where § is a reference metric, and taking into account
the conformal anomaly, the action reduces to a sum of three 2d CFTs: Sy, + Sy + Sen, with
vanishing conformal anomaly cr, + cpr + ¢gn = 0. The three pieces are as follows:

e The Liouville action describing the conformal factor of the 2d geometry:
1 A . 1 N
Sp = — / &%z [(w)? +QRo+ 47we2bﬂ b= }{ dz [Qm + 2wBeb¢} . (A.2)
47 Jx 27 Jox

where Q = b+ 1/b and ¢y, = 1 + 6Q? > 25. For our purposes, we added a boundary
term with boundary cosmological constant g, allowing for Neumann-like boundary
conditions on ¢ describing a piece of FZZT-brane on which the worldsheet can end.

e The matter 2d CFT with cp; = 1 — 6q% where ¢ = 1/b — b. For the purposes of this
paper, it is convenient to parametrize it as a timelike Liouville CFT:

1 N
/ d*z —qRy + 47r,uM62bX} - — dr qKy, (A.3)
" i 27 Jox
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where we take Dirichlet boundary conditions on the field xy — co on any boundary.
This corresponds to the vacuum brane boundary condition.

o The bc ghost CFT Sy, with ¢g, = —26.

We are interested in boundary vertex operators. Within the Liouville parametrization
above, primary CFT operators are constructed as:

Liouville : ¢ Apg = B(Q — B), (A.4)
Matter : e#MX Ag,, = Bu(q+ Bum), (A.5)

such that we get the open string tachyon vertex operators by gravitationally dressing the
matter part as

Bg,, ~ ?{ dx PMX PP ~ cePrx B (A.6)
12>

with the restriction that Ag,, + Ag = 1, which leads to 3 = b — Bar.*® Amplitudes with
insertions of these vertex operators on different geometries can then be computed, in
principle, using string theory techniques.

From the 2d gravity perspective, we can obtain amplitudes of fixed boundary length by
Fourier transforming any amplitude as

—1 /R dup etBlL ... , (A.7)

since by (A.2), we bring down a factor of §(¢, — [ €*®) in the path integral, where [ e®® is
precisely the boundary length as measured by the 2d metric g,, that we started with.

The extension to Liouville supergravity proceeds along similar lines. We only point out
some of the differences here.

Starting with any 2d matter SCFT and coupling to 2d supergravity, we can reach the
combined action Sz, + Sy + Sgh in terms of the N = 1 super-Liouville CFT, the matter
SCFT that we started with, and the bc and 57 ghost systems. The total central charge
again vanishes, cf, + cpr + ¢gn = 0, where ¢g, = —15 in this case.

Similarly as in the bosonic case, we can construct worldsheet diffeomorphism-invariant
boundary operator insertions as

Bm
2 X

B= (ce_“")eg‘z’e (A.8)

where now Ag = %B(Q — ) and Ag,, = %BM(q + B ), restricted according to Ag+Ag,, =
1/2. The solution is again 8 = b — Bps. The factor of ce™? is the ghost piece of the vertex
operator. However, the open string tachyon vertex operators of interest here can be written
as follows:
_ S mx
Bgs,, = (ce”?) |ez?e2 X 4 (superpartner)| , (A.9)

where we added the worldsheet superpartner of the operator in a particular linear combina-
tion. It was observed in [43] that it is this combined boundary operator whose amplitudes
behave well in the fixed-length basis.

“The solution 8 = 1/b+ Ba is related by a Liouville reflection 8 — Q — 5.
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For the super-Liouville part, one can analogously define FZZT boundary conditions
and, from there, transform to the fixed-length basis in the original metric:

—2'/ dup MBIl ... , C=pu% —p: —ico = +ioco, (A.10)
C

where the integration is performed along the half-hyperbola C in the pp-plane. This again
brings down a factor of 6(f, — [ €%®) in the functional integral.

B Special functions and identities

We collect and define here the double sine functions and Barnes identities that we need in
the main text.

B.1 Double sine functions Sp(x)

The Barnes double gamma function I'y(z|w;, w2) is defined by the series expression

d X 1
log Ty (z|wy,ws) = pr Z . (B.1)
t=0

n1.m9=0 (Z + wini + ang)t

The “b-deformed” gamma function I'y(x) is conventionally defined so that I'y(Q/2) = 1:

FQ(x‘b7 b_l)
() = =——~—S~. B.2
"= T (2

It satisfies the shift properties
mbbxflﬂ \/%bf:p/b+1/2

r b) = ——+——T r 1/b) = ————T(2). B.3
b(z +b) T(0) b(2), b(z +1/b) T /b) b() (B.3)

The double sine function Sy(z) is then constructed as

Ly(2)

Sp(z) = ——————, B.4
b{) Iy (Q — ) (B4

which satisfies the defining functional relations

Sy (Q—12) =1/Sy(x),  Sy(w-+b) = 2sinmba Sy(x), Sb(x—i—ll))=2sin7Tbeb($). (B.5)

The double sine functions satisfy the following g-deformed generalization of the first Barnes
lemma:

+o0o
/ dr e CHBHIHO) G (o 4 i) Sy (B + i) Sp(y — iT)Sp(6 — iT) (B.6)

_ eﬂi(ab’f’yé) Sb(a + ’V)Sb(a + 5)517(/8 + V)Sb(ﬁ + 5)
Sp(a+ B+ v+ 9) '

In section 3, we require the combinations

Sns(z) = S (”2““) Sy (‘; + g) C Su(@) =S (‘; + Z) S, (;” + le) . B
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which satisfy
Sns(@ —x) =1/5xs(z),  Sr(Q —z) = 1/Sr(x), (B.8)

as well as the crucial functional shift relations

bx

Sns(x + b) = 2cos <2> Sr(x), SNs (ZL‘ + 2) = 2cos (7;;3) Sr(x), (B.9)

wbx

Sr(z + b) = 2sin (2> Sns(x), SR (3: + (1)) = 2sin (7;2:) Sns ().

B.2 ¢g-deformed supersymmetric Barnes identity

For external indices ps pc = 0,1, as well as Sp(x) = Sr(x) and S;(z) = Sxs(x), we have
the g-deformed supersymmetric Barnes identity [59]:

+oo T
> / dr e T TG\ (0 +iT)Spp10(8 +iT)Speto(y — iT)S146(8 — iT)
0=0,1"">
— 9¢— 5 (af—9) Spa+po+1(a+7)Sps(a+0)Spptpc+1(8 +7)Sps (B +6)
SPA+PB+pc (a + 5 +7+ 5)

(B.10)

Addition of indices takes place modulo 2. It is convenient for later reference to unpack this
identity into

+oo T
/ dr e~ 7 (@HBH1H0) o [Sp (o + i) Sr(B + i7)Sns (v — i) Sns (8 — iT)

+ SNs(Oé + iT)SNs(,B + iT)SR(’y - ZT)SR(5 — ZT)]
26_2’7#(015_75) Sr(a +7)Sr(a +0)Sr(B +7)Sr(B + )
Sns(a+ B+~ +6)

(B.11)

and

+OO T
/ dr e~ 2 (@ FB+7+0) o [Sng(a + i7)Sns (B + i7)Sns (v — i) Sns (6 — i)

+ Sr(a+i7)Sr(B + i7)Sr(y — iT)SR(J — iT)]
0~ 2 (af—6) INs(@ +7)Sns(a + 8)Sns (B + ) Sns (B +9)
Sns(a+ B4+ 0)

(B.12)

and

+OO T
/ dr e~ 2 (@FB+749)  [Sp (a4 i7)Sns (B + i7)Sr(y — i1)Sns (6 — i7)

+ Sns(a + i7)Sr (B + i7)Sns(y — i7) SR (6 — i7)]
ir (af—5) ONS (@ + 7)Sr(a + 6)Sr(B +7)Sns (8 + )

=27 e T 4713 . (B.13)

It is this last identity that we need in section 3.
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C Alternative realization of the U,(osp(1]|2,R)) continuous series

An alternative realization of the algebra

2 -2
s gtipe el KoK
KF~ =q2F7K, {F , F }_ 8(q1/2 — ¢~ 1/2) (C.1)
mirroring the bosonic realization (2.5) studied in [53], is found by setting
11 0
K =e ™ Ty, , (C.2)
/217 g7
0 ‘ 1 2mbt ql/262i7rb2j/_|_q3/2e;2iwb2jTib
+ 2 /21 4-1/2
F 1 e2iﬂb2‘j_672i7rb2jTib 1 4 9 (C?))
1 q2—q-1/2 0
0 ‘1%
- 2 1 2+ —1/2
= _ L —2mbt_—FT i ! Oq , (C4)
4 ql/2—g—1/2

where o = 1/2b — 2bj as in the quantum algebra (2.5) in the main text.
Expanding these operators in the b — 0 limit, we obtain the differential operators

R 20y — j| 0 1 ,
H= = 20, + =90y — 7, C.5
( 0 x@x—j+1/2> FOn T o= (€5)

R 0 |-z 1 1

+ _ 2 - _ I 1
FT = (%x@x+j 0 ) = 25[7619 230198964—]19, (C.6)
o (L002) Z g, 10, ©.7)

= %81 0 = 9 (v ) s .

A —220, + 2jz 0 .
e ( 0 : —a20, +2jw —x ) —*0, — w0y + 2ja, (C.8)
P = (‘90 80 ) 0, (C.9)

which constitute the infinitesimal version of the group action of OSp™(1]2,R) on
L2(RHY [37]:

(- ), 0) = (bx+d+ 69)2 f (

ax+c+pY ax+v—ed
bx+d+519’_bx+d+5q9>'
This is the Borel-Weil realization of the principal series representations of OSp™(1/2,R),
defined on L? functions on the super half-line R = {(z,9) |z > 0}.

This construction mirrors the results (2.9) in the bosonic case. It would be interesting

(C.10)

to develop the story from the perspective of this carrier space.

D g-deformed Bessell function

The classical modified Bessel function of the first kind can be written as

1 F(—t) o ($>2t+a +00 1 (J}) 2n+a
L) = — [ dt—— " (T - f D.1
o(7) 2772'/cdlf’r(oé+t+1)Z 2 nz:%nlf‘(n—i-a—i-l) 2 (D)
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v

3

Figure 4. Left: contour C used to define I, (z). Right: contour C used to define the ¢-deformed
version Z¢ ().

where the second equality results from picking up the residues from the poles of the I'(—t)
in the right half-plane. The initial contour C runs from infinity at —7/2 < arg(¢) < 0 to
infinity at 0 < arg(t) < 7/2, encircling the origin, as in figure 4 (left).

Since I, (x) is real for o € R, we can write it equivalently as

B 1 F(_t) T 2+«
Ia(l') = 277” . dt m cos Tt <2) . (D2)

In this form, one readily proves the equality*®
(Ia(w) = La(x). (D.3)

We define the g-deformed Bessell function by the integral

s

Kq(z) =

2sinTa

IE = peOTT d i 1C+a ( ZC) h— C —71'16 —ai{) —2miCx D4
/ $ 9 (zg+a+b)cos b c (D-4)

with the contour C of figure 4 (right).
Using the elegant residue formula
b (_)n+m+nm
v=—mb=n/b = 90 G (mb+ n/b+b)’

Res S| (D.5)

the integral (D.4) can be evaluated by contour deformation into the lower half-plane:
)n+m+nmgmb+n/bgmb+n/b+a

z) = b
Z Sp( bm+n/b+ b)Sp(bm 4+ n/b+ a+ b)

n,m=0

—(2mb+2n/b+a)mx

+oo (_)n+m+nmgzlb+n/b—cx+1/bgzmb+n/b+1/b

+ b
Z_ Sp(bm +n/b+b)Sy(3 + bm + n/b— o+ b)

n,m=0

6—(2mb+2/b+2n/b—a)7rm

(D.6)

The classical b — 0 limit can also be calculated directly, and indeed yields the usual Bessell
function (¢ = wbx):

. o _QS

(I)I_I}(IJIQ( x) = I€(2 e ?). (D.7)

46Namely, by using the Euler reflection formula, and a shift t — ¢t + «. After combining both integrals,
one can move the contour to follow iR, to the left of the origin.
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One can see this either from the Mellin-Barnes integral representation of (D.4) or from the
Taylor series expansion (D.6),% yielding back the classical formulas (D.1).
The function (D.4) is an eigenfunction of the finite difference equation

(T + T + ghabae ™ Tc) J(w) = 2cos wbar f(2), (D.5)

where we left the parameter e arbitrary (corresponding to different quantizations of the
same underlying classical problem). We are most interested in the cases ¢ = +1 and e = 0.4®
The second eigenfunction of this finite difference equation is

+0o o . .
(o) = e [T dCgiegit oSy (~ig)Sy(—a — ig)e T2 (D)

which is the usual ¢g-deformed BesselK. Writing the g-deformed Bessell as (D.4), we have
the g-deformed relation
T

Ka(z) = (Z0(2) — Z5(2)) , (D.10)

2sin 5 @

generalizing the classical version (D.3). Satisfying this relation can be viewed as a require-
ment for any candidate g-deformation of the Bessell function.

The limit ngfj — 0 allows for a truncation of the series (D.6) to the n = m = 0 term
of the first line, and gives an exponential function:

o
lim To(z) = — % _-oms (D.11)

gbgb—0 - Sb(Oé + b)

We do not care about the prefactor since this can be absorbed into a redefinition of the
operator of interest.
As b — 0, the difference equation (D.8) limits to (¢ = wbz):

2
o
(03 + e (9) = =75 £(9), (D.12)
with independent solutions
Ia (2y/ave™?), Ka (2(/pve?). (D.13)

D.1 Extension to Ug(osp(1|2,R))

Let us try to generalize this discussion to the case of U, (0sp(1|2,R)). We look for a second so-
lution to the system of difference equations (3.45), aside from (3.44). We propose the function

£

€,+ (x) = P OTT A dC gi'fglij{+oz677ri2(@,aig)efm'(x (D.14)

a,9ugv
Sns(—iC) ¢ Sr(—i() . mC
<5’N5(iC+a+b) COSh?bi—SR(iC—i—a—l—b) smh2b> )

4TWe need to set n = 0 in the latter evaluation, since the poles with n # 0 from the S, function are shifted
to infinity in the classical limit. The poles resulting in the second line of (D.6) (arising from the zeros of Sp
in the denominator of (D.4)) also shift to infinity.

48The relevant Whittaker function for Liouville gravity turns out to have e = £1, whereas the ¢ = 0 case
is the simplest toy example.

49 —



which satisfies the same pair of difference equations as before:

(Tib —T 4 — ingge_”bxqeﬂT,ieb) wg;ugy (x) = =2isinwba vy, o (2), (D.15)
(n.b ST igggge*mqﬁ/%ﬁ_ieb) Vg, (@) = —2isinmba i o (7). (D.16)

A quick way to see this is to rewrite (D.14) as
w(el,:l:(l,) — QPO / dC glzfgic-l—ae—m;(CZ_aiC)e—m'Cac (D.17)
c

X (SNS(—iC)SR(—iC — ) cos (;Tb(—ig“ — 204)) cosh g—g

+ Sr(—i)Sns(—i¢ — a) sin (;)(—ZC — 2a)> sinh 7;2)

This expression is almost the same as that for the Whittaker function (3.44), up to setting
«a = is and the presence of the hyperbolic functions cosh and sinh. The latter map into
one another under ¢ — ¢ + ¢b. Hence this is a solution to the finite difference equations
as long as the same is true of the Whittaker function (3.44), which we already know.

In the ngfj — 0 limit of (D.14), the pole at ( = 0 dominates the first term (just
like in the bosonic case) and the pole at ( = —ib dominates the second term. This leads

schematically to the function
#e—wa:c + #e—w(a—&-b):c’ (D.18)

which will also be seen in the classical limit (D.19).
In the classical limit, where we let ¢ = 7bx, g, = (47162;1)%, gy = (47Tb2y)ﬁ, we get

et (m)%\/? (le% (2 Wﬂ))ihm% (2 ,,Wefqﬁ)), (D.19)

which, for z = 2,/uve~?, is the set of functions solving the second-order ODE

(—2285 —20,£z+ 22) Y(z) = —a?Y(2). (D.20)

E Whittaker function in the n = —1 sector

We can emulate our construction of amplitudes in the n = —1 sector by considering the
following ad hoc “Whittaker function” given by the expression

~ _ . +(>o . . . _ 'E 2 _ .
€,+ (.I') —e msx/ ngLCgIZjCJerse mi5(C +28C)e milx (El)

SnggV 0o

x [Sns(—i€)Sns(—2is — i¢) + Sr(—iC)Sr(—2is —i()] .

The only difference between this expression and (3.44) is the combination of Syg and Sy
appearing on the second line.
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These functions satisfy the following system of difference equations:*”

(Tib + T—ib) @Zgzg—;ﬂgy (.’L’) - gzgllje_ﬂbwqg/QT—iebQ;;:;ng (.1‘) = 2coshbs &;:_Hgy (CB), (E2)
(T + Tig) Bty (&) + ghgbe ™G 2Tt (2) = 2coshmbs Bt (x).  (E3)

It would be interesting to understand whether there exists a proper group-theoretic origin

of these functions. If so, it would need to involve ¢g-deformation in an essential way, since

the underlying classical superalgebra osp(1|2,R) does not contain this additional freedom.
These “Whittaker functions” satisfy the orthogonality property

| b0 @00 0 = ) (8.4

S1:9pgv 82:9pgv sinh %72 sinh 7bs ’

from which one finds a Plancherel measure p(s) ~ sinh %% sinh wbs quite similar to that in
the bosonic Uy (sl(2,R)) scenario.

F Nonlinear Lie (super)algebras

An alternative to the language of (graded) Poisson sigma models is that of nonlinear
(super)gauge theory. Namely, a theory of 2D dilaton (super)gravity can be viewed as a
gauge theory based on a nonlinear Lie (super)algebra [71, 72, 111]. We briefly review this
terminology here.

It is important to note that, from the Poisson algebra point of view, all of the nonlinear
Lie algebras below describe “classical” Poisson brackets, before quantization of the Poisson
structure. Therefore, in all equations that present an abstract bracket on the left-hand side,
the multiplication operation on the right-hand side is (graded-)commutative.

Nonlinear gauge theory. A nonlinear Lie algebra with basis {T%} is specified by a
generalized Lie bracket

[T%, T7] = PY(T), (F.1)

where P = —PJ? is a polynomial. Multiplication takes place in the polynomial ring of the
{T*}, and is hence commutative. The generalized Jacobi identity reads

9, Pl PRIt — 0. (F.2)

An ordinary Lie algebra with structure constants f%* is recovered upon setting P%(T) =
fijka.

For convenience, we note that

2 cosh(mwb(¢ + s)) = 4sinh %b(g + 2s) sinh %bC + 2 cosh wbs

= 4 cosh %b(g + 2s) cosh %bg — 2cosh 7bs.
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The minimal field content of a nonlinear gauge theory consists of an adjoint scalar X*
and a gauge field A;. A nonlinear gauge transformation with parameter € takes the form

6X" = —PI(X)ej,
5147, == —d67; - 8ZP7k(X)A]ek (Fg)
In two dimensions, there exists an invariant action of the form S = [ Q where
. 1 .
Q= XdA; + §P9k(X)Aj A Ap, (F.4)
00 = d((P*(X) — X0, P* (X)) Ajep,).

The equations of motion following from (F.4) are F; = 0 and DX* = 0, where we define the
field strength and covariant derivative by

Fy = dA; + %@-Pﬂ"f(X)Aj A Ap, (F.5)
DX'=dX"+ PY(X)A;. (F.6)
Note that
SF; = —0;P*(X)Fjet, — DX 0,0, PT*(X) A Ajey, (F.7)
§(DX") = —DX*0, P7(X)e;. (F.8)

In particular, the field strength F; transforms inhomogeneously, where the inhomogeneous
terms vanish in the case of a linear gauge theory. By (F.2), the commutator algebra of the
transformations (F.3) closes on shell with respect to the action (F.4).

Liouville gravity with dilaton potential (4.33) is a nonlinear gauge theory with gauge
algebra Uy(sl(2,R)) (¢ = ™). The connection between sinh dilaton gravity and nonlinear
g-gauge theory was already observed in [98]. In the limit b — 0, we obtain JT gravity with
V(®) = @, whose first-order action is that of an sl(2,R) BF theory.

Nonlinear supergauge theory. A nonlinear Lie superalgebra with basis {77} takes the
form

[T, T7) = PU(T), (F.9)
where the bracket is Zo-graded and P¥ = —(—)?i% PJ%, Multiplication takes place in the Zo-
graded polynomial ring of the {7°}. “Classically,” the graded Jacobi identity takes the form

> (=)7k Py, P* =0, > (=)nkof P PY =, (F.10)
cyc(ijk) cyc(igk)
written in terms of left or right derivatives, respectively.’® When we take derivatives to

act from the left (right), we write variations on the left (right) so as to obtain the correct
signs when anticommuting fermionic quantities.

50These relations correspond to two equivalent ways of writing the “quantum” graded Jacobi identity:

0= ()7 T (T3 Tell + ()7 T3, [Te, Tl + (=) 7 [Tk, [T, T3]
= ()V7T5 Tl Tl + ()7 ([T, Til, Til + (25) 778 (175, T3, Tl
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Our nonlinear gauge transformations are now

6X' = —¢; P (X),
§A; = —de; + AjepdF P (X). (F.11)

We have the invariant action S = [ where

| y
QEdAiXZ—iAi/\AjPﬂ(X), (F12)
00 = d (Ajer (9 PH (X)X - PH (X))

Note that the “BF-type” action (F.12) differs by a total derivative from the graded Poisson
sigma model action (4.45) used in the main text:

Q — d(AX) = Ay A X — %Ai A A PP (X). (F.13)

If all fields are bosonic, then the preceding formulas reduce to the bosonic ones.

N =1 Liouville supergravity with dilaton prepotential (4.44) is a nonlinear supergauge
theory with gauge superalgebra U, (osp(1|2,R)) (¢ = e”bQ). In the limit b — 0, we obtain
N =1 JT supergravity with u(®) = ®, whose first-order action is that of an osp(1|2, R)
BF theory.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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