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we construct the principal series representations of OSp(1|2, R) and show that whereas the
corresponding Plancherel measure does not match the density of states of N/ =1 JT super-
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1 Introduction and overview

The simplicity of the gravitational path integral in low dimensions, particularly in Jackiw-
Teitelboim (JT) gravity [1-6], has yielded important insights such as the paradigm of
ensemble duality for effective theories of gravity [7-15], an improved understanding of topo-
logical effects on boundary correlation functions [16-19], an explicit calculational scheme
for local quantum gravitational observables [20-22], and concrete applications of new grav-
itational entropy formulas (reviewed in [23]). The tractability of lower-dimensional models
of gravity stems from the fact that such theories are perturbatively equivalent to topo-
logical gauge theories. In the particular case of JT gravity or its A/ = 1 supersymmetric
counterpart, this gauge theory is a BF model based on the bosonic group SL(2,R) [24-27]
or the supergroup OSp(1]2,R) [28]. Similar constructions (e.g., [29-33]) have elucidated
many aspects of 3d gravity over the years. As recent progress has demonstrated, a careful



understanding of the gauge theory description has much to teach us about the gravitational
path integral.

Nonetheless, there exist profound structural differences between gravity and ordinary
gauge theory that must be reconciled to effectively bring gauge-theoretic tools to bear on
problems in holography and nonperturbative quantum gravity. These differences have been
well-appreciated in the context of 3d gravity [34]. We recapitulate them here and adapt the
discussion to 2d. Namely, to upgrade gauge theory to gravity, one must do the following:

I. Restrict the integration space to smooth metrics only. The gauge theory
formulation of quantum gravity, whenever it exists, admits gauge field configura-
tions that correspond to singular geometries. The canonical example is the classical
solution A = 0 in 3d Chern-Simons gravity, which corresponds to a non-invertible
metric. Hence the gauge formulation contains “too much” information compared
to gravity, which raises the question of how to naturally exclude these extraneous
configurations. Luckily, in 2d SL(2,R) BF theory, this problem can be formulated
very precisely. The path integral of this theory computes the volume of the moduli
space of flat SL(2,R) connections (F = 0) on any given Riemann surface 3, which
we denote by M(G,X) for G = SL(2,R). This moduli space has a connected “hy-
perbolic” component, called Teichmiiller space 7 (X) C M(G,X), that parametrizes
smooth geometries.! The main technical question that remains is how to accomplish
the restriction to Teichmiiller space within a concrete amplitude calculation.

II. Quotient by large diffeomorphisms. Gravity contains large diffeomorphisms
that are invisible from the gauge theory perspective. Again, we can be very explicit
in 2d: Teichmiiller space T (X) contains surfaces that are considered equivalent in
gravity by virtue of large diffeomorphisms. The prototypical example of such diffeo-
morphisms is the modular group SL(2,7Z) acting on the modulus of a torus surface.
The generalization to any Riemann surface is that there exists a discrete group of
large diffeomorphisms, the mapping class group MCG(X), by which we must quo-
tient the space of smooth geometries (modulo small diffeomorphisms) to reach the
true integration space of inequivalent geometries: the moduli space of 2d Riemann

surfaces M(X) ~ T(X)/ MCG(X).

ITI. Sum over topologies. The gravitational path integral naturally contains a summa-
tion over different topologies consistent with the prescribed boundaries. By contrast,
gauge theory is defined on a fixed spacetime manifold and does not automatically
include any such summation. In 2d, we can again be explicit. For a 2d Riemann

"More precisely, the moduli space of flat PSL(2,R) connections on a Riemann surface ¥ of genus g and
n boundaries with —x(X) = 29 +n —2 > 0 has 1 — 2x(X) connected components labeled by all integer
values of the Euler class e satisfying |e|] < —x(X) [35] (when n > 0, one assumes hyperbolic monodromies
for each boundary component, and e refers to the corresponding relative Euler class). The components with
le] = —x(X) correspond to smooth hyperbolic metrics. The other components contain hyperbolic metrics
with isolated conical singularities whose angular excesses are multiples of 27 [36].



surface ¥, the Gauss-Bonnet theorem states that

1 1
Y)=2-29—n=— — ¢ K 1.1
x(2) g—n 47T/ZR+27T > K, (1.1)

where g is the genus, n is the number of boundaries, and K is the trace of the extrinsic
curvature on each of the boundaries. For a given number of boundaries n, restricting
to a fixed genus ¢ hence defines a constrained gravitational path integral in which
the metric tensor is required to satisfy (1.1). While the resulting constrained path
integral is not ill-defined, it may fail to capture important physical effects (such as
the downward part of the Page curve [37, 38|, or the late-time ramp and plateau
in boundary correlation functions [7, 16, 17]). To accommodate such effects within
the gauge formulation, a summation over different topologies must be introduced by
hand. This issue is an inherent limitation of any gauge theory description, and we
will not concern ourselves with it further in this work.

Our motivation in this work is to explore precisely those global aspects of gauge theory
that manifest themselves in a gravitational description. In particular, our goal is to elabo-
rate on the structural link between the geometry of 2d gravity and the algebraic framework
of group theory and representation theory. Within JT gravity, which has played a central
role in recent advances due to its exact solubility, the questions that we ask include: what
is the detailed structure of the JT gravity path integral? Can one compute refined observ-
ables (correlation functions) beyond those of [7]? Our specific focus is on understanding a
single feature — supersymmetry — that leads to richer physics and improved UV behavior,
and that may be present in top-down constructions of such models.

Supersymmetry aside, the s[(2,R) BF theory presentation of ordinary JT gravity pro-
vides a convenient language for computing diffeomorphism-invariant observables (boundary
correlation functions). While the natural home of gauge theory is a fixed topology (par-
ticularly the disk), disk correlators are the foundation of correlators in arbitrary genus.
In gauge theory language, the known diagrammatic rules for disk amplitudes [39] take as
their basic ingredient a certain momentum space integration measure du(k) (or density of
states, via E ~ k?). It has been argued that this integration measure follows directly from
the Plancherel measure on the space of continuous irreps of a modification of SL(2,R),
namely the semigroup SL* (2, R) [40, 41].

In this paper, we apply these lessons to supergravity. We undertake a detailed study of
the OSp(1/2) (or 0sp(1]2)) supergroup gauge theory formulation of N =1 JT supergravity,
emphasizing the OSp™(1|2) supersemigroup structure. Both the exact solution for the
partition function [5, 42, 43] and the dual matrix ensemble of JT gravity [7] have been
generalized to JT supergravity [44]. In this paper, we likewise generalize both the exact
group-theoretic computation of correlators and the semigroup structure in JT gravity [40,
41] to JT supergravity. In past work, the boundary correlators have been obtained for
N =1 JT supergravity by exploiting its relation to 2d Liouville CFT [39, 45, 46]. Other
approaches, possibly also amenable to supersymmetrization, include direct 1d path integral
calculations [47-49] as well as methods relating JT dynamics to that of a particle on AdSs
in an infinite magnetic field and the universal cover of SL(2,R) [50-52]. As compared to



these other approaches, the conceptual unity and simplicity of the group-theoretic approach
allows for a clean generalization not only to JT supergravity, but also potentially to other
theories of dilaton gravity. We return to this perspective in the concluding section.

There are both conceptual and technical reasons for tackling the problem of JT super-
gravity. Conceptually, adding supersymmetry allows us to address questions such as: how
robust is the semigroup structure of 2d dilaton gravity? Does it persist in more complicated
theories of gravity? Moreover, there exist further links to be made with minimal string
theory and Liouville gravity, first suggested for the disk partition function in [7, 53] and
worked out for several amplitudes in [54, 55]. Taking the point of view that 2d string the-
ory gives a more microscopic definition of such models (in which the worldsheet expansion
becomes a universe expansion), JT supergravity is a natural setting for using tools from
minimal (super)string theory to understand quantum gravity [54-60]. On the technical
side, we develop various elements of supergroup representation theory from scratch, many
of which may be of independent interest.

A more detailed summary of our results is as follows.

In section 2, we begin by examining the path integral of JT supergravity in BF lan-
guage and deriving the super-Schwarzian quantum mechanics that governs its boundary
dynamics. We further classify the various possible super-Schwarzian models in terms of
coadjoint orbits of the A/ = 1 super-Virasoro algebra.

In section 3, we enrich this correspondence with operator insertions. We demonstrate
that the first-order formulation of AV = 1 JT supergravity with boundary-anchored grav-
itational Wilson line insertions is equivalent to the N’ = 1 super-Schwarzian theory with
bilocal operator insertions:

/[DB] [DA|W; (11, m2) 1y - e :/[DF] (D] On (71, 01,72, 02)m - - =555, (1.2)

The bulk action S%Zl is a functional of a dilaton supermultiplet B and a superconnection
A, both valued in 0sp(1]2), while the boundary action Sé\éf s a functional of a bosonic
reparametrization mode F(7) and its superpartner n(7). (7,6) are 1d superspace coordi-
nates. The boundary-anchored Wilson line is given by

Wj(11,72) = Pexp [— [: Rj(A)} . (1.3)

It forms a dim R x dim R matrix, from which we pick a certain element IJ. The super-
Schwarzian bilocal operator takes the form

D6, Db,

2h
_P0P% N D= gy + 00, 1.4
T{—Tg—egeg> ’ ot 14

Onlr,01.72,02) = (
where (7/,6’) is a superconformal transformation of (7, 6) dictated by F,7. It contains four
components m = 1,2,3,4 when expanded in the Grassmann variables ¢; 2. Each of these
four components can be uniquely mapped to a pair of indices IJ on the left-hand side. The
representation j of the Wilson line is related to the weight h of the bilocal operator on the
right-hand side by j = —h.



In section 4, we show that the full structure of JT supergravity amplitudes suggests
that the aforementioned restriction to smooth geometries can be naturally implemented by
restricting the full group to its positive subsemigroup. We provide arguments in favor of this
scheme, and then explicitly compute the measure on the set of continuous representations of
the subsemigroup and demonstrate agreement with the density of states of the gravitational
system. This result shows how gravity and gauge theory match at lowest genus g = 0, where
only item I of the complications listed above is present.

In section 5, we present a few physical applications of our results by explicitly comput-
ing several gravitational amplitudes: the boundary two-point function, the Wheeler-DeWitt
wavefunction, and defect insertions. Using these defect insertions, one can glue surfaces
together to reach different topologies. It is here that item IT in the above list of compli-
cations makes an appearance. As a last example, we compute the late-time complexity
growth in this model and exhibit a similar physical result as in the bosonic case: the linear
growth in complexity persists even after classical gravity ceases to hold.

In section 6, we conclude by commenting on several outstanding problems and intrigu-
ing extensions whose full treatment is postponed to future work.

In the interest of conveying our main ideas as clearly as possible, many of their technical
foundations are left to extensive appendices. Appendix A summarizes our conventions for
supernumbers. Appendix B serves both to review bosonic JT gravity and to present some
new results using techniques that we apply also to JT supergravity. Appendix C reviews the
relation between the first- and second-order formulations of JT supergravity. Appendix D
provides some further details on coadjoint orbits of the super-Virasoro group and on super-
Schwarzian bilocal operators. The results of appendix E form the technical core of this
paper. Here, we aim to provide a comprehensive overview of the representation theory of
OSp(1]2), which could be of interest on its own to some readers. In particular, we compute
the Plancherel measure for OSp(1|2) in section E.8. Finally, appendix F provides some
technical proofs for the positive subsemigroup of OSp(1|2).

2 Super-Schwarzian and defect classification

In this section, we discuss the kinematics of JT supergravity as a supergroup BF theory,
focusing in particular on the boundary dynamics. Specifically, we show that the boundary
action of a constrained particle on the OSp(1]2) group manifold reduces to the N' = 1 super-
Schwarzian. Moreover, we show how to classify defect insertions in terms of monodromies
of the super-Schwarzian system.

The procedure is to implement the Brown-Henneaux gravitational boundary condi-
tions [61] on the BF model in the bulk. Solving them boils down to solving the supersym-
metric Hill’s equation, which can be done in terms of reparametrization functions of the
supercircle S,



2.1 Gravitational boundary action

The first-order action of A/ =1 JT supergravity in Euclidean signature can be written as
a BF theory with gauge algebra osp(1/2):2

SN=1 / STr(BF). 2.1)

M

We have introduced the osp(1|2)-valued fields
B = ¢%J, — ¢J2 + A\*Qa, A =eJ, +wlr+ Y*Qa, (2.2)

where B is a zero-form and A is a one-form connection with field strength F = dA + A ANA.
We have implicitly chosen an imaginary contour of integration for B in the path integral.
The component fields consist of scalar Lagrange multipliers ¢%, a dilaton ¢, a dilatino \“,
the zweibein e, the spin connection w, and the gravitino ¢®. The indices a € {0,1} and
a € {4, —} denote doublets of s0(2), while the bosonic components of B and the bosonic
components of A each combine into sl(2,R) triplets. The osp(1|2) generators Jy 12 and
@+ are described below.
The supergroup OSp(1|2) is defined as the subgroup of GL(1|2, R) matrices

a b|«
g=1c¢ d|~v (2.3)
B 0] e

consisting of five bosonic variables a, b, ¢, d, e and four fermionic (Grassmann) variables
a, B, v, 6 that satisfy the relations

a = =£(ad — bp), v = %(cd — dp), e = (14 B6), ad—bc=1+63, (2.4)

for either choice of sign +. Restricting to a single one of the signs leads to the projective
supergroup denoted by OSp’(1]2) = OSp(1]2)/Zs in [44]. See appendix E for details.
We denote the Cartan-Weyl generators in the above defining representation by [62]

12 0 o 0 0lo 0 1]o0

H=| 0 -1/2|/0|, E-=|1 00|, Et=|0 0|0, (25)
0 0 |o] KL 0 0]o
0 o] o ] [0 0 |12

F-=| 0 o0|-121|, Ff=|l0 o | 0 |, (2.6)
12 0] 0 [0 1/2] 0

2The supertrace of a supermatrix M =

A | B
is defined as STrM = Tr A — Tr D.
C | D



which satisfy the osp(1]2) Lie superalgebra:
[H E¥|=+E*,  [EY,E7|=2H,
[H,F*) = i%Fi, [E*, FF] = —F*, (2.7)
{Ft F~} = %H {F% F*} = %Ei.

In (2.2), we have defined the following linear combinations of 0sp(1|2) generators:

1 1
Jo=—H, lei(E_JFEJF)v J2:§(E_—E+), Q-=-F, Qi=F" (28)
Therefore, in matrix form, we have:
_¢0 ¢1 + ¢ )\+ 1 _eO e1 —w w+
B=Z|¢'-¢ ¢ A |, A=glctw & |y (2.9)
)\~ AT ‘ _¢— @Zﬂ_ ‘ 0

We summarize the details of the derivation of (2.1) from superspace and the relation to
the metric formulation in appendix C.
For a manifold with boundary, the BF action (2.1) gets augmented by a boundary
term:
SMT = / STr(BF) L G STr(BA,), (2.10)
M 2 Jom
where the Euclidean coordinate 7 is tangent to the boundary O M. It will play the role of

time coordinate further on. We choose the mixed boundary condition

Blom = Arlopm - (2.11)

The above boundary action and condition can be found in several ways [45]. One is
to simply demand a good variational principle for the BF action on M. Another is to
follow the usual relation between Chern-Simons theory in 3d and the boundary WZW
action. Dimensionally reducing that setup automatically generates this boundary term in
the action, along with this specific boundary condition.

Starting with the action (2.10), the solution of the gravitational path integral proceeds
along familiar lines. We first path-integrate over the B fields, which figure as Lagrange mul-
tipliers in the action. The resulting dynamics then reduces to a pure boundary contribution
from flat connections:

/F:o [DA;]exp B T ST&(A?)} : (2.12)

Within the first-order formulation of an OSp(1|2) gauge connection, one can impose the
gravitational (or Brown-Henneaux) boundary conditions as [63]:

0 Tu(r) | Te(7)
AT‘BM = 1 0 0 , (2.13)
0 Tu(r)| 0



where the boundary degrees of freedom are parametrized by a bosonic function Tg(7), in-
terpretable as the energy, and a fermionic function Ty (7), interpretable as the supercharge.
This leads to the boundary action

1
- dr STr(A2) = dr Ty (7). (2.14)
2 Jom oM

The components Ti(7) and Tx(7) can be packaged into a single fermionic superfield
V(1,0) = Te(7) + 0T5(17), (2.15)

where we introduced the Grassmann coordinate § as the fermionic partner of the bosonic
boundary coordinate 7. It is a general fact that we can write any fermionic superfield
V(7,0) as a super-Schwarzian derivative of two new superfields 7/(7,6) and 6'(7, 0):

D*' 2D3¢'D?%0

— _ Iy
V(r,0) = D«9’+ DoE - Sch(r',6;7,0), (2.16)

where 7/ is bosonic and #’ is fermionic, satisfying D7’ = 6’ D¢’. This constraint can further
be solved explicitly as

"= F(1 + 0n(1)), 0 =1\/0.F(7) <0 +n(r) + ;077(7')8717(7')) , (2.17)

in terms of a bosonic function F(7) and its fermionic superpartner n(7). In terms of these
functions, the stress tensor and its superpartner can be written as

To(r) = 5 (L) + b + 30320 — (F, 7}noen) (2.18)
Ty(r) = 020 + ndendPn + LofF,7). (219)

We view this change of variables as a field redefinition in the path integral:
(T, Tv) — (Fym). (2.20)

The new fields (F,n) are not in one-to-one correspondence with the components of the
stress tensor, since the solutions to the super-Schwarzian differential equation (2.16) are
subject to a super-Mo6bius ambiguity:

, at’ —c— po o at’ — v+ et/

g e Py or —yTey 92.21
T T dt 0" 7 b+ d+ 00 (2.21)

where the entries are taken from the projective group OSp’(1|2,R) = OSp(1|2,R)/Zs (2.3).
This means that one should identify field configurations differing only by such transforma-
tions.

We consider the resulting model on a supercircle S with T5(7 + ) = T5(7) and
Tw(7 + ) = £T% (7). In the end, the path integral (2.12) becomes

7 = [DF) [Dy] e~ Pl gM=1 — _ & ar Ty (7), (2.22)
SDiffnr—1 (S11)/H oM



where the Lagrangian is expressed in terms of the fields F(7) and n(7) (the “superreparam-
etrization modes”) by substituting (2.18) for Tx(7). The stabilizer H is the subgroup of
OSp(1|2,R) (2.21) that respects the periodicity constraints of #’ and 7/, as we will work out
more explicitly below. It contains information on the precise functional form of F oy f in
terms of a new variable f(7), as well as (7). These models are all N' = 1 super-Schwarzian
theories that have different geometric interpretations and uses.

2.2 Super-Hill’s equation, monodromies, and defects

For the sake of analyzing the different possible super-Schwarzian models in detail, we
reformulate the gravitational boundary conditions in terms of the supersymmetric Hill’s
equation.® By the flatness condition on any off-shell bulk connection, we have

Al = 9079, (2.23)

and we can rewrite the gravitational boundary conditions in terms of constraints on the
boundary group element g € OSp(1|2). This group element g is generically multi-valued
and can have nontrivial monodromy when encircling the boundary circle; the gauge con-
nection A, however, has fixed periodicity constraints. Depending on the sector (NS or
R), we have:

(=) Ar(T)lom (5T (NS),
AT(T>|BM (R),

where the presence of the “sCasimir” operator (—)!" = diag(+1, +1, —1) ensures that the

A (T4 B)lom = { (2.24)

fermionic pieces (i.e., Tx(7) in (2.13)) flip sign upon traversing the boundary circle.

Parametrizing
A B | As-Bj D ~B -5

gl=|C D|Cs—DB |, g= —C A B , (2.25)
B 6| 14806 Co—DB BB —AS | 1+p5

the boundary condition (2.13) is written in full as

A B | AS—Bp 0 Ts | Ty A" B | (Aé — Bp)
C D|cs—Dg||1 0o|o0 |=|C D|©5-Dg |, (2.26)
B 6| 1486 0 Tx| 0 g 8| 1+ By

leading to the coupled differential equations
B/:ATB—i_(A(S_Bﬁ)TF, 14/:B7 (A(s_B/B),:ATF,

D' =CT,+(C6 - DB)T,, C'=D, (C5—DBY =CTy, (2.27)
o = BTy + (1 + ﬁé)TF, 6/ =9, (55), = BTr.

3Some aspects of this analysis appeared in [64]. We will have need of a more extensive treatment to
prepare for the calculation of boundary-anchored Wilson lines in section 3.



We would like to recast these equations as the supersymmetric Hill’'s equation, which takes
the form
(D? = V) =0, (2.28)

with D = 0g + 00, and V defined in (2.15). Writing (7, 0) = ¥uot(7) + 0top(7) (where
we make no assumptions about the Grassmann parity of 1), this equation becomes the
coupled system

zﬂgot - TB (T)wbot + TF(T)¢top = 0, lbéop - TF(T)wbot =0 (2.29)

for the bottom and top components of ).
The general solution to the supersymmetric Hill’s equation (2.28) is known. Writing

the superfield V as a super-Schwarzian derivative as before,

Do n 2D3aD?*a

Da (Da)?

V(r,0) = — = —Sch(A4, o;7,0), (2.30)

it can be established that up to super-Mobius transformations, the solutions of (2.28)
consist of two bosonic superfields and one fermionic superfield [65]:

Y1 = (Da)™1, Yo = A(Da)7t, V3 = —a(Da)7t, (2.31)

written in terms of a bosonic superfield A(7, #) and a fermionic superfield a(7, §) constrained
by DA = aDa. Writing each solution as ¢; = ¥; pot + Owiytop,‘l one can check (using, for
instance, D? = 9,) that the three solutions (2.31) satisfy the interrelations

V10:92 — 20-1 = 1 — 30,43,
1,50t OrV3,bot — Or1,bot¥3,bot = Y1 top;
Y2 bot Or 3 bot — Or¥2.bot¥3,bot = 12, top;
1 4 93 botOr¥3.bot = — 3 top-
These relations form the analogue of the Wronskian condition for the OSp(1|2) system.

Comparing the structure of the equations (2.29) to the equations (2.27), we identify
the boundary group element as

'(/)1,bot wi,bot 1/}1,t0p wé,bot _wi,bot _d}é,bot
—1
g = ¢2,b0t d/beot wltop y 9= _¢2,b0t wl,bot wS,bot ) (240)
w?),bot wéybot ‘ _w?),top 1/}2,t0p _1/}1,t0p ‘ _¢3,top

4V\/ri‘cing a = ar + 0ag and A = A + 0 Ar, we have explicitly that

1 o
wl,bot - @7 wl,top - _;57 (232)
B
Ag Ar ABO/F
ot — —— op — —— — 2.33
2, bot o ¥2,top o oz (2.33)
/
(652 apQp
ot — —— =—-1- 2.34
V3, bot g V3 top oz (2.34)
as well as
AL = a]23 — apap, Ar = agag. (2.35)
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where the relations (2.36)—(2.39) indeed implement the OSp(1]2) (more precisely,
OSp/(1|2)) restrictions (2.4) on the supermatrix. The most general solution of the su-
persymmetric Hill’s equation, written in matrix form as

0 T, | T,
g1 o]0 |=084g", (2.41)
0 Tn| 0

is obtained by taking ¢g=! — S~1g~! for arbitrary S~! € OSp(1|2), or equivalently,

P1 1 d —-b| -6
Yo | 28y |, ST'=| — a | B | €0Sp(1]2). (2.42)
s Y3 REe ‘ e

This implements a super-Mobius transformation on A(7,0) = 9 /11 and «(1,0) = —1b3 /1y
of precisely the form (2.21). The superfield V in (2.28) and (2.30) is invariant under such
transformations.

The classification of solutions to the supersymmetric Hill’s equation (i.e., of equivalence
classes of solutions related by super-Mobius transformations) leads naturally to a classifi-
cation of defects in JT supergravity. Such a classification is equivalent to the classification
of conjugacy classes of OSp(1]2).

Depending on Ty and 7§, the solutions of the supersymmetric Hill’s equation can have
nontrivial monodromies:

(—)Fg(r)M  (NS),

2.43
g9(r)M (R). 24

g(T+B)={

Within the NS sector, the factor of (—)% ensures that A,|,,, has the correct periodicity
as in (2.24).°
By the equivalence relation

g~ g9, S € OSp(1]2), (2.44)
the monodromies are parametrized by conjugacy classes of group elements:
M~ SMS™L. (2.45)

Conjugacy classes of OSp(1]2) are discussed in [44], particularly section 3.5.4 and ap-
pendix A.3. Each conjugacy class can be thought of as associated with a spin structure,
corresponding to the holonomy of a flat OSp(1|2) connection around a circle with spin
structure of Neveu-Schwarz (NS; antiperiodic) or Ramond (R; periodic) type. Working

°It is instructive to work out the simplest example, in which g(r + 8) = (=) g(7)(=)¥. This leads to
the periodicity conditions where 11 2 bot and 13 top are periodic and the other components are antiperiodic.
These are indeed solutions to (2.29) with Tg (7 + 8) = Ts(7) and Ty (7 + 8) = —T¥ (7).
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within OSp’(1]2) (OSp(1]2) modulo the action of the scalar matrices +£1), where all ele-
ments have Berezinian +1,° the NS-type conjugacy classes are obtained by multiplying the
R-type conjugacy classes by diag(+1,+1, —1) (which commutes with purely bosonic group

7 The different monodromies M and their stabilizers H are shown in the first

elements).
two columns of table 1.

Before providing a more in-depth discussion of these different classes, we first transfer
this structure of the monodromy matrix to the actual fields (F,n) within the group element
g~!. In all cases shown in table 1, the (inverse) monodromy matrix is bosonic block

diagonal, and it acts as:

My M| 0O Vibot  Yipot | Pltop
Mg )= | Moy My | O Yabot  Yopor | V2.t0p (2.47)
0 0 ‘ Ms33 V3bot Y30t ‘ —13 top

Miw Mo

where [ ] is an (inverse) SL(2, R) monodromy matrix and Mss = +1. In light

My My
of (2.47), (2.43) can be decomposed into the component relations®
May + Mg Ag(7) A (7)
A T+ = s A T+ = ) 2.48
n(7+5) M1 + M2 Ag(T) #(m+5) (My1 + Mo Ag(7))? (2.48)
M3z (T) Mssaz(T)
o T + — s « T + = . 2.49
o(7+F) My + My Ag(T) a(r+5) My + M2 Ag(7) (2.49)
These monodromy relations are indeed realized by the reparametrization solution®
7'(1,0) = A(7,0) = F(7 + 0n(1)), (2.50)

0'(r,6) = a(r,6) = /o, F(r) (64 n(r) + 50(r)0rn(r) ) (2.51)

(compare to (2.17)) upon writing

fr+B)=f(T)+8, n(r+p8)==+n(r), (2.52)

A | B
(one for
C | D

Ber(M) = det(A — BD™'C)det(D) " = det(A)det(D — CA™'B)™". (2.46)

tan ZOf(7)  (elliptic),
F(r)= s
tanh ZAf(7) (hyperbolic),

5The Berezinian (superdeterminant) is defined for an invertible supermatrix M =

which both bosonic blocks A and D are invertible) as

"Such an element, which commutes with bosonic generators and anticommutes with fermionic generators,
belongs to the “scentre” of the universal enveloping algebra of o0sp(1]2) [66].

8Care has to be exercised here since our parametrization in footnote 4 was for only one component of
the OSp group. One can accommodate both components by having s everywhere with a 4+ symbol in
front of its expression.

9To match these expressions, we should let § — —6 as 7 — 7 + 8 in the sector where n(T + 8) = —n(7).
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Class Monodromy M Stabilizer H sVirasoro
H boli coshmA sinhwA| 0 coshmt sinhwt| 0
yperbouce sinhwA coshwA| 0 sinh 7t cosh#wt| 0 Lo
(R or NS) -
0 0 [+1 0 0 |+1
cosm® —sinmO |0 cosmp —sinmp|0
Elliptic sint® cosw® |0 sinmt¢ cosmwg |0 Ly
0 o |1 0 0 |1
Lo, Liy,Gyn
Special 1 0lo Hy = OSp(12,R) (meven)
Elliptic I 0 110
(R or NS) 0 01 HNS — SL(2,R) % ZQ L07 L:I:n
(n even)
Lo, Ly,
Special 1 00 Hp = 8L(2,R) x Z, (n odd)
Elliptic IT 0 1|0
(R or NS) 0 0|-1 HNS — OSp(1|2, R) LUa Lina Gi%
(n odd)
1 110 1 6] 0
Parabolic
0 1|0 0 110 L
(NS) — ’
0 0] -1 0 0] =1
1 110 1 b| 40
Paraboli
ar(";)(’ e 0 1]0 0 1|0 Lo, Go
0 01 0 ¢6|=£1

Table 1. Inequivalent monodromy matrices M identified with (constant-representative) N' = 1
Virasoro coadjoint orbits. We list the stabilizer subgroups H = {S € OSp(1|2,R) | MS = SM}
preserving these monodromy matrices. These subgroups are identified with the A/ = 1 Virasoro
subalgebras preserving the value of the super-Schwarzian derivative. The NS-type special elliptic
orbits are the only exceptions to this rule. In these cases, the correct stabilizer is denoted by Hyg,
and it preserves M (—)f: M(—)F'S = SM(—)F.
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where periodicity for n(r) gives the Ramond sector, and antiperiodicity realizes thermal
fermionic boundary conditions, corresponding to the Neveu-Schwarz sector. For the para-
bolic defects (punctures), we instead have the relations

F(r+p8)=F(r)+8,  n(r+pB)==+n(7). (2.53)
These relations can be summarized by the monodromy relations:
F(r+p8)=M-F(r),  n(r+p)==+n(r), (2.54)

where M is a (P)SL(2,R) monodromy matrix.

This classification is closely related to the classification of coadjoint orbits of the super-
Virasoro group [67, 68]; see [33, 64] for recent partial treatments. The analogous case of
bosonic JT gravity and coadjoint orbits of the Virasoro group was discussed in section 3
of [69] (see also appendix F of [70] for a review). We list in the final column of table 1 the
N =1 Virasoro subalgebra that preserves the super-Schwarzian derivative (2.16). This is
the stabilizer of the corresponding super-Virasoro coadjoint orbit. This list hence identifies
these Virasoro orbits directly with the solution classes of the super-Hill’s equation. By
definition, coadjoint orbits contain the pair (Ts(7),Tx(7)) by acting with the full super-
Virasoro group on a single fixed element defining the specific orbit. In most cases, there
exists an element within the orbit that has a constant value of (7g,7%). Coadjoint orbits
without such a constant representative admit no solutions to the equation

0, Sch(r',0';7,0) = 0. (2.55)

However, this equation is also the saddle equation of any super-Schwarzian model. Hence
if we restrict to defects for which there is a classical (saddle) interpretation, then we care
only about the constant-representative orbits, and we can restrict to the class of orbits
catalogued in table 1. Assuming this restriction, and the periodicity conditions (2.54), we
give the explicit derivation of the final column in appendix D.1.

We next discuss the different orbits from table 1 in more detail.

The hyperbolic orbit has stabilizer U(1) x Zg, which has two connected components
denoted by the £’ sign choice in the table.

The elliptic orbits have stabilizer U(1) (in OSp’(1]2), the set of elliptic monodromy
matrices and the corresponding stabilizers have a single component since one can set © —
T — 0 or ¢ — m — ¢ to map the two would-be components into each other). When © € N,
the stabilizer gets enhanced and we reach the special elliptic orbits. For © = n even, we
obtain the type I special elliptic orbits, and for © = n odd, we obtain the type II special
elliptic orbits.

The special elliptic orbits have the largest stabilizer. The stabilizer Hy, defined
as the set of matrices satisfying MS = SM, is the full group OSp(1|2,R) for type I, but
is reduced to SL(2,R) x Zg for type II. This corresponds to the orbits relevant for the
Ramond sector. For the Neveu-Schwarz special elliptic orbit, the relevant stabilizer Hyg is
different than Hg due to the nontrivial fermionic periodicity conditions. It is instructive to
work this out a bit more explicitly within the super-Schwarzian orbit language. We present
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the analysis in appendix D.2. The upshot is that for n odd, the fermionic variables in the
stabilizer group OSp(1]2) flip sign when going once around the thermal circle, 7 — 7 + f.
This corresponds to how supersymmetry is implemented for the NS vacuum: the fermionic
charges carry half-integer spin under rotations around the thermal circle [71]. In our
language, this sign flip is implemented by giving the matrix S in (2.44) (which parametrizes
precisely the OSp(1]2) redundancy) a weak 7-dependence that ensures that the fermionic
parameters flip sign as we rotate around the thermal circle: S(7 + 3) = (=)F'S(7)(—)F.
Combining this condition with (2.43), we get instead of (2.45) the equivalence relation
M(=)F ~ SM(—)FS~1, which defines the stabilizer Hys:

Hys = {S € 0Sp(1|2,R) | M ()" = SM(-)F's~1}. (2.56)

In the end, the presence of the (—)f effectively maps the analysis to the same one as in
the Ramond sector but swapping the roles of type I and type II, leading to an OSp(1/2,R)
stabilizer Hyg for type II and a reduced SL(2,R) x Zg stabilizer for type I.

Finally, the parabolic orbit has stabilizer R x Zo (the noncompact version of U(1) x
Z9) for the NS puncture. In the Ramond case, the actual stabilizer supergroup is the
(noncompact) subgroup of OSp(1|2, R) generated by the (commuting) parabolic generators
E* and F*. We denote this subgroup by R* x Z,, by analogy with the notation R for
the noncompact version of U(1). This enhancement of the stabilizer for the R punctures
was noticed and studied in several works [44, 72, 73]. It can be matched to the Ramond
vacuum, where two zero modes exist with generators G and Lo = G3.

Since the NS parabolic orbit can be obtained by taking the formal limit n — 0 of the
special elliptic orbits, the explicit analysis in appendix D.2 demonstrates that the fermionic
generators are periodic and do not pick up a minus sign upon rotation.'® One can visualize
this by realizing that for this orbit, moving along the thermal boundary is a translation
instead of a rotation, which hence does nothing to spinors.

Within amplitudes, these different orbits can be accounted for by suitable defect inser-
tions. From a gauge-theoretic perspective, these insertions can be interpreted as characters
of the principal series representations of OSp(1|2,R). From the orbit perspective, they have
an interpretation in terms of classical limits of super-Virasoro modular S-matrices. This is
in complete parallel to the bosonic case [69]. Explanations of these statements, and explicit
expressions for these defects, will be discussed later on in section 5.2. We next provide a
geometric interpretation of these different orbits/defects.

2.3 Bulk interpretation of orbits (or defects)

In order to achieve a bulk gravitational interpretation of these defects, we first briefly dis-
cuss the metric formulation of JT supergravity, referring to appendix C for more technical
background on this formulation and its equivalence to the first-order formalism. We write

the JT supergravity action in superspace as'!
_ 1
SN = — U d?2d*0 E®(R, _ +2)+2 dr df @bK} : (2.57)
167G [Jm oM

10The sign function in (D.16) always evaluates to +1 in this limiting case.
'We have reinstated Newton’s constant: the action (2.57) differs from (2.10) by a factor of —1/47G.
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In superconformal gauge, we have
R, =2¢"*DD¥%. (2.58)

for some bosonic superfield ¥, where D = 9y + 09, and D = 05 + 00s. The ® equation of

motion Ry = —2 is then equivalent to the super-Liouville equation
DDY. + e~ = 0. (2.59)
The solution can be written as —
DO’ DO
=" (2.60)
P Ay 7Y

in terms of (anti)holomorphic bosonic superfields 2/(z, ), z'(z,0) and fermionic superfields
0'(2,0), 0'(z,0) satisfying the constraints

DY =¢'D¢', Dz =0'DF. (2.61)

These constraints imply that (2/,6') and (Z/,6') are (anti)holomorphic superconformal
transformations of (z,0) and (Z,6). They can be solved explicitly into

= Fz40m(z)), 0 =\/oF(2) (e +z) + ;Hn(z)ﬁn(z)> (2.62)

in terms of a bosonic function F'(z) and a fermionic function n(z), and similarly for z’ and
0" in terms of F(2) and 7(z) [71]. We refer to the bulk supergeometry (2.60) as super-
AdSs, for any choice of F,7n. The subset of superconformal transformations that act as
isometries of the solution (2.60) comprises the super-Mébius group OSp’(1]2) [65]. The
length element in superspace is defined as dz = dz +0df and transforms as dz’ = (D#’)%dz.
The supermetric of the Poincaré super upper half-plane (SUHP) in superconformal gauge
can then be written in several ways:

(DY')*(DY')?

|Z/ — 3 9/§/|2

/ ! 30/12
dz+ 0do)? = JPZFIDOT g 6oy

ds* = gyndZMdz" = e*¥dz @ dz = = LI
gMN |z’ — 5 9/9/’2

where the primed coordinates are the super-Poincaré coordinates and the unprimed coor-
dinates are some preferred (or proper) coordinates.

To state the bulk interpretation of defects in a natural fashion, it is convenient to
first relate the super-Schwarzian dynamical time reparametrizations (F,7n) to the bulk
gravitational description. This can be done in terms of the dynamics of the holographic
“wiggly” boundary. Our discussion roughly follows the treatment of [74], which is in turn
based on that for bosonic JT gravity [4-6].

The super-Poincaré boundary lies at 2’ = 2/, # = # and is of codimension 1|]1. We
write 2’ = 7/ +4y’ and 2’ = 7’ — 4y, where 7’ and 3’ are the super-Poincaré time and radial
coordinates, respectively. We regularize the holographic boundary by moving it inward.
Its location is specified in preferred coordinates to be

Y=, 0=0, (2.64)
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(y=¢,6=0) (10"

(}',E'lﬁ',é')

Figure 1. Regularized holographic boundary at proper location (2.64). The actual shape of
this 1|1-dimensional boundary curve in super-Poincaré coordinates is described by the dynamical
superreparametrization (2.67)—(2.70), and is drawn as a wiggly curve.

Z—Z
%
that preserving these asymptotics requires (compare to [74])

where we have defined y =

. From the form of the supermetric, one immediately sees

2 — 7 — 00 =2ieD0' DO + O(?), (2.65)

which is a single bosonic constraint on the bulk super-Poincaré coordinates. In fact, this
choice of regularized boundary (2.64) imposes both a bosonic and a fermionic constraint,
which when combined imply the asymptotic relation (2.65). Namely, the location (2.64) in
proper coordinates can be translated into a location in the Poincaré SUHP coordinates in
terms of a wiggly curve specified by the functions

7' (7,0), y'(7,0), o' (t,0), 0'(1,0). (2.66)

These functions are given explicitly by:

= %(A(T +ie,0) + A(T — i€,0)) = F(1 + 0n(7)) + O(€?), (2.67)
y = %(A(T +ie,0) — A(r — ic,0)) = e(Da)? — aD%a) + O(2),  (2.68)
0 = a(T + i€, 0) = a+ieD*a 4+ O(é?), (2.69)
= a(T — i€,0) = a —ieD*a 4 O(é?), (2.70)

where the functions on the right are given in (2.50) and (2.51), and we have written o =
a(T,0) for brevity. In particular, we use A = 7’|y and a = #'|9 to distinguish between the
reparametrized boundary coordinates and their bulk counterparts. Inserting (2.68), (2.69),
and (2.70) into the left-hand side of (2.65), one indeed verifies the relation (2.65).

Thus we obtain a 1|1-dimensional curve embedded in the gravitational bulk (figure 1).
It was shown in [74] that the dynamics governed by the boundary curve with these defini-
tions is precisely the N' = 1 super-Schwarzian.

Given a certain off-shell boundary time reparametrization (F(7),n(7)), one can nat-
urally choose a bulk superframe that smoothly extrapolates this boundary frame into the
bulk by using (2.62) and its antiholomorphic counterpart. Doing so leads to an off-shell
bulk supergeometry o

(D9')2(DF)?

ds® = =
|Z/ _ El _ 9/9/|2

|dz + 0d6|* (2.71)
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Figure 2. Geometric interpretation of the different orbits. Left: elliptic orbit with a conical defect.
Middle: hyperbolic orbit with a geodesic neck. Right: parabolic orbit with a cusp.

with bosonic metric

OF (2)0F (%)
(F(2) — F(2))?

For the different monodromy classes, this bosonic submetric matches with the metric in

ds* = dzdz. (2.72)

bosonic JT gravity. Hence the interpretation there [69] immediately applies here as well:

« Elliptic monodromies with parameter © correspond to conical singularities with
periodic identification 270. For integer ©® = n, these correspond to replicated ge-
ometries. Unlike in bosonic JT gravity, we will need to make a distinction between
even and odd values of n when computing physical amplitudes since the stabilizer is
not the same in these two cases.

« Hyperbolic monodromies with parameter A correspond to geometries with a
wormbhole of geodesic neck length 27A.

o Parabolic monodromies correspond to geometries with a cusp at infinity. The
periodic identification leads to a thermal AdSs geometry.

This classification is augmented by the fermionic boundary condition n(7 + 8) = £n(7)
(periodic or antiperiodic) for each class. The resulting geometries are illustrated in figure 2.

3 Bilocal operators as Wilson lines

In this section, we utilize the explicit analysis of the gravitational boundary conditions in
terms of super-Hill’s equation, as presented in section 2.2, to identify the super-Schwarzian
bilocal operators (1.4) directly as boundary-anchored Wilson lines in the OSp(1]2) formu-
lation of JT supergravity. We augment this analysis by an explicit worldline path integral
description of the Wilson line as a massive particle moving on the supermanifold.

First recall the identification of Wilson lines with bilocal operators purely within BF
theory, starting with the disk for simplicity. A Wilson line in the representation R; with
boundary endpoints at 7, and 7 is given by

W (r1,75) = P exp [— / Rj(A)} . (3.1)

After integrating out the bulk scalar, which enforces the flatness of A, we may freely deform
the integration contour while preserving the endpoints to see that any such Wilson line is

the unique solution to the one-dimensional initial value problem
d

d—Tsz(ﬁ,Tg) = —Rj(A(m2))Wj(r1,72), W;(r,11)=1. (3.2)
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1

But for A flat (pure gauge on a disk), we have A, = —d,gg~ ", so the bilocal operator

Oh——;j(11,72) = Rj(g(r2)g~" (1)) (3.3)

is also a solution to the same initial value problem. Hence W;(71,72) = Op—_;(71,72). Sim-
ilar reasoning can be used to reduce a Wilson line on a more complicated topology (such
as a Wilson line with endpoints on different boundary components) to a similar form, as
long as A can be written as —dgg~—' for a single-valued function g along the support of
the Wilson line and the boundary components — in other words, as long as the contour
does not encircle a handle or a defect. Otherwise, the topological class of the line becomes
important.

In our case, g|y is further constrained by gravitational (super-Schwarzian) boundary
conditions, and such bilocal operators can be viewed as boundary-to-boundary propagators
of a bulk matter field coupled to JT gravity.

3.1 Warmup: finite representations

Let us first work out this interpretation for a Wilson line in the defining j = 1/2 represen-
tation. This is a 2|1-dimensional representation that has both lowest- and highest-weight

states: 1 1
) =lhw), 0, |-g)=w), (3.4)
where
E lw.) =F |lLw.) =0, Efhw.) = Fflhw.) =0. (3.5)
In vector notation,
0 0 1
2rt 2Ft
wy=| 1| o |- 0 |=hw). (3.6)

—2F— 2F

— —
0 1 0

Then the Wilson line in group theory language, by virtue of the identification (2.40), can
be written as the matrix element

(Lw.|g(r2)g ™ (T1)[h.w.) = 1 pot (T2)¥h2,b0t (T1) — Y2,b0t (T2) V1,00t (T1) + ¥3,bot (T2) 13, bot (T1)-

(3.7)
In fact, anticommuting the Grassmann parameters carefully shows that the matrix element
between the states (1 — 261 F~)|[h.w.) and (1 — 205 F7)|l.w.) results in a superspace bilocal
operator:

(Lw.|(1 = 2(F)102)g(r2)g~ (1) (1 — 20, F ) |Lw.) (3.8)

Il g
= P1(12,02)2(T1,61) — Ya(72,02)001 (71, 01) + V¥3(12, 02)3(11,61) = LD ;—?D 9} 2,
1V 209

where "(bj(Ti, 91) = wj,bot(Ti) + Hz‘l/Jj’top(Ti), Til = A(Ti, 91), and 9; = OJ(TZ‘, 91)
Thus Wilson lines between lowest- and highest-weight states yield standard Schwarzian
or super-Schwarzian bilocal operators. Other matrix elements yield bilocal operators that
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are more complicated in the Schwarzian language and that can be constructed from deriva-
tives of the standard bilocal operators, as well as the Schwarzian derivative factors T(7)
and Ty (7). For example, defining A, = T 1(7)(82 — Ts(7)), we obtain the following result
for j = 1/2:12

~0r, —0n,A; —05,0 . .
Rip(9(n)g (M) = | An  AnAn Andy | (gla(m)e  (ml5)  (3.9)
1 A, Oy

in terms of the fiducial matrix element computed in (3.7), where R; /5(g(72) 9T mme =
(m|g(2)g~(r1)|m’) for m,m’ = 3,0, —%. The superspace bilocal operator is then the ma-
trix element between the states |3)—61]0) and |—3) —62]0). A quick proof of these relations,
based on exploiting the supersymmetric Hill’s equation, is presented in appendix D.3.

The generalization to spin-j representations is readily worked out, with the details
again left to appendix D.3. For example, one obtains for the mixed lowest/highest-weight
matrix element:

(—4lg(r2)g7 (T1)17) = 1,00t (T2) V2,00t (T1) — P2,00t (T2)101,00t (T1) + 13, b0t (T2)¥3,b0t (T1)] 7,
(3.10)
which is simply the appropriate power of (3.7).

Such operator insertions where j € N are structurally unique in the super-Schwarzian
model: they correspond to degenerate Virasoro representations, and their correlation func-
tions are simpler than the other ones. Moreover, when coming from the minimal super-
string, these operators correspond to the boundary tachyon vertex operators [55]. However,
from a gravitational perspective, these operator insertions are somewhat unphysical, and
a much more important role is played by the infinite-dimensional representations.

3.2 Discrete series representations

Our main interest lies in the infinite-dimensional lowest/highest-weight representations,
which fall into a discrete series. We call them the discrete representations. Such represen-
tations are conveniently described in terms of a carrier space of functions on RM!, with the
group acting by super-Mobius transformations. We present the details in appendix E.4.6.
The generators are written as differential operators acting on functions on RI':

~ 1 ~ ~

H =20, + 519879 -7, E™ = 0,, Et = —220, — 290y + 2jz, (3.11)
. 1 . 1 1
F~ = 5(aﬁ +90,), Ft = —595819 — iwax + 59. (3.12)

We will come across this realization of the osp(1]|2) superalgebra several more times.

12We can identify bilocal operators with matrix elements of suitable group elements in the hyperbolic
basis (i.e., in a basis of eigenstates of the osp(1|2) generator H). Indeed, for the finite-dimensional bilocal
operators considered here, ET are not diagonalizable. The eigenvalues of the generators, as well as properties
like self-adjointness and diagonalizability, are representation-dependent. For instance, E* are nilpotent in
finite-dimensional representations, but not necessarily so in infinite-dimensional representations.
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For a discrete representation, the bra and ket wavefunctions on the superline R are

1

(z,9h.w.); = 2% = Ty (Lw.|z,9); = 9(x) = d(x,9), (3.13)

where j = —h < 0 and h is the conformal weight of the local boundary operators [75-77].
We thus have the Wilson line

(Lw.|g(12)g ™ (1) |hw.) = /d:v d 6(x,0)g(m9)g~ (11)x?. (3.14)
The group element itself is conveniently written in the Gauss-Euler form as
(QS,’Y ’Y+|9 0 ) 20 - el E- 2¢f]e'y+ﬁ'+626_ﬁ’+ (315)

)

where we identify from (2.40) the parameters

/
7/}2 bot __ #1,bot 9 — 1/}37b0t 0 — M (316)

v =9
= ¥1ibot, V- = V= = = .
o wl,bot : ¢1,bot ’ wl,bot ’ : wl,bot

Using (3.15) with the parameters (3.16) and the Borel-Weil generators (3.12), we compute
the successive applications of group elements:

Y(r1)

25 LT (41 1o (1)@ 2,0t (T1) 3 pot (71)0) ¥ (3.17)

(T (
M((—wi bot (T2)V2,b0t (T1) + U 10t (T2) 11 bot (T1) — 13 pot (T2)V3,bot (T1) )2
+ 91 bot (72)12,bot (T1) — V2 bot (T2)V1,bot (T1) + 13 bot (72) 13 bot (T1)

(_¢l,top (72)¢2,b0t (Tl ) + Q;Z)Q,top (TQ)Q;Z)l,bot (Tl) - ¢3,t0p (72)¢3,b0t (Tl ))19)23 (3 18)

EE0 0 (4 (72, 02)40n (11, 01) — a7, 02)001 (71,01) + 3 (7, 02)3(71,61)) oot (3.19)

:<ﬁ—é—%%>”
D16} D0},

where in the end, we set z = 0 and ¥ = 0 as imposed by the d(x,?) bra wavefunction

, (3.20)

bot

n (3.14). The steps are analogous to those in appendix I of [41]. The recipe for computing
more general matrix elements in the (z,1) basis is described in appendix E.4.6. Since
these more general matrix elements have not been systematically studied even in bosonic
JT gravity, we also present the bosonic results in appendix B.4.

When j = —h < 0, we directly reproduce the bilocal operators in the super-Schwarzian
theory. Hence the boundary-anchored Wilson lines with suitable representation indices for
the bra and ket labels (as explained above) correspond to the components of the superspace
bilocal operator (1.4).

In the next subsection, we supplement this description with an intuitive first-quantized
picture of the Wilson line. Unlike the current treatment, in which we compute the different
Grassmann components of the bilocal operator separately, the procedure discussed next will
immediately give the superspace description of the Wilson line.
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Figure 3. Geodesics between two boundary endpoints in superspace. The coordinates with primes
are Poincaré SUHP coordinates. The coordinates without primes are “proper” or preferred co-
ordinates on the boundary superclock. The boundary is 1|1-dimensional, while the bulk is 2|2-
dimensional. The bulk geodesics are 1|0-dimensional.

3.3 Gravitational Wilson lines and geodesics

We claim that the following Fuclidean worldline description in superspace constructs the
N = 1 super-Schwarzian bilocal operator:

—m ™ ds >M 7 N\1/2 / / 2h
/[Dz]e [ ds (g ZM ZVY12 (,M}DQQ,,) , (3.21)
T — Ty — 0165

where m? = h(h — 1/2), ZM = 2,%,0,0 are coordinates spanning the 2|2-dimensional su-
permanifold with metric (2.63), and D = 9y + 600, (whether D refers to the 1d superderiva-
tive or to the holomorphic 2d superderivative should be clear from context). Notice that
m? = j(j + 1/2) equals the Casimir operator in the spin-j representation.'?

The worldline path integral in (3.21) is taken along all trajectories superdiffeomorphic
to the boundary segment between both endpoints (71,6;) and (72, 62) in superspace, and
the primed coordinates on the left are understood in the sense of (2.50) and (2.51). The
proof of (3.21) is a direct generalization of the construction of [52], and is based on earlier
accounts in 3d pure gravity [78, 79]. The details are presented in appendix C.3.

Here, we instead choose to present a more physical discussion by comparing both sides
in the limit of large weight h, where the geodesic approximation holds.

A bulk geodesic in superspace is a curve of dimension 1|0, and hence of codi-
mension 1|2 on a 2|2-dimensional super-Riemann surface. It describes a trajectory
(2(s),2(s),0(s),0(s)). One can think of the wiggly boundary curve defined in section (2.3),
as infinitesimally “thickened” in the Grassmann direction 6, whereas the bulk geodesics
have no such thickening.'* This is illustrated in figure 3.

For two endpoints (71,61) and (72, 62) on the holographic wiggly boundary, for which
according to (2.64) 6; = 0; and z; = z; + 2ie, one can compute the geodesic distance d in

13This identification is not surprising if one thinks of it as a consequence of the massive Klein-Gordon
equation on the 2|2-dimensional Poincaré SUHP, which is the homogeneous space OSp(1|2,R)/U(1). The
Casimir is the eigenvalue of the Laplacian on the 3|2-dimensional group OSp(1|2,R), and equals the pa-
rameter m? in the Klein-Gordon equation.

MWhen using geodesic boundaries, one imagines these to be thickened into 1|2 curves using the leaves
from D and D, as explained in [44].
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the supermetric (2.63) to be [80]

I — 74— 0465 I — 75— 0465
coshd =1+ = — =1 , 3.22
TR 1A R S T A L
which is approximated by the formula
Il 92
d=~1In In = — 605" In €2 (3.23)

(D67)2(D85)>

for small e. After subtracting the divergent term, we see that inserting (3.23) into the
saddle-point approximation for the right-hand side of (3.21) indeed reproduces the left-
hand side of (3.21) for large values of h where h &~ m. Note that the one-loop exactness
of the worldline path integral would suggest that the finite correction to m? that results in
the Casimir h(h — 1/2) comes from evaluating the one-loop determinant.

Equation (3.23) is an expression in superspace, which can be expanded in the Grass-
mann variables. The bottom component dj. is interpretable as the geodesic distance in
the bosonic submanifold, and this interpretation will be put to use further on in section 5.3
to compute the boundary-to-boundary wormhole length, including quantum gravitational
corrections.

4 Gravity as a gauge theory: semigroup structure

As discussed up to this point, the supergroup OSp(1]2,R) suffices to describe the “local”
dynamics of N' = 1 JT supergravity. In this section, we provide evidence that under-
standing the full quantum dynamics (and in particular, the precise form of the amplitudes)
requires a refinement of this group-theoretic structure. The ultimate reason for this refine-
ment is the discrepancy between gauge theory and gravity, as discussed in the introduction.
We will argue that a natural way to implement this transfer is the proposal that gravity is
in fact described by the semigroup OSp™(1]2,R) (which we will define in section 4.2).

4.1 Motivation: bosonic winding sectors on the disk

To motivate the discrepancy between full-fledged BF gauge theory and gravity, we present
an insightful argument in the case of bosonic JT gravity. For completeness, we review the
bosonic story in appendix B, with the relevant group theory for SL(2,R) and the positive
subsemigroup SLT(2,R) discussed in appendices B.2 and B.3, respectively.

The bosonic Schwarzian path integral that emerges from the SL(2,R) group structure
is given by the Euclidean action

1 /8
S = ﬂ/ dr {F, 7}, (4.1)
2 Jo
integrated over all functions F satisfying the monodromy constraint F(7+ ) = M - F(71).

Imposing trivial monodromy M = 1, we can reparametrize F' in a one-to-one fashion by
writing F(7) = tan 5 f(7) and allowing f(7 + §) = f(7)+nf for n ranging over all positive
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integers.!'® To isolate the actual vacuum orbit of bosonic JT gravity, we would further fix
n to a single value (n = 1) and consider that particular theory. This further constraint
defines gravity. Here, we drop this constraint, instead insisting on remaining one-to-one
with the group-theoretic SL(2,R) structure.

Hence we are led to consider the following partition function, which has the asymptotic
(gravitational) boundary conditions that produce the Schwarzian action, but not the n =1
winding constraint:

i 1 (B d t i
Z(B) = Z/ [Df] e§f0 T{ al’lgﬂfﬂ'}. (42)
1/ f(r+B)=F(T)+8
Each of the terms is one-loop exact, but care has to be taken for relative minus signs. At
the one-loop level, upon plugging in f(7) = 7+ €(7) and expanding in €, one finds 2(n — 1)
negative modes. Since the one-loop determinant is given by (det O)_l/ 2 in terms of the
quadratic operator O, each pair of negative modes gives a factor of —1, leading to a total
factor of (—)"~1. Incorporating this minus sign into the Schwarzian answer of [69], we find:

0o a\3/2 2 , 0o ey 2
2(8)= Y (- 'n (B) 5= [T an (2 Z(—)"lksinh(zmk)> e (43)
n=1 n=1

The quantity in parentheses diverges, but we can give meaning to it by using the limit

g — 0% of the regularized expression!'6

ksinh 27k
cosh 2wq + cosh 27k’

2 Z(—)"ileﬂ”an sinh(27mnk) = k<q. (4.4)
n=1

For ¢ > 0, the left-hand side converges in a nonempty strip, allowing it to be analytically
continued to arbitrary k via the right-hand side. We then obtain'”

Z(B) = /OOO dk (k tanh k) e Pk, (4.6)

which is the partition function for the gravitational coset of SL(2, R) with measure du(k) =
dk ktanh 7k.'® As reviewed in appendix B.2, this measure is indeed the Plancherel measure

5The integer n must be positive to satisfy the condition F’ > 0 coming from e*® = F’, where f’ > 0
without loss of generality.

%This same formula was written down in [51] and interpreted as well in terms of multi-wound particle
trajectories. We will see that the significance of the multi-wound paths is precisely that they encode the
distinction between gauge theory and gravity.

1"We can obtain the other principal series representations of SL(2,R) by dropping the minus signs for
the negative modes and then using the related identity

k sinh 27k

k . 4.5
cosh 2mq — cosh 27k’ <4 (4.5)

2 Z e *""ksinh(27nk) =
n=1
This instead leads to the expression Z(8) = fooo dk (k coth k) e PR
8The meaning of the word “coset” here is that we have implemented the gravitational boundary condi-
tions at the boundary of the disk, reducing the boundary dynamics to the Schwarzian model rather than
that of a particle on the SL(2,R) group manifold. We give more details on this implementation in the
supersymmetric case in section 5.
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for the principal series representations of SL(2, R), and this is not JT gravity: it would imply
a density of states p(F) ~ tanh(mvE) (E > 0). The bulk disk geometries corresponding
to this summation have conical identifications of 27n (they are replicated geometries), all
of which save for n = 1 carry conical singularities. Restricting this by hand to the smooth
hyperbolic component of the moduli space of configurations, one would land solely on
n = 1, and obtain the measure du(k) = dk ksinh(27k) and hence the p(E) ~ sinh(27VE)
density of states of JT gravity.

What this argument teaches us is that an additional constraint must be imposed on
the BF theory to make contact with smooth gravity. In [41], evidence was provided that a
particularly natural way to accomplish this is to restrict the group to the positive semigroup
SL™(2,R). The calculation of the Plancherel measure for the principal series representa-
tions of SLT(2,R) is reviewed in appendix B.3, leading to du(k) = dk ksinh(27k). In the
next section, we will provide evidence that a similar construction works for supergravity
in terms of the positive semigroup OSp*(1]2).1

It would be interesting to understand the application of the above winding argument
directly for OSp(1|2,R), which we postpone to future work.

4.2 0OSp™(1|2,R) subsemigroup

It is known that A/ =1 JT supergravity amplitudes contain the density of states [43]

p(E) ~ \/1E cosh 2rVE. (4.7)
This profile is constrained by physical arguments in the following way. First, it has the
large-E' Bekenstein-Hawking growth p(E) ~ eQm/E, matching the semiclassical black hole
first law in JT supergravity: S(FE) = 27v/E. This is precisely the same first law as in
the bosonic JT model [3], because the fermions are turned off in the classical black hole
solution. Second, it has a pole p(E) ~ 1/vE as E — 0. This is as expected, since the
corresponding supercharge density p(Q) ~ 1, with E = Q2 is then regular as £ — 0. This
is also the same pole as the “hard wall” in the random matrix ensembles describing the
very low-energy spectral statistics of N = 1 supergravity models.?’

Now, if JT supergravity were indeed described globally by OSp(1|2,R) BF theory, then
the above density of states (4.7) would match precisely with the Plancherel measure on the
space of irreps appearing in the Plancherel/Peter-Weyl decomposition of functions on the
group manifold. Since the above density of states is continuous, it would need to match
the Plancherel measure on the principal series representations of OSp(1|2,R).2! However,

9Tn [41], the term “subsemigroup” is used to emphasize that the semigroup SLT(2,R) is a subset of
SL(2,R). The corresponding term here would be “subsupersemigroup,” but we will often opt for “subsemi-
group” to reduce verbiage.

20The “Bessel model” plays the same role here as the Airy model does for bosonic JT gravity: it is an
exactly solvable matrix model in the suitable universality class that describes the leading behavior of JT
(super)gravity very close to the spectral edge F = 0.

*'"More explicitly, upon introducing the OSp(1|2,R) spin label j = —1/4 4+ ik/2 and the momentum
variable k € R, the spacetime energy in BF models is identified with the Casimir eigenvalue E = j(j +
1/2) — 1/16 = k?/4, where we chose to shift away the zero-point energy 1/16.
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this is not the case. Since the Plancherel measure on the principal series representations
of OSp(1]2,R) seems to be unavailable in the mathematics literature, we set out to find
it in appendix E. In particular, we construct the principal series representations from first
principles using parabolic induction in E.4, and compute the corresponding Plancherel
measure in E.8. We obtain the result

1 cosh 2mVE
VE 1 + cosh 27r\/E’

which does not match the JT supergravity answer (4.7). In particular, we find the large-E

p(E) (48)

power-law asymptotics p(E) ~ 1/v/E. In fact, we will argue in section 6 that the large-
argument behavior of the Plancherel measure of any semisimple Lie (super)group takes the
following form:

p(k) ~ kl25I=1A%] (4.9)

where the exponent is the number of positive bosonic roots minus the number of positive
fermionic roots. This behavior immediately rules out the Plancherel measure on the space
of principal series representations of any Lie (super)group as a candidate for the physical
density of states of black holes.

To find the correct structure, we take guidance from how the bosonic JT gravity model
is related to SL(2,R). In [41], it was argued that the bulk theory should be regarded as
a BF theory of a subsemigroup of SL(2,R).?? This is the subset of SL(2,R) matrices for
which all entries are positive in the defining representation:

a

SL*(2,R) = , ad—bc=1, a,b,e,d>03. (4.10)

Cc

This subset is closed under multiplication, but not under taking inverses. It hence defines a
semigroup that is a subset of a group, hence the name subsemigroup. It was shown in [41]
that if one subscribes to this structure, then one can find the correct density of states. For
convenience, the argument is repeated in appendix B.3.

A key motivation for following this approach is its deep relation with the theory of
quantum groups. Somewhat surprisingly, the latter has been studied in much more depth
than its classical limit. Let us review the argument. Structurally, the subsemigroup ap-
pears due its nice representation-theoretic properties. In particular, the principal series
representations Py, are the only ones appearing in the Plancherel decomposition:

€ (SL*(2,R)) = / du(k) Py ® Py, dp(k) = dk ksinh(27k). (4.11)
@

This formal equation can be derived by taking a classical ¢ — 1 limit of the results of
Ponsot and Teschner in terms of the set of so-called self-dual representations of the Faddeev
modular double of Ug,(sl(2,R)) [81, 82]. When writing ¢ = e“bQ, self-duality implies that

#21n [52], a different proposal was made in terms of a parametric limit of the universal cover of SL(2, R). Tt
would be interesting to develop the superanalogue of that story as well, and to compare the two approaches
in the supersymmetric case.
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the representation is simultaneously a representation of the dual quantum group with
b — 1/b. The g-deformed version of this statement was later rigorously derived in [83], and
moreover conjectured to hold for the g-deformed positive subsemigroup of any simple Lie
group [84].

The story for JT gravity on its own still deserves much more investigation, but for the
moment, we will accept it and attempt to see whether something similar could be true for
supergravity.

We now define the analogous group-theoretic structure for the supersymmetric situa-
tion of interest in this work. The subsupersemigroup is defined in the defining representa-
tion of OSp(1|2,R) by having a, b, c,d > 0 and no restriction on the Grassmann variables.
The quantities a, b, ¢, d are supernumbers, and their positivity properties are defined in ap-
pendix A. In particular, a supernumber is positive iff its body is positive.?> The intuition
behind this definition is that Grassmann combinations should be thought of as infinitesi-
mal compared to the purely bosonic variables. Under composition of semigroup elements
g1 - g2, we find that the new entries a, b, ¢, d again all have positive bodies, and hence this
positivity restriction indeed defines a semigroup:

a b«
OSp™(1|2,R) = ¢ d|~ | €0Sp(12,R), a,b,c,d>0y. (4.12)
B e

In this light, we make a conjecture similar to (4.11) above that for the supergroup case,
& (0Sp*(112,R)) = / du(k) Py ® Py, dpu(k) = dkcosh(rk),  (4.13)
@

where only the principal series representations P appear in the direct integral, and the
measure reflects the correct gravitational density of states (4.7). We will use the semigroup
approach in section 4.4 to derive this Plancherel measure for OSp™ (1|2, R), identifiable as
the gravitational density of states p(E) ~ ﬁ cosh 27V E.

We first present several pieces of evidence in favor of the above conjecture (4.13).

Firstly, it was shown in [85] that the class of representations Py is self-dual in the
setting of quantum supergroups, mirroring the statement in the bosonic case.

Secondly, we can solve the Casimir eigenvalue problem in the relevant subsector of the
supergroup manifold for the subsemigroup OSp™ (1|2, R). This is done in appendix E.5, and
in particular in (E.161), where one can prove that only the principal series representations
appear. The discrete representations of OSp (which figure in the Plancherel decomposition
of the full supergroup OSp(1|2,R)) come from a different sector, beyond the subsemigroup.

A final suggestive argument in favor of the subsemigroup description comes from think-
ing about the BF formulation of the supergravity model on an arbitrarily complicated 2d
super-Riemann surface X, possibly with geodesic boundaries. Performing the path integral
over B reduces the amplitude to an integral over the moduli space of all flat connections

Z3This leaves the set of pure soul supernumbers undetermined in terms of positivity. Since this set is of
measure zero in the set of all supernumbers, we will not care what positivity means in this case.
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Figure 4. On the left is a genus-two surface with four cycles shown in red. Each inde-
pendent cycle gets an OSp(1]|2) holonomy group element, with a single relation between them:
(A By AT By)(A2B; YA By) = 1. Tf each cycle is in the hyperbolic conjugacy class, then the
surface is smooth. On the right is a genus-two surface with five cycles, one of which is a conical
defect shown as a black dot. This surface is not smooth since one of the cycles has an elliptic holon-
omy matrix associated to it. It has to be excluded from the gravity path integral configurations,
but is present in the OSp(1]|2) BF formulation.

F = 0 on X. Since a flat connection is specified by its holonomy around each nontrivial
cycle, this reduces the integral to one over the moduli space of flat connections M(G, X)) =
Hom (7 () — OSp’(1]2))/0Sp’(1]2), where one simply specifies an OSp(1|2) matrix for
each cycle compatible with group multiplication for each three-holed sphere in the surface.?*

The BF path integral hence boils down to the volume of M(G, X):

/ [D(moduli)] = Vol M(G,X), G = OSp(1|2,R). (4.14)
M(G,X)

Each such group element lies in one of the conjugacy classes of OSp(1/|2), and hence encodes
geometrical information (the geodesic length for a hyperbolic conjugacy class element, or
the deficit angle for an elliptic element). However, only the hyperbolic conjugacy class
elements correspond to smooth geometries, and are hence relevant for a gravitational de-
scription.?” An example of this is shown in figure 4.

This restriction to smooth configurations corresponds to specializing to the so-called
hyperbolic (or Hitchin) subset of M(G, X)), the super-Teichmiiller space ST (X).26 We will
argue next that this geometric restriction is naturally accommodated by restricting to the
subsemigroup OSp™(1]2,R).

The holonomies of a generic OSp(1|2, R) matrix g can be classified by the value of the
supertrace:

STrg =a+d+ (1+ B9). (4.15)

In the NS sector, holonomies with |STrg| > 3 are hyperbolic, those with 3 > |STrg| > 0
are elliptic, and those with |[STrg| = 3 are parabolic. In the R sector, the criteria are
instead that holonomies with [STrg| > 1 are hyperbolic, those with 1 > |STrg| > 0 are
elliptic, and those with |[STr g| = 1 are parabolic.

2Very instructive examples of this construction can be found in [44].

Z5The elliptic class can appear, but only when we insert an operator that actively introduces a deficit
angle in the surface. It should not appear as an allowed “intermediate” configuration in the gravitational
path integral.

26Unlike bosonic Teichmiiller space, the superanalogue ST(X) is not connected, but has multiple con-
nected components labeling spin structures on 3. See, e.g., [72, 86] for recent work.
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Labeling the sector by € = 0 for NS and € = 1 for R, we compute that for a subsemi-
group element g, where a,b,c,d > 0 and ad —bc =14 00,

STrg| = a+d+ (—)(1+ B0)| = a—l—%%—%—i—%—k(—)e(l—kﬁé)

>0t s () 22 () (4.16)

where we again used that the absolute value of a supernumber is fully determined by its
body. This result makes all holonomies automatically of hyperbolic class.

This result implies that a subsemigroup description is sufficient to exclude geometries
that contain conical singularities (elliptic) or cusps (parabolic) from the very get-go, leaving
only gravitational (smooth) configurations within the path integral. One furthermore needs
to prove that such a description is also necessary, in the sense that all hyperbolic super-
Riemann surfaces can be accounted for by a flat OSp™(1|2) connection. In the SLT(2,R)
case, evidence was provided for this converse statement in [41] by looking at the three-holed
sphere. We imagine that the same proof holds here, but postpone it for a deeper study.

In the next few subsections, we will show that once we commit to this structure, we
indeed find the correct NV = 1 super-Schwarzian density of states.

4.3 Gravitational matrix elements

It is well-known that the Plancherel measure of a Lie group can be extracted from the
orthogonality relation obeyed by representation matrix elements of group elements with
respect to the Haar measure. In the gravitational scenario at hand, the key information
is contained in representation matrices of group elements that lie in the maximal torus.
The representation matrices themselves are special in that both indices are constrained
to obey the Brown-Henneaux gravitational boundary conditions. This makes them mixed
parabolic representation matrices, or Whittaker functions [87-90]. We first compute these
explicitly for OSp™(1]2,R), and then in the next few subsections explain their relation to
JT supergravity.

The representation matrices themselves are taken within the only irreps of the sub-
semigroup: the principal series representations. To construct them, we proceed as follows.
We define the super half-line Rt as the pair (z[9) subject to the restriction z > 0:

RTI = {(z]9) ]|z > 0}. (4.17)

Under the action of the semigroup on the super half-line, the bosonic coordinate x maps to
%. This new location is also positive since positivity is fully encoded within the body
of a supernumber (see appendix A). Another way of appreciating this fact is to formally

Taylor expand the Heaviside step function:

ar +c ax + 7y ar + c ar +c ax + 7y
—_— = — =] = -4 —=v. (4.1
© <b:v—|—d sen(e) G a2 > © <ba:+d> (bm+d> senle) g ap? 418

Hence it is indeed the case that, up to a delta function at the origin, only the bosonic
parameters determine positivity (see, e.g., [91]).
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We define the action of the semigroup OSp* (1|2, R) on functions f(x,9) on R as

follows:27

(4.19)

(gof)(l",ﬁ):(bx+d+519)2jf<a$+c+ﬁl9 a$_|_f7_619>‘

br +d+ 00 br+d+ ol

This definition corresponds to the supertranspose action of the group in the homogeneous
2|1-dimensional space:

a

b
[1‘ z‘—ﬂ}H{:ﬁ z‘—ﬁ} d (4.20)
0

o |2 Q

c
g
It composes correctly under group multiplication and hence defines a representation of
OSp™(1]|2,R). The representation defined in this way is irreducible and unitary, just like
the analogous principal series representation of the full group OSp(1]|2,R). These proper-
ties require independent proofs, and we present them in appendix F. Infinitesimally, this

action corresponds to the following representation of the generators in terms of first-order
differential operators, which we call the Borel-Weil realization:

H =20, + 519819 - E~ =0, Et = —220, — 290y + 2jz, (4.21)
B~ = 5(0+90.), P = —%maﬁ — 500, + 0. (4.22)

These operators obey the commutation relations

[, B%) = +B*, (B4 BT =20,
A 1. PSRN A
[HvFi] = :l:§ i) [E:t7F:F] = _Fi7 (423)
ALoa 1~ PTIA 14
{FF. Py =—CH, {F*F5} =5 E%

which differ in the anticommutators by a sign factor compared to the osp(1]|2) superalge-
bra (2.7) satisfied by the finite generators. Thus the infinitesimal group action leads to
a representation of the opposite superalgebra. This is consistent with the fact that the
generators F'+ and F'~ have Grassmann statistics, unlike the bosonic matrices (2.6) in
finite-dimensional representations. More elaborate discussions of these issues are provided
in appendix E. Demanding antihermiticity of the bosonic generators requires fRe(j) = —1/4,
which we write as j = —1/4+ik/2 for k € R (this should be contrasted with Re(j) = —1/2
for SL(2,R)). See appendices E.4.3 and E.4.4 for details.

*"When working with the full group OSp(1|2,R) rather than the subsemigroup, extra sign factors and
absolute values must be included in this definition; see appendix E.
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Finally, any OSp™* (1|2, R) matrix can be written in the Gauss-Euler parametrization

as
9(b,7v.,7.10.,0.) = ¢20-F~ B [20H o . EY 20, F* (4.24)
e? v.e? 0.
=] ve? e P4+yve?—00.|ve®0. -0 |, (4.25)
el N.e®) +6. ‘ 1+ e%0.0,

where the second line is the formula in the defining representation. The condition (2.4) can
be explicitly verified to hold. Notice that in this form, the elements a,b, ¢, d are positive
when v.,v, > 0.

Our goal is to compute the gravitational matrix elements of OSp™ (1|2, R). These are
found by implementing the Brown-Henneaux supergravity boundary conditions [63] at the
quantum level, which can be done by diagonalizing the parabolic generators in both the bra
and ket states. This “mixed parabolic” matrix element diagonalizes the “outer” factors in
the Gauss parametrization (4.24). This is the supersymmetrization of the same statement
in bosonic gravity, implemented in this language in [40, 41]. At the infinitesimal level, we
will end up diagonalizing the operators (4.22) in the Borel-Weil realization of the opposite
superalgebra.?®

Therefore, working in the Gauss parametrization (4.24), we wish to compute the mixed
parabolic matrix element of a generic OSp™ (1|2, R) element g in the principal series rep-
resentation defined by (4.19). In the bosonic case of SL(2,R), this involved diagonalizing
E¥*, but here, we must additionally diagonalize the fermionic generators F*. Consider the
representation matrix element

(| BT RO BT 2 ) (4.26)
which reads in coordinate space as
/d:v d9 (p_ |z, 0)e? BB g20H g, E¥ 20, F (x, Ohy). (4.27)

We now choose the bra and ket states to be simultaneous eigenstates of the parabolic
generators in the sense that:

r A A
Ef(z, 0py) = =M, [wy), 04 F (z,0)¢y) = (%19’1/1#@'@\;9”

(W_ |z, 9)E~ = v{y_|z,9), (_ |z, 0)0_F~ = ie\fﬁ(@/}_]:ﬂ,ﬁ). (4.28)

Upon diagonalizing the bosonic parabolic generator E*, by consistency with the algebra re-
lation {F*, F+} = :FE—;, “diagonalization” of the associated fermionic parabolic generator
F* only allows for specifying a sign e, € {+1, —1}.%

28These exponentiate to a representation of the group, unlike those that furnish a Borel-Weil realization
of osp(1|2) itself (for the latter, see (E.127)).

29We put the word “diagonalization” in quotes because it is only in the above sense that these operators
are diagonalized, by including the Grassmann parameters 6. in the appropriate places. We will have more
to say about this below.
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For bosonic Lie groups, states diagonalizing the parabolic generators are called Whit-
taker vectors, and we will adhere to the same name for the supergroup case at hand. We
can then write (4.26) more explicitly as:

(1= ie V0 +ie VA0 +eeVArf 0,) Ve / dx d9 (|2, 9)e2H (z, 9ip, ). (4.29)

This results in what one would mathematically regard as the Whittaker function [87-90],
in that the exponentiated Cartan element is the only factor in the Gauss decomposition
that contributes nontrivially to the calculation of the matrix element.

We next explicitly construct the Whittaker vectors diagonalizing combinations of the
parabolic generators E* and F*, as in (4.28). Note that taking the adjoint of a right
eigenvector of F'~ does not yield a left eigenvector of F'~. Therefore, to determine the right
states with respect to which to compute the matrix element, we should first diagonalize
(F)f = %(&9 —190;).3% We can immediately write down the correct states:

1

(x, v, e ) = m(e*”x +ie /vde V), (4.31)
with properties
(E)ve) =vlve),  (F)lre)= %ﬁ!’/v —€), (4.32)
and
(2, 9]) €)= \/127(332je_>‘/x e /MM, (4.33)
satisfying
BfA )= -ANe)  FHAe) = VAl —e), (4.34)

where v, A > 0. Notice that these states do not literally diagonalize the fermionic generators
F*, but instead map the states with different € or €, into each other. One can check
that this is equivalent to (4.28) and consistent with the opposite superalgebra relations
(F¥ F*} = 3£,

So the eigenvectors (4.31) and (4.33) are the Whittaker vectors of OSp™(1|2,R), found
by diagonalizing parabolic generators. Note that the eigenfunctions, as written, do not
have definite Grassmann parity.>!

All of these eigenfunctions are normalizable on R™: this is clear for the — generators,

4j-1,-2\/z

and it is true for the + generators because the integral of = converges for Re(j) =

39The formula for the adjoint of F~ follows from the relation

/dx dd f(z,9)" (09 + 90z)g(x,9) = /dx dd ((89 — 90;) f(x,9))*g(z,9) + (boundary terms).  (4.30)

31The results for the full group OSp(1|2) correspond to taking v — —iv and A — —iX in the results for
the semigroup, leading to imaginary rather than decaying exponentials.
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—1/4 (in fact, for Re(j) < 0). The eigenvalues are consistent with the relation (F¥)% =
1+
FiET
The remaining Whittaker function is now readily computed:

<1/,€,|62¢H|)\,6+>E/dmdﬂ<1/,6,|93,19>62$H<33,19|)\,6+)

1 [o : , _ . . _
= 27/ dx/dﬁ(e*”—ie,ﬁﬁe*”) (eQJd’mQJe*’\e I e A9 ZI DOy~ Ae M/"’“")
T™J0

1 >\j+1/2

€_¢ (6,K2j+1(2€_¢\/ﬁ)—|—€+K2j(2€_¢\/ﬁ)) . (4.35)

m v

26 H

We have used the fact that an element e of the maximal torus acts via dilatations

as in (4.19) (or specifically, (E.79)), as well as the integral representation of the modified
Bessel function of the second kind:

00 4 A\
/ do z~temveMT — 9 () Ko (2VVA) (4.36)
0 v
for Re(v), Re(A) > 0. Inserting (4.35) into (4.29), we finally obtain

(v,e |glhe) = (1 —ie /U0 +ie VN, +e eV /\1/9,9,) e Ve VA

1, ik
1 Ait2
—¢ b/ —¢./
i gke (e,K% i (2e V)\)+6+K%_ik(2€ V/\)), (4.37)

where we have substituted j = —1/4 + ik/2 and used K,(z) = K_,(z). Upon stripping
off the first line, these are indeed the known A = 1 super-Liouville minisuperspace wave-
functions (involving both sign combinations, and ignoring the overall sign) [92]. Indeed,
Whittaker functions have primarily appeared in the physics literature in an integrability
context as solutions to Liouville and Toda equations of motion, e.g., in [93-96].

The distillation of the Virasoro algebra from the SL(2, R) Kac-Moody algebra [97-100]
is the mechanism that extracts both 2d Liouville CFT and 3d gravity from the underlying
SL(2,R) WZW model. Dimensionally reducing this setup takes Liouville CFT to the
Liouville minisuperspace eigenvalue problem, and takes 3d gravity to 2d JT gravity. It
is hence no coincidence that JT (super)gravity is described by precisely the same objects
(Whittaker functions) that govern (super-)Liouville minisuperspace models.

Moreover, the wavefunctions (4.37) are solutions to the Casimir eigenvalue equation
for OSp(1]2,R), and taking into account the sign choices, they span the entire eigenspace
for fixed j. The treatment of the Casimir equation is given in appendix E.5, with (E.161)
being the particular solutions to compare to.

When specializing to gravity, we will set v = A = 1, corresponding to the entry “1”
appearing in (2.13).

4.4 Gravitational density of states

The Plancherel measure for the subsemigroup follows from the orthogonality relation of
the mixed parabolic Whittaker function (v_, e [e2?7|\,,¢,).
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As such, keeping v, A arbitrary and specializing to j = —i + %, we write the mixed

parabolic Whittaker function as a wavefunction:
Ve e w(9) = (e e |N e (4.38)

LA ~0\/ox ~0 /X
=~ me (e,K%Hk(Qe vA) + EAK%—ier 1/)\)) . (4.39)
v a2
The Haar measure of OSp(1]2,R) is
1

dp(¢) = e’ [dp dy.dy. |db_df.], (4.40)

which we prove in appendix E.8.2. The brackets denote an “integration form” on super-
space [91]. Focusing on the ¢-dependent part, we get

/_o:o (;e¢ d¢) OF e ()0 s L (9)

1 A B+ e _ ~
= 7/ dpe ¢(e K%ﬂ-k(Qe ¢’\/V)\)—}-6,K%+ik(2e d’\/u)\))

- 2 1_ ik ik/
22 Yty

X (e,K1+ik,(2e_¢\/ vA) + €+K%7ik,(26_¢\/ V)\)) . (4.41)

2

To evaluate this integral, we use the identity>?

” 26k — k)
Add@%@i@%wﬂﬁ%@ﬁKme=amwﬁ, (4.43)
which holds for k, k" > 0, and conclude that
= (1 / 5k — k)
20 k * 1k _OR—FK)
lm (26 d¢> e+/\,6,lj(¢) ¢e+)\757y(¢) 4COSh(7'('k) . (444)

The resulting Plancherel measure is p(k) = cosh(rk), up to normalization. This is indeed
the known result for A" = 1 JT supergravity and the A" = 1 super-Schwarzian model.??

32This identity follows from a regularized version of the a = 1/2 case of (B.24). One introduces a
regulator ¢, as in appendix B of [101], to evaluate

* 1 s 7T
de K1, 2)K1 0 (x) =~ v —.
/0 §+1575( ) 5 +is ( ) 4 sinh7r( 525 T ZE) COSh’iT(SES )

(4.42)

We have corrected a typo € — —e in [101]. This is because the asymptotics as z — 0 is of the form Ka(x) ~
2~ if Re(a) > 0. The z — 0 region of the above integral is distributionally convergent ~ fo %m“”s/).
Regularizing it requires taking 1/2 — 1/2 — ¢, with € > 0.

33We stress that although considering the parabolic Whittaker function (matrix element of e2##) suffices
to extract the Plancherel measure for OSp™(1]2), what would be the parabolic basis for the full group
OSp(1]2) ceases to be a basis for the semigroup OSp™(1]2): that is, the eigenfunctions of the parabolic
generators do not comprise a basis on Rt. Strictly speaking, the above argument suffices only for regions
connected to the boundary; otherwise, one needs a basis (completeness relation). To obtain an orthogonality
relation for OSp™(1|2) matrix elements with respect to the full Haar measure, one can instead work in the
hyperbolic basis (see appendix E.8).
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B2

p=1 u=1

Figure 5. BF evaluation of disk amplitudes. We use a Hamiltonian evaluation with the dashed lines
being the fixed Euclidean time slices. Both endpoints of each time slice lie on the holographic bound-
ary, where we impose the gravitational boundary conditions. Left: disk partition function. Middle:
single boundary-anchored bilocal operator insertion on the disk. Right: Wheeler-DeWitt wavefunc-
tion Wg/5(¢) as a function of geodesic distance 2¢, evolving from a half-circle with length /2.

5 Gravitational applications

In this section, we apply our previously acquired knowledge on the BF structure of N' =1
JT supergravity to find (or reproduce) gravitational amplitudes. Our treatment is rather
concise, since it can be developed in complete parallel to the bosonic JT results. We will il-
lustrate how the above calculated group-theoretic ingredients (the Whittaker functions, the
Plancherel measure, and the characters) suffice to determine JT supergravity amplitudes.

5.1 Application: disk amplitudes

We first discuss the disk partition function, as well as the insertion of a single boundary
bilocal operator on the disk (figure 5).

Within the BF framework, the evaluation of such amplitudes was worked out in [40, 41].
We refer the reader to those references for details. Here, we only summarize how knowledge
of the above structural ingredients leads to a derivation of this class of boundary correlators.

The strategy is as follows. We time-slice the Euclidean disk as shown in figure 5,
where each time slice is an interval. The Hilbert space description of a BF model on an
interval is known, where a complete set of wavefunctions consists of the representation
matrix elements Rib(g) for each unitary irrep j and for each pair of representation indices.
This follows immediately from the Peter-Weyl theorem. These basis states are eigenstates
of the Hamiltonian, which acts as the Casimir C;. In the case at hand, the boundary is the
holographic boundary where gravitational constraints are imposed. Mathematically, this
means the model is in fact a coset model, where the representation indices a and b are fixed
to a specific choice. The constraints in our case are given in terms of two parabolic indices:
v =1and A = 1. This is precisely the Whittaker function we determined above. So

Rl,(9) — B2 5%(0), (5.1)

and these form a complete set upon summing over the momentum index k.34

34To match the conventions in the Schwarzian literature, what we call k in this section is what we call
k/2 in the rest of the paper. This should be kept in mind when comparing formulas between sections.
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These considerations immediately lead to the super-JT disk partition function

o0 2 1 /m\Y/2 =2
Z(B) = / dk cosh(2mk)e PF = = <> es. (5.2)
0 2\B
When a boundary bilocal operator is present, we should insert a discrete representation
matrix element in the calculation. The discrete representation Whittaker functions were
determined up to normalization in (E.158) as solutions to the Casimir eigenvalue problem,

and they take the form:

R(¢) = e ®Jaji1 (2\/—V)\€_¢) , e~ Jo; (2\/—U)\6_¢) , (5.3)
where j = —1/2,—1,... to produce the lowest- or highest-weight discrete representations.
The first entry above can be viewed as the bottom component, and the second as its

superpartner.>® Since this object plays the role of an operator insertion, we disregard the
precise normalization, which is ultimately just a choice. It is convenient here to define

h = —j. Discrete representations occur for h a positive half-integer. Taking the limit
v, A — 0 to obtain the lowest/highest-weight Whittaker vector, we obtain®0
R(¢) — e 2, (5.4)

This is to be identified with the bottom component of the bilocal operator (1.4). Given the
relation (3.23) between the bilocal operator and the geodesic distance d, we can identify

dbot =~ 2¢7 (55)

providing a direct geometric interpretation of the group coordinate ¢. Notice in particular
that R(¢) — 1 when we take the limit to the identity (h = 0) insertion, as it should.
The resulting vertex function (or 3j-symbol) is then a group (coset) integral of a product
of two constrained principal series representation matrix elements (4.39) and one discrete
representation matrix element (5.4). Setting x = e, we can use the integral

/0 dx (Kl/2+2ik1 (x) +ee. Koo, (33)) (K1/2+2ik2 (z) + € €. K12 ik, (56)) z?

(r(% hti(ky — ko)) T(h+i(ky + ko)) + (ks — —kg))
T(2h) ’

where a product over all four choices of + is understood. Notice that both choices of

_ gh—1

(5.6)

€ €, give precisely the same result. These expressions are the known 3j-symbols (or vertex
functions) in A/ = 1 JT supergravity [39]. Inserting this quantity into the full answer for the
correlation function then gives the bottom component of the boundary two-point function:

(On(7,0))bot = 2(15)7:2 / dky dky e~ ™M= (B=TRS cogh(2mky ) cosh(2mks) (5.7)

D(2+hti(ky — ko)) D(hLi(kr + k2)) + (ke = —k2)
. T(2h) ’

in agreement with the known result obtained using super-Liouville techniques [39].

35This is not quite right: the actual superpartner is a suitable linear combination of both of these, as can
be seen from the recursion relations in equation (E.8) of [55].

36We have used that for a € Z, Jo(x) ~ z/®l as & — 0. We have also assumed that h > 1/2, which is
precisely the regime where the worldline description of section 3.3 is valid.
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Finally, just like in the bosonic case, it is interesting to note that one can write down
a Wheeler-DeWitt wavefunction Wg/5(¢) that creates a two-boundary state with geodesic
separation dpot = 2¢ between both boundaries, evolving from half of a Euclidean disk of
boundary length 8/2 (figure 5), by writing:

B _ _
Vg/a(0) = /dkCOSh(ZWk)G 2 (K1/2+2ik(26 )+ e e Ky o(2e d)))' (5.8)

Two copies of this “half-disk” wavefunction can be glued together to reproduce the disk
partition function:

e®
2(8) = [ do (2> W2 (6)¥52(6). (59)

5.2 Application: defect insertions and gluing

As a further example, we discuss the insertion of hyperbolic defects in the disk and use
them to glue surfaces together in the gauge-theoretic description. For a BF theory of a
compact group G described by an action of the type (B.57), one can create a defect of
holonomy U in the disk by inserting a suitably normalized character in the region of the

disk with representation R:

xr(U)
dim R~
For instance, the disk amplitude with a single such insertion would be

Zu(8) = ZR:(dim R)2 (’gﬂ) ¢~BCr (5.11)

(5.10)

where one sums over all irreps of the group G, and where Cg is the quadratic Casimir of
R. These equations are nearly identical to those of 2d Yang-Mills amplitudes [102]. This
analogy was studied more closely in several works [40, 103-105].

Gravity differs from such a BF theory in two ways: firstly, as explained around figure 5,
it behaves as a coset model instead of a genuine group model. This coset restriction
essentially strips off a factor of dim R from the above amplitude: see section 2.3 of [41] for
an extensive discussion. Secondly, the relevant group is noncompact, where in our setup,
the role of dim R is played by the Plancherel measure for the principal series representations
of the positive semigroup.

Hence when applying the above procedure of inserting a defect to the gravitational
case, we need only find the expression for the suitably normalized character and insert it
into our super-JT disk partition function (5.2). The relevant representation theory does not
seem to be available in the mathematical literature, so we work it out from first principles.
Within the NS sector, the character we need is computed in appendix E.7 (in particular,
see (E.175)) and given by

Xk (@) = cos(20k). (5.12)

A few comments are in order. Here, as everywhere in this section, we have set k — 2k
to match the gravitational convention where the energy variable £ and the momentum
parameter k are related by E = k%+constant. We have stripped off the Weyl denominator of
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Figure 6. Gluing together tubes by integrating over hyperbolic orbits with geodesic length 2¢ for
a fixed spin structure.

this character, and we likewise glue with a flat conjugacy class measure on the supergroup.
This is merely a bookkeeping exercise, but the current normalization matches directly to
the Schwarzian limit of the super-Virasoro modular S-matrices. Indeed, using the modular
S-matrix between two nondegenerate super-Virasoro representations [106], we write:

lim S,” = lim cos (47sP) = cos(2¢k) = xx(9), (5.13)
b—0 b—0

where we fix s = ¢/27b and P = bk in the limit as b — 0 [69].
Inserting (5.12) into the disk partition function gives the defect disk amplitude (or the
single-trumpet amplitude):

Z4(B) = /OOO dk cos(2¢l<:)e_6"f2 = ;\/ge_%z’ (5.14)

geometrically interpretable as a single-trumpet geometry with a neck of length 2¢, as
discussed in section 2.3. The length parameter 2¢ is related to the defect parameter A by
¢ = mA.

Two such trumpets can be glued together in super-Teichmiiller space by using character
orthonormality (E.179). This procedure is pictorially represented in figure 6. It gives the
two-boundary amplitude:

— e —(B1+B2)k* _ 1 / m
Z(ﬁl,ﬁg) = /0 dke = 9 51 T 52. (5.15)

Notice that this is not the same double trumpet amplitude of [44]. This discrepancy is due

to our description in terms of super-Teichmiiller space, compared to their description in
terms of the moduli space of super-Riemann surfaces. The difference is a quotient by the
mapping class group, which would lead to an additional factor of ¢ inserted in the gluing
integral and matching to the computation of [44].%7

One can likewise find the amplitude with a single elliptic defect by analytically con-
tinuing ¢ — i¢ to get

2o9) = [~ dkcomaone ¥ = 1[5 (5.16)

interpretable as a disk with a conical defect of angular periodicity 2¢. We remark that, just
as in bosonic JT gravity, this is a formal analytic continuation of the hyperbolic character

3TThere are also extra OSp volume factors that are omitted here. See [41] for details in the bosonic case.
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insertion because the actual elliptic character vanishes, as shown in appendix E.7. This
procedure can be phrased in many different ways. In particular, [69] used the language
of coadjoint orbits of the Virasoro group and branes in Liouville CFT: there, analytically
continued FZZT branes (dubbed iFZZT branes) were needed to access elliptic defects.

In the special case where 2¢ = n odd, we have the enhanced stabilizer OSp(1/2,R), for
which the super-Virasoro modular S-matrix element [106] has the limit

P
%i_}na S(n’l)P = 11)%4cosh (27mb) cosh(2mPb) = 4 cosh(2mnk), (5.17)

which plays the role of the character insertion in the disk amplitude. For n = 1, we get
the vacuum orbit, leading to the ordinary thermal disk partition function.?®

Hence for all of the orbits discussed in section 2.2, we can obtain suitable defect
insertions to be inserted into the disk partition function. For the NS sector of interest, we

summarize them below:

Elliptic H = U(1)e:

cosh(2wOk)

T
F = tan —© D k) = ————=. 5.19
%0 [ = tan g f’ v (k) cosh(27k) (5.19)
o Special Elliptic H = OSp™(1|2,R), n odd:
T cosh(2mnk)
Fo, f=tan—-nf, Dogpn k)= ——. 2
on f = tan ﬁnf osp"(12,R) (k) cosh (27 F) (5.20)
o Special Elliptic H = SL"(2,R), n even:
v k sinh(27nk)
Fop, f=tan—nf,  Dgniop (k)= et ) 5.21
on f anﬂnf st 2,r) (k) cosh(27k) (5.21)
» Hyperbolic H = U(1)x:
T cos(2mAk)
o Parabolic H = U(1)o:
1
Foo f=F, Dy, (k) = cosh(27k)’ (5.23)
38For even n, we can instead work with the modular S-matrix
lim Stnoy’ = lim 4sinh (27rn§) sinh(27 Pb) ~ ksinh(2mnk), (5.18)

which is indeed the expected measure that gives three bosonic zero modes, corresponding to the stabilizer
SL(2,R). We leave a more careful comparison for future work.
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5.3 Application: wormhole length and complexity

As a short application of our understanding of bilocal operators, and in particular the
superspace geodesic formula (3.23), we follow [51] and utilize these correlators to compute
the geometric boundary-to-boundary wormhole length in the two-sided black hole geometry.
This geometric information is conjectured to encode the computational complexity of a
putative boundary dual by way of the “Complexity = Volume” conjecture [107], which
relates the complexity C(t) to the extremal wormhole volume V' (t) as C(t) = V()

" GLaags”
Since our goal in this subsection is to probe the strong-coupling regime of the super-

Schwarzian theory, it is useful to make dimensionful parameters explicit:

SVEV =20 ¢ dr Ty(7), (5.24)
oM

where the coupling constant C' has dimensions of length. We mostly work in units where
C = 1/2, and reinstate it here for clarity. We see from (2.18) that the action (5.24) is
normalized such that for n = 0, it reproduces the bosonic result, with C' being the usual
Schwarzian coupling. In the standard second-order treatment of JT gravity, such a constant
depends on the relative normalization of the boundary values of the dilaton and metric. It
would appear in our case as a constant factor in the boundary condition (2.11), which we

have suppressed.
Within bosonic JT gravity, the classical (renormalized) wormhole length was consid-
ered in [108]. The answer is essentially the logarithm of the semiclassical boundary two-
point function, where the endpoints are separated by half a thermal circle in Euclidean time:

27 27
d(t) =Incosh —t ~ —t. 5.25
(t) 5~ (5.25)
Famously, this quantity grows linearly in time for late times ¢ [109].

Within bosonic JT gravity, going beyond classical gravity can be done by realizing
that in any off-shell gravitational background F(t), the wormhole length is computed by
the operator:

F(t)— F(t+iB8/2))?
1) — 1og F O~ Flt +i5/2)
OF(t)OF(t+1i8/2)

with a term involving a UV regulator € that is naturally measured with the proper boundary

—log €%, (5.26)

clock time t. Subtracting this quantity gives the renormalized wormhole length. The
resulting time reparametrization F'(t) results in a wiggly boundary curve, but the bulk
geometry is still a patch of AdSe. The situation is sketched in figure 7.

This operator is then inserted in the Schwarzian (or gravitational) path integral. This
calculation was done in [51], with the tantalizing result that the geodesic distance at late
times t > C' still increases linearly with time:

d) ~ 21, (5.27)
g
Hence this late-time growth persists even after classical gravity stops being valid. Here,
we will show as an application that the same is true in JT supergravity.
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Figure 7. Extremal wormhole in the bulk geometry of the thermal system, anchored at both
boundaries at time ¢.

Within classical JT supergravity, since the saddle solution of the geometry is not af-
fected by the fermions, the wormhole length as a function of boundary time ¢ is given by
precisely the same expression (5.25). The difference between the bosonic and the supersym-
metric theories is only visible when incorporating interactions with the boundary gravitino
n(t), and hence at the quantum level in the expansion in the gravitational coupling constant
Gy ~1/C.

The tool that we use to go beyond classical gravity is the JT supergravity bilocal
correlation function (5.7), but with the coupling parameter C' made explicit:

1 1 k2 k2
(On(7,0))bot = 7 7720 / dky dky e~ 73 ~(B=7)2¢ cosh(2mky) cosh(2mks)  (5.28)
y T(3+h=xi(ks — ko)) T(h £ i(ks + k2)) + (k2 — —ko)

['(2h)
Using the bottom component of the geodesic distance formula (3.23) in superspace, the
(renormalized) wormbhole length at real time ¢ is given by the following expression:
11 2rit) L —(5/2-it) 2
oot (1) = = — / dky dkg e~ B2+ 36 =(B/2=1)3& cosh(2mky ) cosh(27ks) (5.29)
™

O T(E+hxilks— ko)) T(h£i(kr + ko)) + (k2 — —ky)
o (2C)2hT(2h)

h=0

Now we approximate this expression at late time ¢ > C'. We use the identity

F(h + Z(k‘l — k‘Q)) _ /OO 62’5(’61*’62)2,/

ren 2l

2 cosh y)2h’ (5-30)

and differentiate with respect to h to rewrite the second term of (5.29) as:

14 NS k2
dhot(t) = — / dy / dky dky e~ B2 36— (B/2=it) 52 2i(k1=k2)y ¢ogh (2ky ) cosh(2mks)
s
1
X In(2 cosh y)F<2 +i(k1 + kg)) (5.31)

Terms where the derivative 0/0h acts on any of the other factors are subdominant in the
large-t regime, or t-independent. The first term of (5.29) is subdominant as well. This can
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be seen since performing the same trick requires an extra factor of 2h in the numerator,
which goes to 0 as we take h — 0 in the end.

At late times ¢ > C, the k;-integrals in (5.31) are dominated by their nontrivial saddle
point at kF/C = 2y/t where y is positive (and large) as a consequence. One evaluates the
two k;-integrals then to be:

1 4 2 *)? 1
dpot () ~ s /dye 5 cosh2(27rk*)yf(2 + Qik*)

*

k
= / i 26— cosh(2k") =, (5.32)
where we have used |I'(1/2 + ik)|?> = 7/ cosh(nk). This can be viewed as the thermal
ensemble version of the microcanonical %t. For a macroscopic black hole (the thermody-
namic limit) where 8 < C, this integral gets further evaluated on its saddle k* = %,

leading indeed to

dpot (t) ~ 2; t. (5.33)

This is precisely equal to the semiclassical wormhole length, but now valid at late times
t > C where quantum gravity is strongly coupled.

These calculations, however, only use the lowest disk topology for the boundary bilocal
correlator. It is known that higher-genus corrections to boundary correlators exist and that
they are important at late times [7, 16, 17]. It is natural to suspect that these will lead to
a saturation of the complexity C(t) at very late times and cause the complexity plateau to
appear [110]. It would be interesting to understand this effect in more detail.

6 Discussion and open problems

In this work, we have advocated for a group-theoretic perspective on N' = 1 JT super-
gravity. This required a great deal of the relevant OSp(1]|2) supergroup theory, which we
developed independently mostly in the appendices.

Our results were obtained in the framework of gauge theory. At a basic level, one can
ask: how much of the gravitational theory does a gauge theory description even capture?
One point of view is that the gauge theory only describes the limit Sy — oo, where Sy is the
coefficient of the purely geometric term in the Euclidean JT action that weights topologies
by (e50)X(M) | This limit simplifies the statement of holographic duality to an equivalence
between a BF theory on a fixed topology and edge modes on the boundary. For instance,
only when restricting to the disk is JT gravity equivalent to the Schwarzian theory at finite
temperature. When the path integral implements a sum over topologies, JT gravity is dual
to an ensemble of random Hamiltonians with Schwarzian density of states [7].

Therefore, it may seem that the disk probes a very limited sector of the full gravita-
tional theory. However, the disk observables (e.g., vertex functions), when supplied as input
to the dual matrix model, seem to provide all the data needed to compute multi-boundary
and higher-genus amplitudes, including amplitudes with bilocal lines [17]. Indeed, random
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matrix theory gives all multi-level spectral densities in terms of the single-level spectral den-
sity po(E), which is computed as the inverse Laplace transform of the disk partition func-
tion. This fact, combined with suitable gluing rules [7] and known results on the disk [41,
69], leads to a recipe for JT gravity amplitudes on surfaces with handles, boundaries, Wilson
lines, and defects. Our results provide the ingredients in a similar recipe for JT supergravity.

Of course, the major caveat is that the gluing rules relevant to gravity transcend gauge
theory. To appreciate this caveat, we reprise the points in the introduction and summarize
their resolution in JT gravity. We phrase the following for bosonic JT gravity, but similar
statements hold if one replaces PSL(2,R) with OSp’(1]2) and 7 with ST and inserts the
word “super” as appropriate.

Low-dimensional gravity is a gauge theory at the level of the classical action and in
perturbation theory around classical solutions, but it differs substantially from gauge theory
at the level of the nonperturbative path integral [34, 41]. Perhaps most obviously, gauge
theory is formulated on a fixed background, so any sum over topologies that is needed to
match with the gravitational path integral must be implemented by hand. On top of this
discrepancy, the gauge and gravity path integrals also differ in the integration space within
a given topological class:

e First, classical solutions of the gauge theory do not necessarily map onto classical
solutions of the gravitational theory (nonsingular metrics). In JT gravity, we solve
this problem by restricting the BF path integral to the hyperbolic component of the
moduli space of flat (P)SL(2,R) connections, namely the component in which all
holonomies are conjugate to hyperbolic elements. This is precisely Teichmiiller space
T(X): the space of (smooth) hyperbolic metrics on ¥, modulo diffeomorphisms that
are connected to the identity [111].

e Second, gauge transformations can be identified with diffeomorphisms that are con-
nected to the identity, but they do not account for large diffeomorphisms. In JT
gravity, we must perform a further quotient on the path integration space over ge-
ometries, thereby restricting it to the moduli space of Riemann surfaces M(X).

We have argued that the first point can be addressed purely within gauge theory by
carefully identifying the global form of the gauge group in the gauge theory description
of JT gravity. Namely, the moduli space of flat SL*(2,R) connections is contained in
Teichmiiller space, and is conjecturally equal to it [41]. Settling both this conjecture and
the corresponding one for OSp™(1]2) are outstanding problems.

Addressing the second point seems to require going beyond gauge theory. Namely, from
the gauge theory perspective, it is more natural that higher-genus amplitudes should be
computed by integrating over Teichmiiller space 7 (X)), but in practice, the results converge
only for very low genus (x > 0) [41]. Matching with the true JT gravity amplitudes requires
a different gluing measure appropriate for the moduli space of Riemann surfaces M(X) [7].
In the latter approach, one treats the Weil-Petersson volumes as external data and glues
them to gauge theory disk amplitudes (decorated with hyperbolic defects) by restricting
the integration range of the length parameter using input that goes beyond gauge theory.
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Finally, at least two different gauge theory descriptions of bosonic JT gravity have been
proposed in the literature: one involves restricting to a subsemigroup [40, 41], and another
involves passing to the universal cover of SL(2,R) [52]. They are different quantizations
of the same classical theory that agree on the disk (the “gauge sector” of JT gravity), but
may disagree on multi-boundary or higher-genus surfaces. It remains an open question to
understand the relation between these proposals, and to test them against each other in
different situations. It also begs the question: how unique is the gauge theory description
of JT gravity?

We next survey some open problems that are worthy of further investigation, some of
which will be addressed in upcoming work [112].

Local operators and interpretation of representation carrier space. The carrier
space of the representations discussed in this work is built on the superline (z]), and
is introduced as an auxiliary object in order to construct the representation. To distill
a physical interpretation, it is useful to observe that there exist SL(2,R)-covariant local
operators in the Schwarzian models that take the form

: "(r J
pi(x,7) =g (1) 2% = {(xi(f()ﬂ)?] . (6.1)

The first equality shows that this operator is found by applying “half” of the Wilson line
in (3.14) and surrounding expressions. This operator depends on a single coordinate z,

and under )
af(7)+c
—_— 6.2
it transforms into a local operator within the same representation:
- ar’ +c
O3(,7) = (b’ + Ygy(a'7),  w= (6.3)

namely the spin-j representation of SL(2,R).
We can play the same game in the supersymmetric case to define OSp(1|2, R)-covariant
local operators. The local operator

; Dy \¥
pi(z,0,7) =g () 2% = <l’—7JW9) (6.4)
transforms in the spin-j representation of OSp(1|2, R). Indeed, under3’
, at’ —c— Bo 0 at’ — v+ et/

T Dy d+ o0 T b 1 d 00" (6.7)

39The minus signs may look a bit odd here. They are present because it is (—7',8’) and not (7,6’) that
transforms naturally under super-Mé&bius transformations as in, e.g., (4.19). That action, however, preserves
D7’ = —0'D#’ with D = 8y —08.. While this action is consistent, the current choice makes contact with the
conventions in gravity (section 2). It is easy to go between these conventions by simply letting 7/ — —7'.
We make similar adjustments in the super-Mobius transformations of the discrete representation carrier
space coordinates (x, ).
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f(t1)

Figure 8. Penrose diagram of the AdS; Poincaré patch (large triangle), with the black hole Penrose
diagram embedded within (smaller green triangle). A bilocal operator (6.1) (blue) has one endpoint
on the wiggly boundary curve (red) at proper time ¢; and another endpoint at Poincaré time z,
which might be beyond the black hole horizon as it is here. The vertical axis measures global time,
and the horizonal axis the global radial coordinate.

which is a superconformal transformation that preserves the condition D7’ = 6’D’, the
operator (6.4) transforms as follows:

- '—c—pY ax’ — v+ e’

(2,9 —ba +d + 69X (a9 _ o eZ By ar oy ted
¢]($7 77_)%( xz + + ) ¢j($7 77_)7 z —bx/—l—d—l—(Sﬁ/’ —bx/—i—d—'—gﬁ/’)
6.8

as appropriate for the spin-j representation.

From the above, it is clear that the carrier space labels x and (z|J) play the role of
(super-)Poincaré coordinates of the second boundary point that is not reparametrized in
the Schwarzian path integration. This has an interesting interpretation in Lorentzian time:
whereas the first location parametrized by, e.g., F'(t1) = tanh % f(t1) is always contained in
the exterior of the black hole —oco < f < +00, this is not so for the boundary time x. Hence
these local operators seem to be able to probe behind-the-horizon physics. Preliminary
studies of correlators of these objects appeared in appendix D of [39], but a more in-depth
study would be worthwhile.’ We depict the situation in figure 8.

In the literature, one sometimes encounters the alternative super-Mo6bius transformations
! ! ! !
a b—ab o+ 6

oo = T + 9/%9//2ﬁ7+ +

e’ +d—~0"’ et +d+ 0 (6:5)

These likewise respect the condition D7’ = 6’ D@’ (i.e., D"’ = 6" D") on account of the property D'7"” =
0"D’0" (and hence D' = (D'0")D" and (D'¢")(D"0") = 1), where in addition to D = 8y + 00,, we have
defined the derivatives D’ = 9y + 0'0,» and D" = 9gr + 09,11 with respect to the superfields (7/,6’) and
the transformed superfields (7”,6"). Moreover, it is common to rescale the bosonic parameters so that the
bosonic part of (6.5) coincides with an ordinary Mobius transformation [65, 113]:

(@,b,¢,d) = e?(a,b,c,d) = (1 + 85/2)(a,b,c,d),  ad—bé=1. (6.6)

Rescaling the fermionic parameters «, 3, y, d by powers of e makes no difference. Unlike those used through-
out the text, the transformations (6.5) do not manifestly compose as a group.

498yuch operators may also play a role in bulk reconstruction, namely in computing bulk-boundary corre-
lators rather than just boundary correlators.
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N = 2 JT supergravity and beyond. Since the techniques pursued in this work are
very specific to the model of interest, it is important to learn whether the structural lessons
that we draw here are broadly applicable. We make several comments along these lines.

A first hope is that the techniques employed here can be generalized to the N = 2
case. The corresponding boundary correlation functions are not known, and it would be
very useful to make progress using group-theoretic techniques.

In this setting, the holographic boundary line and carrier space of the representations
are 12 dimensional, parametrized by coordinates (2|1, 9) where the Grassmann coordinates
are related by conjugation. The super-Mobius transformations in this case can be written
in a suggestive way using the combinations z4+ = z + 99, as in [71]:

g Gty ar +ot By (6.9)

T by +d+ 60 T br_+d+ 69’ '
—axy — 7y + el o, —axr_ —y+eéd

§ =TT T —— ST 6.10
bry +d+ 89’ br_ +d+ 69 (6.10)

The 5|4 complex supernumbers a, b, ¢, d, e and «, 3,7, ¢ that parametrize the group element
satisfy 6|4 real relations between them, leading to the real 4|4-dimensional supergroup

SU(1,1[1) ~ SL(2|1) ~ OSp(2[2) (6.11)

relevant for N' = 2 JT supergravity. The above parametrization is that of SU(1,1|1).
Given this transformation, it is not hard to propose a formula that constructs the
principal series representations:

(go f)(@s,2—,9,9) = (bry +d+ 09) T (br_ +d+ 69)7Uf (2,2, 9, 0),  (6.12)

where the transformed supercoordinates (6.9) and (6.10) appear on the right-hand side.
We have introduced two representation labels j = ik and ¢, the first interpretable in terms
of an energy label k% and the latter interpretable in terms of an electric charge. This would
be the starting point of a similar endeavor as the one we pursued for the simpler AV = 1
case in this work. We leave it for future study.

Physical considerations (e.g., the dynamics of a particle in the hyperbolic super-
plane [114, 115]) may allow for an alternative derivation of the Plancherel measure for
OSp(2]2). In particular, in [115], the following expression is found:

_ ktanh(nk)

du(k) = i (6.13)

which contracts to the scale-invariant form k~'dk as k — oo and which is reminiscent of
the formula in appendix C.2 of [39] for the density of states in the N = 2 super-Schwarzian
theory. The only replacement necessary is tanh 7k — sinh 27k (see below).

Going beyond N = 2 is daunting, but recent progress for the N’ = 4 case is promis-
ing [116] and highlights applications to higher-dimensional near-horizon black hole physics.
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Plancherel measure: general real semisimple groups. Our story mimics the
bosonic story in which the gravitational density of states sinh27vE follows from a
Plancherel measure on the subsemigroup, whereas the measure on the full group would
be tanh 7v/E. One can then ask how generic this phenomenon is.

In the mathematics literature, the Plancherel measure for any real semisimple group
has been determined [117, 118]:

m(k, @)
(,a)

du(k) = dk dim(j) J] tanh (6.14)

acAt
where the dimension of a finite-dimensional irrep with highest weight j is given by Weyl’s

dimension formula: .
[locat(+p @)

IIa€A+(pva)
Using that the highest weight vector for the principal series representations can generically

dim(j) = (6.15)

be written as j = —p + ik, we plug into the dimension formula and simplify:

m(k, @)

du(k) ~dk [] (k,a)tanh

(6.16)
aeAt ()

In particular, this formula holds for SL(V,R), where (o, a) = 2. However, the equation that
one finds by taking the Schwarzian/JT limit of the Wy character yields (see, e.g., [119]):

du(k) ~dk [] (k,a)sinh7(k, ), (6.17)

aceAt

showing that just like for N = 2 (and up to overall prefactors), the same question arises as
to how one would effectively make the replacement tanh /2 — sinh z.

This observation is significant for black hole physics, where the large-k regime probes
semiclassical (large) black holes. Taking inspiration from the different Plancherel measure
results (B.27), (6.16), (E.248), and (6.13), we are led to propose a formula for the large-
k asymptotics of the Plancherel measure on the principal series representations for any
semisimple Lie (super)group:*!

p(k) ~ kl25I=1A%] (6.18)

in terms of the number of positive bosonic roots minus the number of positive fermionic
roots. Since in these models, we identify the spacetime energy FE with the quadratic
Casimir, we have the scaling E ~ k? at large k. Hence such a large-k polynomial density
of states can never account for the exponentially large number of microstates of a large
black hole.

Dilaton (super)gravities. It is a well-known fact that any 2d dilaton gravity theory of
the type

S = ;/d%\/g(ch + V(®)), (6.19)

41'We assume the weight vector scales as k ~ k), with A an order-one weight vector, as k — +oco. This
is hence a “generic” or worst-case result that does not necessarily hold in every direction in weight space.
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including the recently considered deformations of JT gravity [120-122], has a first-order
gauge theory description with nonlinear gauge algebra, i.e., as a Poisson sigma model with
Poisson-Lie symmetry [123]. The action is

S = / A AdXT + P(X)IA; A A;, (6.20)
M
with Poisson tensor that encodes the dilaton potential V(®):
PX)?=v(Xx?%, PX)P=-X* = PX)®=Xx. (6.21)

The underlying nonlinear gauge algebra is [124, 125]:

1
[J, P,] = eayn™P., [Py, P)] = —§eabV(J). (6.22)

Some explicit examples for which the resulting gauge algebra reduces to a known structure
are:

V(®) =2A0 —  sl[(2,R) Lie algebra (JT), (6.23)
V(®) =sinhv*® —  U,(sl(2,R)) quantum algebra with ¢ = ™’ (6.24)

Group-theoretic techniques have been successfully applied to both of these cases. It would
be very interesting to learn whether generic dilaton (super)gravity models can be for-
mulated and solved using techniques akin to these group-theoretic techniques (and their
g-deformed cousins). For some relevant classical results on more generic dilaton gravity
models, see [126-128]. For the concrete result on the disk partition function, see [129]. See
also [130] for recent ideas in this direction.

This entire discussion pertained to the bosonic case. It would be interesting to write
down the analogous class of dilaton supergravity models following [125], in particular having
in mind the model associated to Ug(0sp(1|2,R)), which would be interpretable in terms of
Liouville supergravity and the minimal superstring, as we discuss next.

Liouville supergravity. Asan immediate example of the previous goal, Liouville gravity
and supergravity provide interesting setups. These theories can be formulated as (N =1
supersymmetric) Liouville CFT coupled to a matter CEFT and ghosts, and it was further ar-
gued in [54] that Liouville gravity is equivalent to a 2d dilaton gravity with potential (6.24).
In recent works, it has become clear that one can formulate disk amplitudes with boundary
tachyon vertex operators in a very similar language to JT (super)gravity [54, 55].

In fact, for bosonic Liouville gravity, it was shown in [54] that the amplitudes them-
selves are quantum (¢) deformations of those in JT gravity. In particular, the structures
highlighted in this work (the Plancherel measure and the Whittaker function) are still
present in the ¢-deformed case. The Whittaker function itself was first derived in the con-
text of the g-deformed Toda chain [96], and was shown to lead to the correct Liouville
gravity vertex function in [54].
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We can follow similar logic for Liouville supergravity, for which the required Whittaker
function has not yet been derived in the mathematics literature. We propose the following
expression for the ¢g-deformed Whittaker function of U, (0sp(1]2)):

. +00 dc e 2 .
€,+ __ ST —mi£((*4+2sC) ,miCx
o= /,oo CORET0 (e (6.25)

x [Sns(—i¢)Sr(—2is — i() + Sr(—i()Sns(—2is — ()],

where € = —1,0, 1 is an additional parameter allowed by the deformation.*?> The deforma-
tion parameter is ¢ = e”b2, with the classical limit corresponding to ¢ — 1 or b — 0.3
Here, we will illustrate that the proposal (6.25) has the correct classical limit (4.35) de-
termined in this work. Further implications and a derivation will be treated in upcoming
work [112]. To arrive at the classical limit, we scale the variables as

¢ = 2ibt, e® = be ?, s = bk, (6.28)

in the limit b — 0. Using suitable b — 0 limits of the double sine functions (6.27), we need
to evaluate the integrals

¢ iko / AT (t — ik + 1/2)e* = drie 2Ky ;5(2e79), (6.29)
iR

e ke / dtT(t + 1/2)0(t — ik)e* = dmie™ " * Ky 1 2(2e7%), (6.30)
iR

leading to the limit:

T _ _ _
Yot (7rl)) — e %2 (Kikfl/Q(Qe )+ Kipy1/2(2e ¢)) . (6.31)

We have suppressed some constant factors and details about the integration contour. This
indeed yields the expression (4.35) upon setting ¥ = A = 1 and absorbing the square root
of the Haar measure e?/2 into the Whittaker functions themselves, such that the remaining
¢-integral has a flat measure. With this Whittaker function, one can indeed reproduce the
N =1 Liouville supergravity vertex functions present in the boundary tachyon two-point
function [55], as will be shown elsewhere [112].

42The supersymmetric double sine functions that appear in this expression are defined in terms of the
ordinary double sine function S as follows:

g (* L _g (Tt z 1
SNS(x)_Sb(2)S”(2+ 2)’ SR(x)_Sb(2+2)Sb(2+2b)' (6:26)
They have the following b — 0 limits:
1 z oz _ 1 T 1 z_ 1 oz (13 1)
L 952 r( Lot seem?)sr (L4 1), 2
Sxs(bw) = —=2% (o) (3):  Su@o) - =2t e (4 g (6.27)

For more details on these definitions, we refer to the above references.

431t would be interesting to clarify the relation between this deformation and the one used in [131] in
the context of double-scaled supersymmetric SYK models. The two deformations seem to go in different
directions away from ¢ = 1 in the complex g-plane.
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A Supernumbers

In this appendix, we define and collect our conventions for supernumbers as elements of a
Grassmann algebra.
Within a Grassmann algebra A,, over C, spanned by n Grassmann variables 9J1,...,9,
satisfying
99; = —0;0;, 9?2 =0, (A.1)

)

we can expand an arbitrary supernumber as
z=2+ Z Za€a (A.2)
«

where the prefactors zg and z, are complex numbers and the basis elements e, span the
set of all elementary Grassmann elements 9J;, ---1J;, with ¢ = 1,...,n. To avoid spurious
cancellations, we take n — oo throughout this work.

Following common convention [132], we refer to the purely numerical piece zp as the
body, and the remainder as the soul of the supernumber. While the body is Grassmann-
even, the soul may have both even and odd parts. In [133], a definition of positive super-

number was formulated. One first defines the conjugate supernumber as**

z" =25+ ZzZea. (A.3)

This definition corresponds to taking the complex conjugate of all numerical factors, and
defining complex conjugation on Grassmann numbers as preserving the order:

(910 -+ 0;)* = 9195 -+ V. (A.4)

A real supernumber is defined as one satisfying z* = z. Our choice of conjugation ensures

that combinations of the following form are real:

(11 — 72— V1V2)* =11 — 7o — U109, (A.5)

44Qur definition is modified from that of [133] because we use a different definition for complex conjugation
of fermionic variables. Many different definitions are possible, and arguments can be made for each one [134].

45 Another possible choice consistent with this reality condition is to take ¥* = i and to reverse the order
of a product of Grassmann numbers: (9;9;)" = 9;9;. This choice was adopted in [80].
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where 71, 79 € R. A nonnegative supernumber is then defined as one for which there exists
another supernumber w such that
Z=WW". (A.6)

It was shown in [133] that a positive supernumber is automatically real (z* = z), and
moreover that its positivity is equivalent to the positivity of its body:

z>0<= 2z >0. (A.7)

This means that only the purely numerical piece zg of a supernumber determines whether
it is positive or negative: the soul is “infinitesimal” and therefore irrelevant to positivity.
An ordering is then naturally implemented for supernumbers that have different bodies zy,
where z1 > 29 iff z1 —z9 > 0. Finally, the absolute value of a supernumber can be defined as

z = sgn(z)|z, (A.8)

where sgn(z) =1 if z > 0 and sgn(z) = —1 if z < 0.

B Bosonic JT gravity

To orient ourselves with respect to JT supergravity, it is helpful to recall some of the cor-
responding results in the bosonic case. For all groups and semigroups considered, we focus
on the matrix elements and Plancherel measure for the continuous series irreps. Up to
numerical factors, the Plancherel measure p(k) is ktanh(wk) for SL(2,R) and ksinh(27k)
for SL*(2,R). We can derive p(k) from the Haar measure dg and the orthogonality relation
of group matrix elements in an appropriate basis (e.g., parabolic or hyperbolic).

B.1 sl(2,R) BF theory

To set our conventions for 2d geometry, we first recall the formulation of bosonic JT gravity
as an s[(2,R) BF theory (summarized in, e.g., [7]). We work in Euclidean signature and
set the cosmological constant to A = 2. The Euclidean JT gravity action is

Syt = _ﬁ UM d*z/g (R +2) + 2/8M dt/y (K — 1)1, (B.1)

where ¢, = ¢|or. We define an orthonormal frame by
G = eZef,éab, (B.2)

where a,b € {0,1}. Writing the zweibein as a one-form e* = e, dz#, the torsion-free spin

. b . .
connection w® = w,[f J 4z is determined by

de® + wi N e’ = 0. (B.3)

b b

In 2d, we have w® = e*w as well as

d*z /g =" Nel, d*z \/gR = 2 dw. (B.4)
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Therefore, in the first-order formulation,

i[g&%V@¢U%+%AJ;ZQW@M%%QAQ)+¢A&ﬂ+e%wAe%}:Z;TMBFL(Bﬁ)

where we introduced the Lagrange multipliers ¢® to enforce the torsion constraint as well
as the sl(2,R)-valued fields B, A (the latter with field strength F = dA + A A A) given by

Br = (¢a,0), Al =(e*,w), B=BlJ, A=A (B.6)
The generators Jy, Ji, Jo satisfy

1
[J1, J5] = ergx JE, Tr(JrJy) = ST (B.7)

where €p12 = —1 and sl(2,R) indices I,J, K € {0,1,2} are raised and lowered by n7; =
diag(1,1,—1). This basis is related to the Cartan-Weyl basis

111 0 0 0 0 1
H=_ , E- = : Et = (B.8)
210 -1 10 0 0
for the sl(2,R) algebra as follows:
| 1
Jo=-H, L= (B +EY),  J= (B -E) (B.9)

The contour of integration for B is understood to be imaginary in Euclidean signature.
Integrating out B implements the constraint F = 0, which reduces the path integral to an
integral over flat s[(2, R) connections A. Infinitesimal gauge transformations take the form

0cA =de+[A, €], 0B = [B, €, (B.10)

where € is an 5[(2, R)-valued parameter. For flat A, these transformations are interpretable
as infinitesimal diffeomorphisms and local Lorentz transformations.

B.2 SL(2,R) group theory

In the bosonic case SL(2,R), we choose the carrier space of the spin-j representation (on
which the Casimir evaluates to j(j + 1)) to be L?(R), with group action defined by

(B.11)

(g0 f)(@) = [ba+d¥ f (“’” *C) |

br+d

We let j € C, with an eye toward the principal series representations. Using (B.8), we get

(e o f)(z) = e 2 f(*%x), (B.12)
(@5 o f)@) = fla+7), (B.13)
@ F o f)o) = o+ 17 (7). (B.11)
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and hence the Borel-Weil realization

A

H=20,—-j, FE =08, FE"=-2%,+2jz (B.15)
satisfying the s[(2,R) algebra
[H, E*) = +E*, [EY,E7] =2H. (B.16)

Note that our conventions differ from those in appendix G of [41].

Unitarity of the representation constrains the value of j. We compute that antiher-
miticity of the generators (B.15) with respect to the measure dx requires that j = —1/2+ik
for k € R. (By assumption, the relevant functions on R decay sufficiently fast that integrat-
ing 0., 0., 20, by parts produces no boundary terms.) Moreover, a change of variables

xr = ff;,jfa in the inner product [ dx F(z)*G(x) shows that if j = —1/2 + ik, then

o *
/dxF(x)*\bx +d¥a (Z;“"j::l) — /da:’ (]—bm’ +aF (%)) G, (B.17)

so that the adjoint action is precisely by ¢~ 1.

The Plancherel measure can be computed as follows [41]. We first compute, using the
Gauss decomposition

¢ ¢ ¢
g = 67’E7 62¢H€’Y+E+ — 1 O € O 1 Ve = € V€ s
v 1 0 e¢ 0 1 ve? e P 4yye®

.18)
the bi-invariant metric for the Poincaré patch of SL(2,R):
1
45> = 5 Te((g™'dg)™%) = A6 + &y . (B.19)
and hence the Haar measure dg = %624) do dy dv,. From the normalized wavefunctions
(elv-) = =€, (2]Ay) = —]af2e/s (B.20)
Vo ’ V2 ’
we deduce the mixed parabolic matrix elements
Riya(g) = (v-lglhs) = 76N w20, ) (B.21)
= Ze Vel Ae=? cosh (k) () Koir(2e7V ), (B.22)
7r v
where we have used (B.12) and substituted j = —1/2+ ik. In the second line, we assumed
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v > 0 for simplicity. Via the orthogonality relation®®

[ K)o e) = b 0) (8.25)
o x oM T) B2 E) = 8usinh(27mp) B=vh :
we conclude that
2
. v
/dg Ry o) (9)" Ry wx(g) = m5(k —kNo(v =)A= N). (B.26)

This is not the whole story because the SL(2,R) group manifold is actually covered by four
patches [136]. It can be shown that summing the contributions of all patches just gives a
factor of four, so we obtain finally

0k —KENo(v —v)o(A = X) _ 2k tanh(mk)

<Rk,u)\7Rk’,l/’X> = p(k)) ) P( ) (27.‘.)2

(B.27)

This is the desired Plancherel measure.
Harmonic analysis on SL(2,R) is a well-studied subject. Let us quickly review the
salient points; we will elaborate more on the supergroup case in appendices E.5 and E.6.
Every Lie group has a left regular representation in which the group acts on itself
by left multiplication. Infinitesimally, this action corresponds to a realization in terms of
differential operators on the group manifold:

Lp-=-0,, Lp= _%Qb +79.0y,  Lps=—70s+7°0, —e 0., (B.28)
from which one computes the Casimir operator to be
I T PO 1o 1 —2
C=L+5 (LE+LE_ + LE_LE+) = 05+ 505+ 00,0, . (B.29)
To find the eigenfunctions f with eigenvalues j(j + 1), we choose to diagonalize 0, = iv

and 0y, = ¢\ (this corresponds to working in the mixed parabolic basis). Upon setting
f(¢) = e ?g(¢), we get the Liouville minisuperspace eigenvalue problem:

(-308 + e ) 9(6) = (o) (B.30)

with potential V' (¢) = vAe™2?, where we have written j = —1/2 + ik. From this equation,
we obtain the full (delta-function normalizable) Casimir eigenfunctions:

vA>0: €M e Ko (2V e ?), (B.31)
vA<O0: eV 70 T (2v/ = e ?), (B.32)

46 Assuming i, v > 0, the relation (B.25) follows from the identity
IN'a+izx)l'(a — i)

iiglo T(20) =270 (x) (B.23)
(see appendix A of [135]) applied to the o — 0 limit of
/ " e 220 Ko () Koo (2) = 2T it i) (B.24)
0 I'(2a)

This relation is implicit in the Kontorovich-Lebedev integral transform.
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il avs

Figure 9. Blue: Liouville potential V(¢). Red: wavefunction solution with energy eigenvalue
marked by the brown line. Left: v\ > 0 for k£ = 1 with energy value k? = 1. Middle: v\ < 0 for
k = 1 with energy value k? = 1. Right: v\ < 0 for j = 0 with energy value k? = —1/4.

all of which have positive energy k% (and negative Casimir eigenvalue —1/4 — k?). These
solutions can be interpreted as the continuous series representation matrices; the first one,
for instance, matches (up to normalization) with (B.21).

For the second case where v\ < 0, negative-energy solutions exist as well, leading to
the Casimir eigenfunctions:

vA<0: e M eT? Joi 1 (2V—vhe ™). (B.33)

These can be interpreted as the discrete series representation matrices, with positive
Casimir eigenvalue j(j + 1) > 0.

The Liouville eigenfunctions g(¢) are illustrated in figure 9.

The spin label j of the discrete representations is not discretized within this setup. The
reason can be traced back to the fact that we are actually finding all representation matrices
for the universal cover SL(2,R) of SL(2,R). For the former, it is indeed known that the
discrete representations are not truly discrete. However, because we do know from direct
computation that the discrete representations of SL(2,R) are restricted to 25 € —N, we
can formulate a rule of thumb to immediately find the correct values of j within the above
analysis. For the discrete representations where vA < 0, we demand single-valuedness of

2mie=?_ The BesselJ function is generically

the representation matrix element when e=? — e
a multi-valued function except when its index 25+ 1 is an integer. This effectively causes a
restriction to 25 € —N.%” We will use this trick also for the supergroup case in appendix E.6.
It would be instructive to understand this rule a bit better, for instance by comparing with

computations done in the elliptic basis [137], but for our purposes, it is sufficient.

B.3 SLT(2,R) semigroup theory

For either SL(2,R) or SL™(2,R), a basis for the spin-j representation is obtained by diag-
onalizing a chosen generator. For SL(2,R), it is convenient to work in the mixed parabolic
basis, where matrix elements of group elements are evaluated in the basis of eigenstates of
E™T on the right and E~ on the left. On the other hand, the natural basis for SL™(2,R) is
the hyperbolic basis, which corresponds to diagonalizing the hyperbolic generator H. See
appendix H of [41], as well as [40, 138] for earlier discussions.

4TRepresentations where j — —1 — j are equivalent, allowing us to choose this range of j.
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The carrier space of the spin-j representation of SL™(2,R) is L?(R"), with inner prod-
uct [y dx f(x)*g(x). Consider taking the adjoints of the generators (B.15). We have

%fduﬂ@%ﬂ@w@»:kﬂﬂmwuﬂ?—Afdm@“%m%+nﬁw»w@» (B.34)

If f € L2(R"), then |f(x)|?> must decay faster than 1/x as 2 — oo and grow more slowly
than 1/x as * — 0. Therefore, to ensure that the boundary terms vanish for all f,g €
L?*(R*), we must have n = 1, which implies that HT = —H for j = —1/2 + ik. Hence
the only s[(2,R) generator that is antihermitian on R is the hyperbolic generator H:
the parabolic generators E* are not. Correspondingly, the eigenfunctions of E* are not
delta-function normalizable on RT. Indeed, these are (ignoring the overall prefactor)

(el ) =%, (aluy) = ¥ el (8.35)

for E~ and E™T, respectively, written with eigenvalues —v. These two sets of eigenfunctions
do not satisfy orthogonality relations on R™ (by contrast, we would have fR dz gi(v—v)/z —
Jg dz &) = 275(v — V') for real v,1/). So for SLT(2,R), only the eigenfunctions of H
furnish a basis for the carrier space.

Consider the hyperbolic basis for SL(2,R). The properly normalized eigenfunctions of

H on RT or R~ are

(2], 4) = \/12?(ix)is_1/2 (42 > 0), (B.36)

with eigenvalue i(s — k) where s € R. These form a basis on either R or R™:

+oo 1 +oo dzr i(51—52)

S(s1 — 89) = i/ dz (s1, £z (z]sg, £) = 7/ 8T (gy-ilsr—s2), (B.37)
0 2m Jo T

§(x — ) / ds (z|s, £)(s, £|a) / do (£2)7 V2 (£a!) 7712, (B.38)

We focus on RT. The representation matrix elements of SL™(2,R) on L?(RT) in the
hyperbolic basis are denoted by

K31, (9) = (s1,+gls2, +). (B.39)
Their composition law is
Kt orge) = [ ds KT (00 K5 (90) (B.40)

The Gauss decomposition and metric are the same as for the Poincaré patch of SL(2,R),
but now with the additional restriction that v ,~v, > 0. By inserting a resolution of the
identity [5°|2)(z|, applying (B.12)-(B.14) to (B.36), and using the beta function integral

£ I'()I'(y)

BED= |, Tt Ty (A
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we compute that*®

K1 (e21) = 2170551 — ), (B.42)
) = e iy (B.44)

We then have the generic matrix element
K+t (g) = L O:O ds ds' K37 (&7 B K () K3t (e FF) (B.45)
- %ﬂv’f‘ sinh? CF(_j _I?)l;g.;j ki m)2F1 (—j —m,—j —n; —2j; _smlh?(> ;

evaluated using the Barnes integral representation of the hypergeometric function. We
have denoted m = ik — is; and n = ik — is9, and we have introduced the coordinate (
through sinh?¢ = v,y e?**. The quantum numbers m and n are the eigenvalues of the
hyperbolic generator H [139]. The above result can also be found as a classical limit of
the g-deformed hyperbolic representation matrix element constructed in [140]. One can
show very explicitly that this expression is indeed a solution to the Casimir eigenvalue
equation. Intriguingly, it is also precisely equal to a global conformal block. Besides both
expressions being solutions to the Casimir eigenvalue equation, the deeper meaning of this
observation eludes us, but we will show in appendix F.2 that a similar observation is true
of the hyperbolic representation matrices for OSp™*(1/2, R).

Unitarity of this representation, namely

ds KT (9)KT(9)* = 6(s1 — s2), (B.46)
—0o

can be readily established using the integral representations (B.41) of (B.43)—(B.44), as
was done in [41]. Irreducibility of this representation requires a separate proof. We provide
it in appendix F.1 as a warmup for the analogous supergroup proof.

The mixed parabolic matrix elements are

Ria(9) = (v-lglhs) = (v-|e 7 XM Fr AL ) = e e 2L (9), (B.47)

where we have defined the Whittaker functions
Y ik
VN (0) = (v_|e2PH N, ) =279 () Kain(2e7°Vv)) (B.48)
' v

(see (4.36)). By virtue of (B.25), the latter satisfy the orthogonality relation

7r2

J (5646 ) w01 00(0) = i = 1) (5.49)

from which we read off the Plancherel measure.

48 These expressions all have the correct ¢,v,7. — 0 limits KT, (1) = §(s1 — s2) as a consequence of

the distributional identity limy—o I'(iz)y~** = 27d(x), which in turn follows from (B.50).
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Note that we can always expand a parabolic state in the hyperbolic basis (but not vice
versa). Using the Cahen-Mellin integral

e Y= % /cj:o dsT(s = —/ dtT(it)y~™" (y>0) (B.50)

and the delta function identity (B.37), we compute the overlaps
(s, +|lv_) = \/lz?r(m — g2 (B.51)
(s, +|Ay) = LF(1/2 — 2k 4 is)A\2kTIsT1/2, (B.52)

Vor

Now we can insert complete sets of hyperbolic states:
(v-lglhe) = [ dsydsy (v-lsr,+) (1, +glsz ) (52, + ). (B.53)

In particular, we have

)\2ik

W (0) = / dsy dss v N2 (1/2-4is) )T (1/2— 2ik+iso) K+ (e20H). (B.54)

2TV J— 5182

Indeed, inserting the explicit expression (B.42) and using the identity
1 [ )
o / dsT(1/2 + is + ik)T(1/2 + is — ik)a~% = 22 Kom(2) (B.55)
T J—00

reproduces the previous expression (B.48).

Whereas the orthogonality relation for the mixed parabolic matrix elements (more
precisely, Whittaker functions) ¢§7V(<Z>) follows from an integral over the single group pa-
rameter ¢ of the Cartan generator H, performing the full semigroup integral would be
necessary to derive the orthogonality relation for the hyperbolic matrix elements K.

The harmonic analysis presented in appendix B.2 can be restricted to the subsemigroup
SL™(2,R). This merely requires setting A — i\ and v — —iv with v, A > 0. This means we
only have the case where v\ > 0, and the Casimir eigenfunctions have to be proportional to:

e M e_¢K2ik(2v VA6_¢), (B.56)

which is indeed our (B.48). It is important to notice that the discrete representation
matrices cannot be found in the regime v\ > 0 relevant for the subsemigroup. This is one
way of appreciating (4.11), where only the principal series representations appear in the
decomposition.

B.4 Schwarzian correlation functions

Finally, we discuss the gauge theory description of the boundary dynamics in JT gravity
and the corresponding observables. The setup is completely analogous to that in section 2.1
for the N’ =1 case, so we will be brief. Including the boundary term, the BF form of the
JT gravity action (B.1) is

Syr = ——— [ / Tr(BF) — % dr Tr(BAT)] , (B.57)

oM
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where M is assumed to be a disk. If (B.57) were merely a G-BF theory, then imposing the
boundary condition Blgrr = YA |oam and integrating out B would reduce the dynamics
to that of a boundary action for a particle on the group manifold G:

Z=| g™, Slgl= 1o drmr((g'org)), (B.58)
LG/G 817G Jom
where 7 is a constant with dimensions of length and we have substituted A, = —9,gg~"

with g(7 + 8) = g(7). Instead, JT gravity is a constrained BF theory. The gravitational
degrees of freedom g take values in SL(2,R), subject to the constraint

0 —T(1)/2

. (B.59)

Arlom =

where T'(7 4+ ) = T'(7) is the boundary stress tensor. Upon writing T'(7) = {F(7),7} (up
to an SL(2,R) redundancy), the dynamics of this constrained group element becomes that
of the Schwarzian theory:*’

7= [DF) e~ SsaulFl Sq[Fl=—-C ¢ dr{F(r),7}, C=—.
Diff(51)/SL(2,R) oM 8tG

(B.60)

Moving beyond the disk, the BF boundary condition Blgrg = YA, |gr and its constrained
version (B.59) define gluing boundaries and holographic boundaries, respectively [41].

Further discussion of boundary conditions for JT gravity, and their relation to its
first-order formulation and boundary Schwarzian description, can be found in [142-146].

Coupling the bulk theory to a massive scalar field whose boundary value sources an
operator of dimension h, we see that the natural bilocal operators to consider in the
Schwarzian quantum mechanics are

F(n)F'() 1"

(F () - F(7)P (B0

These Schwarzian bilocal operators are precisely equivalent to boundary-anchored Wilson
lines in the constrained BF theory, in discrete representations of lowest weight j = —h. We
now consider the group-theoretic representation of these bilocal operators. Specifically, we
consider the most general operators that can be obtained as matrix elements in arbitrary
states of a given SL(2,R) representation, rather than just those corresponding to mixed
matrix elements between lowest- and highest-weight states. These general operators can be
packaged into a Gram matrix of inner products, extending the results in appendix D of [69].

“*This result coincides exactly with that derived in the second-order formalism [5, 141], starting from
Euclidean AdS, in Poincaré coordinates: ds®> = Z72(dF? 4 dZ?). Namely, one fixes a boundary curve
(F(7), Z()) such that g-» = 1/€* and ¢, = /¢, where € is a UV cutoff. Then F(7) is the only dynamical
variable since Z = ¢’ + O(¢?), and its action Ssen[F] comes solely from the boundary term in (B.1). The
“—1” in (B.1) subtracts a 1/e* divergence. The reparametrization mode F(7), or the Poincaré time as a
function of proper time, describes fluctuations in the shape of the boundary curve. The isometry group
SL(2,R) of the hyperbolic disk preserves the boundary curve and is regarded as a gauge symmetry.
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We use the following parametrization for the boundary SL(2,R) group element and
the gravitational boundary conditions:

. A B A B |0 —T())2 A B
C D C D 1 0 ¢ D

Hence A and C' are seen to be the two linearly independent solutions to Hill’s equation,

1 1
A// + QT(T)A = 0, C” + §T(T)C = O, (B63)
satisfying the Wronskian condition AC" — A'C = 1. Up to Mobius transformations, we
have
1 F
A= —— C=—— (B.64)

VF’ VF’
with {F,7} = T(7). Using the Gauss decomposition g~ = ¢*E~ ¢20H7-E" (written here

! yather than g), we identify®°

1 . 1F
- /F,7 V=1 Ve = 2F/7

for g~

(B.68)

and therefore
1 1 —F"(7)/2F'(1)

“1(r) —
T OSTFG | pe) P - F P 2R

(B.69)

So in the spin-1/2 representation, with |Lw.) = [9] and |h.w.) = [}], we compute that®!

_ thow.|g(m)g (m)|hw.) (hw. W.
R t2)g H(t1)) = B.70
yalg()g () =1 g ) (L. W) (B.70)

_ | 7O —0n0n | F(n) - F(r) (B.71)
10, VPP

%0Since the defining representation of SL(2,R) is faithful, this identification of Gauss parameters is inde-
pendent of representation. We can also show this explicitly as follows. We write Hill’s equation as

B _ %T(T)E+ — (B 20(MH o (VBT (g1 (BT 26D H g (B (B.65)

= e BT =20 H p= 26(MH (BT 10y | o~ IMET e (MBT opr (0 4 Bt A (7)
= (B = 27.(n)H —7.(r)’E") - D/ (1) + (H +7.()EY) - 2¢'(t) + ET -/ (7),
where we have used the Baker-Campbell-Hausdorff formula
X =X = X 4 [V, X] + g VIV X] (B.66)

in the last step. Matching the coefficients of the generators gives three equations, which imply that both
e®™ and ~,(7) are determined in terms of v(7) as

O N S _ 1)
e 27 (507

while v (7) satisfies {y.(7),7} = T(7), just as in (B.68).
51For simplicity, we consider a single holographic boundary: Wilson line endpoints on different holographic

boundaries could give rise to different functions F' associated to the group elements at 7 and 7».
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To see why this is true, note that Hill’s equation can be written in the equivalent forms

o) (B - T(;)E+) — 0,97 (r) = (B - T(;)E+) g(r) = —0,9(r),  (B.72)
which give

g H)lw.) = ¢ (1) E" |haw.) = 8,97 (7)|h.w.), (B.73)

(how.|g(T) = (Lw.|[E"g(1) = —0-(L.w.|g(T), (B.74)

respectively. Hence all matrix elements of Ry 5(g(72)g~*(71)) can be obtained as derivatives

of (Lw.|g(m2)g~ (m1)|h.w.).
In the finite-dimensional spin-j representation, we have

e . - 01x2; 0 _ [02x1 diag(2j,2j—1,...,1)
H_dlag(J7j_17-~‘7_j)7 E~ = [diag(112,2j ,27) 02j><1:| ’ E+ - [ 26 L ébjdj '
(B.75)
Identifying the states |5),|j —1),...,|—j) with the standard basis in R%*! we have
Him)=m|m),  Efm)=(GE£m+1)|m=*1). (B.76)
It is convenient to note that
j £m+n)! (7 £m)!
E*)" = (]7 + Efyn=_M— . B.77
(B2yim) = S s, (i(B4) = s mEal (B)
One can compute the matrix element {(—j|g(m2)g~1(m1)|j) directly. Using (B.77), we have
2j
g7 (m)lj) = e (T XM BT ) = 2060 7 5 ()" — ), (B.78)
n=0

2j .
. o= (T —2¢(T —v- (7 - j (T 2 n .
(—jlg(m2) = (—jle V() BT g =2¢(m2) H o —y-(2) B~ _ ,2j¢(72) Z (1%7)(—7 (12))"(—Jj + n|.
n=0

We then find that

F(m) — F(m)

2j
F’(Tl)F’(Tg)] . (B.79)

<-j’g(7’2)g_1(7‘1)|j> — [e¢(T1)+¢(T2)(,77(7.1) _ 77(7_2))]% — l
Given this result, one can determine the other matrix elements recursively. Letting |m; ) =
g~ 1(7)|m), Hill’s equation gives
1(r)

2

(j—m)|m;7) =0 \m+ 1;7) + (J+m+2)|m+2;7). (B.80)

Therefore, for arbitrary j, a general matrix element does not only involve derivatives of the
fiducial matrix element (B.79). Alternatively, one can again compute (m'|g(2)g~!(71)|m)
directly from (B.77).

Before moving on to the discrete lowest /highest-weight representations, we present an
alternative point of view on the finite-dimensional representations. In the basis of mono-
mials 1, z, ..., 2%, the action of the differential operators in the Borel-Weil representation
is equivalent to that of the matrices (B.75) [76]. Starting with

(m|m/) /dm (ml|x){x|m) = S, (B.81)
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we fix (z|j) = 2% by demanding that E*|j) = 0 (the overall normalization is arbitrary).
Stipulating that the action of E¥ is as in (B.76) then gives

(x|m) = G- ni)z'i;'+ m)!xj+m. (B.82)

This fixes the wavefunctions of the dual states to be

(mlz) = W(—@c)”+ o(z), (B.83)

and in particular, (—j|z) = 6(z). It is important that j > 0, so that % is annihilated by
sufficiently high powers of E~ = J, and this is a finite-dimensional representation. Note
that while d(z) is never annihilated by powers of 0,, putative bra states (m > j| have zero
overlap with all ket states. We thus have

(zhhow.); =2%, j(lw.|z) =6(z), (Lw.lg(r)g *(r)hw.) /da:5 “(r)x¥
(B.84)

for an ordinary Wilson line, which we can evaluate as follows:

o ), (4 F(m))¥

Fin) (B.85)
ot (F'(m2)z + (F(r1) = F(7)) (52 +1))%
(P F () (:50)
z=0, (F(11) = F(m2))*
(F'(11)F'(12))7 (B.87)
It is no more difficult to compute a general matrix element:
(mla(rm)g ™ (r)im') = =L P [ e s g ) (B

D!
(G —m)IG + m)]

(e =, (7)2) +2. ()P + (3 (1)~ ()1~ (r)e))) ]

jAm’

RN (720 4 (3 (1) = 7. () (1 = 7. (m2)2))

a::O'

This approach has the virtue of allowing one to derive simple closed-form expressions.

We now generalize to the infinite-dimensional lowest/highest-weight representations
by setting j = —h where h > 0. The state |j); = |h.w.); is still annihilated by the
corresponding E', but is never annihilated by powers of E~. In terms of the new variable
h = —j > 0, the Wilson line is

1 (F'(n)F'(r2))"

swlg(r)g™ (m) ) = [ dod@)g(m)g™ () = T re (B8

This Schwarzian bilocal has a pole of the form (1, — 75) 72"

1d CFT correlator [75].

as 71 — Ty, as required for a
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C First-order formalism

We begin by reviewing the first-order formulation of N =1 (or N’ = (1, 1)) JT supergravity
as an OSp(1]2) gauge theory described in [64], building on [147]. Such an action can also
be written in superspace [148, 149], where the connection to the bosonic second-order
formulation is clearer. For a derivation of the boundary super-Schwarzian theory from JT
supergravity directly in superspace, see [74].

C.1 N = 1 supergravity

Our goal is to arrive at the BF theory description of JT supergravity, starting from the
superspace action. Due to the presence of spinors, it is convenient to work from the start
with frame fields rather than the metric.

To begin, we review a few standard facts about 2d supergeometry, as developed in [150]
and recounted in [149]. We parametrize N/ = 1 superspace by local coordinates

ZM = (2™ g1y = (2, 2,6,0), (C.1)

and we additionally introduce tangent space coordinates carrying local U(1) frame indices
A = (a,a). Bosonic frame indices a,b € {0,1} are raised and lowered by d4, (with €y =
1), while fermionic frame indices a, 5 € {+,—} are lowered from the right by e,z (with
e4— = —1). Following the notational conventions of [150], spacetime and frame indices
are denoted by letters from the middle and the beginning of the alphabet, respectively.
Lowercase Latin (Greek) letters indicate bosonic (fermionic) components, while uppercase
letters span both types. Our conventions for differential forms are that

ZM ZN — (Z1)IMINIZN zM
dzM N dzN = —(=1)IMINlgZN A dzM | (C.2)
dzMzN = (—1)MINIZN gzM
where | M|, |N| are Za-valued and indicate whether the coordinates are even or odd.
The supergeometry is characterized by a superzweibein, which we can write as a one-

form:
EA = EAy dzM, (C.3)

The superzweibein and its inverse are related by
EAyEMp =64, (C.4)

EM B4y =63, (C.5)

Under local Lorentz transformations, Lorentz vectors and covectors (which can be differ-
ential forms of arbitrary degree) transform as

VA =LAgV7,
6Vy = —VpLB 4. (C.7)

—~
Q
D

~—
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By introducing a superconnection that transforms inhomogeneously as
S0 = LA — QAL s — dLAp, (C.8)
we define a Lorentz-covariant superderivative that acts on Lorentz tensors as follows:
DVA =dvA+ QA5 A VB, (C.9)
DVy=dVy— QB4 A V3. (C.10)
We write D = dZM Dy, with the usual exterior derivative being d = dZM9,;. Our
derivatives act from the left, unlike in [151] and much of the supergravity literature.

In light of the fact that the 2d Lorentz group is U(1), local Lorentz transformations
and the superconnection simplify to

LA =LEs, Q% =QEA;, (C.11)

where Q = Q; dZM and E4 g is defined as follows:

1
Eab = Eab, Eab = Ea/B = 0, Eaﬁ = —5(’}/5)0[5 (012)

Thus we have, for instance, DyVA = oyVA + QuEARVE and Dy Vy = OyVa —
QnVBEB 4. The transformation rule (C.8) then becomes simply 6Q = —dL. Our 2d
gamma matrices satisfy

{Yas W} = 20ab, 5 = Y0715 (C.13)
from which it follows that {74, v5} = 0 and 72 = —1. We also have

Ya¥b = Oab — €abV5s Va5 = —€a Vs (C.14)

and in particular [ya, V] = —2€w75 and [Ya, V5] = —2€4%y5. The sign in the definition of
E“5 (C.12) is correlated with the sign in the definition of v5 (C.13).
We define the supertorsion and the supercurvature as follows:

1
T4 = DE4 = §TABCEB AN EC, (C.15)
1
R =d's + Qe A Qs = iRABCDEC/\ED. (C.16)
These two-forms satisfy two Bianchi identities, namely

DTA = Rz NEB, (C.17)
DRAp =0. (C.18)

In components, the first Bianchi identity (C.17) reads
R pop) = DT cp) + T 55T  cp)s (C.19)

where generalized (graded) antisymmetrization is understood. This entails, e.g.,

1
Tiap) = §(TAB — (=)AIBITR ), (C.20)
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in accordance with the conventions (C.2). Using (C.11) gives
RAp = FEAp, F=dQ (C.21)

since 2 A ©Q = 0, so that the second Bianchi identity (C.18) becomes dF = 0.

By imposing appropriate constraints on the supertorsion [150], all components of the
supertorsion and supercurvature can be expressed in terms of a single scalar superfield
Ry _. As a consequence, one can also write the superconnection entirely in terms of the
superzweibein.

Namely, we define the constrained supergeometry by imposing

Tabc = TO[B,Y = O’ Ta,@'y = 2’5(’)/a)ﬁ,y (022)

These “kinematics” are motivated by the global frame for the supervielbein in flat super-
space, in which 7%g, is nonzero and all other components vanish [151]. The algebraic
Bianchi identities for the Riemann tensor, in conjunction with (C.19), fix the remaining
components of the supertorsion in addition to those of the supercurvature. For exam-
ple, (C.14) implies that

DA(v*)ap = 0. (C.23)

Hence, given (C.22), the identity R% .5 = 0 reduces to
Tab[ﬁ(’}’b)yé] =0 <= T%3 =0. (C.24)

Similarly, the identities R?.5) = 0 and R*[gq = 0 show that 7,5 and T, are propor-
tional to (v,)*gR4+— and €an(75)%? DgR, _, respectively. This determines all of the T450.

Transformations of the superzweibein that preserve the supertorsion constraints (C.22)
are symmetries of the supergeometry. They consist of super diffeomorphisms and local
Lorentz transformations, as well as the super Weyl transformations developed in [150].
Just as a Riemann surface depends only on a conformal class of Riemannian metrics, a
super Riemann surface is a supersurface endowed with a supercomplex structure, where
the latter depends only on the superconformal class of the superzweibein (i.e., is invariant
under super Weyl transformations) [149]. Moreover, just as all two-dimensional Rieman-
nian manifolds are locally conformally flat, all two-dimensional supergeometries are locally
superconformally flat (i.e., related by super Weyl and Lorentz transformations to a flat
superspace with R, _ = 0) [150].

The passage from superspace to the component formalism is aided substantially by
bringing the superzweibein and superconnection to Wess-Zumino gauge via super diffeo-
morphism and super Lorentz transformations, respectively. This gauge, along with the
supertorsion constraints, suffices to express all geometrical quantities in A/ = 1 superspace
(and in particular, all components of the superzweibein) in terms of three fields:

o a zweibein e, (the bottom component of E%,,),
o a gravitino/Rarita-Schwinger field ¥¢, (the bottom component of E%,,),

o and an auxiliary field A (the bottom component of R, _).

— 65 —



These three fields comprise the N' = 1 supergravity multiplet. We will not need the full
component expansion of the superzweibein in this gauge, but instead record here only those
of the superdeterminant E = sdet(E“,;) and the supercurvature:

E=e¢ [1 + léymw — 799 ( mnwmy v )} (C.25)
Ro = Atfx+ 300 (R — ST 3 A AZ) (C.26)

where R = 2¢™"0,,wy, is the curvature of the spin connection
wn = —€"eamdne] + %%757"% (C.27)

(the bottom component of €,,,) and the middle component of R _ is given by

1
X = =27€™" Dy, = 57" A (C.28)

in terms of the bosonic Lorentz-covariant derivative
mw = mw Wm75¢ (0'29)

The constraint (C.27) follows from 7%, = 0, while the constraint (C.28) follows from that
on T%,.. We have written the gravitino as v’ in anticipation of a later change of variables.
Note that (C.27) implies nonvanishing torsion in bosonic spacetime: D,el — Dpel =

3V U
Above, spinor contractions are defined with respect to the Majorana conjugate

'LEa = w/BC,Bcw Ca,B = €aBy  E4— — —1. (C30)

Equivalently, if we regard spinors with upper indices as column vectors, then ¢ = ¢TC.
We have the following exchange properties of spinor bilinears:

VX =XV, VVaX = —XVa¥s  VYVsX = — X5 (C.31)

These follow from the antisymmetry of C' and the symmetry of Cv, and C~s, using that
matrix transpose reverses the order of Grassmann variables.

Finally, we can present the A’ = 1 JT supergravity action in superspace (adapted
from [74, 148)):

U Pz d*0 BO(Ry_ +2)+2 [ drdf @K} (C.32)
0%
where we have chosen a convenient overall normalization and omitted a factor of —1/47G.

For now, we restrict our attention to the bulk term. The dilaton superfield contains the
dilaton ¢, the dilatino A, and an auxiliary field F"

d=¢+0\+00F. (C.33)
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Assuming the order-preserving convention for complex conjugation of Grassmann variables,
this is a real superfield. The path integral is taken over ® and over all supergeometries
EA,, satisfying the supertorsion constraints. In gravity, we would also sum over genera,
but to compare to gauge theory, we restrict to the disk.

To unpack the action (C.32), we use

G0 = 6,0 = 20-0%,  (G)(0y) = —%(9’9)(@), / 2080 = 2, (C.34)

where the last equation is a convenient definition. We see that

L[ 2 » _1/ 2 _
47T/Ed 2d0ERy_ = i Zd zeR = x(X). (C.35)

Integration over the dilaton superfield in (C.32) localizes the path integral to surfaces of
constant negative supercurvature: R,_ + 2 = 0. In components, this constraint reads:

1 _
cox=0, R=se™n st - 2. (C.36)

Substituting (C.28), we compute that the top component of E®(R4_ + 2) is
) 1 1 mn, ./ / 3\ mn / 1< m, /!
el |F(A+2)+ §¢ R—A—- 5¢ U V5Un | + Ays€ " D), — 5/\7 Y| . (C.37)
To match to the gauge theory formulation, it is convenient to define 1, = y51., so that

"M Y5t = €Y s, A Digthy = Mys€ ™ Dty A by = =My,
(C.38)
where we have used (C.14) and that D,,, commutes with ~5. Integrating (C.37) over super-
space and also integrating out F', we thus obtain the action in terms of component fields:

1 1 1 5 15
SJNTfl = 5 /E d22 (& [2¢ <R +2— 2€mn¢m'}/5wn) + )\ﬁmanq/Jn + §>\€mn7mwn ’ (0‘39)

with the constraint (C.27) implicit (the component form of the action already assumes
the other constraints). More usefully, we may regard w,, as an independent field, which
requires making the constraint (C.27) explicit. The first-order action can then be written as

_ 1 1 1 -
SJTil = — /E d2Z e |:2¢ <R + 2 — 2Emn'l!)m’}/57!}n) (040)

2
1 - - 1-
+ % <€mn mez + 6al>6n”L('dvnelr)L - 46mn¢m7awn> + )\€man¢n + iAemn’Vmwn .

To see that the Lagrange multipliers in (C.40) indeed enforce (C.27), note that integrating
out ¢, results in the component-wise torsion constraints

1-
Tamn’ = a[me% —+ eabW[mes),L} — Zw[mfyaqﬁn] = O7 (C41)
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where the bar indicates the bottom component. We solve for the spin connection in the
standard way [152] by writing Ty — Tonjne |+ Thjem)| = 0 With Typn)| = €aeTmnl, giving:

1 1 1 - - -
Wm = §€Cd€?(amedn - anedm) B §6né€am8ne? + §60d(¢m70wd + Y YmPa+ wC'dem) (042)

1-
= _fngeamane(zl - 5%’75717%- (C43)

In 2d, the first term of (C.42) equals the second, while the last term of (C.42) simplifies
via (C.31) and (C.14). Hence we obtain the simplified form (C.43), or equivalently, (C.27).

So far, we have written the action in terms of zero-form fields. To pass to the BF
description, it is more convenient to work in terms of the one-form fields w = w,, dz™,
e = e dz™, and ¢ = 1, dz™. Note that for arbitrary one-forms ¢ and &', we have

ENE = d228EEl = d2z e€™EnE], (C.44)
dé = d?2 &™0,,6, = d*z ee™ Oy, (C.45)

where the Levi-Civita symbol and tensor are related by

Emn = €€mn < € =", e =detel,. (C.46)
In particular, we have
1
Onel =d*ze, dw= §d22 eR. (C.47)

Hence we have, in shorthand notation (omitting wedge products),

SA=1 = ;/Z [¢ <dw + el — i@b%iﬁ)

1- - 1<
+ ¢q (dea + Ve’ — 4w7aw> + ADy + 5)\6“%1/1 : (C.48)
The second term enforces the constraints on the bosonic components of the supertorsion.

C.2 o0sp(1]|2) BF theory

We consider the first-order action (C.48) where X is a disk with compact time coordinate
T ~ 7+ 3 and radial coordinate r > 0. To rewrite it as a BF action, we again introduce
s[(2,R) (or so0(2,1)) generators via the identification (B.9), where the objects on the right
now belong to osp(1]2). Hence

01><2 0

-1 0 0 1 0 -1
I'y = |: ] s I'= [ ] s Iy = |: ] ’ (050)
0 1 1 0 1 0

ir; 1o
J]:[ -1 | 7] ] (C.49)

where
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which satisfy {T'7,T';} = 2n7; where n;; = diag(1,1,—1) (our conventions differ slightly
from those of [64], so as to mimic those of bosonic JT gravity). We can write the osp(1]2)
algebra as

L1 Ja] = ersc T, [JI,QQ]:é(FI)%Qﬁ, {Qa,Qg}:—%wrf)ang (C.51)

with €p12 = —1 and C as in (C.30), so that

0 -1 0 -1 -1 0 -1 0
C = 5 CFO == ) C(]-_‘]_ - ) CFQ =
1 0 -1 0 1 0 -1
(C.52)
Given (B.9), the algebra (C.51) fixes
Q =-F, Q. =F* (C.53)

up to an overall sign ambiguity @+ <> —Q+. In this basis, the generators satisfy

1 1
STI"(J[JJ) = 577[J, STI“(QQQ/B) = §6a5. (0.54)

We now write the zero-form dilaton supermultiplet and the one-form superconnection as
osp(1]2)-valued fields:

Br = (¢a,0), Al =(e*,w), B=BlJ +)XQa, A =AlJ+¢°Q,. (C.55)

The latter has field strength

1-_
F_ (Ff ~ (rfw)a) Ji + DY Qa, (C.56)
1
Fl=qA! + §€IJKAJ NAg, (C.57)
in contrast to the bosonic case where F = F!.J;. Here, we have defined the so(2, 1)-covariant
derivative 1
DyY® = dyp® + 5AI A (T7)%s0°, (C.58)
in contrast to the Lorentz- or diffeomorphism-covariant exterior derivative
1
Dy = dip® — S A (51)°. (C.59)
Lastly, we set
I'r = (Ya, —75)- (C.60)

In this basis, the v, are symmetric and 5 is antisymmetric. We then obtain
1 1 _,- 1<
STr(BF) = §B1FI — éBfwa A (Tr)* + S Aa Dy (C.61)
1 1- 1 1-
= 5(;5 (dw +elnel - 11&& A (751#)“) + 5% (dea + ew A el — Zwa A ('y“@b)o‘)

1< 1<
+ 3ha DY + Thac A (a8)" (C.62)
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Comparing (C.62) to (C.48), we see that the first-order action of N' =1 JT supergravity
is precisely an osp(1|2) BF theory:

SN=1 /Z STr(BF). (C.63)

With our definition of order-preserving complex conjugation for Grassmann variables, the
spinor bilinears appearing in Lagrangians are real with real coefficients. (Reality of spinor
bilinears under the order-reversing convention can be achieved by adjusting the phase of
the charge conjugation matrix, C' — ¢C. This amounts to pulling out a factor of —i from
the anticommutators of fermionic generators in the osp(1|2) algebra.)

The action (C.63) is manifestly invariant under gauge transformations whose infinites-
imal form is (B.10), with € now valued in osp(1]2). Such transformations with € = £*Q,
give, via the algebra (C.51),

1 1
s Al = Egrf ¥, 6B = igrf A, (C.64)
1
Seyp® = DEY, 0eX = S B (T1)* 5" (C.65)
These are equivalent to the local supersymmetry transformations
a 1 a 1 a « 1 a [
Bt = D€, Gew= b, 0d® = DE+ set(7)sE”, (C.66)
a 1 a 1 « 1 a a ¢f 1 a ¢f8
0d" = 567N, 0ep=—58sA, 0eAT = S0 (1) "pE7 + 5d(15) 76" (C.67)

By an appropriate Fierz identity, the variation of the action (C.48) under (C.66)—(C.67)
vanishes exactly, incurring no boundary terms: (555’%:1 = 0. The transformations (C.66)
of the supergravity multiplet, written in components as

1. 1. 1
5§€?n = §§’Ya7/1m7 5£Wm = 55’)/51/]7717 551/}771 - Dmg + ifymé, (068)

are equivalent to the local supersymmetry transformations of [150] after imposing the
dilaton constraints (C.36) (eliminating the auxiliary field A).%2

C.3 Worldline action for Wilson lines

Whereas the BF description involves integrating over the fermionic half of superspace, it
is most natural to interpret these Wilson lines directly in the full superspace. We do so by
expanding the gauge field in terms of the superzweibein and superconnection as [147]

Ay =EA%Ja+Quds (A=0,1,+,-), Jo = Qu, (C.69)

and then rewriting the Wilson line as a path integral for the worldline action of a massive
probe particle in superspace, along the lines of [52]. For earlier discussions in the context
of 3d gravity, see [78, 79] and references therein.

52The subgroup of super diffeomorphisms and local Lorentz transformations that preserves Wess-Zumino
gauge consists of ordinary diffeomorphisms, local A' = 1 supersymmetry, and ordinary local Lorentz trans-
formations. By tracking the fermionic part of the allowed super diffeomorphisms, one derives the N’ = 1
supersymmetry transformations of the supergravity multiplet [150].
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We start by writing a Wilson line along a fixed contour C and in a given representation
h in a standard way as

/DAg e~ ol Al (C.70)

where A is the (dual of the) highest weight of the representation h, g(s) is a map C —
OSp(1|2) that (redundantly) parametrizes the orbit of A in o0sp(1|2) under the adjoint
action of OSp(1|2), s is the worldline coordinate along C, and Sa[g, A] is the first-order

action®?

SA[g,A]:/dsSTr(Ag_lDAg), Da=0.+ Ay, Ay(s) = Ay (Z(s)ZM(s).  (C.71)

The gauge redundancy in g, which amounts to right multiplication by the stabilizer of A
in OSp(1]2), is implicit in the domain of path integration. From the perspective of the
worldline path integral, Ag (the restriction of the bulk gauge field) is a background gauge
field, and it transforms in such a way that the action Sa[g, A] is gauge-invariant under left
multiplication of g by elements of OSp(1|2).
The length of
A=A Jr+2°Q, € osp(1]2) (C.72)

is determined by the quadratic Casimir of the representation:
1 1 —
STr(A?) = 5(mJAIAJ + €0pE2EP) = §(AIA[ +E8) =2h(h—1/2) =2m2.  (C.73)

(We assume h > 1/2 so that m is interpretable as the mass of a genuine probe particle.)
Since the adjoint action of OSp(1|2) is transitive on all Lie algebra elements of a given
length, we may further introduce a functional integral over all elements of the form

A(s) = A%(s)Jy 4+ EY(5)Quls) = A (s)Ja, (C.74)
with length constrained by (C.73), to write the worldline path integral equivalently as
/ DA Dpg DO ¢~ Snl9:A0) (C.75)
where O is a Lagrange multiplier:
Salg, A,0] = /ds [STr(Ag_lDAg) + %@(A“Aa + 22 —4m?)|. (C.76)

Note that we have omitted the Jo-component of A in (C.74), the motivation being that
the bulk path integral imposes flatness of the super gauge field, which implements the
supertorsion constraint(s) and expresses €2 in terms of E, so that the Jy-component is not
independent of the Jy 1-components in our setting.

3This is the worldline action for a bosonic particle on a coadjoint orbit of a supergroup [153]. The super-
symmetrization of a standard coadjoint orbit would instead lead to the worldline action for a superparticle
on a coadjoint orbit of an ordinary group [154].
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We now fix a gauge on the disk in which ¢ = 1 along the curve C, so that ¢~ 'Dag
reduces to Ag = (EAMJA + QMJQ)ZM and the action becomes

1 . _
5 / ds [AaEA 3 2 +iO(A"A, +Z2 — 4m?)] (C.77)
Integrating out A® and = reduces this to
i 1 g
= —gunZMZN — am? :
2/ds<4@gMN m@), (C.78)
where we have written the supermetric in terms of the superzweibein:
gun = goun) = EABE MEP N = 00 E*ME N + €apE“ M EP N (C.79)

This is precisely the first-order form of the standard point-particle action in superspace,
with © playing the role of the einbein. Further integrating out © gives the second-order
form of the point-particle action:

m/ds (gunZMZN)V2, (C.80)

(Note that we have implicitly shifted the a priori real integration contour for © to account
for the imaginary saddle points.)

Finally, the identification of superdiffeomorphisms with gauge transformations in the
BF description for flat A shows that the Wilson line, as an operator insertion inside the
path integral of JT supergravity, is equivalent to a path integral for the action (C.80) taken
over all paths superdiffeomorphic to C.

D Details on orbits and operators

This appendix collects more details on super-Virasoro coadjoint orbits and on bilocal op-
erator calculations.

D.1 Classification of super-Virasoro coadjoint orbits

To find and characterize the different coadjoint orbits, we need to find all super-Virasoro
transformations that leave (Ts(7),Tw(7)) invariant. If one is interested only in orbits that
contain a constant representative (as we are here), then there is a shortcut to the analysis.
Due to the quotient structure of the orbit itself, it suffices to look at this constant rep-
resentative to deduce the stabilizer for the orbit of interest. This constant representative
is a solution to the super-Schwarzian equations of motion. We hence look only for the
most general classical solution with the prescribed periodicity constraints (2.54), which we
repeat here for convenience:

F(r+p8)=M-F(r), n(t + B) = £n(7), M € SL(2,R). (D.1)

The solution to these equations of motion will generate all possible constant values of the
super-Schwarzian derivative, and we merely have to compare this constant value between
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solutions to find the stabilizer of each orbit. The remaining undetermined coefficients in
the classical solution that retain this value then parametrize the stabilizer. The super-
Schwarzian equations of motion, associated with the Lagrangian (2.18), are given by:

om — 20" +{F, 7} =0, (D.2)
§f = {F 7Y (1 —-ny)=0. (D.3)

The general classical solution is given by:

2%
{F,7} = T@ = constant, (D.4)
atan%@r +0b
=L ad-be=1, (D.5)
ctan B@T +d
n(t) =T cos %@7‘ + I’z sin %@T +1I's, (D.6)

in terms of a priori six parameters a, b, ¢, I'1, I's, and I's. We choose to parametrize the
constant value of {F, 7} as %L;@z in terms of the parameter © (which may be imaginary).
Plugging this solution into (2.18) and (2.19), we get

2
To(r) = 556" (D.7)
Te(1) = @@ I's + 2753@ ' Ial's. (D.8)

These indeed satisfy d; Sch = 0. The Grassmann parameter I's = 1y changes the on-shell
value of Ty (7), and hence is not in the stabilizer generically; instead, it parametrizes differ-
ent orbits. This means that the fermionic parts of the stabilizer are parametrized by I'y and
I’y if they are allowed by the periodicity constraints when © € N. For the bosonic pieces, for
© € N, the full SL(2,R) group is compatible with the periodicity constraints. Otherwise,
only ' — F + b remains. We hence deduce the orbit stabilizers and on-shell stress tensors
in table 2. These different orbits match with the constant-representative orbits in [68].5*

By looking at the infinitesimal version of this solution space around a saddle, we can
see that the resulting zero modes match directly to specific subalgebras of the NV = 1
super-Virasoro algebra, as written in the last column of table 1. One of the cases is worked
out in the next subsection.

The total energy of the constant representative (or the saddle solution) within each
orbit is given by the expression:

2 .,
Ts(T) = ?@ , Te(1) = ?9 70- (D.9)
As such, all orbits discussed here have on-shell action
Son-shell = %dT Ty(r) = FG : (D.10)

8pecifically, these are the orbits denoted by (a), (b), (c), and (e) in [68], where we have corrected what
we believe is an error in orbit (c).
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Sector Orbit Stabilizer Ts Tw

NS © =n odd H = O0Sp(1|2,R) | Zyn? 0

R © =n even H= OSp(l\Q R) g—;nQ 0

NS © =n even = SL(2,R) g—an 0

R O = n even, with ng # 0 = SL(2,R) g—an g—anUO

R © =n odd = SL(2, R) g—znz g—zn%o
R/NS 0¢z U(1) 7,02 | T,0%

NS 0=0 H=R 0 0

R ©=0 H =R 0 0

Table 2. Constant-representative sVirasoro orbits.

The zero mode 7 is an additional label of the orbit, only present in the Ramond sector.
Moreover, only for the R parabolic orbit where © = 0 is 1y a gauge mode and therefore
dropped. For all other R cases, 79 is not a gauge mode, and its fermionic integral causes
the path integral to vanish [44].

D.2 Special elliptic orbits in the NS sector

We now assume odd n € N, and look at the gauge zero modes present in the special
elliptic coadjoint orbit. The generic solution was written above in (D.4), but here we
work it out at the infinitesimal level. In terms of the variable f(7) defined through
F(r) = tan %f(T), the saddle solution is f(7) = 7 and the gauge zero modes in the
bosonic sector are parametrized by €(7):

2mn

77’, (Dll)

where f(7) =7 + ¢(7). In terms of the F' variable, this is equivalent to

2m™n .
€(T) = €1 + €2 cos 77 + €3 sin

F(7) = tan ™, [ (1 + tan? nT) + e (1 — tan® m7'> —|—2e3tan ] +0(e%).

g g p g g
(D.12)
This can be interpreted as the infinitesimal expansion
F—F+b+4(a—1)F —cF? (D.13)

of the SL(2,R) subgroup acting through Mobius transformations on F' as in (D.4).
From the expansion of the (bosonic parts of the) Virasoro generators of Diff(S') as
L,= %emT&-, we can immediately identify these zero modes as generated by the SL™(2,R)
subalgebra generated by Lg, Ly, L_,.%"

55The super Witt algebra on Diﬂ“(Sm)7 with supercircle coordinates 7|¢ and periodicity 7 ~ 7 + 27, can
be represented by the superspace differential operators
1, n 1
Ln = - mT 67' 71981 ) y Gn = —e"" 81 198—;— . D.14
: e ( +1 500 \ﬁe (09 + ) ( )
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The fermionic variable 1 has the gauge zero modes

n n
n(T) = €4 cos LU €5 sin iT, (D.15)
p g
which are antiperiodic for odd n. This corresponds to the infinitesimal action by the
sVirasoro generators G%,G_%. This leads to the relation

o (7) = VO Fn = egsgn (COS n;T) + €55gn <cos ?7’) tan %TT + O(e%) (D.16)
for the bottom (fermionic) part of (2.51). Notice in particular the sign functions. If
they were absent, then all of these gauge zero modes €1,...,e5 would combine into the
infinitesimal expansion of OSp(1]2) acting through super-Mébius transformations on (7/,6")
as in (2.21). With these sign functions, the fermionic parameters in this OSp(1]|2) group
flip sign when 7 — 7 4+ 8. This is further implemented at the level of the group variables
in the main text.

D.3 OSp(1|2)-invariant bilocal operators

As mentioned in section 3.1, the supersymmetric Hill’'s equation yields recursion relations
that allow for the computation of general matrix elements of bilocal operators: letting
Im;7) = g~ (7)|m), we have

3
(j —m)|m;7) =0 im + 1;7) — Te(7)|m + §;T> —(G+m+2)Te(r)m+2;7) (D.17)
if j —m € Z and

(=m=5 ) Imim) = 0rlm + 17 = (54 m+ 3 ) (Tl + 5i7) + Ta(r)m + 2:7)
(D.18)
if j—m € Z+ % Note that unlike in the bosonic case, we generally need both the
highest-weight state j and the next-highest-weight state j — % as base cases.
For example, to derive the form of the bilocal operator in arbitrary states in the
spin-1/2 representation, we write the supersymmetric Hill’s equation independently of rep-

resentation as
g T)E™ + To(r)ET + 2Tu(T)FT) = 0:97 (1), (D.19)

or equivalently as
(B~ 4+ Ts(1)ET 4+ 2T (1) F)g(1) = —0-9(7). (D.20)

Applying Hill’s equation to H:%) gives

20-1(F) L) — (T —1()L
T LR
Similarly, applying Hill’s equation to <i%] gives
2(—L1g(7) - B(T —Lig(r
(3lotr) = ~0ri—la(r),  {0lg(r) = DI )
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From these relations, we deduce that

_67'2 _87'2 An _87'2 a7'1
R1/2(9(7'2)9_1(7—1)) = A, An Az Ar, 0 (=
1 A, or,

Slo(m)g(m)l5)  (D23)

where A, = T 1(7)(0? — Txs(7)), as stated in the main text.

We now turn our attention to higher-dimensional finite representations. The relevant
representation theory is summarized in appendix E.2. For such representations, we can
again compute the matrix element (—7j|g(72)g~1(71)|7) directly. We have

9_1(7'1)|j> _ 626’,(7'1)}7” e%(ﬁ)E* €2¢(7’1)H6’Y+(7’1)E+629+(7’1)F+|j> (D24)
, 2 1
— 206(m) Z ~ ()™ (lf = n) + 6 (r)|j —n — §>), (D.25)
n=0

in addition to
<_]|g(7_2) < ]|€ 7‘2)F+6_'7+(7'2)E+6_2¢(72)H6_7*(72)E_ 6_207(7-2)1?_ (D26)
, 1
_ 2i6(m) Z ( > (r2))" (=5 + 7l +0.(m2)(2] = n){=j +n+ 5]). (D.27)
Taking the inner product gives

(—ilg(m2)g (m)14)

— 20¢(11) 2j¢(72) Z ( > 7_2))2j—n

+2jX9)2olr) Z (2] . 1) ()" (= (72))7 7710 (2)0 (1) (D.28)
2@EOTOTD (o (11) — 7y (72))% + 2 (v (1) — 7 (72))% 70 ()0 (71)] (D.29)

= {e(ﬁ(ﬁ)w(m)(%(ﬁ) — 7y (72) + 0.(72)6 (11))]” (D.30)
= [¥1,0t (T2) V2,00t (T1) = 2,00t (72)¥1 1ot (T1) + ¥3 1ot (T2)13,b0t (71)] %, (D.31)

which is simply the j = 1/2 result (3.7) to the power of 2j. More general matrix elements
can be computed with the aid of the supersymmetric Hill’s equation as above.

E OSp(1|2,R) representation theory

In this lengthy appendix, we give an overview of OSp(1|2,R) representation theory. A
particular emphasis is placed on the principal series representations. Some of the results
presented here are known in the literature, but we are not aware of a comprehensive
treatment. We base our methods largely on those for SL(2,R), as written, for instance, in
the textbooks [139, 155].%6

56The fact that the representation theory of OSp(1]2,R) is so closely related to bosonic representation
theory is specific to the B(0,n) = OSp(1]|2n) Lie supergroups: see [153] for tangentially related comments.
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E.1 OSp(1|2,R) supergroup and Lie superalgebra
The supergroup OSp(1|2,R) is defined as the subgroup of GL(1|2,R) matrices

a b|«

g= c d v ; (El)
B 0 ]e

consisting of five bosonic variables a, b, ¢, d, e and four fermionic (Grassmann) variables
a, f3, 7, §, that preserve the orthosymplectic form Q: ¢%*Qg = Q. Explicitly,

a c|-—p 0 —-11]0 a b|a« 0 —-11]0
b d| —¢ 1 0|0 c dly|=|1 0 0/]. (E.2)
a 7| e 0 0 1|8 6]e 0 0 |1

The operation ¢t is the supertranspose that flips the sign of one block of fermionic variables
to ensure the property (g192)%* = g5t g5®, which implies that this subset defines a subgroup.®”
The group OSp(1|2,R) has the noncompact bosonic subgroup Sp(2,R) ~ SU(1,1) ~
SL(2,R), parametrized by a,b,¢,d € R satisfying ad — bc = 1, which distinguishes it from
OSp(1]|2) with compact bosonic subgroup Sp(2) (the latter group is discussed in, e.g., [153,
156] and sometimes denoted by UOSp(1]2)). In the following, we sometimes abuse notation
and simply denote the noncompact group of interest in this work by OSp(1]2) as well.

The condition (E.2) translates into

ad —be — 68 =1, €2 + 2ya =1,
ca —ay— Pe=0, doo — by — de = 0. (E.4)

These relations can be conveniently solved into

a = =£(ad — bp), v = %(cd — dp), e ==£(1+ B9), (E.5)
ad —bc =1+ 00, (E.6)

where one has a choice of sign that must be consistent across all relations (E.5). Taking the
Berezinian of the constraint (E.2) immediately leads to Ber g = 1, which is precisely (E.6)
given the identities (E.5). We will hence refer to (E.6) somewhat loosely as the determinant
condition.

We end up with the OSp(1]2, R) supermatrices

a b|ad—>bs a b| —(ad—0bB)
g=1|c¢c d|co—dp |, g=1| ¢ d|—(cd—dp) |, (E.7)
B 8| 1486 8 8| —(1+p9)
5TWe deal only with even supermatrices, for which we define the supertranspose as
Al B AT | o7
= (E.3)
c|p BT | DT

Other conventions also exist in the literature. The Berezinian is invariant under the supertranspose.
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satisfying ad — bc = 1 + 6, and distinguishable by the sign of the Berezinian +1. These

two components are related to each other by applying the elementary matrix (—)%":
1 0|0
(=0 1|0 |. (E.8)
0 0| -1

One can further quotient by the Zs subgroup generated by the matrix — I3, which again has
Berezinian —1, and thereby identify both components. This restricts us to the projective
supergroup denoted by OSp’(1|2) = OSp(1]2)/Zs in [44]. For convenience, we may simply
choose the top sign in (E.5).

Thus an arbitrary group element is specified by 3|2 independent parameters. For later
reference, we write down the inverse group element;:

d —b|—9
gil - —C a 6 ’ (E 9)
Y —« ‘ e

which takes a simple form thanks to the OSp constraints.
The Cartan-Weyl generators of the algebra in the above defining representation are

(12 0 |o] [0 0lo 0 10
H=| 0 -1/2|0]|, E-=|1 0|0 |, Et=10 0]0 |, (E10)
0 0 |0 0 00 0 00

0 o] o ] [0 0 |12
F-=| 0 0|-1/2|, Ffr=[0 0| 0 |, (E.11)
12 0] o 0 1/2] 0
which can be readily verified to satisfy the osp(1]2) algebra:
[H, E*] = +E*, [EY,E7] =2H,
1
[H,Fi]:iiFi, [E* FT] = —F*, (E.12)
1
(Ft,F7} = %H {F% F*} = i§Ei.

The corresponding Gauss-Euler representation of the first group element in (E.7) is

(@7, 7.10,0.) = e e B 2ot e B 20 (E.13)
e? v.e? €0,
=| ve? e P+y7e?—00. |ved -0 |, (E.14)
6. v +0. | 1+eth0.

which satisfies the relations (E.4).
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E.2 Finite-dimensional representations

The spin-j representation of 0sp(1]2) has dimension 4j+1 (or 25 +1|2j), and it decomposes
under the even part sl(2,R) as RjOSp = R]SL ® R]SI:l/Q for j > 0 [62]. The summands in the
direct sum decomposition of the tensor product of two irreps j; and jo range from |j; — jol
to j1 4 j2 in half-integer steps due to the fermionic raising and lowering operators. One can
derive the generators of the spin-j representation via the Clebsch-Gordan decomposition,®®

but it is easier to simply postulate that

i | a8l =) | 0(2j+1)x2j (E.15)
02)x(2j+1) ‘ diag(j — %,...,—j + 3)
- 01x2; 0 7
i - ; 0(2j4+1)x2;
o diag(1,...,25) Ogjx1 )
0 01 (25-1) 0
2j% (2j+1
_ % (2j+1) diag(1,...,25 —1) Oj_1)x1
02x1 diag(2j,...,1)
0 01vo. 0(2j+1)x2;
= = — S (®a)
0 0@j-1)x1  diag(2j —1,...,1)
25 % (2j+1) . oo
- 1x(2j—1 |
0/5.- . 01><2j
Pre | W] jdieg(t, 20 | (E.19
%[2.7 02j><1 O2j><2j
_ 0 1 diag(27,...,1)
A O1x2j : (E.19)
02;x1 %I2j 02 x2;

where [,, denotes the n x n identity matrix (the fermionic generators are fixed by the stated
form of the bosonic generators up to an irrelevant normalization). One can check that the
algebra (2.7) is satisfied. This representation is equivalent to the one presented in [157].
As for SL(2,R), these finite representations are not unitary (aside from the trivial one).

58 Along with the fact that the generators of the tensor product of two representations R and R’ of g are
TI%@R/ — TI% ®IR/ +1R ®Tg/
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In the spin-j representation, we write

1] [0 ] 0] [0 |
0
: 0 0 0
=] 0|l =| 1 |- =1 [t =|0 | (B2
0 0 0
0
_0_ _O_ _O_ _1_

We then have the actions

H|m) = m|m), (E.21)
j — 1 j —m € Z,

By = Y m+1)‘m Do g=m 1 (E.22)
(J—m+§)|m 1) j—meZL+s,

1 j —m € Z,

(G+m+1 )|m+1> j—meZl+s,
1 1 .
m—1 —mez,

Fomy = {2M 2 o ) (E.24)
—3(G—m+m—3) j-meZ+y,
Lm+1 i —meZ,

Frimy = 2+ ) Jom 1 (E.25)
TG+m+Hm+3) j-meZ+4,

as used in the computation of (D.31).

E.3 Casimir and sCasimir

An important aspect of Lie superalgebras is the existence of elements in the universal
enveloping algebra that commute or anticommute with all generators. They play an im-
portant role in classifying representations of the algebra.

Elements that commute with all generators span the centre of the universal enveloping
algebra. For OSp(1]2), whose universal enveloping algebra we denote by U(osp(1]2)), there
is a single such element: the quadratic Casimir

1
C=H>+ §(E+E_ +EEY) - (FTF~ — FF"), (E.26)

which can indeed be checked to commute with all generators H, E*, F* using (E.12).
Elements that commute with all bosonic generators and anticommute with all fermionic
generators span the scentre of the universal enveloping algebra [66]. For OSp(1]2), this is
the sCasimir operator. It is given by the expression:
1

1 1
Q=F"F~ —F F" + 5= SH - 2F F1 + 3 (E.27)
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It has the important property that it squares to the Casimir:

1 1 1 1 1
2 2 + - -t + - -t
- — =_"C=-H*4+—-(EtYE"+E E"—-Z(F'F F~FT). E.2
Q 64 4C 4 8( ) 4( ) (E.28)

For example, in the defining j = 1/2 representation (E.10), it is given explicitly by

0

1| o0 (E.29)
0

and is proportional to the matrix (=) transforming between the two connected compo-
nents of OSp(1|2).

More generally, for the finite representations, the sCasimir operator is proportional to
the fermion number (—)f" and is given explicitly by

1 Isj 11 0
Q—(j+) J . E.30

From (E.28), one finds the Casimir C to be proportional to the identity matrix:

cZ:j(jJrl/z)[bi;’1 f ], (E.31)
2

as required by the generalization of Schur’s lemma to supergroups, which states that all
elements in the centre are proportional to the identity in an irreducible representation.

We can get a handle on the possible form of any element M in the scentre using Schur’s
superlemma [158], as follows.?® The supermatrix M? commutes with the entire group, and
we find by Schur’s superlemma that

2| L]0
e [O I] m2)

for some supernumber z. Since the square root of a supernumber has only a 4 sign
ambiguity, we find that M has to be proportional to a diagonal supermatrix with only +1
on the diagonal. We can go further if we assume that upon restricting to the maximal
bosonic subgroup, the representation falls into two irreducible components (as happens in

59We make the assumption that the field over which we work is algebraically complete.
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our case).%” Then by the ordinary Schur’s lemma applied twice to the relation

Apody(9) 0 Apody(9) 0
z ‘ Mbody = Mbody . ‘

0 ‘ Dbody(g) 0 ‘ Dbody(g)

: (E.35)

and by the fact that one can deduce the sign of +,/z unambiguously by knowing its body’s,
we end up with

(o Il o
M=\ or M =\ . (E.36)
0|1 0|-1I

Demanding anticommutativity with the fermionic generators of the group then shows that

Il 0
M=\ (E.37)
0|-1I

is the only possibility. This is indeed what we see explicitly in (E.30).

E.4 Principal series representations

Next to the finite-dimensional representations, the continuous representations play an im-
portant role in the harmonic analysis of OSp(1|2,R). We construct them in this section.
E.4.1 Invitation

Our goal in this section is to construct the analogue of the principal series representations
for OSp(1|2,R). We take inspiration from the case of SL(2,R):

(92 £)(w) = sgn(vo -+ Ay o+ 4 (2211, (E.38)

where on the right-hand side, the group acts projectively by its transpose as XT ¢ with

The transpose ensures that the group action composes as required for a representation.
The carrier space is L2(R).

50 Any supergroup has a bosonic subgroup obtained by ignoring the fermionic part. For a finite represen-
tation, the resulting subgroup is of the form:

Abody(9) ‘ 0
0 ‘ Dhroay(9)

(E.33)

In the specific case of OSp(1]2), the resulting bosonic representations Apedy(g) and Dhody(g) are irreducible
as seen in the explicit construction above, and we have the branching rule

Rj, supergroup — Rj, bos D Rj71/2, bos- (E34)
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Let us now contemplate the supergroup case. The supertranspose we use was defined
earlier in (E.3). In particular, it is not an involution, but rather has order four. Therefore,
to imitate the construction for SL(2,R), we write

a bl a x
g=|c d|lv |, X=]z (E.40)
B d|e U
and let
a
X¢X, ¢=| b d |6 |. (E.41)
—a =y ‘ e
Indeed, this action can be written equivalently as®!
X5 s XSty (E.43)

Armed with these considerations, one is tempted to propose the following group action for
OSp(1]2,R) on L2(R!I):

ar+c+p9 axr+y—ed
- . (E.44
br +d+ 59’ bx—l—d—i—&?) ( )

(g0 £)(@, ) = sgn(bx + d + 69)°|bx + d + 697 f (

However, this guess is not quite correct. Whereas the representation thus constructed is
irreducible (as we show in appendix F.1), it is not unitary. A more well-substantiated
approach is based on the method of parabolic induction, which will allow us in the end to
write down a corrected version of (E.44).

E.4.2 Parabolic induction

It is a well-known fact in the mathematical literature that the so-called noncompact pic-
ture (E.38) for defining a principal series representation of SL(2,R) has an equivalent
induced picture, where one constructs the representation induced by a parabolic sub-
group [159]. Since this idea is not as familiar to physicists, we first describe it in concrete
terms. We then generalize it to OSp(1|2,R), and in particular, show that the construc-
tion (E.44) (properly adjusted) also deserves the name of principal series representation.

An induced representation is determined as follows. Fix a Lie group G and a subgroup
H C G. Let Dy(h) be a representation of the subgroup H on a Hilbert space V. For a
continuous function f : G — V, the equality

f(gh) = Dx(h)""f(9) (E.45)
51The supertranspose acts on column vectors as follows:
b st f st
08 er
[ ror ] = [ bos ‘ —fer }7 [ o ] = [ fer ‘ bos } (E.42)
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is consistent in the sense that f(ghiha) = Dx(h2) 'Dx(h1) ' f(g9) = Dx(hih2)~f(g).
Then an action of the form

(9- F)(g0) = flg " 90) (E.46)

on the reduced class of functions f satisfying (E.45) automatically defines a representation
of G. This is called an induced representation. The representation one finds in this way
will automatically be contained within the left regular representation of the group (to be
discussed in section E.5 below).

Here, we specialize the above procedure to the case where we induce from a product of
abelian subgroups. Principal series representations are defined as induced by a parabolic
subgroup P = M AN of G, where M = Zg(A) is the centralizer of A in the maximal
compact subgroup K of G, A is the abelian subgroup of positive diagonal matrices, and
N is the unipotent subgroup of upper triangular matrices with 1 on the diagonal. Picking
representations of M and A, we can construct a representation of G.

SL(2,R). We focus first on SL(2,R). We restrict to functions on the group f: G — C
respecting the constraint

f(gman) = o(m) a1 £(g). (EA7)
The factors appearing in (E.47) are as follows:

o We denote by o the character of the finite group M = {£1laxa}: o(m) = (1,1) or
(1,—1). We distinguish between the two representations by labeling the trivial and
nontrivial representations by ¢ = 0, 1, respectively.

« The abelian diagonal subgroup A has 1d irreps, which for a group element diag(a, a™!)

can be parametrized as M08 = gi

, since loga is the generator and A € R is the
representation label. Due to the ¢ in the exponent, we will be inducing from a unitary
representation of A. The shift —iA — —iA — 1 is given by p = %ZieA‘F «;, half the
sum of all positive roots. This is a normalization effect wherein the Haar measure
on the group dg gets decomposed into two parts dn and d(man), with a nontrivial
Jacobian which is absorbed into the transformation of the function f by including

the square root of the modular function for the subgroup P:
A(man)/? = | det(Ady/man(man))|"/? = a”. (E.48)

This deformation is necessary to induce a unitary representation of G.%2 For SL(2,R),
p=1

e Finally, one picks the trivial representation 1 for the unipotent subgroup V.

A representation is then defined by the action (E.46) within the function space (E.47).
The difficulty in making this action explicit is encoded precisely in the nontrivial structure

52In other words, we actually want to use normalized induction to induce unitary representations from
unitary representations, whereas the less sophisticated procedure that we have described in general terms
is known as unnormalized induction.
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of (E.47). For SL(2,R), this restriction can be solved explicitly by using the identity

(d —b)(l o):< 1 0)(b:z+d —b ) (E.19)
—c a —z 1 —pre 1 0 (bz +d)~!

1

which we write as ¢~ 'n = n’m’a’n’ where the last three matrices are found via the following

expansion:

( ba +d b ) (E.50)
0 (bx 4+ d)~*

[ sen(bz +d) 0 |bx + d 0 1 —b(br+d)!
0 sgn(bx + d) 0 bz + d|~* 0 1 '

Namely, we decompose an arbitrary group element g = nman into an element 7 of the lower
triangular unipotent subgroup N and an element of the parabolic subgroup P = MAN.
Then by (E.47), it suffices to consider g = n, and we restrict the function to this subgroup.

(10
n-(_m 1) (E.51)

and the identity (E.49), we can rewrite (E.46) more suggestively as

Using the parametrization

(9- N(@) = f(g~'7) = f('m'a'n’) = o(m!) " || 77" (@) (E.52)

Plugging in (E.49) and setting f(n) = f(x), this becomes

(E.53)

(9- f)(x) = sgn(bz + d)*|bx + d|~*1f <ax —|—c> 7

bx +d

which matches our earlier definition (E.38) in the noncompact picture. This shows that the
noncompact picture and induced picture give the same outcome, a well-known statement
in the representation theory of SL(2,R).

OSp(1]|2,R). Now let’s generalize this construction to OSp(1]2,R). The upper and lower
“triangular” matrices of interest are, in this case:

1 z |9 1 0|0
N=|o0o 1l0|, N=| -z 1|9 (E.54)
0 9|1 - 0|1
The abelian subgroup with positive entries is parametrized by
(E.55)
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Finally, M is the Klein four-group Zs x Zs consisting of four elements diag(+1,+1,+'1),
where the first two signs are aligned. This finite group has four irreps, whose characters
take the form o (M) = CEC’EI if one parametrizes M = diag(¢,¢,¢’).%% We can then write an
arbitrary OSp(1]2) matrix as g = NM AN, which is just our Gauss-Euler parametrization.
Within OSp’(1|2) = OSp(1|2)/Zs, the matrix M parametrizes the two connected compo-
nents of OSp(1/2).

In this case, the following identity holds:

d —b| -6 1 00
—c a | B —z 1|9 (E.57)
v -« ‘ e -9 0 ‘ 1
1 0 0 bx + d + 00 —b b9 —§
= R = 0 (pr+d+o0) | o |,
e L 0 sen(e)(-b0—0) | sgu(e)

where each matrix belongs to OSp(1]|2). We can again read this identity as a decomposition

of g7 = »'m/a’n’ into an element of the lower triangular subgroup N and a remainder
in P=MAN:

bx + d + 69 —b b9 — ¢
0 (bx +d+69)! 0
0 sgn(e)(—=bd —9) ‘ sgn(e)
sgn(bx + d + 699) 0 0 |bx + d + 09| 0 0
= 0 sgn(br +d+469)| 0 0 bz +d+ 5971 |0
0 0 sen(e) 0 0 1
b —b9—5
ba+d+o0 | butd+ov
x| 0 1 0 . (E.58)
0 ik | 1

To induce a unitary representation, we again need to include a half-density of the form
a” in the definition of the transformed function. This factor originates from a change of
variables on the group manifold. Therefore, for the supergroup case, we need to replace it
by a super-Jacobian, which is a Berezinian in which only the bosonic subtransformation A

53The character table of M is:

o (=¢=1 ¢=-1,{=1 ¢(=L{=-1 (=¢{=-1

id 1 1 1 1
e=1,€=0 1 -1 1 -1 (E.56)
e=0,¢ =1 1 1 -1 -1
e=1,¢=1 1 —1 1 1

— 86 —



is taken with an absolute value [44]:
sdet’ = sgn(det A) sdet . (E.59)
The precise super-Jacobian can be written as a product:

A(man) = sdet’(Ady jman(man)) = sdet’(Adg/man(m)) sdet’(Adgman(a)) sdet’ (Adg jman(12))-
(E.60)
Analogously to the bosonic case, we have

sdet’(Adg/man(a)) = a?(PB=PF), sdet/(Adg/man(n)) = 1, (E.61)

where pp = %Zz‘eAg a; and pp = %Zz’eA}t a;. For OSp(1]2), pp = 1 and pp = 1/2.54
However, the factor associated with the adjoint action of m in (E.60) is not trivial in this
case. Let’s work it out explicitly. The 1|1-dimensional vector space g/man is spanned by the
generators £~ and F'~. The group M is four-dimensional: m € {Iy1, — Iy, (), —(—)F}.
We easily derive the adjoint action of each of these elements on the vector space:

LpE Iy = E, LpF Ly = F, (E.62)
B () =E, (FF()f=-F, (E.63)

from which we read off that

1 m = :i:_[2|1,
sdet’(Ad m)) = E.64
( g/man( )) {_1 m— :I:(—)F, ( )
and hence
A(man) = +a*PB=rF), (E.65)

where the choice of sign depends on the element m as in (E.64).
These considerations finally lead to the definition
(g- f)(x,9) = sgn(e) "2 sgn(bz + d + §9) /2
ax + ¢+ B9 ozx—l—’y—ez?) (E.66)

b d 6071')\71/2 ( -
x |bx +d + 00| N vdro0 tordiov

From now on, we set k = —\, and we define the quantity 25 = ik — 1/2 with j being the
spin representation label, yielding the Casimir C = j(j + 1/2) = —(k?/4 + 1/16) for the
principal series irreps.

We see that the principal series representations carry discrete sign labels €, €¢/. Within
the quotient OSp(1]2)/Zs, the only distinguishable cases are € = ¢ and € # €/. The repre-
sentations for which one picks the trivial representation of M (where € = ¢ = 0) are called
spherical principal series representations. When we restrict to the subsupersemigroup later
on, there will be no distinction between these four cases anymore, and we can remove all of
the sign factors by hand. This formula hence implies that the continuous representations of

54We note that for OSp(2|2), pp = pr and there is no shift by the Weyl vector. This corresponds to the
non-renormalization theorems starting with A" = 2 supersymmetry.
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OSp(1]2) that emerge from the carrier space construction ((E.44), when suitably tweaked)
deserve to be called principal series representations, just as in the bosonic case. Moreover,
we learn that the carrier space consists of functions on a space of dimension equal to that
of N, a fact that would seem to be important for generalization to higher supersymmetry.

The resulting representation matrices are unitary with respect to the standard inner
product on L?(N). In detail, this means

(f.q) = {fR dz f*(z)g(z) (bosonic case), (E.67)

Jrdx [dY f*(x,9)g(x,¥) (supersymmetric case).
We next demonstrate this very explicitly.

E.4.3 Unitarity

We now verify by explicit calculation that the principal series representations defined
by (E.66) are unitary, as guaranteed by the above more abstract construction.

With the measure on R in (E.67), a representation matrix element is constructed by
performing the following operation:

(Flg|G) = /dx 49 F(x,9)* (g - G)(,9). (E.68)
Plugging in (E.66), we can write
. bz + d + §9|% <a:v—|—c+519 aa:+'y—e19)
dx dy F(x,v — .
/ v () lsgn(e)l/2 segn(br +d+69)1/27 \bx+d+ 69" br+d+ 69
(E.69)

We will show that the resulting representation matrix element is unitary iff 25 = ik — 1/2
by proving the identity
1 ik

/d:cdq?F(x,ﬂ)*(g-G)(:p,ﬁ) _ /d:rdﬁ (71 F)@,0)'Glw,9), j=—7+5, (E0)

thus identifying the adjoint action T of g with the inverse. To begin, we make the change
of variables

da’ — c+ V' dx’ —c oz’ — 8
= = gV E.71
v —bx' +a — oy —bx' +a +sgn(e) (—bx’ + a)? ) ( )
ox' — B+ e dx' — 8 9
- = — E.72
b’ +a—a¥ —bx'+a +sgn(e) —bx' +a ( )
This gives
1
b d+6= ———. E.73
rhar —bx' +a — at¥ ( )
To perform the change of variables in the Berezin integral, we write
) a0 _ Sa/— ,
A B|_|aw o [ adbe ot P) g gon(e) g,
o o —4 /+B 1 ’
¢ D % % Sgn(e)(_bwﬂﬂlw sgn(e)m
(E.74)
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and then compute the superdeterminant sdet’:%°

sgn(c) s dedd = do’ a9 ——E)

A-BD'O)D'= — 2 —_—_—
( ) bz +a— ¥ —bz' +a— ¥’

(E.75)

where we used sdet’ = sgn(det A) sdet and sgn(det A) = sgn(ad — be). This gives the final
result:

2 _
b+ d+ 59| (a;v+c+619 ax -+ 619)} (E.76)

dzxdd F(z,9)* —
/ v (@,9) [sgn(e)l/Qsgn(bx+d+619)1/2 br+d+69°  br+d+ 00

—ba'+a—a |71 dr' —c+~9 S —B+ed \ ]|
= [ da' dv’ | F( ) 9.
/ v [sgn(e)l/2 sgn(—br’ +a—a)/2" \—bax’' +a—ad’ —bx' +a—a G, 9)

If2j = —25*—1,0or j = —1/4+ik/2 for k € R, then we recognize the resulting expression

as acting with the inverse group element g~! on F (referring to the components of g~*

1

in (E.9)). Hence the adjoint action is by ¢~ ", as desired, and the representation matrix

constructed above is unitary.

E.4.4 Infinitesimal level: Lie superalgebra

We now work out the infinitesimal action of the group and explicitly construct the resulting
Lie superalgebra. Using the following parametrizations of one-parameter subgroups,

1 0o 1~ |0
2P0 — P =1y 1o, P =0 10|,
0 01 0 0|1
(E.77)
1 0] 0 (1 06
629,F_ — 0 1 _07 , 620+F+ — 0 1 0 , (E?S)
6 0 1 0 6, |1
we read off the corresponding group actions from (E.66):
(€% o f)(x,0) = e 2% f(e*w, %), (E.79)
(77 o )@, ) = flz+7.,0), (E-80)
o _ 1)e-1/2 1129 ( Z v ) E.81
(@5 o f)(w, ) =sgn(ra + )W+ 1P (1 ), (B8
(€7 o f)(w,9) = fx+0.9,9+0), (E.82)
20, Ft+ _ e—1/2 2j T 9 — 0+.CL')
9) = 1+679 1+69 . E.
(@5 o f)(a,9) = sen(1+ 0.0) 1L+ 000 (15 gy (B.83)

55We derive the supersymmetric Jacobian in this manner, rather than from the pullback of some differ-
ential form (i.e., from the exterior derivative of Grassmann variables), because the volume measure on a
supermanifold is not a differential form (see appendix A of [44]).
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Note that sgn(1 + 6.9) = 1, although we have left it explicit above. We then derive the

infinitesimal representations of the generators:%%

E™ = 0,,

F— %(aﬁ +90,),

1
H =20, + 519619 -7, (E.84)
Et = 228, — 290y + 2jx,
FT = —lwa — }xﬁﬁ + j9
= 9 () 2 T JU.

These obey the commutation relations
[H, E*] = +E*, [EY,E7] =2H,
[H, F¥] = %Fi, [EE, FT) = —F%, (E.85)
(FFFy=—3H, {F* %) =5 5"
which amount to almost the same algebra as the osp(1|2) algebra (2.7), except that the
corresponding anticommutation relations have the opposite sign as in (2.7):

1 1
{Ft F~} = —5H, {F* F*) = :F§Ei. (E.86)

These sign discrepancies come down to the fact that the bosonic generators F* that expo-
nentiate to the group elements in (E.78) are represented by fermionic differential operators.
Indeed, when the generators associated to fermionic group parameters (which are bosonic
matrices) are represented as fermionic differential operators, the anticommutation rela-
tions of the operators must be opposite to those of the matrices, because the operators
anticommute with the fermionic parameters while the matrices do not.

One can map our infinitesimal algebra (E.85) to the Lie superalgebra (2.7) by taking

(HE~,E",F~,F*) - (-H,EY,E~,FT F7). (E.87)

This reverses the signs of anticommutators while preserving the commutators. We will
hence call our infinitesimal superalgebra (E.85) the opposite Lie superalgebra.®”
We call the set of differential operators (E.84) the Borel-Weil realization of (opposite)

osp(1]2). In this Borel-Weil realization, one readily computes the sCasimir:%®
B 1 /1 i1
=F F"—F'F :( ) 1— 290 :( ) —)F. E.89
Q te=(5Tg)( o) ={5+5) ) (E.89)

56The signs and absolute values are not relevant at the infinitesimal level. However, they do mean that
simply exponentiating the infinitesimal action would get these wrong.
57Compare to the notion of the “opposite” superalgebra in [44], which is obtained by taking

(HE-,E*,F~,F") = (H,—ET,—-E~,FT F7). (E.88)

This reverses the signs of commutators while preserving the anticommutators.
58Notice the slight change in this operator compared to (E.27) to accommodate the opposite Lie super-
algebra.
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Using (E.28), we also obtain the Casimir operator

j 1N 1.
c:4<2+8) - =i+ 1/2), (E.90)
which is diagonal in this basis. Notice that C is proportional to the identity operator, and
Q is proportional to (—). This has to be true for finite irreps by Schur’s lemma, but it is
true for the principal series representations as well, as we see here.

When restricting (E.84) to the bosonic subgroup, we obtain the direct sum of a spin-j
Borel-Weil realization of SL(2,R) (with H, E*) and another Borel-Weil realization with
spin j — 1/2. The former part comes from acting on a purely bosonic function f(x), and
the latter from acting on a purely fermionic function 9 f(x):

0S
R =R* & RS . (E.91)

However, whereas both SL(2,R) representations appearing here are irreducible, they are
not unitary since j is restricted by the left-hand side to take the value j = —1/4 4 ik/2,
which is incompatible with the unitarity constraint for the SL(2,R) spin label. We will see
this feature very explicitly later on when we compute the characters of this representation
in section E.7.

Fixing j = —1/4 4+ ik/2, all of the bosonic generators are antihermitian with respect
to the measure dx d:

H'=—-H  (E)Y'=-E-, (BN =—-E". (E.92)

This follows straightforwardly from integrating by parts, while neglecting boundary terms
(so that, e.g., 81; = Oy and O;ﬂ = —0;). The fermionic generators F* are not antihermitian
because they square to antihermitian operators. However, accounting for the Grassmann
statistics of the group parameters, all generators are antihermitian in the appropriate sense
(as they must be, since the representation is unitary).

Finally, we mention that both the algebra and its opposite, which differ only in the
anticommutation relations

1 1

{Fro Frost = 5 Hy {Fige Fios} = 5 B%, (E.93)
_ 1 1

{FfJerNFfer} = _§H7 {Fffr’Fffr} = :FiEi7 (E94)

can be summarized by rewriting the osp(1|2) algebra entirely in terms of commutators:

[H, E*] = +E*, [EY,E7] =2H, (E.95)
[H,6F5 =367, [B%6FF] = —¢F%, (E.96)
[€F*,6F = SE6H,  [€F% 6% = 2 ¢¢R*, (B.97)

where we have introduced anticommuting parameters &, £’. These relations hold regardless
of whether F' = Fyos or F = F}op.59

%9The difference between the Fios generators (E.127) and the Fi., generators (E.84) is similar to that
between the representations of the supercharges ) and the supercovariant derivatives D on superspace: the

two resulting SUSY algebras have minus sign differences in the anticommutators.
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E.4.5 Super-Fourier and super-Mellin transforms

To facilitate computations, and to make contact with specific representation matrices, we
next discuss suitable bases of functions on the superline R!I' that diagonalize some of
the generators. These will define invertible integral transformations: the super-Fourier
transform, an inverted cousin thereof, and the super-Mellin transform.

Super-Fourier transform. The modes

1 . 1 A A
d}k‘,oc(l'vﬁ) = \/T?B“CZ‘QOK& = E(Gka + aﬁeZka;), (E98)
where « is an imaginary Grassmann number in the sense that o = —q, form a basis for

the functions on the superline RI':

7 a9 0) = 50k~ K)o~ o), (E.99)
/ T Ak dot o (2, O)da(a ) = 3(x — )50 — ). (E.100)

They are simultaneous eigenfunctions of the commuting operators
E~ =8, 0y (E.101)
A function on the superline can be uniquely expanded in this basis as

f(z,9) = / dk do C e, (E.102)

with coefficients C o = Cy(k) + aCr(k) determined by the bosonic Fourier transform for
each component:

folz) = / dk Co(k)e™,  fo(z) = / dk Cy(k)e™,  f(z,0) = fu(z) + O fe(). (E.103)

This basis (E.98) corresponds to the superanalogue of the Fourier transform, and we will
call it the super-Fourier transform. This integral transform in superspace and its variants
have been studied in the mathematics literature [160].

Inverted super-Fourier transform. Quite analogously, one can find simultaneous ei-
genfunctions of the commuting operators

EY = 220, — 299y + 2jx, x0y, (E.104)
as ik ik ik
~ U fa® gas 1 (lal* al*
i (g.9) = iNzgah — N4 e E.105
Vol V) \/ﬂ\/fe e m<ﬁe +a 3¢ , ( )
satisfying the same orthonormality and completeness relations:
+oo
/ dz dv w:,a(x7 ﬂ)wk’,a’ (l’, 19) = 5(k - k/>5(a - O/)v (EIOG)
“+o0o
/ dke dov (0, 9) g (2!, ') = 8(z — 2')6(0" — ). (E.107)

These modes (E.105) are somewhat like inverted Fourier modes, and we will call the cor-
responding integral transform the inverted super-Fourier transform.
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Super-Mellin transform. Finally, there is a basis associated to diagonalizing the hy-
perbolic generator H: the commuting operators

A 1
H = 20 + 5905 - j 2120y (E.108)
are diagonalized by the wavefunctions

Vs oz, V) = \/12?xi5_1/4e°‘x1/219 = \/12?(:131‘5—1/4 + adz™ 34, (E.109)
with H eigenvalue i(s — k/2) (s € R, by antihermiticity of A on the super half-line Rt/
(z > 0,9)). The Grassmann variable « is the eigenvalue of the fermionic operator z'/2dy.
This operator commutes with the superspace scaling operator H because x'/20y is scale-
invariant: [ﬁ ,2'/2099) = 0, as can be checked explicitly.

These functions transform the super half-line (x > 0,1) into a new pair of coordinates
(s, ), and form an orthonormal basis with orthonormality and completeness relations:

+oo
(5.l ar) = /0 dar A0 o (7, 0) b o (,9) = 8(5 — 5')8(ax — o), (E.110)
(z, 9]z, 9y = /+Oo ds da iy o (x,0)hs o (2", 9") = 0(x — )6 (9" — 0). (E.111)

This means that any function f(z,1) on the super half-line can be uniquely expanded in
this basis as

Fz,9) = / ds da Cy atbs oz, 9), (E.112)

with explicit expansion coefficients
Coa = / d d9 (2, 9) f (2, 9). (E.113)

The integral transform in superspace defined by the modes (E.109) is a superanalogue of
the Mellin transform, and we will call it the super-Mellin transform. To find a basis on the
full superline R, one needs a pair of such modes. This is identical to the description of
Rindler modes to describe physics in the right wedge of the Minkowski plane.

For all three integral transforms defined above, we have taken a to satisfy the con-
jugation property a* = —a. This was done so as to retain our convention that complex
conjugation preserves the order of Grassmann numbers.”

The above bases correspond to diagonalizing a single bosonic generator, augmented
with a fermionic partner that is not in the algebra. This fermionic partner is unique in the
following sense. Choosing a particular bosonic generator D to diagonalize, one can prove
that there is (up to a prefactor) only a single operator O that has the two properties:

O is fermionic, i.e., 0% =0, (E.114)
O and D are simultaneously diagonalizable: [O, D] = 0. (E.115)

Wy
(2

°One could alternatively extract an from « and take it be real. This would require absorbing an

extra ¢ into the measure da, which we choose not to do.
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E.4.6 Discrete representations revisited: monomial realization

Just as for SL(2,R), one can realize the discrete representations on the carrier space R in
terms of monomials. This complements earlier accounts of this representation [161, 162].

We work in a basis that diagonalizes H = z0, + %19819 — j, and we call its eigenvalue
the weight of the state. Then the OSp(1|2) algebra has raising (lowering) operators F*
and E7T that raise (lower) the weight by 1/2 and 1, respectively. If the representation has
a lowest-weight state yrw j(z, 1), then it satisfies (Oy + 90, )Yrw ;(z, ) = 0, leading to

Yw,i(@,9) =1,  H=—j. (E.116)

Likewise, a highest-weight state (if present in the representation) satisfies (z0y + x99, —
2j0)Yrw j(z,9) = 0: ‘

Yaw;(z,9) =%, H=+j. (E.117)
If both of these states are present, then one needs 25 € N, as one readily sees by consecutive
applications of the raising and lowering operators. The representation becomes finite, and

consists of the monomials
(1,9, 2,0z, 2%, ..., 2%}, (E.118)

For 2j ¢ N (j can be negative), the representation is unbounded either from above (lowest-
weight) or from below (highest-weight). For the group OSp(1]2), there is a further restric-
tion to 2j € —N for these representations that is not visible at the level of our current
treatment. For its universal cover OSp(1|2), this further discretization is not present, and
we are not sensitive here to this difference.

If either such state is present in the representation space, then all states are simul-
taneous eigenfunctions of (=) = 1 — 290y, where 90y measures the Zs grading of the
representation space. This is because the lowest- or highest-weight state is an eigenstate
of (=) with eigenvalue 1, and applying fermionic raising or lowering operators flips the
eigenvalue of (—)¥. This hence automatically holds both for finite-dimensional represen-
tations and for lowest/highest-weight discrete representations. This leads to a natural
decomposition of the representation in terms of SL(2,R) representations [161, 162]:

R = RSV & R ), (E.119)

with Zs-grading 0 and 1, respectively. For the principal series representations, there are
no lowest- or highest-weight states in the representation space, and hence the states need
not be eigenstates of (—)¥. As examples, we refer to the super-Fourier and super-Mellin
bases constructed in section E.4.5.

Next, we define the adjoint wavefunctions for the finite representations, assuming the
same inner product as the one used for the principal series representations. The adjoint
wavefunctions are obtained by demanding orthonormality as:

(m|m) = /dx a0 (mlz, 9) (z, 9m’) = S (E.120)

Denoting the highest-weight state of the spin-j representation by |h.w.); = |j), whose
wavefunction is annihilated by F* (and hence E), we fix the normalization by setting

(z,9h.w.); = z%. (E.121)
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Applying E~ consecutively, we construct the (normalized) monomials:

(x,0|m) = = Tf§)2'i§‘+ m)!xj+m, j—meLZ. (E.122)

This fixes the wavefunctions of the dual states to be

_ (] _m)‘ Jj+m .
(m|z, ) = Tj)!(—am) tm9§(z), j—m€Z, (E.123)

and in particular, we obtain the (normalized) lowest-weight state
(Lw.|z,0); = (—j|z,0) = ¥(x) = §(x, V). (E.124)

The (normalized) fermionic states in the representation are constructed analogously:

(25)! el 1
z,9|m) = — , VT2 jomEeZ+ =, E.125
) = G o G m D) 2 (120)

This fixes the wavefunctions of the dual states to be

(j—m—3)!

@) (—0,)t""25(x), j—meZ+ L (E.126)

(|, ) = ;

Compare the action of the generators on these states to those in appendix E.2.7!

This way of describing the finite-dimensional representations allows a direct generaliza-
tion to the infinite-dimensional lowest-weight representations [77]. As in the bosonic case,
we formally take 7 — —j and replace the factorials by appropriate Pochhammer symbols.

E.5 Left regular representation of OSp(1|2,R)

The most basic representation of any group is the regular representation. For a Lie (su-
per)group, the left regular representation is defined by the following group action on the
group itself:

Flg0) 2 f(g " 90), (E.128)

with f : G — C. The left regular realization can be studied infinitesimally for each one-
parameter subgroup as:

- d
Lif(90) = 5 Fle™q0)]| _, - (£.129)

where the generators are now realized as first-order differential operators satisfying

A

Lig = —Xig. (E.130)

"' The Borel-Weil realization that furnishes a representation of the conventional (rather than the opposite)
0sp(1]2) superalgebra (2.7) has instead

o= —%(&9 _99,), Ft— %maﬂ _ %waz + v, (E.127)

with the bosonic generators the same as in (4.22).
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This definition can be worked out explicitly once a suitable coordinatization of the group
element g is chosen. We choose to work in Gauss-Euler coordinates:

g=e0T ¢ E” g20H o7, BT 20, FF (E.131)

Using the exponentiated commutator identities

[H,e" P =~ Eter BT [P Hl =y E P,

A, 626+F+] — g Fre20 Pt (20 F H| =g F-e®F
[F_,e%EJr] :'y,F"'(ﬂ*E+7 [e”’*E_,F"’] =y F v ET,
e PF et = €2¢HF_, e P pt — F+e2¢H,
B BT =" E (—2y H++?E7), (E.132)

we obtain the left regular representation of the algebra:"

Lp- = —% (99 —0.0,), (E.133)
Ly =-0,, (E.134)

Ly = —%&b +7.0, + %9,897, (E.135)
Lp = —%ﬁ’ (Dp, +6.0,.) — %7, (Og — 0.0, ) — %e,a(z,, (E.136)
Lgt = —e 20, — 7 05+720, +7005 +e90 (8. +6.0,.). (E.137)

Using (E.130), one can check that these differential operators satisfy the algebra:

{ﬁi, IA/]} g=— [XZ, XJ] g = fijkﬁkgy i,j not bOth Odd, (E138)
{LiL;}g={Xi, X;} g = —fielrg,  i,j both odd, (E.139)

which has flipped signs for all anticommutators. We hence again see the appearance of the
opposite algebra, just as for the Borel-Weil realization on the superline R/,

In deriving these relations, we assumed the abstract generators X, satisfy the alge-
bra (2.7). However, for the Borel-Weil realization in terms of differential operators on R,
we work with the opposite algebra where the fermionic generators are Grassmann-valued.
Working instead with this assumption, we can redo the above calculation to find precisely
the same set of generators (E.133)—(E.137).

We can construct the sCasimir operator in this realization as:

A PO A a 1
QZLF—LF+—LF+LF—+§ (E.140)
1 —¢ 1 1 1 1
= 56 (897 — 9,877) (89+ + 9+8 +) - 50,8978¢ — 19,8‘97 + Z8¢ + é (E141)

"2There exists an analogous right regular representation, where care has to be taken in the supergroup
case that those differential operators act from the right [156].
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From the definition (E.130), this operator has the property:

N 1

Qg=Qg, Q=F'F —F Ft+ 3 (E.142)
in the abstract basis of operators satisfying (2.7). For Grassmann-valued generators F'*,
on the other hand (satisfying the opposite algebra), we find instead:

A 1
Qg=Qg, Q=F F'—F'F + 3 (E.143)

where the right-hand side is the sCasimir operator in, e.g., the Borel-Weil realization (E.89).
All of this can be viewed as consistency requirements on our calculations.
The sCasimir operator squares to the Casimir differential operator:

| 1 1
¢ = 132 + 508 + e 290, 0, — ieﬂﬁ (Dg +60.0,)(0p. +06.0,,). (E.144)
The above relations imply that generic representation matrix elements (¢ _|g|i) for
any bra and ket states satisfy the set of coupled differential equations:

Q(p_|glvs) = (v_|Qglv),

: 2
Q- |Qglvs) = (5 +5 ) (w-lglv), (1.145)

relating the two matrix elements (¢ _|g|t;) and (_|Qg|4). On the left-hand side, the
operator 0 is a differential operator acting on the supergroup coordinates ¢,~v ,~,,0 ,6,
hidden in the representation matrix element:

(W_lglhpy) = (WX ' e“’*E_e2¢He7*E+e29*F+|¢+>. (E.146)

On the right-hand side, the quantity Q is evaluated in either the discrete representations
or in the Borel-Weil realization (E.89). In both cases, its square is proportional to the
identity matrix, leading to (E.145).

The equations (E.145) can be decoupled by combining them into the Casimir eigenvalue
equation:

Cly—|glps) = § (G + 1/2)(w—|gli). (E.147)

These results then show that (irreducible) representation matrix elements solve the Casimir
eigenvalue equation. The coupled differential system (E.145) shows that in a supergroup
with a nontrivial sCasimir operator, irrep matrix elements come in pairs related by acting
with this supercharge. Recognizing this structure is important when attempting further
generalizations such as g-deformation, as will be presented elsewhere [112].

E.6 Harmonic analysis

We now solve the Casimir eigenvalue equation explicitly. To find all Casimir eigenfunctions,
following [101], we diagonalize 0, = iv and 0., =i\ as well as

E=(0p +i0v)(0p, +10.)) =¢&, (E.148)
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which has a four-dimensional space of eigenvectors, split into doubly degenerate eigenspaces
for each choice of sign of £&. They are spanned by the following eigenstates:

E=+Vuh: 1—VuNO, Vil —iVAl,
E=—Vuh: 1+ VN0, Vil +iVAe,, (E.149)
where we have chosen to describe the eigenspaces with eigenvectors that are either bosonic

or fermionic.
This transforms the Casimir operator into

s~ 1 1 1
C= Zad% + 400 = e 2uNT ie*wﬁ. (E.150)
Setting f(¢) = e ?/2g(¢), the Casimir equation can be reformulated as a Schrodinger
equation
1., g, 1 6 k2
—Zad) 2= 5V ve g9(¢) = Zg(gf)) (E.151)

describing a nonrelativistic quantum particle of energy k?/4 in a Morse-like potential
1
V() =vie 2 + 5V vie ?. (E.152)

We draw these potentials in figure 10 below. We can shift ¢ — ¢ + log4+/|vA| to map the
potential into a canonical form:

V(g) = 1i6 (sgn(u)\)62¢ + 2\/sgn(y)\)e¢> . (E.153)

The resulting wavefunctions depend on the relative signs of the various terms. For v\ > 0,
we get the delta-normalizable eigenfunctions:

VA0, E=+Vr:  g(¢)=ie ¢/? (K%Hk (2\/ﬁe—¢) ~K_ 14 (2\/ﬁe—¢)),
PAS0, E=—VuAr (@)= (K1 (2VIAe )+ K 1 (2ViAe?)). (B.154)

When ¢ < 0, the Morse potential has a small potential well whose height in the energy

variable k? /4 ranges over (—%, O). No bound states exist in this small potential well.”7

"8The Morse potential in quantum mechanics was introduced as a model for bound states of diatomic
molecules. It is amusing that here, we are in the opposite regime where no bound states exist.
"When vA > 0 and £ < 0, the most generic solution to the differential equation takes the form:

Cre™ (K gy (2V02e™) 4 Ky (2ViAe™))
+ Coe 2 (%m (2Vide ™) =Ty 4 (2\/ﬁe“f’)) , (E.155)

where we look for solutions that are both damped at ¢ — +oo and have value of k = 0 — i/2 in order
1

-+,

— oo and the BesselK when its argument — 0, both functions have to independently become damped.

for the energy variable k?/4 to lie in the range ( 0). Since the Bessell diverges when its argument

Using the asymptotics of Bessell and the series expansion of BesselK, we see that this cannot happen unless
C1 = C2 = 0. Hence no bound states exist in the small potential well.
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Figure 10. Blue: Morse potential V(¢). Red: wavefunction solution for k = 2 with energy value
k?/4 = 1 marked by the brown line. Top left: v\ > 0,& > 0. Top right: vA > 0,£ < 0. Bottom
left: v\ < 0,6 > 0. Bottom right: vA < 0, < 0. When vA < 0, the Morse potential is complex-
valued. We can get intuition by realizing that in the asymptotic regions ¢ — +oco, the potential
becomes real. We hence draw the “envelope” of the Morse potential instead, obtained by replacing
the imaginary coefficient vvA by #v/—vX. For illustrative purposes, we draw fRe(g(¢)) (Im(g(¢))
is qualitatively similar). Notice the unbounded increase of oscillation frequency of these modes as
¢ — —o00, as we would expect from the profile of the potential.

For the case v\ < 0, the Morse potential becomes complex. Delta-normalizable eigen-
functions can still be constructed and take the form:

VA0, E=+VVA: g(¢):€_¢/2(iJ%+ik(2m€_¢>—J7%+ik(2\/—7y)\€_¢>)7
VA0, E=—VIhi g(9)=c (i (2V=0Ae )+ 1y (2v=0Ae?)). (B15T)

All of these wavefunctions have Casimir eigenvalue % + % and fall into the principal series
(continuous) representations; they have positive energies k%/4 in the Schrédinger problem
(figure 10).

For v\ < 0, there exist eigenfunctions that are damped for positive ¢. These take the

form:

9(6) = e/ (idnj41 (2V=1Ae ™) — sgn(€) Jo; (2vV=vAe?)) (E.158)

depending on the sign of £&. These modes form a continuum and correspond to the lowest-
weight representation matrices of the universal cover of OSp(1|2,R). They have Casimir

Alternatively, the Morse potential eigenvalue problem
(=02 + N (e — 2 "))ip(x) = ent)(x) (E.156)

has known bound-state solutions for n = 0,1,..., |[A—1/2]. From (E.153), we see that we are in the limiting
case A = 1/2, and one can check that the only (n = 0) candidate bound-state wavefunction in this limit is
indeed not normalizable.
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Figure 11. Blue: Morse potential. Red: discrete state wavefunction solution Re(g(¢)) for vA < 0
and with the energy variable k?/4 = —1/16.

eigenvalue j(j + 1/2) for j € R*, and appear at negative energies —j(j + 1/2) — 1/16 in
the associated Schrodinger problem (figure 11).

Just as for SL(2,R) discussed in appendix B.2, the actual discretization happens when
demanding single-valuedness as a function of the complex variable z = e~?, restricting to
2j € —N and singling out the correct representations of OSp(1|2,R) (instead of its universal
cover).

It would be interesting to construct these explicitly from the representation theory
perspective, but we do not pursue this problem here.

For v\ > 0, we can summarize the four linearly independent Casimir eigenfunctions as:

(1= Vur.0.) e e e (K (2vde™) = K1y (2v0Ae 7)),
(Vo —ivae.) e ee® (K1 (2Vide ™) = K1y (2ViAe?)),
(1 + VN0 0 ) e e ? (K%—Hk (2\/567(;5) + K_%_H-k, (2\/567(1))) )
(Voo +iva0.) e e e (K (2VAe ™) + Ky (2V0Ae™)) . (B159)

Adding and subtracting, we can equivalently write the following set of linearly independent
eigenfunctions:

(K (20 T) + VIALOK sy, (2V0Ae?)),

e N (VA 0. K1y (2ViAeT) + Ky (2V02e7)
(VU Ky (2V0Ae ) VALK 1y, (2V0Ae 7))
(VALK (2VAT) 4 0K 1y, (2V0Re7) (E.160)

which we will reproduce by an explicit calculation of the representation matrix element in
section E.8 below.
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For the subsemigroup OSp™ (1|2, R), we need to set A — i\ and v — —iv with v, A > 0.
This leads to the Casimir eigenfunctions:

(1= Vor0.0.) e e (K1 (2ViAe™) = K1y (2V0Ae7?)),
(Vob + V0. e e (Ko (2Vide ™) = Ky (2ViAe ™)),
(1+VoA0.0.) e e (K1 (2Vihe ™) + K1y (2V0Ae ™)),
(Voo = VA0 e e (Ko gy (2V0Ae ™) + Ky (2V0Ae?)). (B161)

Within this subsector, we are only probing the top two potentials in figure 10. In particular,
the discrete representations do not appear in the class of Casimir eigenfunctions relevant for
the subsemigroup. This is one way of arguing that only the principal series representations
appear in the conjectured Plancherel decomposition of OSp™(1]2,R) in (4.13).

E.7 Characters

In this section, we compute the characters for all of the irreps of OSp(1]2,R) discussed
up to this point. Our main interest is the principal series representations, since these
characters are used in particular to glue surfaces together in super-Teichmiiller space. For
completeness and consistency, we also discuss the characters for the discrete highest-weight
and the finite-dimensional representations.

E.7.1 Principal series character

We can compute the character in the principal series representations by writing the Borel-
Weil realization of the algebra in terms of a kernel K (z, 9|y, ) as

flad) = [ dydd K (. ly. 9) (3.9, (E.162)
where™
2j
K, dly, V') = sgn(e)leZ;l?szﬂcl + 09)1/2 <Zi i cciigg a y) <m a 19/>'
(E.164)
This corresponds to working in a coordinate basis on the carrier space L?(R!1):
Joro, (2,0) = (x,9]x1,01) = 6(x — 21)d(9 — V1), (E.165)
with orthonormality and completeness relations:
[ ) fo 00 @9 Fanios . 9) = 8 = 22)6(01 — 02) (E.166)
[ w1 dis fo,.0, 0.0 far, (0:9) = 8 = )60 — ). (E.167)

" A fermionic delta function works in much the same way as a bosonic one. In particular, we have
[Java0 - rtanr) = F@) (.163)

for any fermionic quantity f(a). The proof proceeds by writing F(¢) = Fo + 9F1, using 6(9 — f(a)) =
9 — f(a), and taking care of the minus sign obtained by pulling f(«) through the measure.
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In the coordinate basis, the representation matrices have the simple form of (E.164):
REy 00 (9) = K (2, 9]y, &) (E.168)

The character x;(g) in representation j is then computed as

(o) = [ dodd Ko, 9]2,9) (F.169)
|bx—|—d—|—519|2j ax + c+ P —ax — v+ et
:/drpdﬁ (e ated
sgn(e)l/2sgn(bx + d + 69)/2° \ bz + d + 60 bx +d + 00

The superspace integral evaluates to all of the fixed points of the supergroup action on the
superline.

To simplify the calculation, we use the fact that the character is a class function. For
a group element of hyperbolic conjugacy class, we can hence consider

e? 0 0
g=1| € e?| 0 |, (E.170)
0 0 |1

without loss of generality. We focus first on the R sector (4). The parameter € serves as
a regulator since the number of fixed points jumps at ¢ = 0. We assume ¢ > 0 in the
following. For this particular group element, we get:

) @ 9
(o) — —|2j er _
X](g)—/dxd19|e:c+e ] 5<ex+e¢ $>5<e:p+e¢ 19). (E.171)
The bosonic delta function evaluates to

R
6( el ) ~ o(x) o(r — )

ex+e*¢’7$ _e%’—ljL 1—e2¢

(E.172)

giving two fixed points at z = 0 and x = +00, respectively. The fermionic delta function

gives:

9 l—ex—e®
o|l———— -V = —9 E.1
(ex +e ¢ ) €ex + e ? (E.173)

Doing the integrals in (E.171) then gives:

(€ 9)¥(e? 1) (9 (e?—1) . sin(k¢)

R
Ry _ E.174
X;'(9) e2t —1 R —— Zcosh(¢/2)’ (E-174)
where we used j = —1/4 + ik/2 in the last line. An analogous computation for the NS
sector gives instead:
NS . cos(ko)
; =1 E.1

Notice that this character can be decomposed into SL(2,R) continuous irrep characters as:

cosh((4j +1)¢/2)  cosh((2j +1)¢) n cosh(2j¢)
sinh(¢/2) N sinh ¢ sinh¢

(E.176)
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However, this cannot be interpreted as a sum of unitary SL(2, R) principal series characters
since the left-hand side requires j = —1/4 + ik/2, whereas the first and second terms on
the right-hand side require fRe(j) = —1/2 and PRe(j) = 0, respectively. This is an example
of the statement made earlier that the principal series representations cannot be obtained
as a direct sum of those of the SL(2,R) subgroup [162].

For a group element in the elliptic conjugacy class, ¢ is equivalent to an element:

cos@ sinf | O
g=| —sinf cosf | 0 |. (E.177)

0 0 \il

Then for the bosonic delta function in the definition (E.169), the evaluation boils down to
the SL(2,R) calculation. The resulting character vanishes since there are no fixed points on
the real line R of an elliptic SL(2, R) element. However, to make contact with elliptic defects
in JT (super)gravity, one needs a formal analytic continuation of the hyperbolic defects,
by letting ¢ — i¢. We comment on this in the main text. Finally, the parabolic conjugacy
class is of lower dimensionality and will not be important for the coming discussions.

The characters should satisfy an orthonormality relation:

[ e 00 =80 - 7 (E178)

for some measure du(t) = du(¢) on the space of hyperbolic conjugacy class elements, and
where we can restrict to the hyperbolic conjugacy class elements since the elliptic characters
vanish and the parabolic characters are of measure zero. Since the supergroup at hand falls
apart into two connected components, this equality boils down to two explicit relations

[ ) B ond e =6 - ), (E.179)
+o00
/m dp(8) x5 (9) x5 (0)" = 6(5 — 5), (E.180)

where we insert the characters (E.175) and (E.174). In order to prove this relation, we will
need the correct measure on the space of conjugacy class elements du(¢), which follows
from the superanalogue of the Weyl integration formula. We turn to this next, and come
back to the relation (E.179) and its interpretation further on.

E.7.2 Interlude: Weyl integration formula for compact supergroups

We first review the proof of the Weyl integration formula in a physicist’s fashion, and then
generalize it to compact Lie supergroups.
Recall that every group element g is conjugate to an element in a maximal torus
(conjugacy theorem):
g=ctc!, ceG/T, teT, (E.181)

where one considers the left coset g7'. This writing is not unique, with the ambiguity being
parametrized by the Weyl group:

—— ={req/T|ata™ €T, ¥t €T} (E.182)
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To elaborate, suppose we have two ways of writing g = cltlcl_l = catacy 1 Then t1 =
cl_lcgtgcglcl. Set w = 02_101. If we T, then ¢; ~ ¢o and the two ways of writing g are
equivalent in the decomposition of G into G/T x T. If w € G/T, then the above equality
implies w € N(T)/T = W(T), the Weyl group. This is hence the only ambiguity in the
decomposition (E.181).

Since W(T') is a finite group, this just implies that one has a |W|-fold covering of the
group G:

/ dg f(g) = 1 d(cte™b) f(cte™). (E.183)
G \W| Ja/rxT

Next, we need to perform the change of variables (E.181) explicitly and track the Jacobian
in the transformation. The Maurer-Cartan one-form can be written out explicitly as:

g tdg=ct et dete™ —dee™ et ldt 7! (E.184)
= Ad(c) [Ad(t™") — 1] ¢ de + Ad(e)tdt. (E.185)

The metric is written as
ds* = Tr(g tdg ® g~ Ldg). (E.186)

Writing g~ 'dg = 2 i Jij X" da?, we can rewrite it as:
ds* = Tr(g7'dg ® g~ 'dg) = Ji; J'y da’da”, (E.187)

where indices are raised with the Cartan-Killing metric h* = Tr(X*X¥). This immediately
leads to the Haar measure det J A, dz'.

In our case, since we have t~'dt = i tijT"dx? and ¢ tdc = i cijE'dy’ and the
Cartan generators are orthogonal to the other generators (with respect to the Cartan-
Killing metric), the metric is block diagonal. We can extract the Jacobian from this
transformation explicitly as:

J = det Ad(c)g det(Ad(t™") — 1)y, (E.188)

where

det Ad(c)g =1 (E.189)
for a unimodular group. The remaining determinant is evaluated explicitly as:

det(Ad(t™) = 1)/ = [J(e*® —1) = J] -4

« a>0

2
sinhagf)‘ = (—)#roots/2 |A(#)2 ) (E.190)

by exponentiating the algebra to get Ad(t~1)X® = t71X% = e~ ) X and by the sym-
metry a <> —« of the root space. We end up with the Weyl integration formula:

/Gdgf(g) - |&/|/Tdt]A(t)\2 (/G/Tdcf(ctc_1)>. (E.191)

For a Lie supergroup, the only difference is that some of the coordinates are Grassmann
numbers, and hence the Jacobian in the above coordinate transformation gets replaced by a
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super-Jacobian, which is a Berezinian with an absolute value sign included for the bosonic
subtransformation:

Macay le®®@ =1 Taeas 4sinh? ap(t)

Ag(t) = sdet’(Ad(t™H) = 1), =
r(t) = sdet’(Ad(t™) — 1)g [aca,(e2® —1) HaeATm —4sinh? ap(t)’

(E.192)

where we used the common notation Ag and Ap for the bosonic and fermionic roots,
respectively, and the + superscript indicates a restriction to the positive roots of said
statistics.

In the case that the Lie supergroup is disconnected, one has to perform a calculation
as above for each connected component. For the specific case where there exists a sCasimir
operator that distinguishes the connected components from one another (which is the case
for, e.g., OSp(1|2n)), we can work out an explicit formula. For the component of the Lie
supergroup connected to the element (—)" (satisfying sdet(—)" = —1 and ((—)¥)% = 1),
we instead parametrize:

g=c(=)Ftc, (E.193)

in terms of which the preceding argument goes through identically with ¢+ — (—)¥'t and
t=1(=)Fd(—)Ft = t~'dt. The only difference appears in the end:"

[loeay |ea(t) —1] HQGAE 4 sinh? ap(t)
HaEAF (ea(t) + 1) - HaEA; 4COSh2 OéF(t)

Ans(t) = sdet’(Ad(t ™ (—=))—1)g/ = , (E.194)

because Ad(t~H(=)F)X* =t 1(—)F X(=)F't = (—)t-1X% = (=)W= X where

F commutes with all bosonic

€(a) denotes the Zg grading of the root .. This is because (—)
generators but anticommutes with all fermionic ones. We end up with the supergroup Weyl

integration formula:

/Gdgf(g): |W1R|/Tdt [ deBnD)fete™) + |W1NS| /Tdt/G/TchNS(t)f(c(—)Ftc—l).

(E.195)
A comment on the Weyl groups is in order. Assuming the Cartan subalgebra is the same

as the one from the bosonic subalgebra (which happens for, e.g., a basic superalgebra [62]),
the element (—) commutes with the component 7' of the maximal torus connected to the
identity. This means the full maximal torus contains two connected components that are
related by multiplying by (—)f. The above Weyl group is then computed with respect to
this full maximal torus. In this case, one has W = Wyg, but this is not necessarily true

in the more generic case. See figure 12.

E.7.3 Principal series character revisited

For a noncompact supergroup, the decomposition (E.181) is further complicated by the fact
that not every element is conjugate to an element within the same maximal torus. This
corresponds to the different types of conjugacy classes: elliptic, parabolic, and hyperbolic

"6We use the fact that there are an even number of fermionic roots.
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()1

Figure 12. Schematic of the topology of the compact supergroup discussed here, with two con-
nected components related by acting with (—)f. The full maximal torus = {T, (—)F T}.

for OSp(1]2,R). This situation basically entails a further summation over these three types
of classes to allow for a decomposition of any group element:

IRIOEDS

type ¢

1
[ dtl/ de A (t t -1
[|Wi7R| /T am r(6)f(ctic™)

i IWlel /T ats /G/T. de Ans(t) f (c(=) tic™) . (E.196)

This corresponds to the supergroup analogue of the Harish-Chandra formula for reduc-
tive (possibly noncompact) Lie groups. While we have no proof for the general case, for
OSp(1|2,R), we have explicit knowledge of the conjugacy classes and the above formula
manifestly holds for the three types elliptic, parabolic, and hyperbolic.

For OSp(1]2,R), the characters are zero for elliptic holonomy. Since the parabolic
conjugacy class is of measure zero, we focus on the hyperbolic class. In this case, we have
two bosonic roots and two fermionic roots for which:

B(0) _ E2 ar(t) _ £ (E.197)

I

which is found by exponentiating the algebra relations:

[H,E*] = +E*, [H F¥ = %Fi. (E.198)
Hence we find:
626 _ 1Y(1 — 26
Ans(t) = ((6¢+3$¢+ 1)) — 4sinh?(¢)2), (E.199)
26 _ 1) (e=26 _
An(t) = ¢ e 3%6_ — 1];) — dcosh?(6)2). (E.200)

Since the Weyl supergroup for a fixed component (R or NS) has two elements in this case
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(just as for SL(2,R)),”” we can indeed verify the orthonormality relations:
L . 2 NS Ns _ , B o
s / de 4sinh(¢/2)x;"(0)x;7 ()" = 2 / d¢ cos(ke) cos(k'¢) = 2md(k — k'), (E.203)
‘W1R| / do 4 cosh®(6/2) x5 (9) x5} (#)" = 2 / d¢sin(kg) sin(k'¢) = 2r8(k — k). (E.204)

Since ¢ is interpretable as the geodesic length, this means that a complete set of states for
cutting open a surface is obtained by summing over all geodesic lengths. This calculation
is performed in the main text in section 5.2.

E.7.4 Discrete representations and relations

The characters of the finite representations can be calculated easily and are given by:™®

A ng _ sinh (47 + 1)% _ sinh(2j+1)¢ n sinh2j¢

ONS _ 20H __
i (g)=8Tre™" = B.205
X (9) re nz_2je <inh % sinh ¢ sinhg ' ( )
OR F 2¢H L n—2j ne _ Cosh(4j +1)¢  sinh(2j4+1)¢ sinh2j¢
X7 (g) =STr[(—)"e*H ] = Y (=) e = = . ~ehg

n——2; cosh§ sinh ¢ sinh ¢

for hyperbolic holonomy parametrized by ¢. In the last equalities, we made explicit the
decomposition Rjosp = R?L &) R]S.El /2 of the representation in terms of SL(2,R) finite
representations. Note that X?Ns(l) = dim R and that XgR(l) = #B — #F is the Witten
index counting the number of bosonic states minus the number of fermionic states.

In the highest-weight discrete representations, the characters are given by:

NS ST 26 —2j o o—(4i—1)0/2 -
. = re = e = —-——- .
X; o (9) n}_oo 2 sinh & ( )
% —(4j-1)¢/2
_2i n e
XS R(g) = ST[(—)"e* ) = Y (—)" e = —n (E.207)

[
2 cosh 5

n=—oo

If we analytically continue the principal series representation characters (E.175) and (E.174)
to j € N/2, we get the equalities:

S S _NS S
X5 (9) = X[112(9) + X511 72(9) + X5 (9), (E.208)
X5 (9) = —XIE 5(9) = X5 o(9) + P (9), (E.209)
""The normalizer is given by:
e 0 | 0 | 0 —e*| 0
N(TU(-)"T) = 0 e o |, |e?® 0 |0 |, R e=+1p. (E201)
0 0 |+ 0 0 | =%

Modding out by the maximal torus, we get the Weyl group:

1 00 0 -1
W(Tu (=) T) = 0o 10 |, 1 0|0 . (E.202)
L0 01 0 1

"We use the same notation for these characters as in the book [155].
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corresponding to decomposing the representation into its irreducible representation con-
tent.” Adding up these equations and dividing by two, we get the well-known SL(2,R)
relation for the character [155]:

X5U(9) = xS 9) + x5 (9) + X (), (E.210)

corresponding to the insertion of the projection operator %(1 + (—)¥) onto bosonic states.
This corresponds to the decomposition of the Borel-Weil realization at j € N/2 as R]QSP =

RJS-L @ R;Q»'I_“l /20 and the diagonalization of (—)F .

E.8 Whittaker function and Plancherel measure

In this section, we explicitly compute the mixed parabolic representation matrix element.
This serves both as an example, and to introduce a relatively convenient basis in which to
compute the Plancherel measure on the principal series representations of OSp(1|2,R).

The Plancherel measure for SL(2,R) can be found by computing the orthogonality
relation of the representation matrix elements:

/dg RlﬁA(g)*Rlﬁ;X (9) = Ok — K)ol ~ )2 = X) )
p(k)
where p(k) = ktanh wk. This calculation was performed explicitly in the mixed parabolic
basis in [41].
This result is basis-independent. For instance, in the coordinate basis on R, the rep-

(E.211)

resentation matrices satisfy a similar orthogonality relation:

. 0k —K)o(x—2")o(y —y)
/dg R];y(g) Ri’y’(g) - p(k)

Notice that the basis does not need to diagonalize any of the generators in order to make

(E.212)

use of it and derive this orthogonality relation.
For OSp(1]2,R), the representation is defined on the carrier space LZ(JRM), and hence
the coordinate representation calculation of the Plancherel measure would yield:

/dg RE g (9) R 100 (9) = Ok = K)oz x/)é(i(;)y)(s(y —¥ =)

where the “indices” of the representation matrices are 1|1 coordinates x|, y|(, etc. We have

(E.213)

already used this coordinate representation when computing the characters in appendix E.7.
Here, we will write down the representation matrices explicitly within a super-Fourier basis
on R introduced in E.4.5, and perform the above calculation to determine p(k).

E.8.1 Mixed parabolic matrix element

The mixed parabolic mode eigenfunctions are given by the coordinate space expressions

ik
(2, 9| Ay, @) = J% (1 + Of) %eww, (E.214)
(2, v, B) = J%u — B9)eie, (E.215)

" Notice the signs appearing for the R sector. This can happen when rearranging the supertrace of a
larger matrix into supertraces of its blocks.
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We parametrize the group element in Gauss-Euler form:

g= e20-F7 g1 B7 g20H 7. BT 20, F T (E.216)

Writing j = —1/4 + ik/2, we have the group actions

(%M o f)(w,0) = e1/27R10 f(c2 o), (B.217)
v Et _ ~1/2 ik x 9 )

(e o f)(@,¥) = (v +1)" "z +1 f(’y}xﬁ—l"y‘x—l—l , (E.218)
20. F+ _ —1/2+ik r - 9}513)

(@5 o f)(a,0) = [L+ 0.0/ (T T (E.219)

where we have used 14 6.9 = |1 + 6.9|. The action of the non-Cartan group elements on
the states (E.214) and (E.215) gives:*°

1 . ; ik
<$719|67+E+620+F+’)\+’ O[> _ Eez)\fy+ (1 +0.a+ (Oé +;)\¢9+)19) |:\L‘/’5 ez)\/:p7 (E221)
_ _ 1 . .
(v_, Ble®-E" e E7 |z 9) = Eew%u +0 8+ (B +ivh )9)e 2. (E.222)

Inserting a resolution of the identity [ dz dd |z, 9)(x, |, we therefore obtain the represen-
tation matrix element:

(v, Blg| A+, ) (E.223)
L i iy — : (146 B)(a—H')\G‘)) A
— WYt AV = 1 e~ Pxtile”?/x

¢ e Te /dac ((,3+ZVO)< +0.a)+ . NG e
2 i ; 3 nk ' i A 1/4+4ik/2 B
=—e 7N+ 7% cosh <2> (B+ivh ) (146, a)e ™4 (V> K%Hk(% VBN

. —1/4+ik/2
+(140.8)(a+irg, )™/t <A>

v

K%ﬂ‘k(Qe_qﬁ\/ vA)|.

In the first equality, we have used the Cartan action (E.79) and shifted  — e~®x. In the
second equality, we have used the integral formula

o0 , b iyem iy J
/ dp 2~ Letlive Pr—iXe™®/z) _ 9etimi (2) K2j(26_¢‘/7//\), (E.224)
0

which holds for v, A > 0 and which follows from (4.36) after analytic continuation in v, A
via (v, \) = e~ ?(e¥7/2y eFi™/2)) [41]. This matrix element (E.223) has four independent

80The latter expression can be computed, e.g., as the conjugate of (x,¥]e™ ¥~ 20-(F lv—, B). Crucially,
when acting on functions whose top components are fermionic such as (E.214) and (E.215), we have (F~)! =
—1(d9+99,) (in contrast to the situation in section 4.3). This follows from the fact that on such functions,

/da: dd f(z,9) Ovg(z,9) = —/dm d9 (s f(z,9))" g(x, ). (E.220)

On the other hand, the bottom components f(x,0) are still assumed to be bosonic, so that ¥ commutes
with any f(z,9).
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components when expanding in both Grassmann numbers « and 3. Each of these four
components is readily checked to be equivalent to one of the four Casimir eigenfunctions
given in (E.160) above. This indeed shows that this representation matrix element is a
solution to the Casimir eigenvalue equation, as it should be by consistency.

Next, we want to evaluate the orthogonality relation

[ dg - Blglr, )i, (B lgIX, 0 (.225)

for which we require explicit knowledge of the Haar measure on OSp(1|2,R), to which we
turn next.
E.8.2 Interlude: Haar measure on OSp(1|2)

The Haar measure on supergroups is defined analogously as for bosonic groups and can be
determined in a physical manner by considering the Maurer-Cartan metric on the algebra:

1 o
ds® = 3 STr(g 'dg ® g 'dg) = Gyj da'da’. (E.226)
Upon choosing an arbitrary parametrization of the group element g in terms of coordinates
Z1,...,Tn, the volume form is determined as:
w = Vsdet Gdz A--- A dz". (E.227)

For the specific case of OSp(1]2), this calculation can in principle be done. Writing the
Maurer-Cartan one-form as
g g => " Ji; X' dal, (E.228)
i
the resulting transformation matrix J is:

2 —2ve* 0| —2e%0. —2ve*0 0
2y, =¥ 1| —2e2%0. — 2y.e®0. 0,
J=1 0 29 0 e20. 0 (E.229)
20. —2v.e*%9. 0 2v.e? 4+ 27,0 6. 2
0 =220, 0 2e? + 2¢290 6. 0

where the rows are ordered as (H, E™, E~,F*, F~) and the columns as (¢, ,7.,6,0.),

with Berezinian

det A —92¢2¢ 1
det J = = = —¢e?. E.230
T Qet(D - CA1B) T —4e®  2° (E-230)

The matrix J is roughly a square root of the metric, since G;; = %Jkihkéjgj = %Jkika

D : (E.231)

with sdet h** = 2. Hence v/sdet G = sdet J, as given by (E.230) above.

where indices are raised with the Killing form:

1 0 1 0
hR = STr(X*X*) = diag | =, ,
27110 3

S M=
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However, there is a more sophisticated mathematical argument that requires virtually
no calculation once one proves several auxiliary results first. It goes as follows. Consider
the supergroup GL(p|¢, R). The Haar measure for this supergroup is given by:5!

1

_ dz;;, E.232
(sdetx)P+q{> i (E-232)

in terms of the (p + q)? entries z;; of the matrix.?

Restricting to subgroups of GL(p|g,R) is done by imposing a suitable matrix delta
function such as §(¢**Qg — ). This matrix delta function generically contains several
copies of the same component delta function, which we define to be omitted. The Haar
measure on the subgroup is then proportional to

_ 0"y — ) StQg — Q)

(sdet 2)pa /\ Ty (E.233)

Indeed, one readily checks left /right invariance under the subgroup directly.
For the specific case of OSp(1]2), this delta-function constraint reduces to a product
of two bosonic and two fermionic delta functions:

§(ad —be — 68 — 1)5(e? + 2ya — 1)d(ca — ary — Be)d(da — by — de). (E.234)

Using these delta functions to evaluate the d, e,~y, d integrals respectively, we pick up the
additional factor

11 1
il =_ E.2
-~ (a+pa) =5, (E.235)
where we made use of the relation e = 1 — a3/a. The Haar measure becomes:®3
1
W= [dadbdc|dadf]. (E.236)

If one is interested in the parametrization in Gauss-Euler coordinates, then we perform the
coordinate transformation

a=e? b=~e® c=~e?, a=e%, [=ce% (E.237)

to map (e?,v,7,,6,0.) to (a,b, c, o, B) and find Berezinian 1. So we get the Haar measure
in the Gauss-Euler parametrization as:

W= %e¢ [dody dv.|do db], (E.238)

matching the above explicit computation.

81The wedge product notation is slightly formal here. We will adhere to the notation of [91] below.

82The proof mimics the bosonic proof for GL(n,R). We identify the set of matrices with a vector space
RP +q2‘2pq, where each element of the matrix becomes a separate component of the vector. The ordering of
this identification is chosen to go “down” each column before proceeding with the next column on the right.
With this identification, the left action of the group g — gog gets mapped into a corresponding left action
on the vector space © — gox, where the matrix go is now a (p + ¢)% x (p + ¢)? dimensional supermatrix
that is block diagonal with (p + ¢) copies of the original go. This directly leads to the left invariance of the
measure (E.232). Right invariance is checked analogously.

83We have used the notation of [91] to denote the superspace version of a top differential form.
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E.8.3 Orthogonality and Plancherel measure

With this Haar measure (E.238), we can proceed with the orthogonality calculation:

[ dg (0= BlglAssa)i, ., 8lgIX, s o) (E-239)

The evaluation of this integral is quite involved. In the process, we will have need of the
following relations:

+o0 2 ,

/0 dx (K%-Fip(x)K%-‘rip’ () + K%—ip(ﬂf)K%_ip/ (x)) = “osh ﬂpé(p +p), (E.240)
+o0 2 ,

A @(KQHA@Kg4y@)+Bg4A@RgHy@D:=am”mﬂp—p) (E.241)

After inserting the representation matrices (E.223), we first evaluate the v and ~, integrals,
yielding a factor of

426 (v — V)N = X). (E.242)

Next, we get four terms by pairwise multiplication of the two terms in (E.223) for each
matrix element. Doing the 6 and 6, integrals projects onto the 6 6, component of the
integrand, leaving the following remaining part of the integral to be evaluated:

2 k k
- cosh (7;1) cosh <7r22> /dqb e_¢(Idiag + Ieross) (E.243)

where (setting z = 2¢~?v/vA) the contributions from the diagonal terms and the cross

terms arising from the multiplication are®*

1, i(ky—kg)
3t

T = =ivla — )5 - ) (2)

K1+ik1 (x)K%—ikg (z)

3
i\ _%_’_i(kl;kZ)
_ixa— )3 - B) (V) Ky (@)K ) i (@), (E.244)
)\ i(k12—k2)
Teross = i(ivaa’ + NGB + v — ad’BB') (u) K%Jrik:l ((L‘)K%_H-kz (x)
i(k1—ko)

—i(—ivad’ —iABB — v\ + ad/BS3) (j) ’ K%—ikl (x)K%_ikQ (x). (E.245)

Using (E.240), we can see that the I;.ss contribution is proportional to §(ki + k2), which
vanishes under our assumption k; > 0.

84Note that complex conjugation acts on the fermionic parts of the matrix elements as if o, 3 are #maginary
Grassmann numbers, and in order-preserving fashion. The order-preserving convention was important for
our proof of the unitarity of the principal series representations in appendix E.4.3, since conjugation should
leave a super-Mobius transformation invariant.

- 112 —



Finally, using (E.241), we obtain the orthogonality relation:

[ dg (- BlglAss )i, 0 BlgIN, 0",

i(k1—kg)
= —8id(a— ' )d(B - B)d(v —v')6(A — X) cosh (7T2k1> cosh <7T2]€2) (i) ’
% /_ O; Ao e VA [K sy @) (@) + Ky (2K g, (2)] (E.246)
= —4r%is(a — a')6(B — B)0(v — )6 (A — N') cosh? (7T2k1> m, (E.247)

from which we read off the Plancherel measure

1 cosh(wk 1 cosh(mk
p(k) = jﬁ — 72# (E.248)
472 Losh2 (%k) 272 1 + cosh(rk)
This expression holds for the spherical principal series representations (where e = ¢ = 0).
We can readily generalize it to the other principal series representations, getting:

1 cosh(7k)
- 2721 + (—)ccosh(rk)’

p(k) (E.249)
The change is caused by dividing cosh(7k) by sinh? (%’“) instead of cosh? (%k) when € =
—1.

E.8.4 Global structure of the OSp(1|2) group manifold

Finally, we must address the subtlety that the OSp(1]|2) (super)group (super)manifold
consists of multiple patches, and that the Gauss decomposition (4.24) we have used covers
only one of them (this is not an issue for OSp™(1|2)). It is helpful to recall how this works in
the case of ordinary linear groups. In general, GL(N, C) is covered by N! patches (or cells)
where each patch has a Gauss decomposition of the form ¢ = LDUw with L and U lower
and upper triangular unidiagonal matrices, D a diagonal matrix, and w a permutation
matrix. The LDU decomposition for subgroups of GL(N,C) is induced by this one. Our
parametrization (B.18) for g € SL(2,R) assumes w = 1, and has the further limitation that
it requires positive diagonal entries for D = €?? in (B.18). To cover the entire SL(2,R)
group manifold, we must therefore allow w to range over all signed permutation matrices
in the group, leading to four patches given by taking ¢g — gw with w € {1,—1,s,—s} and
s=[25§] [136].

By analogy with the case of SL(2,R), we postulate that the various patches of OSp(1/2)
are given by multiplying the Gauss parametrization in (4.24) on the right by

w0 o -1 0 0 1 0 -1
ol1 | © o1’ o =1 'l =1ol'l1 o ’
(E.250

which comprise the only signed permutation matrices in OSp(1|2). This would imply that

Q=+

eight patches are required to cover the OSp(1|2) group manifold. This group consists of two
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connected components, one containing the identity and one containing minus the identity,
which are distinguished by the sign of the Berezinian. The projective group OSp’(1|2) would
contain only four patches, and its resulting measure would be half that of the full group.®

With this setup in place, we now consider the results for the inner product in different
patches of OSp(1]2). The overall sign of Q cancels out of the computation, so we focus on
the four independent choices of g. In addition to the original (w = 1) patch

e? 7, e? e,
g=1| ve? e P4+yve?—00.|ve®d -0 (E.251)
e?f. N.eb0 + 0. ‘ 1+e%0 0,

(reproduced from (4.25)), we have the w = —1 patch

—e? —v,e? e®0.
g =] —ve? —eP—yye?+00 |ve’d -0 |, (E.252)
—e%0. —v.e?0 — 0. ‘ 1+ ¢e%0 0.
which is given by taking
e = —e®, 0. — —0, (E.253)
in g, the w = s patch
—v.e? e? e®0,
g =| e —y7e?+00. ~ve | ve®d -0 |, (E.254)
%0 — 0. €0 | 1+e600.
which is given by taking
—2¢ - 1 —¢
ey, oy sy + e 00, s 00+, 0 -
/y\ + + + ,y}
(E.255)
in g, and the w = —s patch
0 —-110 v,e? —e? e?0.
gl 1 0|0 |=]e?+yve?—00 —ve?|ve’d -0 |, (E.256)
0 0|1 ~.e®0 + 0. —e%0 | 1+e606.
which is given by taking
~2¢ =0 1 —¢ 0
e > v.e, v — 'y,—i—ei—e—ﬁﬁ,, v, = ——, 0 — 9,4—6—9” 0, — — (E.257)
Vs + + Y+ Y+

85In SL(2,R), the Zs quotient to PSL(2,R) simply folds the single connected component in half, whereas
in OSp(1]2), the Z2 quotient to OSp’(1|2) identifies the two connected components. The difference is that
in SL(2,R), 1 are continuously connected, while in OSp(1|2), they are not.
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in g. We write
W = [ (g o BlgQhs, )i (0, B9 0 (E258)

Let us first derive (1[¢)")| _1 by taking e? — —e? and 6, — —6. in our earlier computation of
(WY1 = (|y'). The effect of taking e? — —e? is that instead of using the transformation
rule

(€ o f)(@,9) = (e70) 2|0 f(e*x, e%0) (E.259)
to compute each matrix element (wavefunction), we should use the action
(2" o f)(x,0) = (—e™ ) V2 —e |k f (200, e?0) = —ie/27 RO f (204 e®9).  (E.260)

Thus each matrix element is modified by an overall phase of —i, but these phases cancel
after conjugation and leave no imprint in the inner product. Taking 6, — —@, flips the
sign of both the integrand and the Haar measure, again having no effect (recall that the
fermionic part of the super-Jacobian (E.59) does not involve an absolute value). Similar
statements apply to (¢|¢')|_s and (¥[¢)")|s, which are related by right multiplication by
the w = —1 element. Finally, an explicit computation along the lines of that for SL(2,RR)
in appendix G of [41] shows that (|¢))|1 = (¥|¢')|s. Therefore, we conclude that

@l = (W) -1 = W)s = (W1Y)]-s. (E.261)

Summing over the different patches leads to an overall factor of eight in the inner product,
and hence the Plancherel measure

1 cosh(wk)
p(k)

T 16721+ cosh(mk)’

(E.262)

F OSp*(1|2,R) representation theory

In this appendix, we collect some useful results on the subsemigroup OSp™(1|2,R). In
particular, we prove that the restriction of the principal series representations of the full
supergroup OSp(1]2,R) to its positive subsemigroup leads to representations that are still
irreducible and unitary. The irreducibility proof is given in section F.1, and the unitarity
proof is given in section F.2. This appendix complements the description in the main text
in section 4.3, where one can find the definition of the principal series representations of
the subsemigroup OSp™(1]2,R).

F.1 Irreducibility

In this subsection, we prove irreducibility of the principal series representations. Because
the only valid basis on the subsemigroup is the hyperbolic basis introduced in E.4.5 in terms
of the super-Mellin transform, the proof differs from the usual one that uses the elliptic
basis. Hence we first redo the proof in the bosonic case for SL(2,R) and SL*(2,R). This
in particular proves irreducibility for the bosonic subsemigroup, a result that had not yet
been shown explicitly. After that, we generalize the construction and prove irreducibility
for the subsupersemigroup as well.
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SL*(2,R) and SL(2,R). For the bosonic system, irreducibility has been proven in the
mathematics literature (see, e.g., section 6.4.2 of [155]) in terms of a carrier space on S*
ind

for which one has a discretized (countably infinite) set of modes e, n € Z, diagonaliz-

cosf sinf

R COSQ), which is the exponentiated Cartan

ing the elliptic one-parameter subgroup (
generator Jy of SU(1,1). Since the representation of an abelian subgroup of the principal
series representation is equivalent to its regular representation, each invariant subspace is
one-dimensional and occurs with multiplicity one. The argument proceeds to show that,
assuming the invariant subspace of the full group SL(2,R) is nonempty, at least one eigen-
mode of the subgroup is present. By acting with the full group, one then shows that it
has to contain all of them, except when 25 € N. In the latter case, the representation
decomposes into a combination of lowest, highest, and finite irreps.

To generalize this argument to the supersymmetric case, it is convenient to redo the
analysis for a carrier space R with continuous modes diagonalizing the hyperbolic generator
H of SL(2,R). To simplify matters, we immediately specialize to the subsemigroup where
we take carrier space RT. We come back to the full group below.

The generator H = —x0, +j is readily diagonalized by the orthonormal Rindler modes

L is1)2
r) = —x F.1
vula) = (F.1)
forming a complete basis on RT, where one explicitly sees that each eigenspace indeed
occurs with multiplicity one. Now assume a single such mode vs(z) is contained within Z.
Acting on this mode with the one-parameter parabolic subgroup generated by E~ = 0,,
we obtain the translated modes

1 .
\/T(x + a)zs—l/Q’ a > 0, (F2)
™

all part of the same invariant subspace. Now, taking a suitable linear combination of these

modes as:56

oo is—1/2, ib—1 _ L(@0)I(1/2 —is —ib) o y/9. 4
/0 da (z + a)* V201 = T(1/2 —is) g1/ 2 b, (F.3)
we obtain another single such mode with s — s+b. Since b € R, we can generate all of the
basis modes and hence we span the entire space. An exception occurs when 1/2—is € —N,
in which case one might not be able to generate all basis functions. This cannot occur
unless is — 1/2 = j —m is an integer, and in particular can only happen if 2j € N, leading
to the same conclusion as above.
The generalization to the full group SL(2,R) is not that hard. In this case, one has a
doubled hyperbolic basis, covering both the x > 0 and the z < 0 regions:

1 15— 1 15—
Vs 1+ (z) = Ew 12 2 >0, Vs —(x) = E(—x) 12 2 <. (F.4)

These functions form a complete and orthonormal basis for any function on the entire real
line, where the x > 0 and x < 0 regions live independent lives. The analysis for the z > 0

86To ensure convergence, one requires a regulator ib — ib + . The integral only converges in a distribu-
tional sense when € = 0, which is sufficient for our purposes.
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region proceeds along precisely the same lines as above. The analysis for the x < 0 region
requires only some small changes. In particular, one transforms a single mode into

(—z+a)*" V2 a>0, (F.5)

5
3

and uses

400 0t a)is—1/2gi—1 _ L(@b)I'(1/2 —is —ib) _pyis—1/2+
/0 da (—z + a) 1/2 ib—1 _ (12— is) (—2) 1/2+ib (F.6)

thus spanning all of the z < 0 hyperbolic eigenmodes.

OSpt(1|2,R) and OSp(1]|2,R). Now let’s generalize the argument to the subsuper-
semigroup OSp™(1|2,R). One might think that the simplest route is to make use of a
doubled basis starting with

¢s,s’(l'7 19) = (l'is_l/Q + 19$i5,_1/2> . (F7)

1
Var
These modes are orthonormal and complete for the bosonic and fermionic components
separately, and hence form a basis for functions on the super half-line (z,1). These modes,
however, do not correspond to eigenmodes of any of the generators, and hence the above
irreducibility argument fails.

A hyperbolic eigenmode takes the form:

Vs oz, V) = (:cis_l/4 + oa?xis_SM) . (F.8)

1
V2r
Since H generates a one-parameter subgroup of OSp(1]2), invariant subspaces of the full
group decompose into invariant subspaces of the subgroup. Since the latter is abelian,
the invariant subspaces are one-dimensional. A new feature, however, is that these sub-
spaces themselves occur more than once, with a continuous multiplicity f@ da. We write
schematically:

Hiny = @Hinv(H)/eadO‘- (Fg)

However, this degeneracy is intuitively only “infinitesimal,” and we expect that due to the
peculiarities of Grassmann numbers, it will not affect the argument.

The argument proceeds along similar lines as the bosonic argument, except that we
have to define what is meant precisely by linear independence in supervector spaces:

A set of supervectors V; is linearly dependent iff there exist ¢; € Axo, not all
zero, such that ), c;V; = 0.

Suppose that the invariant subspace of OSp(1|2) contains a single hyperbolic eigenmode:

Vs oz, V) = (:cis_l/4 + oa?xis_SM) . (F.10)

1
V2T
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We should really understand this as an equivalence class generated by identifying linearly
dependent modes, i.e.,

Ysa(x,0) ~ g o(x,1), c€ A. (F.11)

A specific linearly dependent (equivalent) function is then:

1 .
Ysamol,9) = —o—a 14, (F.12)

One can view the transition from (F.10) to (F.12) as coming from the idea that the soul
of any function is infinitesimal, and thus irrelevant for the argument at hand. Acting with

the one-parameter parabolic subgroup generated by E~ = 0, we get
oo . 0 r@Eb)r'(1/4 —is —ib) ., ;
d is—1/4 ib—1 _ is—1/4+1ib F.13
/O CL(CC+CL) “ F(1/4—ZS) v ’ ( )

so we generate all possible bodies of all hyperbolic eigenmodes. Instead acting with the
one-parameter subgroup generated by F'~, we obtain:

1 . 1 . 1
(=80 is—1/4 _ _~  ds—1/4
\ 2T (@ ) v 2T v V2T

which is a linear combination of our starting mode and a new mode. Acting with £~ on

(is — 1/4)602"/4, (F.14)

the new mode, we can obtain:

+o0 ot e T+ 1/2)T(3/4 —is —ib) 4o a/1e
is—5/4 ib+1/2—1 _ is—3/4+1b F.1
/0 da (x + a) a T(5/4 — is) x ) (F.15)

producing the generic soul parts of all hyperbolic eigenmodes:
S —3/ A+, (F.16)

In particular, this shows that we are able to generate all hyperbolic eigenmodes:

%,6(33719) = \/12771_ (

Hence the invariant subspace spans the entire representation, making the principal series

e L P (F.17)

representation irreducible, as was to be shown.
The generalization to the entire supergroup OSp(1]2,R) is again just a doubling of the
argument with appropriate sign factors. The details are left implicit.

F.2 Unitarity

In this subsection, we write down explicit formulas for the representation matrices using the

only basis available for the subsemigroup: the hyperbolic basis introduced in section E.4.5.

This is a basis on R/ consisting of the super-Mellin eigenmodes. Moreover, we use these

formulas to give a brute-force proof that the resulting matrix elements are unitary.
Within this hyperbolic basis, the explicit matrix elements are computed as

+oo
K o aion0) = (sallse) = [ dwdd bl o, (@ 0)(g - Yoy ,0)) (F.18)
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For each of the five constituent one-parameter subgroups corresponding to the generators

H, F*, F~, E~, and E™", one obtains the respective matrix elements (j = —i + %)
KFT (@) = E027H296(51 — s3)8(a1 — az), (F.19)
T sl (00) = 8(s1 — 52)0(0n — @) + (—ar — (ik —isy — 1/4)) 8(s1 — 52 +17/2)0.,
(s1 —s2)0(a1 — ag) + (a1 — (isa — 1/4)) 0(s1 — s2 —i/2)0.,

s1|oa,s2|an

0
++ (97) 5

} L(is; — iSQ)’yiSQ_iSl,

)o

)0

1 [(—is; +1/4) I'(—is1 +3/4)

K:;thﬂw(’y ) 27 { IF( zs; +1/4) aQF(—iSl +3/4)
L(i

F1/d—ik)  T(is1 +3/4— ik)
KT _ |: 151
s1]aa,s2|an (’7+) 27‘( a1 F(ZSQ T 1/4 _ k) OQI‘(isQ n 3/4 — Zk‘)

] [ (isy — zsl)’ywl is2

Unitarity. These representation matrix elements are unitary. This is a statement that
we proved before for the full group in section E.4.3, but it is necessary to redo the proof for
the subsemigroup. As examples, let’s first consider some of the one-parameter subgroups
separately. For H, we get simply

/ds da 51|0‘175|a(¢)K5—2—|Z2,5|a(¢)* (F.QO)
= /ds da 2527205 (51 — §)6(ay — a)e 2527829655 — 5)(=)d(ag — @)

= 5(81 — 82)5(042 — 051).

For E~, we obtain

++ *
/de@ sl\als\a< )KSQ‘O(Q’Sla(’Y’) (F.Ql)

= ﬁ/dsda/dxdy {_alx—i5—1/4(:p_|_,yi)is—3/4+ax—is1—3/4(l,+77)i51—1/4}
7
x (=) [_a2x—is—1/4($ by )is B gyis /Ay 77)1‘52_1/4]
= 6(s1 — 52)0(a2 — a1).

Finally, for F*, we write

s1loa,s|a sa|aa,s|a

/ dsda K*F  (B)KTH (8. (F.22)
= /ds da[d(s1 — s)0(a1 — a) + (—ara — (ik —is — 1/4)) §(s1 — s +1/2)0.]
X [—0(s2 — s)d(ag — a) + (—aga + (ik —is +1/4)) 6(s2 — s —i/2)6.]
=d(s1 — $2)0(ag — 1),

where extreme care has to be exerted for relative minus signs. Notice the ordering in the
fermionic delta function. The calculations for the remaining two generators can be done
similarly. Since all of these individual objects satisfy the unitarity property, and since one
can use the Gauss-Euler decomposition to write the full matrix element as a composition,

K o orlan(9) = / ds;, - dsi, da, - - dov, (F.23)

s1]ar,s2]az
(Vf)K—H— (¢)K++ i '(7*)K:;ﬂai4752|a2(9*)’

51’2‘0‘1’2’51’3"11'3 513|a137514|0‘z4

K-H— (97)K++

$1|a17511|a11 Sil‘ai1,5i2|ai2
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after pairwise simplification using the unitarity of the constituents, one obtains

/ds do Ks”a1 sh(g)thT;Q’Sla(g)* =0(s1 — s2)d(a2 — aq), (F.24)

which proves that these matrices are unitary, much like what happens in the bosonic
case (B.46).

Explicit expressions. For the full matrix element, we can do the resulting integrals
explicitly. This leads to some suggestive results, as we now show. Writing j = —1/4+1ik/2,
n = —isg + 1k, and m = —is; + ik, we find the full representation matrix for the bosonic
subgroup (i.e., the case § =60, = 0):

Rs1\o¢1 s2|ag (9B) = algm n(gB) + O‘Zgj 1/2( B); (F.25)
where we introduced the notation
; 1 9 D(=j —m)T(=j +m) ( , . : 1 )
J = — 4"y sinh? Fi{—j—m,—j—n;-2j;——— |,
Gimn(98) = 57 ¢ T(-2j) oFy ( —j j T e
(F.26)
and where sinh? ¢ = 7, €2?. The full representation matrix element is then:
RY s sslaz(9) = 0193 1 (98) + a2Gh 1% (98) (F.27)

+0.((m=1/2)02,_, 5 ,(98) — 102G {7, (98))
+0. (—a100G?, _y o(98) = (25 +m)G 7 5 (98)
400 (~m=1/20as0), , o)+ 2+l (om) )

Just as we noticed in the bosonic case in appendix B.3, it is intriguing to note that all of
these components can be interpreted as global superconformal blocks [77, 163, 164].
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