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1 Introduction and overview

The simplicity of the gravitational path integral in low dimensions, particularly in Jackiw-

Teitelboim (JT) gravity [1–6], has yielded important insights such as the paradigm of

ensemble duality for effective theories of gravity [7–15], an improved understanding of topo-

logical effects on boundary correlation functions [16–19], an explicit calculational scheme

for local quantum gravitational observables [20–22], and concrete applications of new grav-

itational entropy formulas (reviewed in [23]). The tractability of lower-dimensional models

of gravity stems from the fact that such theories are perturbatively equivalent to topo-

logical gauge theories. In the particular case of JT gravity or its N = 1 supersymmetric

counterpart, this gauge theory is a BF model based on the bosonic group SL(2,R) [24–27]

or the supergroup OSp(1|2,R) [28]. Similar constructions (e.g., [29–33]) have elucidated

many aspects of 3d gravity over the years. As recent progress has demonstrated, a careful
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understanding of the gauge theory description has much to teach us about the gravitational

path integral.

Nonetheless, there exist profound structural differences between gravity and ordinary

gauge theory that must be reconciled to effectively bring gauge-theoretic tools to bear on

problems in holography and nonperturbative quantum gravity. These differences have been

well-appreciated in the context of 3d gravity [34]. We recapitulate them here and adapt the

discussion to 2d. Namely, to upgrade gauge theory to gravity, one must do the following:

I. Restrict the integration space to smooth metrics only. The gauge theory

formulation of quantum gravity, whenever it exists, admits gauge field configura-

tions that correspond to singular geometries. The canonical example is the classical

solution A = 0 in 3d Chern-Simons gravity, which corresponds to a non-invertible

metric. Hence the gauge formulation contains “too much” information compared

to gravity, which raises the question of how to naturally exclude these extraneous

configurations. Luckily, in 2d SL(2,R) BF theory, this problem can be formulated

very precisely. The path integral of this theory computes the volume of the moduli

space of flat SL(2,R) connections (F = 0) on any given Riemann surface Σ, which

we denote by M(G,Σ) for G = SL(2,R). This moduli space has a connected “hy-

perbolic” component, called Teichmüller space T (Σ) ⊂ M(G,Σ), that parametrizes

smooth geometries.1 The main technical question that remains is how to accomplish

the restriction to Teichmüller space within a concrete amplitude calculation.

II. Quotient by large diffeomorphisms. Gravity contains large diffeomorphisms

that are invisible from the gauge theory perspective. Again, we can be very explicit

in 2d: Teichmüller space T (Σ) contains surfaces that are considered equivalent in

gravity by virtue of large diffeomorphisms. The prototypical example of such diffeo-

morphisms is the modular group SL(2,Z) acting on the modulus of a torus surface.

The generalization to any Riemann surface is that there exists a discrete group of

large diffeomorphisms, the mapping class group MCG(Σ), by which we must quo-

tient the space of smooth geometries (modulo small diffeomorphisms) to reach the

true integration space of inequivalent geometries: the moduli space of 2d Riemann

surfaces M(Σ) ' T (Σ)/MCG(Σ).

III. Sum over topologies. The gravitational path integral naturally contains a summa-

tion over different topologies consistent with the prescribed boundaries. By contrast,

gauge theory is defined on a fixed spacetime manifold and does not automatically

include any such summation. In 2d, we can again be explicit. For a 2d Riemann

1More precisely, the moduli space of flat PSL(2,R) connections on a Riemann surface Σ of genus g and

n boundaries with −χ(Σ) = 2g + n − 2 > 0 has 1 − 2χ(Σ) connected components labeled by all integer

values of the Euler class e satisfying |e| ≤ −χ(Σ) [35] (when n > 0, one assumes hyperbolic monodromies

for each boundary component, and e refers to the corresponding relative Euler class). The components with

|e| = −χ(Σ) correspond to smooth hyperbolic metrics. The other components contain hyperbolic metrics

with isolated conical singularities whose angular excesses are multiples of 2π [36].
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surface Σ, the Gauss-Bonnet theorem states that

χ(Σ) = 2− 2g − n =
1

4π

∫

Σ
R+

1

2π

∮

∂Σ
K, (1.1)

where g is the genus, n is the number of boundaries, and K is the trace of the extrinsic

curvature on each of the boundaries. For a given number of boundaries n, restricting

to a fixed genus g hence defines a constrained gravitational path integral in which

the metric tensor is required to satisfy (1.1). While the resulting constrained path

integral is not ill-defined, it may fail to capture important physical effects (such as

the downward part of the Page curve [37, 38], or the late-time ramp and plateau

in boundary correlation functions [7, 16, 17]). To accommodate such effects within

the gauge formulation, a summation over different topologies must be introduced by

hand. This issue is an inherent limitation of any gauge theory description, and we

will not concern ourselves with it further in this work.

Our motivation in this work is to explore precisely those global aspects of gauge theory

that manifest themselves in a gravitational description. In particular, our goal is to elabo-

rate on the structural link between the geometry of 2d gravity and the algebraic framework

of group theory and representation theory. Within JT gravity, which has played a central

role in recent advances due to its exact solubility, the questions that we ask include: what

is the detailed structure of the JT gravity path integral? Can one compute refined observ-

ables (correlation functions) beyond those of [7]? Our specific focus is on understanding a

single feature — supersymmetry — that leads to richer physics and improved UV behavior,

and that may be present in top-down constructions of such models.

Supersymmetry aside, the sl(2,R) BF theory presentation of ordinary JT gravity pro-

vides a convenient language for computing diffeomorphism-invariant observables (boundary

correlation functions). While the natural home of gauge theory is a fixed topology (par-

ticularly the disk), disk correlators are the foundation of correlators in arbitrary genus.

In gauge theory language, the known diagrammatic rules for disk amplitudes [39] take as

their basic ingredient a certain momentum space integration measure dµ(k) (or density of

states, via E ∼ k2). It has been argued that this integration measure follows directly from

the Plancherel measure on the space of continuous irreps of a modification of SL(2,R),

namely the semigroup SL+(2,R) [40, 41].

In this paper, we apply these lessons to supergravity. We undertake a detailed study of

the OSp(1|2) (or osp(1|2)) supergroup gauge theory formulation of N = 1 JT supergravity,

emphasizing the OSp+(1|2) supersemigroup structure. Both the exact solution for the

partition function [5, 42, 43] and the dual matrix ensemble of JT gravity [7] have been

generalized to JT supergravity [44]. In this paper, we likewise generalize both the exact

group-theoretic computation of correlators and the semigroup structure in JT gravity [40,

41] to JT supergravity. In past work, the boundary correlators have been obtained for

N = 1 JT supergravity by exploiting its relation to 2d Liouville CFT [39, 45, 46]. Other

approaches, possibly also amenable to supersymmetrization, include direct 1d path integral

calculations [47–49] as well as methods relating JT dynamics to that of a particle on AdS2

in an infinite magnetic field and the universal cover of SL(2,R) [50–52]. As compared to
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these other approaches, the conceptual unity and simplicity of the group-theoretic approach

allows for a clean generalization not only to JT supergravity, but also potentially to other

theories of dilaton gravity. We return to this perspective in the concluding section.

There are both conceptual and technical reasons for tackling the problem of JT super-

gravity. Conceptually, adding supersymmetry allows us to address questions such as: how

robust is the semigroup structure of 2d dilaton gravity? Does it persist in more complicated

theories of gravity? Moreover, there exist further links to be made with minimal string

theory and Liouville gravity, first suggested for the disk partition function in [7, 53] and

worked out for several amplitudes in [54, 55]. Taking the point of view that 2d string the-

ory gives a more microscopic definition of such models (in which the worldsheet expansion

becomes a universe expansion), JT supergravity is a natural setting for using tools from

minimal (super)string theory to understand quantum gravity [54–60]. On the technical

side, we develop various elements of supergroup representation theory from scratch, many

of which may be of independent interest.

A more detailed summary of our results is as follows.

In section 2, we begin by examining the path integral of JT supergravity in BF lan-

guage and deriving the super-Schwarzian quantum mechanics that governs its boundary

dynamics. We further classify the various possible super-Schwarzian models in terms of

coadjoint orbits of the N = 1 super-Virasoro algebra.

In section 3, we enrich this correspondence with operator insertions. We demonstrate

that the first-order formulation of N = 1 JT supergravity with boundary-anchored grav-

itational Wilson line insertions is equivalent to the N = 1 super-Schwarzian theory with

bilocal operator insertions:

∫
[DB] [DA]Wj(τ1, τ2)IJ · · · e−SN =1

JT =

∫
[DF ] [Dη]Oh(τ1, θ1, τ2, θ2)m · · · e−SN =1

Sch . (1.2)

The bulk action SN =1
JT is a functional of a dilaton supermultiplet B and a superconnection

A, both valued in osp(1|2), while the boundary action SN =1
Sch is a functional of a bosonic

reparametrization mode F (τ) and its superpartner η(τ). (τ, θ) are 1d superspace coordi-

nates. The boundary-anchored Wilson line is given by

Wj(τ1, τ2) = P exp

[
−
∫ τ2

τ1

Rj(A)

]
. (1.3)

It forms a dimR × dimR matrix, from which we pick a certain element IJ . The super-

Schwarzian bilocal operator takes the form

Oh(τ1, θ1, τ2, θ2) =

(
Dθ′

1Dθ
′
2

τ ′
1 − τ ′

2 − θ′
1θ

′
2

)2h

, D ≡ ∂θ + θ∂τ , (1.4)

where (τ ′, θ′) is a superconformal transformation of (τ, θ) dictated by F, η. It contains four

components m = 1, 2, 3, 4 when expanded in the Grassmann variables θ1,2. Each of these

four components can be uniquely mapped to a pair of indices IJ on the left-hand side. The

representation j of the Wilson line is related to the weight h of the bilocal operator on the

right-hand side by j = −h.
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In section 4, we show that the full structure of JT supergravity amplitudes suggests

that the aforementioned restriction to smooth geometries can be naturally implemented by

restricting the full group to its positive subsemigroup. We provide arguments in favor of this

scheme, and then explicitly compute the measure on the set of continuous representations of

the subsemigroup and demonstrate agreement with the density of states of the gravitational

system. This result shows how gravity and gauge theory match at lowest genus g = 0, where

only item I of the complications listed above is present.

In section 5, we present a few physical applications of our results by explicitly comput-

ing several gravitational amplitudes: the boundary two-point function, the Wheeler-DeWitt

wavefunction, and defect insertions. Using these defect insertions, one can glue surfaces

together to reach different topologies. It is here that item II in the above list of compli-

cations makes an appearance. As a last example, we compute the late-time complexity

growth in this model and exhibit a similar physical result as in the bosonic case: the linear

growth in complexity persists even after classical gravity ceases to hold.

In section 6, we conclude by commenting on several outstanding problems and intrigu-

ing extensions whose full treatment is postponed to future work.

In the interest of conveying our main ideas as clearly as possible, many of their technical

foundations are left to extensive appendices. Appendix A summarizes our conventions for

supernumbers. Appendix B serves both to review bosonic JT gravity and to present some

new results using techniques that we apply also to JT supergravity. Appendix C reviews the

relation between the first- and second-order formulations of JT supergravity. Appendix D

provides some further details on coadjoint orbits of the super-Virasoro group and on super-

Schwarzian bilocal operators. The results of appendix E form the technical core of this

paper. Here, we aim to provide a comprehensive overview of the representation theory of

OSp(1|2), which could be of interest on its own to some readers. In particular, we compute

the Plancherel measure for OSp(1|2) in section E.8. Finally, appendix F provides some

technical proofs for the positive subsemigroup of OSp(1|2).

2 Super-Schwarzian and defect classification

In this section, we discuss the kinematics of JT supergravity as a supergroup BF theory,

focusing in particular on the boundary dynamics. Specifically, we show that the boundary

action of a constrained particle on the OSp(1|2) group manifold reduces to theN = 1 super-

Schwarzian. Moreover, we show how to classify defect insertions in terms of monodromies

of the super-Schwarzian system.

The procedure is to implement the Brown-Henneaux gravitational boundary condi-

tions [61] on the BF model in the bulk. Solving them boils down to solving the supersym-

metric Hill’s equation, which can be done in terms of reparametrization functions of the

supercircle S1|1.
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2.1 Gravitational boundary action

The first-order action of N = 1 JT supergravity in Euclidean signature can be written as

a BF theory with gauge algebra osp(1|2):2

SN =1
JT =

∫

M
STr(BF). (2.1)

We have introduced the osp(1|2)-valued fields

B = φaJa − φJ2 + λαQα, A = eaJa + ωJ2 + ψαQα, (2.2)

where B is a zero-form and A is a one-form connection with field strength F = dA+A∧A.

We have implicitly chosen an imaginary contour of integration for B in the path integral.

The component fields consist of scalar Lagrange multipliers φa, a dilaton φ, a dilatino λα,

the zweibein ea, the spin connection ω, and the gravitino ψα. The indices a ∈ {0, 1} and

α ∈ {+,−} denote doublets of so(2), while the bosonic components of B and the bosonic

components of A each combine into sl(2,R) triplets. The osp(1|2) generators J0,1,2 and

Q± are described below.

The supergroup OSp(1|2) is defined as the subgroup of GL(1|2,R) matrices

g =




a b α

c d γ

β δ e


 (2.3)

consisting of five bosonic variables a, b, c, d, e and four fermionic (Grassmann) variables

α, β, γ, δ that satisfy the relations

α = ±(aδ − bβ), γ = ±(cδ − dβ), e = ±(1 + βδ), ad− bc = 1 + δβ, (2.4)

for either choice of sign ±. Restricting to a single one of the signs leads to the projective

supergroup denoted by OSp′(1|2) = OSp(1|2)/Z2 in [44]. See appendix E for details.

We denote the Cartan-Weyl generators in the above defining representation by [62]

H =




1/2 0 0

0 −1/2 0

0 0 0


 , E− =




0 0 0

1 0 0

0 0 0


 , E+ =




0 1 0

0 0 0

0 0 0


 , (2.5)

F− =




0 0 0

0 0 −1/2

1/2 0 0


 , F+ =




0 0 1/2

0 0 0

0 1/2 0


 , (2.6)

2The supertrace of a supermatrix M =

[
A B

C D

]
is defined as STrM = TrA− TrD.
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which satisfy the osp(1|2) Lie superalgebra:

[H,E±] = ±E±, [E+, E−] = 2H,

[H,F±] = ±1

2
F±, [E±, F∓] = −F±, (2.7)

{F+, F−} =
1

2
H, {F±, F±} = ±1

2
E±.

In (2.2), we have defined the following linear combinations of osp(1|2) generators:

J0 = −H, J1 =
1

2
(E− + E+), J2 =

1

2
(E− − E+), Q− = −F−, Q+ = F+. (2.8)

Therefore, in matrix form, we have:

B =
1

2




−φ0 φ1 + φ λ+

φ1 − φ φ0 λ−

−λ− λ+ 0


 , A =

1

2




−e0 e1 − ω ψ+

e1 + ω e0 ψ−

−ψ− ψ+ 0


 . (2.9)

We summarize the details of the derivation of (2.1) from superspace and the relation to

the metric formulation in appendix C.

For a manifold with boundary, the BF action (2.1) gets augmented by a boundary

term:

SN =1
JT =

∫

M
STr(BF)− 1

2

∮

∂M
dτ STr(BAτ ), (2.10)

where the Euclidean coordinate τ is tangent to the boundary ∂M. It will play the role of

time coordinate further on. We choose the mixed boundary condition

B|∂M = Aτ |∂M . (2.11)

The above boundary action and condition can be found in several ways [45]. One is

to simply demand a good variational principle for the BF action on M. Another is to

follow the usual relation between Chern-Simons theory in 3d and the boundary WZW

action. Dimensionally reducing that setup automatically generates this boundary term in

the action, along with this specific boundary condition.

Starting with the action (2.10), the solution of the gravitational path integral proceeds

along familiar lines. We first path-integrate over the B fields, which figure as Lagrange mul-

tipliers in the action. The resulting dynamics then reduces to a pure boundary contribution

from flat connections:
∫

F=0
[DAτ ] exp

[
1

2

∮

∂M
dτ STr(A2

τ )

]
. (2.12)

Within the first-order formulation of an OSp(1|2) gauge connection, one can impose the

gravitational (or Brown-Henneaux) boundary conditions as [63]:

Aτ |∂M =




0 TB(τ) TF(τ)

1 0 0

0 TF(τ) 0


 , (2.13)
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where the boundary degrees of freedom are parametrized by a bosonic function TB(τ), in-

terpretable as the energy, and a fermionic function TF(τ), interpretable as the supercharge.

This leads to the boundary action

1

2

∮

∂M
dτ STr(A2

τ ) =

∮

∂M
dτ TB(τ). (2.14)

The components TB(τ) and TF(τ) can be packaged into a single fermionic superfield

V(τ, θ) ≡ TF(τ) + θTB(τ), (2.15)

where we introduced the Grassmann coordinate θ as the fermionic partner of the bosonic

boundary coordinate τ . It is a general fact that we can write any fermionic superfield

V(τ, θ) as a super-Schwarzian derivative of two new superfields τ ′(τ, θ) and θ′(τ, θ):

V(τ, θ) = −D
4θ′

Dθ′ +
2D3θ′D2θ′

(Dθ′)2
≡ −Sch(τ ′, θ′; τ, θ), (2.16)

where τ ′ is bosonic and θ′ is fermionic, satisfying Dτ ′ = θ′Dθ′. This constraint can further

be solved explicitly as

τ ′ = F (τ + θη(τ)), θ′ =
√
∂τF (τ)

(
θ + η(τ) +

1

2
θη(τ)∂τη(τ)

)
, (2.17)

in terms of a bosonic function F (τ) and its fermionic superpartner η(τ). In terms of these

functions, the stress tensor and its superpartner can be written as

TB(τ) =
1

2

(
{F, τ}+ η∂3

τη + 3∂τη∂
2
τη − {F, τ}η∂τη

)
, (2.18)

TF(τ) = ∂2
τη +

1

2
η∂τη∂

2
τη +

1

2
η{F, τ}. (2.19)

We view this change of variables as a field redefinition in the path integral:

(TB, TF) → (F, η). (2.20)

The new fields (F, η) are not in one-to-one correspondence with the components of the

stress tensor, since the solutions to the super-Schwarzian differential equation (2.16) are

subject to a super-Möbius ambiguity:

τ ′ → aτ ′ − c− βθ′

−bτ ′ + d+ δθ′ , θ′ → ατ ′ − γ + eθ′

−bτ ′ + d+ δθ′ , (2.21)

where the entries are taken from the projective group OSp′(1|2,R) = OSp(1|2,R)/Z2 (2.3).

This means that one should identify field configurations differing only by such transforma-

tions.

We consider the resulting model on a supercircle S1|1 with TB(τ + β) = TB(τ) and

TF(τ + β) = ±TF(τ). In the end, the path integral (2.12) becomes

Z =

∫

SDiffN =1(S1|1)/H
[DF ] [Dη] e−SN =1

Sch
[F,η], SN =1

Sch = −
∮

∂M
dτ TB(τ), (2.22)

– 8 –
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where the Lagrangian is expressed in terms of the fields F (τ) and η(τ) (the “superreparam-

etrization modes”) by substituting (2.18) for TB(τ). The stabilizer H is the subgroup of

OSp(1|2,R) (2.21) that respects the periodicity constraints of θ′ and τ ′, as we will work out

more explicitly below. It contains information on the precise functional form of F ◦H f in

terms of a new variable f(τ), as well as η(τ). These models are all N = 1 super-Schwarzian

theories that have different geometric interpretations and uses.

2.2 Super-Hill’s equation, monodromies, and defects

For the sake of analyzing the different possible super-Schwarzian models in detail, we

reformulate the gravitational boundary conditions in terms of the supersymmetric Hill’s

equation.3 By the flatness condition on any off-shell bulk connection, we have

Aτ |∂M = g∂τg
−1, (2.23)

and we can rewrite the gravitational boundary conditions in terms of constraints on the

boundary group element g ∈ OSp(1|2). This group element g is generically multi-valued

and can have nontrivial monodromy when encircling the boundary circle; the gauge con-

nection Aτ , however, has fixed periodicity constraints. Depending on the sector (NS or

R), we have:

Aτ (τ + β)|∂M =





(−)F Aτ (τ)|∂M (−)F (NS),

Aτ (τ)|∂M (R),
(2.24)

where the presence of the “sCasimir” operator (−)F ≡ diag(+1,+1,−1) ensures that the

fermionic pieces (i.e., TF(τ) in (2.13)) flip sign upon traversing the boundary circle.

Parametrizing

g−1 =




A B Aδ −Bβ
C D Cδ −Dβ
β δ 1 + βδ


 , g =




D −B −δ
−C A β

Cδ −Dβ Bβ −Aδ 1 + βδ


 , (2.25)

the boundary condition (2.13) is written in full as




A B Aδ −Bβ
C D Cδ −Dβ
β δ 1 + βδ







0 TB TF

1 0 0

0 TF 0


 =




A′ B′ (Aδ −Bβ)′

C ′ D′ (Cδ −Dβ)′

β′ δ′ (1 + βδ)′


 , (2.26)

leading to the coupled differential equations

B′ = ATB + (Aδ −Bβ)TF, A′ = B, (Aδ −Bβ)′ = ATF,

D′ = CTB + (Cδ −Dβ)TF, C ′ = D, (Cδ −Dβ)′ = CTF, (2.27)

δ′ = βTB + (1 + βδ)TF, β′ = δ, (βδ)′ = βTF.

3Some aspects of this analysis appeared in [64]. We will have need of a more extensive treatment to

prepare for the calculation of boundary-anchored Wilson lines in section 3.
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We would like to recast these equations as the supersymmetric Hill’s equation, which takes

the form

(D3 − V)ψ = 0, (2.28)

with D ≡ ∂θ + θ∂τ and V defined in (2.15). Writing ψ(τ, θ) = ψbot(τ) + θψtop(τ) (where

we make no assumptions about the Grassmann parity of ψ), this equation becomes the

coupled system

ψ′′
bot − TB(τ)ψbot + TF(τ)ψtop = 0, ψ′

top − TF(τ)ψbot = 0 (2.29)

for the bottom and top components of ψ.

The general solution to the supersymmetric Hill’s equation (2.28) is known. Writing

the superfield V as a super-Schwarzian derivative as before,

V(τ, θ) = −D
4α

Dα
+

2D3αD2α

(Dα)2
= −Sch(A,α; τ, θ), (2.30)

it can be established that up to super-Möbius transformations, the solutions of (2.28)

consist of two bosonic superfields and one fermionic superfield [65]:

ψ1 = (Dα)−1, ψ2 = A(Dα)−1, ψ3 = −α(Dα)−1, (2.31)

written in terms of a bosonic superfield A(τ, θ) and a fermionic superfield α(τ, θ) constrained

by DA = αDα. Writing each solution as ψi ≡ ψi,bot + θψi,top,4 one can check (using, for

instance, D2 = ∂τ ) that the three solutions (2.31) satisfy the interrelations

ψ1∂τψ2 − ψ2∂τψ1 = 1− ψ3∂τψ3, (2.36)

ψ1,bot∂τψ3,bot − ∂τψ1,botψ3,bot = ψ1,top, (2.37)

ψ2,bot∂τψ3,bot − ∂τψ2,botψ3,bot = ψ2,top, (2.38)

1 + ψ3,bot∂τψ3,bot = −ψ3,top. (2.39)

These relations form the analogue of the Wronskian condition for the OSp(1|2) system.

Comparing the structure of the equations (2.29) to the equations (2.27), we identify

the boundary group element as

g−1 =




ψ1,bot ψ′
1,bot ψ1,top

ψ2,bot ψ′
2,bot ψ2,top

ψ3,bot ψ′
3,bot −ψ3,top


 , g =




ψ′
2,bot −ψ′

1,bot −ψ′
3,bot

−ψ2,bot ψ1,bot ψ3,bot

ψ2,top −ψ1,top −ψ3,top


 , (2.40)

4Writing α = αF + θαB and A = AB + θAF, we have explicitly that

ψ1,bot =
1

αB

, ψ1,top = −α′
F

α2
B

, (2.32)

ψ2,bot =
AB

αB

, ψ2,top =
AF

αB

− ABα
′
F

α2
B

, (2.33)

ψ3,bot = −αF

αB

, ψ3,top = −1 − αFα
′
F

α2
B

, (2.34)

as well as

A′
B = α2

B − αFα
′
F, AF = αBαF. (2.35)
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where the relations (2.36)–(2.39) indeed implement the OSp(1|2) (more precisely,

OSp′(1|2)) restrictions (2.4) on the supermatrix. The most general solution of the su-

persymmetric Hill’s equation, written in matrix form as

g−1




0 TB TF

1 0 0

0 TF 0


 = ∂τg

−1, (2.41)

is obtained by taking g−1 → S−1g−1 for arbitrary S−1 ∈ OSp(1|2), or equivalently,




ψ1

ψ2

ψ3


→ S−1




ψ1

ψ2

ψ3


 , S−1 =




d −b −δ
−c a β

γ −α e


 ∈ OSp(1|2). (2.42)

This implements a super-Möbius transformation on A(τ, θ) = ψ2/ψ1 and α(τ, θ) = −ψ3/ψ1

of precisely the form (2.21). The superfield V in (2.28) and (2.30) is invariant under such

transformations.

The classification of solutions to the supersymmetric Hill’s equation (i.e., of equivalence

classes of solutions related by super-Möbius transformations) leads naturally to a classifi-

cation of defects in JT supergravity. Such a classification is equivalent to the classification

of conjugacy classes of OSp(1|2).

Depending on TB and TF, the solutions of the supersymmetric Hill’s equation can have

nontrivial monodromies:

g(τ + β) =





(−)F g(τ)M (NS),

g(τ)M (R).
(2.43)

Within the NS sector, the factor of (−)F ensures that Aτ |∂M has the correct periodicity

as in (2.24).5

By the equivalence relation

g ∼ gS, S ∈ OSp(1|2), (2.44)

the monodromies are parametrized by conjugacy classes of group elements:

M ∼ SMS−1. (2.45)

Conjugacy classes of OSp(1|2) are discussed in [44], particularly section 3.5.4 and ap-

pendix A.3. Each conjugacy class can be thought of as associated with a spin structure,

corresponding to the holonomy of a flat OSp(1|2) connection around a circle with spin

structure of Neveu-Schwarz (NS; antiperiodic) or Ramond (R; periodic) type. Working

5It is instructive to work out the simplest example, in which g(τ + β) = (−)F g(τ)(−)F . This leads to

the periodicity conditions where ψ1,2,bot and ψ3,top are periodic and the other components are antiperiodic.

These are indeed solutions to (2.29) with TB(τ + β) = TB(τ) and TF(τ + β) = −TF(τ).
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within OSp′(1|2) (OSp(1|2) modulo the action of the scalar matrices ±1), where all ele-

ments have Berezinian +1,6 the NS-type conjugacy classes are obtained by multiplying the

R-type conjugacy classes by diag(+1,+1,−1) (which commutes with purely bosonic group

elements).7 The different monodromies M and their stabilizers H are shown in the first

two columns of table 1.

Before providing a more in-depth discussion of these different classes, we first transfer

this structure of the monodromy matrix to the actual fields (F, η) within the group element

g−1. In all cases shown in table 1, the (inverse) monodromy matrix is bosonic block

diagonal, and it acts as:

M−1g−1(τ) =




M11 M12 0

M21 M22 0

0 0 M33







ψ1,bot ψ′
1,bot ψ1,top

ψ2,bot ψ′
2,bot ψ2,top

ψ3,bot ψ′
3,bot −ψ3,top


 (2.47)

where


 M11 M12

M21 M22


 is an (inverse) SL(2,R) monodromy matrix and M33 = ±1. In light

of (2.47), (2.43) can be decomposed into the component relations8

AB(τ + β) =
M21 +M22AB(τ)

M11 +M12AB(τ)
, AF(τ + β) =

AF(τ)

(M11 +M12AB(τ))2
, (2.48)

αF(τ + β) =
M33αF(τ)

M11 +M12AB(τ)
, αB(τ + β) =

M33αB(τ)

M11 +M12AB(τ)
. (2.49)

These monodromy relations are indeed realized by the reparametrization solution9

τ ′(τ, θ) ≡ A(τ, θ) = F (τ + θη(τ)), (2.50)

θ′(τ, θ) ≡ α(τ, θ) =
√
∂τF (τ)

(
θ + η(τ) +

1

2
θη(τ)∂τη(τ)

)
(2.51)

(compare to (2.17)) upon writing

F (τ) =





tan π
β Θf(τ) (elliptic),

tanh π
β Λf(τ) (hyperbolic),

f(τ + β) = f(τ) + β, η(τ + β) = ±η(τ), (2.52)

6The Berezinian (superdeterminant) is defined for an invertible supermatrix M =

[
A B

C D

]
(one for

which both bosonic blocks A and D are invertible) as

Ber(M) = det(A−BD−1C) det(D)−1 = det(A) det(D − CA−1B)−1. (2.46)

7Such an element, which commutes with bosonic generators and anticommutes with fermionic generators,

belongs to the “scentre” of the universal enveloping algebra of osp(1|2) [66].
8Care has to be exercised here since our parametrization in footnote 4 was for only one component of

the OSp group. One can accommodate both components by having ψ3 everywhere with a ± symbol in

front of its expression.
9To match these expressions, we should let θ → −θ as τ → τ + β in the sector where η(τ + β) = −η(τ).
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Class Monodromy M Stabilizer H sVirasoro

Hyperbolic

(R or NS)




cosh πΛ sinh πΛ 0

sinh πΛ cosh πΛ 0

0 0 ±1







cosh πt sinh πt 0

sinh πt cosh πt 0

0 0 ±′1


 L0

Elliptic




cosπΘ − sin πΘ 0

sin πΘ cosπΘ 0

0 0 1







cosπφ − sin πφ 0

sin πφ cosπφ 0

0 0 1


 L0

Special

Elliptic I

(R or NS)




1 0 0

0 1 0

0 0 1




HR = OSp(1|2,R)

HNS = SL(2,R)× Z2

L0, L±n, G± n
2

(n even)

L0, L±n

(n even)

Special

Elliptic II

(R or NS)




1 0 0

0 1 0

0 0 −1




HR = SL(2,R)× Z2

HNS = OSp(1|2,R)

L0, L±n

(n odd)

L0, L±n, G± n
2

(n odd)

Parabolic

(NS)




1 1 0

0 1 0

0 0 −1







1 b 0

0 1 0

0 0 ±1


 L0

Parabolic

(R)




1 1 0

0 1 0

0 0 1







1 b ±δ
0 1 0

0 δ ±1


 L0, G0

Table 1. Inequivalent monodromy matrices M identified with (constant-representative) N = 1

Virasoro coadjoint orbits. We list the stabilizer subgroups H = {S ∈ OSp(1|2,R) |MS = SM}
preserving these monodromy matrices. These subgroups are identified with the N = 1 Virasoro

subalgebras preserving the value of the super-Schwarzian derivative. The NS-type special elliptic

orbits are the only exceptions to this rule. In these cases, the correct stabilizer is denoted by HNS,

and it preserves M(−)F : M(−)FS = SM(−)F .
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where periodicity for η(τ) gives the Ramond sector, and antiperiodicity realizes thermal

fermionic boundary conditions, corresponding to the Neveu-Schwarz sector. For the para-

bolic defects (punctures), we instead have the relations

F (τ + β) = F (τ) + β, η(τ + β) = ±η(τ). (2.53)

These relations can be summarized by the monodromy relations:

F (τ + β) = M · F (τ), η(τ + β) = ±η(τ), (2.54)

where M is a (P)SL(2,R) monodromy matrix.

This classification is closely related to the classification of coadjoint orbits of the super-

Virasoro group [67, 68]; see [33, 64] for recent partial treatments. The analogous case of

bosonic JT gravity and coadjoint orbits of the Virasoro group was discussed in section 3

of [69] (see also appendix F of [70] for a review). We list in the final column of table 1 the

N = 1 Virasoro subalgebra that preserves the super-Schwarzian derivative (2.16). This is

the stabilizer of the corresponding super-Virasoro coadjoint orbit. This list hence identifies

these Virasoro orbits directly with the solution classes of the super-Hill’s equation. By

definition, coadjoint orbits contain the pair (TB(τ), TF(τ)) by acting with the full super-

Virasoro group on a single fixed element defining the specific orbit. In most cases, there

exists an element within the orbit that has a constant value of (TB, TF). Coadjoint orbits

without such a constant representative admit no solutions to the equation

∂τ Sch(τ ′, θ′; τ, θ) = 0. (2.55)

However, this equation is also the saddle equation of any super-Schwarzian model. Hence

if we restrict to defects for which there is a classical (saddle) interpretation, then we care

only about the constant-representative orbits, and we can restrict to the class of orbits

catalogued in table 1. Assuming this restriction, and the periodicity conditions (2.54), we

give the explicit derivation of the final column in appendix D.1.

We next discuss the different orbits from table 1 in more detail.

The hyperbolic orbit has stabilizer U(1)×Z2, which has two connected components

denoted by the ±′ sign choice in the table.

The elliptic orbits have stabilizer U(1) (in OSp′(1|2), the set of elliptic monodromy

matrices and the corresponding stabilizers have a single component since one can set Θ→
π −Θ or φ→ π − φ to map the two would-be components into each other). When Θ ∈ N,

the stabilizer gets enhanced and we reach the special elliptic orbits. For Θ = n even, we

obtain the type I special elliptic orbits, and for Θ = n odd, we obtain the type II special

elliptic orbits.

The special elliptic orbits have the largest stabilizer. The stabilizer HR, defined

as the set of matrices satisfying MS = SM , is the full group OSp(1|2,R) for type I, but

is reduced to SL(2,R) × Z2 for type II. This corresponds to the orbits relevant for the

Ramond sector. For the Neveu-Schwarz special elliptic orbit, the relevant stabilizer HNS is

different than HR due to the nontrivial fermionic periodicity conditions. It is instructive to

work this out a bit more explicitly within the super-Schwarzian orbit language. We present
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the analysis in appendix D.2. The upshot is that for n odd, the fermionic variables in the

stabilizer group OSp(1|2) flip sign when going once around the thermal circle, τ → τ + β.

This corresponds to how supersymmetry is implemented for the NS vacuum: the fermionic

charges carry half-integer spin under rotations around the thermal circle [71]. In our

language, this sign flip is implemented by giving the matrix S in (2.44) (which parametrizes

precisely the OSp(1|2) redundancy) a weak τ -dependence that ensures that the fermionic

parameters flip sign as we rotate around the thermal circle: S(τ + β) = (−)FS(τ)(−)F .

Combining this condition with (2.43), we get instead of (2.45) the equivalence relation

M(−)F ∼ SM(−)FS−1, which defines the stabilizer HNS:

HNS =
{
S ∈ OSp(1|2,R) |M(−)F = SM(−)FS−1

}
. (2.56)

In the end, the presence of the (−)F effectively maps the analysis to the same one as in

the Ramond sector but swapping the roles of type I and type II, leading to an OSp(1|2,R)

stabilizer HNS for type II and a reduced SL(2,R)× Z2 stabilizer for type I.

Finally, the parabolic orbit has stabilizer R×Z2 (the noncompact version of U(1)×
Z2) for the NS puncture. In the Ramond case, the actual stabilizer supergroup is the

(noncompact) subgroup of OSp(1|2,R) generated by the (commuting) parabolic generators

E+ and F+. We denote this subgroup by R
1|1 × Z2, by analogy with the notation R for

the noncompact version of U(1). This enhancement of the stabilizer for the R punctures

was noticed and studied in several works [44, 72, 73]. It can be matched to the Ramond

vacuum, where two zero modes exist with generators G0 and L0 = G2
0.

Since the NS parabolic orbit can be obtained by taking the formal limit n→ 0 of the

special elliptic orbits, the explicit analysis in appendix D.2 demonstrates that the fermionic

generators are periodic and do not pick up a minus sign upon rotation.10 One can visualize

this by realizing that for this orbit, moving along the thermal boundary is a translation

instead of a rotation, which hence does nothing to spinors.

Within amplitudes, these different orbits can be accounted for by suitable defect inser-

tions. From a gauge-theoretic perspective, these insertions can be interpreted as characters

of the principal series representations of OSp(1|2,R). From the orbit perspective, they have

an interpretation in terms of classical limits of super-Virasoro modular S-matrices. This is

in complete parallel to the bosonic case [69]. Explanations of these statements, and explicit

expressions for these defects, will be discussed later on in section 5.2. We next provide a

geometric interpretation of these different orbits/defects.

2.3 Bulk interpretation of orbits (or defects)

In order to achieve a bulk gravitational interpretation of these defects, we first briefly dis-

cuss the metric formulation of JT supergravity, referring to appendix C for more technical

background on this formulation and its equivalence to the first-order formalism. We write

the JT supergravity action in superspace as11

SN =1
JT = − 1

16πG

[∫

M
d2z d2θ EΦ(R+− + 2) + 2

∫

∂M
dτ dθΦbK

]
. (2.57)

10The sign function in (D.16) always evaluates to +1 in this limiting case.
11We have reinstated Newton’s constant: the action (2.57) differs from (2.10) by a factor of −1/4πG.
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In superconformal gauge, we have

R+− = 2e−ΣDD̄Σ (2.58)

for some bosonic superfield Σ, where D ≡ ∂θ + θ∂z and D̄ ≡ ∂θ̄ + θ̄∂z̄. The Φ equation of

motion R+− = −2 is then equivalent to the super-Liouville equation

DD̄Σ + eΣ = 0. (2.59)

The solution can be written as

eΣ =
Dθ′D̄θ̄′

z′ − z̄′ − θ′θ̄′ , (2.60)

in terms of (anti)holomorphic bosonic superfields z′(z, θ), z̄′(z̄, θ̄) and fermionic superfields

θ′(z, θ), θ̄′(z̄, θ̄) satisfying the constraints

Dz′ = θ′Dθ′, D̄z̄′ = θ̄′D̄θ̄′. (2.61)

These constraints imply that (z′, θ′) and (z̄′, θ̄′) are (anti)holomorphic superconformal

transformations of (z, θ) and (z̄, θ̄). They can be solved explicitly into

z′ = F (z + θη(z)), θ′ =
√
∂F (z)

(
θ + η(z) +

1

2
θη(z)∂η(z)

)
(2.62)

in terms of a bosonic function F (z) and a fermionic function η(z), and similarly for z̄′ and

θ̄′ in terms of F̄ (z̄) and η̄(z̄) [71]. We refer to the bulk supergeometry (2.60) as super-

AdS2, for any choice of F, η. The subset of superconformal transformations that act as

isometries of the solution (2.60) comprises the super-Möbius group OSp′(1|2) [65]. The

length element in superspace is defined as dz ≡ dz+θdθ and transforms as dz′ = (Dθ′)2dz.

The supermetric of the Poincaré super upper half-plane (SUHP) in superconformal gauge

can then be written in several ways:

ds2 = gMNdZ
MdZN = e2Σdz⊗dz̄ =

(Dθ′)2(D̄θ̄′)2

|z′ − z̄′ − θ′θ̄′|2 |dz+ θdθ|2 =
|dz′ + θ′dθ′|2
|z′ − z̄′ − θ′θ̄′|2 , (2.63)

where the primed coordinates are the super-Poincaré coordinates and the unprimed coor-

dinates are some preferred (or proper) coordinates.

To state the bulk interpretation of defects in a natural fashion, it is convenient to

first relate the super-Schwarzian dynamical time reparametrizations (F, η) to the bulk

gravitational description. This can be done in terms of the dynamics of the holographic

“wiggly” boundary. Our discussion roughly follows the treatment of [74], which is in turn

based on that for bosonic JT gravity [4–6].

The super-Poincaré boundary lies at z′ = z̄′, θ′ = θ̄′ and is of codimension 1|1. We

write z′ = τ ′ + iy′ and z̄′ = τ ′− iy′, where τ ′ and y′ are the super-Poincaré time and radial

coordinates, respectively. We regularize the holographic boundary by moving it inward.

Its location is specified in preferred coordinates to be

y = ε, θ = θ̄, (2.64)
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(t'|q')

(z',z'|q',q')

(y=e, q=q)

Figure 1. Regularized holographic boundary at proper location (2.64). The actual shape of

this 1|1-dimensional boundary curve in super-Poincaré coordinates is described by the dynamical

superreparametrization (2.67)–(2.70), and is drawn as a wiggly curve.

where we have defined y ≡ z−z̄
2i . From the form of the supermetric, one immediately sees

that preserving these asymptotics requires (compare to [74])

z′ − z̄′ − θ′θ̄′ = 2iεDθ′D̄θ̄′ +O(ε2), (2.65)

which is a single bosonic constraint on the bulk super-Poincaré coordinates. In fact, this

choice of regularized boundary (2.64) imposes both a bosonic and a fermionic constraint,

which when combined imply the asymptotic relation (2.65). Namely, the location (2.64) in

proper coordinates can be translated into a location in the Poincaré SUHP coordinates in

terms of a wiggly curve specified by the functions

τ ′(τ, θ), y′(τ, θ), θ′(τ, θ), θ̄′(τ, θ). (2.66)

These functions are given explicitly by:

τ ′ =
1

2
(A(τ + iε, θ) +A(τ − iε, θ)) = F (τ + θη(τ)) +O(ε2), (2.67)

y′ =
1

2i
(A(τ + iε, θ)−A(τ − iε, θ)) = ε((Dα)2 − αD2α) +O(ε2), (2.68)

θ′ = α(τ + iε, θ) = α+ iεD2α+O(ε2), (2.69)

θ̄′ = α(τ − iε, θ) = α− iεD2α+O(ε2), (2.70)

where the functions on the right are given in (2.50) and (2.51), and we have written α ≡
α(τ, θ) for brevity. In particular, we use A ≡ τ ′|∂ and α ≡ θ′|∂ to distinguish between the

reparametrized boundary coordinates and their bulk counterparts. Inserting (2.68), (2.69),

and (2.70) into the left-hand side of (2.65), one indeed verifies the relation (2.65).

Thus we obtain a 1|1-dimensional curve embedded in the gravitational bulk (figure 1).

It was shown in [74] that the dynamics governed by the boundary curve with these defini-

tions is precisely the N = 1 super-Schwarzian.

Given a certain off-shell boundary time reparametrization (F (τ), η(τ)), one can nat-

urally choose a bulk superframe that smoothly extrapolates this boundary frame into the

bulk by using (2.62) and its antiholomorphic counterpart. Doing so leads to an off-shell

bulk supergeometry

ds2 =
(Dθ′)2(D̄θ̄′)2

|z′ − z̄′ − θ′θ̄′|2 |dz + θdθ|2 (2.71)
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X

Q L

Figure 2. Geometric interpretation of the different orbits. Left: elliptic orbit with a conical defect.

Middle: hyperbolic orbit with a geodesic neck. Right: parabolic orbit with a cusp.

with bosonic metric

ds2 =
∂F (z)∂̄F (z̄)

(F (z)− F (z̄))2
dzdz̄. (2.72)

For the different monodromy classes, this bosonic submetric matches with the metric in

bosonic JT gravity. Hence the interpretation there [69] immediately applies here as well:

• Elliptic monodromies with parameter Θ correspond to conical singularities with

periodic identification 2πΘ. For integer Θ = n, these correspond to replicated ge-

ometries. Unlike in bosonic JT gravity, we will need to make a distinction between

even and odd values of n when computing physical amplitudes since the stabilizer is

not the same in these two cases.

• Hyperbolic monodromies with parameter Λ correspond to geometries with a

wormhole of geodesic neck length 2πΛ.

• Parabolic monodromies correspond to geometries with a cusp at infinity. The

periodic identification leads to a thermal AdS2 geometry.

This classification is augmented by the fermionic boundary condition η(τ + β) = ±η(τ)

(periodic or antiperiodic) for each class. The resulting geometries are illustrated in figure 2.

3 Bilocal operators as Wilson lines

In this section, we utilize the explicit analysis of the gravitational boundary conditions in

terms of super-Hill’s equation, as presented in section 2.2, to identify the super-Schwarzian

bilocal operators (1.4) directly as boundary-anchored Wilson lines in the OSp(1|2) formu-

lation of JT supergravity. We augment this analysis by an explicit worldline path integral

description of the Wilson line as a massive particle moving on the supermanifold.

First recall the identification of Wilson lines with bilocal operators purely within BF

theory, starting with the disk for simplicity. A Wilson line in the representation Rj with

boundary endpoints at τ1 and τ2 is given by

Wj(τ1, τ2) = P exp

[
−
∫ τ2

τ1

Rj(A)

]
. (3.1)

After integrating out the bulk scalar, which enforces the flatness of A, we may freely deform

the integration contour while preserving the endpoints to see that any such Wilson line is

the unique solution to the one-dimensional initial value problem

d

dτ2
Wj(τ1, τ2) = −Rj(Aτ (τ2))Wj(τ1, τ2), Wj(τ1, τ1) = 1. (3.2)
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But for A flat (pure gauge on a disk), we have Aτ = −∂τgg
−1, so the bilocal operator

Oh=−j(τ1, τ2) = Rj(g(τ2)g−1(τ1)) (3.3)

is also a solution to the same initial value problem. HenceWj(τ1, τ2) = Oh=−j(τ1, τ2). Sim-

ilar reasoning can be used to reduce a Wilson line on a more complicated topology (such

as a Wilson line with endpoints on different boundary components) to a similar form, as

long as A can be written as −dgg−1 for a single-valued function g along the support of

the Wilson line and the boundary components — in other words, as long as the contour

does not encircle a handle or a defect. Otherwise, the topological class of the line becomes

important.

In our case, g|∂ is further constrained by gravitational (super-Schwarzian) boundary

conditions, and such bilocal operators can be viewed as boundary-to-boundary propagators

of a bulk matter field coupled to JT gravity.

3.1 Warmup: finite representations

Let us first work out this interpretation for a Wilson line in the defining j = 1/2 represen-

tation. This is a 2|1-dimensional representation that has both lowest- and highest-weight

states:

|1
2
〉 = |h.w.〉, |0〉, |−1

2
〉 = |l.w.〉, (3.4)

where

E−|l.w.〉 = F−|l.w.〉 = 0, E+|h.w.〉 = F+|h.w.〉 = 0. (3.5)

In vector notation,

|l.w.〉 =




0

1

0




2F +

−−−→
−2F −

←−−−−




0

0

1




2F +

−−−→
2F −

←−−−




1

0

0


 = |h.w.〉. (3.6)

Then the Wilson line in group theory language, by virtue of the identification (2.40), can

be written as the matrix element

〈l.w.|g(τ2)g−1(τ1)|h.w.〉 = ψ1,bot(τ2)ψ2,bot(τ1)− ψ2,bot(τ2)ψ1,bot(τ1) + ψ3,bot(τ2)ψ3,bot(τ1).

(3.7)

In fact, anticommuting the Grassmann parameters carefully shows that the matrix element

between the states (1− 2θ1F
−)|h.w.〉 and (1− 2θ2F

+)|l.w.〉 results in a superspace bilocal

operator:

〈l.w.|(1− 2(F+)†θ2)g(τ2)g−1(τ1)(1− 2θ1F
−)|h.w.〉 (3.8)

= ψ1(τ2, θ2)ψ2(τ1, θ1)− ψ2(τ2, θ2)ψ1(τ1, θ1) + ψ3(τ2, θ2)ψ3(τ1, θ1) =
τ ′

1 − τ ′
2 − θ′

1θ
′
2

D1θ′
1D2θ′

2

,

where ψj(τi, θi) = ψj,bot(τi) + θiψj,top(τi), τ
′
i ≡ A(τi, θi), and θ′

i ≡ α(τi, θi).

Thus Wilson lines between lowest- and highest-weight states yield standard Schwarzian

or super-Schwarzian bilocal operators. Other matrix elements yield bilocal operators that
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are more complicated in the Schwarzian language and that can be constructed from deriva-

tives of the standard bilocal operators, as well as the Schwarzian derivative factors TB(τ)

and TF(τ). For example, defining ∆τ ≡ T−1
F (τ)(∂2

τ − TB(τ)), we obtain the following result

for j = 1/2:12

R1/2(g(τ2)g−1(τ1)) =




−∂τ2 −∂τ2∆τ1 −∂τ2∂τ1

∆τ2 ∆τ2∆τ1 ∆τ2∂τ1

1 ∆τ1 ∂τ1


 〈−

1

2
|g(τ2)g−1(τ1)|1

2
〉 (3.9)

in terms of the fiducial matrix element computed in (3.7), where R1/2(g(τ2)g−1(τ1))mm′ =

〈m|g(τ2)g−1(τ1)|m′〉 for m,m′ = 1
2 , 0,−1

2 . The superspace bilocal operator is then the ma-

trix element between the states |12〉−θ1|0〉 and |−1
2〉−θ2|0〉. A quick proof of these relations,

based on exploiting the supersymmetric Hill’s equation, is presented in appendix D.3.

The generalization to spin-j representations is readily worked out, with the details

again left to appendix D.3. For example, one obtains for the mixed lowest/highest-weight

matrix element:

〈−j|g(τ2)g−1(τ1)|j〉 = [ψ1,bot(τ2)ψ2,bot(τ1)− ψ2,bot(τ2)ψ1,bot(τ1) + ψ3,bot(τ2)ψ3,bot(τ1)]2j ,

(3.10)

which is simply the appropriate power of (3.7).

Such operator insertions where j ∈ N are structurally unique in the super-Schwarzian

model: they correspond to degenerate Virasoro representations, and their correlation func-

tions are simpler than the other ones. Moreover, when coming from the minimal super-

string, these operators correspond to the boundary tachyon vertex operators [55]. However,

from a gravitational perspective, these operator insertions are somewhat unphysical, and

a much more important role is played by the infinite-dimensional representations.

3.2 Discrete series representations

Our main interest lies in the infinite-dimensional lowest/highest-weight representations,

which fall into a discrete series. We call them the discrete representations. Such represen-

tations are conveniently described in terms of a carrier space of functions on R
1|1, with the

group acting by super-Möbius transformations. We present the details in appendix E.4.6.

The generators are written as differential operators acting on functions on R
1|1:

Ĥ = x∂x +
1

2
ϑ∂ϑ − j, Ê− = ∂x, Ê+ = −x2∂x − xϑ∂ϑ + 2jx, (3.11)

F̂− =
1

2
(∂ϑ + ϑ∂x), F̂+ = −1

2
x∂ϑ −

1

2
xϑ∂x + jϑ. (3.12)

We will come across this realization of the osp(1|2) superalgebra several more times.

12We can identify bilocal operators with matrix elements of suitable group elements in the hyperbolic

basis (i.e., in a basis of eigenstates of the osp(1|2) generator H). Indeed, for the finite-dimensional bilocal

operators considered here, E± are not diagonalizable. The eigenvalues of the generators, as well as properties

like self-adjointness and diagonalizability, are representation-dependent. For instance, E± are nilpotent in

finite-dimensional representations, but not necessarily so in infinite-dimensional representations.
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For a discrete representation, the bra and ket wavefunctions on the superline R
1|1 are

〈x, ϑ|h.w.〉j = x2j =
1

x2h
, 〈l.w.|x, ϑ〉j = ϑδ(x) = δ(x, ϑ), (3.13)

where j = −h < 0 and h is the conformal weight of the local boundary operators [75–77].

We thus have the Wilson line

〈l.w.|g(τ2)g−1(τ1)|h.w.〉 =

∫
dx dϑ δ(x, ϑ)g(τ2)g−1(τ1)x2j . (3.14)

The group element itself is conveniently written in the Gauss-Euler form as

g−1(φ, γ−, γ+|θ−, θ+) = e2θ−F̂ −
eγ−Ê−

e2φĤeγ+Ê+
e2θ+F̂ +

, (3.15)

where we identify from (2.40) the parameters

eφ = ψ1,bot, γ− =
ψ2,bot

ψ1,bot
, γ+ =

ψ′
1,bot

ψ1,bot
, θ− =

ψ3,bot

ψ1,bot
, θ+ =

ψ1,top

ψ1,bot
. (3.16)

Using (3.15) with the parameters (3.16) and the Borel-Weil generators (3.12), we compute

the successive applications of group elements:

x2j g−1(τ1)−−−−−→ (ψ1,bot(τ1)x+ψ2,bot(τ1)+ψ3,bot(τ1)ϑ)2j (3.17)

g(τ2)−−−→ ((−ψ′
1,bot(τ2)ψ2,bot(τ1)+ψ′

2,bot(τ2)ψ1,bot(τ1)−ψ′
3,bot(τ2)ψ3,bot(τ1))x

+ψ1,bot(τ2)ψ2,bot(τ1)−ψ2,bot(τ2)ψ1,bot(τ1)+ψ3,bot(τ2)ψ3,bot(τ1)

+(−ψ1,top(τ2)ψ2,bot(τ1)+ψ2,top(τ2)ψ1,bot(τ1)−ψ3,top(τ2)ψ3,bot(τ1))ϑ)2j (3.18)

x = 0, ϑ = 0−−−−−−−→ (ψ1(τ2,θ2)ψ2(τ1,θ1)−ψ2(τ2,θ2)ψ1(τ1,θ1)+ψ3(τ2,θ2)ψ3(τ1,θ1))2j |bot (3.19)

=

(
τ ′

1−τ ′
2−θ′

1θ
′
2

D1θ′
1D2θ′

2

)2j ∣∣∣∣
bot

, (3.20)

where in the end, we set x = 0 and ϑ = 0 as imposed by the δ(x, ϑ) bra wavefunction

in (3.14). The steps are analogous to those in appendix I of [41]. The recipe for computing

more general matrix elements in the (x, ϑ) basis is described in appendix E.4.6. Since

these more general matrix elements have not been systematically studied even in bosonic

JT gravity, we also present the bosonic results in appendix B.4.

When j = −h < 0, we directly reproduce the bilocal operators in the super-Schwarzian

theory. Hence the boundary-anchored Wilson lines with suitable representation indices for

the bra and ket labels (as explained above) correspond to the components of the superspace

bilocal operator (1.4).

In the next subsection, we supplement this description with an intuitive first-quantized

picture of the Wilson line. Unlike the current treatment, in which we compute the different

Grassmann components of the bilocal operator separately, the procedure discussed next will

immediately give the superspace description of the Wilson line.
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(t1|q1)

(t2|q2)

(t'|q')

(z',z'|q',q')

Figure 3. Geodesics between two boundary endpoints in superspace. The coordinates with primes

are Poincaré SUHP coordinates. The coordinates without primes are “proper” or preferred co-

ordinates on the boundary superclock. The boundary is 1|1-dimensional, while the bulk is 2|2-

dimensional. The bulk geodesics are 1|0-dimensional.

3.3 Gravitational Wilson lines and geodesics

We claim that the following Euclidean worldline description in superspace constructs the

N = 1 super-Schwarzian bilocal operator:

∫
[DZ] e

−m
∫ τ2

τ1
ds (gMN ŻM ŻN )1/2

=

(
Dθ′

1Dθ
′
2

τ ′
1 − τ ′

2 − θ′
1θ

′
2

)2h

, (3.21)

where m2 = h(h − 1/2), ZM = z, z̄, θ, θ̄ are coordinates spanning the 2|2-dimensional su-

permanifold with metric (2.63), and D ≡ ∂θ +θ∂τ (whether D refers to the 1d superderiva-

tive or to the holomorphic 2d superderivative should be clear from context). Notice that

m2 = j(j + 1/2) equals the Casimir operator in the spin-j representation.13

The worldline path integral in (3.21) is taken along all trajectories superdiffeomorphic

to the boundary segment between both endpoints (τ1, θ1) and (τ2, θ2) in superspace, and

the primed coordinates on the left are understood in the sense of (2.50) and (2.51). The

proof of (3.21) is a direct generalization of the construction of [52], and is based on earlier

accounts in 3d pure gravity [78, 79]. The details are presented in appendix C.3.

Here, we instead choose to present a more physical discussion by comparing both sides

in the limit of large weight h, where the geodesic approximation holds.

A bulk geodesic in superspace is a curve of dimension 1|0, and hence of codi-

mension 1|2 on a 2|2-dimensional super-Riemann surface. It describes a trajectory

(z(s), z̄(s), θ(s), θ̄(s)). One can think of the wiggly boundary curve defined in section (2.3),

as infinitesimally “thickened” in the Grassmann direction θ, whereas the bulk geodesics

have no such thickening.14 This is illustrated in figure 3.

For two endpoints (τ1, θ1) and (τ2, θ2) on the holographic wiggly boundary, for which

according to (2.64) θi = θ̄i and zi = z̄i + 2iε, one can compute the geodesic distance d in

13This identification is not surprising if one thinks of it as a consequence of the massive Klein-Gordon

equation on the 2|2-dimensional Poincaré SUHP, which is the homogeneous space OSp(1|2,R)/U(1). The

Casimir is the eigenvalue of the Laplacian on the 3|2-dimensional group OSp(1|2,R), and equals the pa-

rameter m2 in the Klein-Gordon equation.
14When using geodesic boundaries, one imagines these to be thickened into 1|2 curves using the leaves

from D and D̄, as explained in [44].
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the supermetric (2.63) to be [80]

cosh d = 1 +
|τ ′

1 − τ ′
2 − θ′

1θ
′
2|2

2(z′
1 − z̄′

1 − θ′
1θ̄

′
1)(z′

2 − z̄′
2 − θ′

2θ̄
′
2)

= 1 +
|τ ′

1 − τ ′
2 − θ′

1θ
′
2|2

2ε2(Dθ′
1)2(Dθ′

2)2
, (3.22)

which is approximated by the formula

d ≈ ln
|τ ′

1 − τ ′
2 − θ′

1θ
′
2|2

(Dθ′
1)2(Dθ′

2)2
− ln ε2 (3.23)

for small ε. After subtracting the divergent term, we see that inserting (3.23) into the

saddle-point approximation for the right-hand side of (3.21) indeed reproduces the left-

hand side of (3.21) for large values of h where h ≈ m. Note that the one-loop exactness

of the worldline path integral would suggest that the finite correction to m2 that results in

the Casimir h(h− 1/2) comes from evaluating the one-loop determinant.

Equation (3.23) is an expression in superspace, which can be expanded in the Grass-

mann variables. The bottom component dbot is interpretable as the geodesic distance in

the bosonic submanifold, and this interpretation will be put to use further on in section 5.3

to compute the boundary-to-boundary wormhole length, including quantum gravitational

corrections.

4 Gravity as a gauge theory: semigroup structure

As discussed up to this point, the supergroup OSp(1|2,R) suffices to describe the “local”

dynamics of N = 1 JT supergravity. In this section, we provide evidence that under-

standing the full quantum dynamics (and in particular, the precise form of the amplitudes)

requires a refinement of this group-theoretic structure. The ultimate reason for this refine-

ment is the discrepancy between gauge theory and gravity, as discussed in the introduction.

We will argue that a natural way to implement this transfer is the proposal that gravity is

in fact described by the semigroup OSp+(1|2,R) (which we will define in section 4.2).

4.1 Motivation: bosonic winding sectors on the disk

To motivate the discrepancy between full-fledged BF gauge theory and gravity, we present

an insightful argument in the case of bosonic JT gravity. For completeness, we review the

bosonic story in appendix B, with the relevant group theory for SL(2,R) and the positive

subsemigroup SL+(2,R) discussed in appendices B.2 and B.3, respectively.

The bosonic Schwarzian path integral that emerges from the SL(2,R) group structure

is given by the Euclidean action

S = −1

2

∫ β

0
dτ {F, τ} , (4.1)

integrated over all functions F satisfying the monodromy constraint F (τ + β) = M ·F (τ).

Imposing trivial monodromy M = 1, we can reparametrize F in a one-to-one fashion by

writing F (τ) = tan π
β f(τ) and allowing f(τ +β) = f(τ)+nβ for n ranging over all positive
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integers.15 To isolate the actual vacuum orbit of bosonic JT gravity, we would further fix

n to a single value (n = 1) and consider that particular theory. This further constraint

defines gravity. Here, we drop this constraint, instead insisting on remaining one-to-one

with the group-theoretic SL(2,R) structure.

Hence we are led to consider the following partition function, which has the asymptotic

(gravitational) boundary conditions that produce the Schwarzian action, but not the n = 1

winding constraint:

Z(β) =
∞∑

n=1

∫

f(τ+β)=f(τ)+β
[Df ] e

1
2

∫ β

0
dτ
{

tan π
β

nf,τ
}
. (4.2)

Each of the terms is one-loop exact, but care has to be taken for relative minus signs. At

the one-loop level, upon plugging in f(τ) = τ + ε(τ) and expanding in ε, one finds 2(n− 1)

negative modes. Since the one-loop determinant is given by (detO)−1/2 in terms of the

quadratic operator O, each pair of negative modes gives a factor of −1, leading to a total

factor of (−)n−1. Incorporating this minus sign into the Schwarzian answer of [69], we find:

Z(β) =
∞∑

n=1

(−)n−1n

(
π

β

)3/2

e
π2

β
n2

=

∫ ∞

0
dk

(
2

∞∑

n=1

(−)n−1k sinh(2πnk)

)
e−βk2

. (4.3)

The quantity in parentheses diverges, but we can give meaning to it by using the limit

q → 0+ of the regularized expression16

2
∞∑

n=1

(−)n−1e−2πqnk sinh(2πnk) =
k sinh 2πk

cosh 2πq + cosh 2πk
, k < q. (4.4)

For q > 0, the left-hand side converges in a nonempty strip, allowing it to be analytically

continued to arbitrary k via the right-hand side. We then obtain17

Z(β) =

∫ ∞

0
dk (k tanh πk) e−βk2

, (4.6)

which is the partition function for the gravitational coset of SL(2,R) with measure dµ(k) ≡
dk k tanh πk.18 As reviewed in appendix B.2, this measure is indeed the Plancherel measure

15The integer n must be positive to satisfy the condition F ′ ≥ 0 coming from e2φ = F ′, where f ′ ≥ 0

without loss of generality.
16This same formula was written down in [51] and interpreted as well in terms of multi-wound particle

trajectories. We will see that the significance of the multi-wound paths is precisely that they encode the

distinction between gauge theory and gravity.
17We can obtain the other principal series representations of SL(2,R) by dropping the minus signs for

the negative modes and then using the related identity

2

∞∑

n=1

e−2πqnk sinh(2πnk) =
k sinh 2πk

cosh 2πq − cosh 2πk
, k < q. (4.5)

This instead leads to the expression Z(β) =
∫∞

0
dk (k coth πk) e−βk2

.
18The meaning of the word “coset” here is that we have implemented the gravitational boundary condi-

tions at the boundary of the disk, reducing the boundary dynamics to the Schwarzian model rather than

that of a particle on the SL(2,R) group manifold. We give more details on this implementation in the

supersymmetric case in section 5.
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for the principal series representations of SL(2,R), and this is not JT gravity: it would imply

a density of states ρ(E) ∼ tanh(π
√
E) (E > 0). The bulk disk geometries corresponding

to this summation have conical identifications of 2πn (they are replicated geometries), all

of which save for n = 1 carry conical singularities. Restricting this by hand to the smooth

hyperbolic component of the moduli space of configurations, one would land solely on

n = 1, and obtain the measure dµ(k) ≡ dk k sinh(2πk) and hence the ρ(E) ∼ sinh(2π
√
E)

density of states of JT gravity.

What this argument teaches us is that an additional constraint must be imposed on

the BF theory to make contact with smooth gravity. In [41], evidence was provided that a

particularly natural way to accomplish this is to restrict the group to the positive semigroup

SL+(2,R). The calculation of the Plancherel measure for the principal series representa-

tions of SL+(2,R) is reviewed in appendix B.3, leading to dµ(k) = dk k sinh(2πk). In the

next section, we will provide evidence that a similar construction works for supergravity

in terms of the positive semigroup OSp+(1|2).19

It would be interesting to understand the application of the above winding argument

directly for OSp(1|2,R), which we postpone to future work.

4.2 OSp+(1|2,R) subsemigroup

It is known that N = 1 JT supergravity amplitudes contain the density of states [43]

ρ(E) ∼ 1√
E

cosh 2π
√
E. (4.7)

This profile is constrained by physical arguments in the following way. First, it has the

large-E Bekenstein-Hawking growth ρ(E) ≈ e2π
√

E , matching the semiclassical black hole

first law in JT supergravity: S(E) = 2π
√
E. This is precisely the same first law as in

the bosonic JT model [3], because the fermions are turned off in the classical black hole

solution. Second, it has a pole ρ(E) ∼ 1/
√
E as E → 0. This is as expected, since the

corresponding supercharge density ρ(Q) ∼ 1, with E = Q2, is then regular as E → 0. This

is also the same pole as the “hard wall” in the random matrix ensembles describing the

very low-energy spectral statistics of N = 1 supergravity models.20

Now, if JT supergravity were indeed described globally by OSp(1|2,R) BF theory, then

the above density of states (4.7) would match precisely with the Plancherel measure on the

space of irreps appearing in the Plancherel/Peter-Weyl decomposition of functions on the

group manifold. Since the above density of states is continuous, it would need to match

the Plancherel measure on the principal series representations of OSp(1|2,R).21 However,

19In [41], the term “subsemigroup” is used to emphasize that the semigroup SL+(2,R) is a subset of

SL(2,R). The corresponding term here would be “subsupersemigroup,” but we will often opt for “subsemi-

group” to reduce verbiage.
20The “Bessel model” plays the same role here as the Airy model does for bosonic JT gravity: it is an

exactly solvable matrix model in the suitable universality class that describes the leading behavior of JT

(super)gravity very close to the spectral edge E = 0.
21More explicitly, upon introducing the OSp(1|2,R) spin label j = −1/4 + ik/2 and the momentum

variable k ∈ R
+, the spacetime energy in BF models is identified with the Casimir eigenvalue E = j(j +

1/2) − 1/16 = k2/4, where we chose to shift away the zero-point energy 1/16.
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this is not the case. Since the Plancherel measure on the principal series representations

of OSp(1|2,R) seems to be unavailable in the mathematics literature, we set out to find

it in appendix E. In particular, we construct the principal series representations from first

principles using parabolic induction in E.4, and compute the corresponding Plancherel

measure in E.8. We obtain the result

ρ(E) ∼ 1√
E

cosh 2π
√
E

1 + cosh 2π
√
E
, (4.8)

which does not match the JT supergravity answer (4.7). In particular, we find the large-E

power-law asymptotics ρ(E) ∼ 1/
√
E. In fact, we will argue in section 6 that the large-

argument behavior of the Plancherel measure of any semisimple Lie (super)group takes the

following form:

ρ(k) ∼ k|∆+
B|−|∆+

F |, (4.9)

where the exponent is the number of positive bosonic roots minus the number of positive

fermionic roots. This behavior immediately rules out the Plancherel measure on the space

of principal series representations of any Lie (super)group as a candidate for the physical

density of states of black holes.

To find the correct structure, we take guidance from how the bosonic JT gravity model

is related to SL(2,R). In [41], it was argued that the bulk theory should be regarded as

a BF theory of a subsemigroup of SL(2,R).22 This is the subset of SL(2,R) matrices for

which all entries are positive in the defining representation:

SL+(2,R) ≡





 a b

c d


 , ad− bc = 1, a, b, c, d > 0



 . (4.10)

This subset is closed under multiplication, but not under taking inverses. It hence defines a

semigroup that is a subset of a group, hence the name subsemigroup. It was shown in [41]

that if one subscribes to this structure, then one can find the correct density of states. For

convenience, the argument is repeated in appendix B.3.

A key motivation for following this approach is its deep relation with the theory of

quantum groups. Somewhat surprisingly, the latter has been studied in much more depth

than its classical limit. Let us review the argument. Structurally, the subsemigroup ap-

pears due its nice representation-theoretic properties. In particular, the principal series

representations Pk are the only ones appearing in the Plancherel decomposition:

L2
(
SL+(2,R)

)
=

∫

⊕
dµ(k)Pk ⊗ Pk, dµ(k) = dk k sinh(2πk). (4.11)

This formal equation can be derived by taking a classical q → 1 limit of the results of

Ponsot and Teschner in terms of the set of so-called self-dual representations of the Faddeev

modular double of Uq(sl(2,R)) [81, 82]. When writing q = eπib2
, self-duality implies that

22In [52], a different proposal was made in terms of a parametric limit of the universal cover of SL(2,R). It

would be interesting to develop the superanalogue of that story as well, and to compare the two approaches

in the supersymmetric case.
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the representation is simultaneously a representation of the dual quantum group with

b→ 1/b. The q-deformed version of this statement was later rigorously derived in [83], and

moreover conjectured to hold for the q-deformed positive subsemigroup of any simple Lie

group [84].

The story for JT gravity on its own still deserves much more investigation, but for the

moment, we will accept it and attempt to see whether something similar could be true for

supergravity.

We now define the analogous group-theoretic structure for the supersymmetric situa-

tion of interest in this work. The subsupersemigroup is defined in the defining representa-

tion of OSp(1|2,R) by having a, b, c, d > 0 and no restriction on the Grassmann variables.

The quantities a, b, c, d are supernumbers, and their positivity properties are defined in ap-

pendix A. In particular, a supernumber is positive iff its body is positive.23 The intuition

behind this definition is that Grassmann combinations should be thought of as infinitesi-

mal compared to the purely bosonic variables. Under composition of semigroup elements

g1 · g2, we find that the new entries a, b, c, d again all have positive bodies, and hence this

positivity restriction indeed defines a semigroup:

OSp+(1|2,R) ≡








a b α

c d γ

β δ e


 ∈ OSp(1|2,R), a, b, c, d > 0




. (4.12)

In this light, we make a conjecture similar to (4.11) above that for the supergroup case,

L2
(
OSp+(1|2,R)

)
=

∫

⊕
dµ(k)Pk ⊗ Pk, dµ(k) = dk cosh(πk), (4.13)

where only the principal series representations Pk appear in the direct integral, and the

measure reflects the correct gravitational density of states (4.7). We will use the semigroup

approach in section 4.4 to derive this Plancherel measure for OSp+(1|2,R), identifiable as

the gravitational density of states ρ(E) ∼ 1√
E

cosh 2π
√
E.

We first present several pieces of evidence in favor of the above conjecture (4.13).

Firstly, it was shown in [85] that the class of representations Pk is self-dual in the

setting of quantum supergroups, mirroring the statement in the bosonic case.

Secondly, we can solve the Casimir eigenvalue problem in the relevant subsector of the

supergroup manifold for the subsemigroup OSp+(1|2,R). This is done in appendix E.5, and

in particular in (E.161), where one can prove that only the principal series representations

appear. The discrete representations of OSp (which figure in the Plancherel decomposition

of the full supergroup OSp(1|2,R)) come from a different sector, beyond the subsemigroup.

A final suggestive argument in favor of the subsemigroup description comes from think-

ing about the BF formulation of the supergravity model on an arbitrarily complicated 2d

super-Riemann surface Σ, possibly with geodesic boundaries. Performing the path integral

over B reduces the amplitude to an integral over the moduli space of all flat connections

23This leaves the set of pure soul supernumbers undetermined in terms of positivity. Since this set is of

measure zero in the set of all supernumbers, we will not care what positivity means in this case.
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Figure 4. On the left is a genus-two surface with four cycles shown in red. Each inde-

pendent cycle gets an OSp(1|2) holonomy group element, with a single relation between them:

(A1B
−1

1 A−1

1 B1)(A2B
−1

2 A−1

2 B2) = 1. If each cycle is in the hyperbolic conjugacy class, then the

surface is smooth. On the right is a genus-two surface with five cycles, one of which is a conical

defect shown as a black dot. This surface is not smooth since one of the cycles has an elliptic holon-

omy matrix associated to it. It has to be excluded from the gravity path integral configurations,

but is present in the OSp(1|2) BF formulation.

F = 0 on Σ. Since a flat connection is specified by its holonomy around each nontrivial

cycle, this reduces the integral to one over the moduli space of flat connections M(G,Σ) ≡
Hom(π1(Σ) → OSp′(1|2))/OSp′(1|2), where one simply specifies an OSp(1|2) matrix for

each cycle compatible with group multiplication for each three-holed sphere in the surface.24

The BF path integral hence boils down to the volume of M(G,Σ):

∫

M(G,Σ)
[D(moduli)] = VolM(G,Σ), G = OSp(1|2,R). (4.14)

Each such group element lies in one of the conjugacy classes of OSp(1|2), and hence encodes

geometrical information (the geodesic length for a hyperbolic conjugacy class element, or

the deficit angle for an elliptic element). However, only the hyperbolic conjugacy class

elements correspond to smooth geometries, and are hence relevant for a gravitational de-

scription.25 An example of this is shown in figure 4.

This restriction to smooth configurations corresponds to specializing to the so-called

hyperbolic (or Hitchin) subset of M(G,Σ), the super-Teichmüller space ST (Σ).26 We will

argue next that this geometric restriction is naturally accommodated by restricting to the

subsemigroup OSp+(1|2,R).

The holonomies of a generic OSp(1|2,R) matrix g can be classified by the value of the

supertrace:

STr g = a+ d± (1 + βδ). (4.15)

In the NS sector, holonomies with |STr g| > 3 are hyperbolic, those with 3 > |STr g| > 0

are elliptic, and those with |STr g| = 3 are parabolic. In the R sector, the criteria are

instead that holonomies with |STr g| > 1 are hyperbolic, those with 1 > |STr g| > 0 are

elliptic, and those with |STr g| = 1 are parabolic.

24Very instructive examples of this construction can be found in [44].
25The elliptic class can appear, but only when we insert an operator that actively introduces a deficit

angle in the surface. It should not appear as an allowed “intermediate” configuration in the gravitational

path integral.
26Unlike bosonic Teichmüller space, the superanalogue ST (Σ) is not connected, but has multiple con-

nected components labeling spin structures on Σ. See, e.g., [72, 86] for recent work.
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Labeling the sector by ε = 0 for NS and ε = 1 for R, we compute that for a subsemi-

group element g, where a, b, c, d > 0 and ad− bc = 1 + δβ,

|STr g| = |a+ d+ (−)ε(1 + βδ)| =
∣∣∣∣a+

1

a
+
bc

a
+
δβ

a
+ (−)ε(1 + βδ)

∣∣∣∣

> a+
1

a
+ (−)ε ≥ 2 + (−)ε, (4.16)

where we again used that the absolute value of a supernumber is fully determined by its

body. This result makes all holonomies automatically of hyperbolic class.

This result implies that a subsemigroup description is sufficient to exclude geometries

that contain conical singularities (elliptic) or cusps (parabolic) from the very get-go, leaving

only gravitational (smooth) configurations within the path integral. One furthermore needs

to prove that such a description is also necessary, in the sense that all hyperbolic super-

Riemann surfaces can be accounted for by a flat OSp+(1|2) connection. In the SL+(2,R)

case, evidence was provided for this converse statement in [41] by looking at the three-holed

sphere. We imagine that the same proof holds here, but postpone it for a deeper study.

In the next few subsections, we will show that once we commit to this structure, we

indeed find the correct N = 1 super-Schwarzian density of states.

4.3 Gravitational matrix elements

It is well-known that the Plancherel measure of a Lie group can be extracted from the

orthogonality relation obeyed by representation matrix elements of group elements with

respect to the Haar measure. In the gravitational scenario at hand, the key information

is contained in representation matrices of group elements that lie in the maximal torus.

The representation matrices themselves are special in that both indices are constrained

to obey the Brown-Henneaux gravitational boundary conditions. This makes them mixed

parabolic representation matrices, or Whittaker functions [87–90]. We first compute these

explicitly for OSp+(1|2,R), and then in the next few subsections explain their relation to

JT supergravity.

The representation matrices themselves are taken within the only irreps of the sub-

semigroup: the principal series representations. To construct them, we proceed as follows.

We define the super half-line R
+1|1 as the pair (x|ϑ) subject to the restriction x > 0:

R
+1|1 ≡ {(x|ϑ) |x > 0}. (4.17)

Under the action of the semigroup on the super half-line, the bosonic coordinate x maps to
ax+c+βϑ
bx+d+δϑ . This new location is also positive since positivity is fully encoded within the body

of a supernumber (see appendix A). Another way of appreciating this fact is to formally

Taylor expand the Heaviside step function:

Θ

(
ax+ c

bx+ d
− sgn(e)

αx+ γ

(bx+ d)2
ϑ

)
= Θ

(
ax+ c

bx+ d

)
− δ

(
ax+ c

bx+ d

)
sgn(e)

αx+ γ

(bx+ d)2
ϑ. (4.18)

Hence it is indeed the case that, up to a delta function at the origin, only the bosonic

parameters determine positivity (see, e.g., [91]).
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We define the action of the semigroup OSp+(1|2,R) on functions f(x, ϑ) on R
+1|1 as

follows:27

(g ◦ f)(x, ϑ) ≡ (bx+ d+ δϑ)2jf

(
ax+ c+ βϑ

bx+ d+ δϑ
,−αx+ γ − eϑ

bx+ d+ δϑ

)
. (4.19)

This definition corresponds to the supertranspose action of the group in the homogeneous

2|1-dimensional space:

[
x z −ϑ

]
7→
[
x z −ϑ

]



a b α

c d γ

β δ e


 . (4.20)

It composes correctly under group multiplication and hence defines a representation of

OSp+(1|2,R). The representation defined in this way is irreducible and unitary, just like

the analogous principal series representation of the full group OSp(1|2,R). These proper-

ties require independent proofs, and we present them in appendix F. Infinitesimally, this

action corresponds to the following representation of the generators in terms of first-order

differential operators, which we call the Borel-Weil realization:

Ĥ = x∂x +
1

2
ϑ∂ϑ − j, Ê− = ∂x, Ê+ = −x2∂x − xϑ∂ϑ + 2jx, (4.21)

F̂− =
1

2
(∂ϑ + ϑ∂x), F̂+ = −1

2
x∂ϑ −

1

2
xϑ∂x + jϑ. (4.22)

These operators obey the commutation relations

[Ĥ, Ê±] = ±Ê±, [Ê+, Ê−] = 2Ĥ,

[Ĥ, F̂±] = ±1

2
F̂±, [Ê±, F̂∓] = −F̂±, (4.23)

{F̂+, F̂−} = −1

2
Ĥ, {F̂±, F̂±} = ∓1

2
Ê±,

which differ in the anticommutators by a sign factor compared to the osp(1|2) superalge-

bra (2.7) satisfied by the finite generators. Thus the infinitesimal group action leads to

a representation of the opposite superalgebra. This is consistent with the fact that the

generators F̂+ and F̂− have Grassmann statistics, unlike the bosonic matrices (2.6) in

finite-dimensional representations. More elaborate discussions of these issues are provided

in appendix E. Demanding antihermiticity of the bosonic generators requires Re(j) = −1/4,

which we write as j = −1/4+ ik/2 for k ∈ R (this should be contrasted with Re(j) = −1/2

for SL(2,R)). See appendices E.4.3 and E.4.4 for details.

27When working with the full group OSp(1|2,R) rather than the subsemigroup, extra sign factors and

absolute values must be included in this definition; see appendix E.
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Finally, any OSp+(1|2,R) matrix can be written in the Gauss-Euler parametrization

as

g(φ, γ−, γ+|θ−, θ+) = e2θ−F −
eγ−E−

e2φHeγ+E+
e2θ+F +

(4.24)

=




eφ γ+e
φ eφθ+

γ−e
φ e−φ + γ−γ+e

φ − θ−θ+ γ−e
φθ+ − θ−

eφθ− γ+e
φθ− + θ+ 1 + eφθ−θ+


 , (4.25)

where the second line is the formula in the defining representation. The condition (2.4) can

be explicitly verified to hold. Notice that in this form, the elements a, b, c, d are positive

when γ−, γ+ > 0.

Our goal is to compute the gravitational matrix elements of OSp+(1|2,R). These are

found by implementing the Brown-Henneaux supergravity boundary conditions [63] at the

quantum level, which can be done by diagonalizing the parabolic generators in both the bra

and ket states. This “mixed parabolic” matrix element diagonalizes the “outer” factors in

the Gauss parametrization (4.24). This is the supersymmetrization of the same statement

in bosonic gravity, implemented in this language in [40, 41]. At the infinitesimal level, we

will end up diagonalizing the operators (4.22) in the Borel-Weil realization of the opposite

superalgebra.28

Therefore, working in the Gauss parametrization (4.24), we wish to compute the mixed

parabolic matrix element of a generic OSp+(1|2,R) element g in the principal series rep-

resentation defined by (4.19). In the bosonic case of SL(2,R), this involved diagonalizing

E±, but here, we must additionally diagonalize the fermionic generators F±. Consider the

representation matrix element

〈ψ−|e2θ−F −
eγ−E−

e2φHeγ+E+
e2θ+F + |ψ+〉, (4.26)

which reads in coordinate space as
∫
dx dϑ 〈ψ−|x, ϑ〉e2θ−F̂ −

eγ−Ê−
e2φĤeγ+Ê+

e2θ+F̂ +〈x, ϑ|ψ+〉. (4.27)

We now choose the bra and ket states to be simultaneous eigenstates of the parabolic

generators in the sense that:

Ê+〈x, ϑ|ψ+〉 = −λ〈x, ϑ|ψ+〉, θ+F̂
+〈x, ϑ|ψ+〉 = 〈x, ϑ|ψ+〉iε+

√
λ

2
θ+,

〈ψ−|x, ϑ〉Ê− = ν〈ψ−|x, ϑ〉, 〈ψ−|x, ϑ〉θ−F̂− = iε−

√
ν

2
θ−〈ψ−|x, ϑ〉. (4.28)

Upon diagonalizing the bosonic parabolic generator E±, by consistency with the algebra re-

lation {F±, F±} = ∓E±

2 , “diagonalization” of the associated fermionic parabolic generator

F± only allows for specifying a sign ε± ∈ {+1,−1}.29

28These exponentiate to a representation of the group, unlike those that furnish a Borel-Weil realization

of osp(1|2) itself (for the latter, see (E.127)).
29We put the word “diagonalization” in quotes because it is only in the above sense that these operators

are diagonalized, by including the Grassmann parameters θ± in the appropriate places. We will have more

to say about this below.
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For bosonic Lie groups, states diagonalizing the parabolic generators are called Whit-

taker vectors, and we will adhere to the same name for the supergroup case at hand. We

can then write (4.26) more explicitly as:

(
1− iε−

√
νθ− + iε+

√
λθ+ + ε−ε+

√
λνθ−θ+

)
eγ−νe−γ+λ

∫
dx dϑ 〈ψ−|x, ϑ〉e2φĤ〈x, ϑ|ψ+〉. (4.29)

This results in what one would mathematically regard as the Whittaker function [87–90],

in that the exponentiated Cartan element is the only factor in the Gauss decomposition

that contributes nontrivially to the calculation of the matrix element.

We next explicitly construct the Whittaker vectors diagonalizing combinations of the

parabolic generators E± and F±, as in (4.28). Note that taking the adjoint of a right

eigenvector of F− does not yield a left eigenvector of F−. Therefore, to determine the right

states with respect to which to compute the matrix element, we should first diagonalize

(F−)† = 1
2(∂ϑ − ϑ∂x).30 We can immediately write down the correct states:

〈x, ϑ|ν, ε−〉 =
1√
2π

(e−νx + iε−
√
νϑe−νx), (4.31)

with properties

(E−)†|ν, ε−〉 = ν|ν, ε−〉, (F−)†|ν, ε−〉 =
iε−
2

√
ν|ν,−ε−〉, (4.32)

and

〈x, ϑ|λ, ε+〉 =
1√
2π

(x2je−λ/x − iε+

√
λϑx2j−1e−λ/x), (4.33)

satisfying

E+|λ, ε+〉 = −λ|λ, ε+〉, F+|λ, ε+〉 =
iε+

2

√
λ|λ,−ε+〉, (4.34)

where ν, λ > 0. Notice that these states do not literally diagonalize the fermionic generators

F±, but instead map the states with different ε− or ε+ into each other. One can check

that this is equivalent to (4.28) and consistent with the opposite superalgebra relations

{F±, F±} = ∓E±

2 .

So the eigenvectors (4.31) and (4.33) are the Whittaker vectors of OSp+(1|2,R), found

by diagonalizing parabolic generators. Note that the eigenfunctions, as written, do not

have definite Grassmann parity.31

All of these eigenfunctions are normalizable on R
+: this is clear for the − generators,

and it is true for the + generators because the integral of x4j−1e−2λ/x converges for Re(j) =

30The formula for the adjoint of F− follows from the relation
∫
dx dϑ f(x, ϑ)∗(∂ϑ + ϑ∂x)g(x, ϑ) =

∫
dx dϑ ((∂ϑ − ϑ∂x)f(x, ϑ))∗g(x, ϑ) + (boundary terms). (4.30)

31The results for the full group OSp(1|2) correspond to taking ν → −iν and λ → −iλ in the results for

the semigroup, leading to imaginary rather than decaying exponentials.
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−1/4 (in fact, for Re(j) < 0). The eigenvalues are consistent with the relation (F±)2 =

∓1
4E

±.

The remaining Whittaker function is now readily computed:

〈ν,ε−|e2φH |λ,ε+〉≡
∫
dxdϑ〈ν,ε−|x,ϑ〉e2φĤ〈x,ϑ|λ,ε+〉

=
1

2π

∫ ∞

0
dx

∫
dϑ(e−νx− iε−

√
νϑe−νx)

(
e2jφx2je−λe−2φ/x− iε+

√
λϑe(2j−1)φx2j−1e−λe−2φ/x

)

=
1

πi

λj+1/2

νj
e−φ

(
ε−K2j+1(2e−φ

√
νλ)+ε+K2j(2e−φ

√
νλ)

)
. (4.35)

We have used the fact that an element e2φH of the maximal torus acts via dilatations

as in (4.19) (or specifically, (E.79)), as well as the integral representation of the modified

Bessel function of the second kind:

∫ ∞

0
dxx2j−1e−νx−λ/x = 2

(
λ

ν

)j

K2j(2
√
νλ) (4.36)

for Re(ν),Re(λ) > 0. Inserting (4.35) into (4.29), we finally obtain

〈ν, ε−|g|λ, ε+〉 =
(
1− iε−

√
νθ− + iε+

√
λθ+ + ε−ε+

√
λνθ−θ+

)
eγ−νe−γ+λ

× 1

πi

λ
1
4

+ ik
2

ν− 1
4

+ ik
2

e−φ
(
ε−K 1

2
+ik(2e−φ

√
νλ) + ε+K 1

2
−ik(2e−φ

√
νλ)

)
, (4.37)

where we have substituted j = −1/4 + ik/2 and used Kα(z) = K−α(z). Upon stripping

off the first line, these are indeed the known N = 1 super-Liouville minisuperspace wave-

functions (involving both sign combinations, and ignoring the overall sign) [92]. Indeed,

Whittaker functions have primarily appeared in the physics literature in an integrability

context as solutions to Liouville and Toda equations of motion, e.g., in [93–96].

The distillation of the Virasoro algebra from the SL(2,R) Kac-Moody algebra [97–100]

is the mechanism that extracts both 2d Liouville CFT and 3d gravity from the underlying

SL(2,R) WZW model. Dimensionally reducing this setup takes Liouville CFT to the

Liouville minisuperspace eigenvalue problem, and takes 3d gravity to 2d JT gravity. It

is hence no coincidence that JT (super)gravity is described by precisely the same objects

(Whittaker functions) that govern (super-)Liouville minisuperspace models.

Moreover, the wavefunctions (4.37) are solutions to the Casimir eigenvalue equation

for OSp(1|2,R), and taking into account the sign choices, they span the entire eigenspace

for fixed j. The treatment of the Casimir equation is given in appendix E.5, with (E.161)

being the particular solutions to compare to.

When specializing to gravity, we will set ν = λ = 1, corresponding to the entry “1”

appearing in (2.13).

4.4 Gravitational density of states

The Plancherel measure for the subsemigroup follows from the orthogonality relation of

the mixed parabolic Whittaker function 〈ν−, ε−|e2φH |λ+, ε+〉.
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As such, keeping ν, λ arbitrary and specializing to j = −1
4 + ik

2 , we write the mixed

parabolic Whittaker function as a wavefunction:

ψk
ε+λ,ε−ν(φ) ≡ 〈ν, ε−|e2φH |λ, ε+〉 (4.38)

=
1

πi

λ
1
4

+ ik
2

ν− 1
4

+ ik
2

e−φ
(
ε−K 1

2
+ik(2e−φ

√
νλ) + ε+K 1

2
−ik(2e−φ

√
νλ)

)
. (4.39)

The Haar measure of OSp(1|2,R) is

dµ(φ) =
1

2
eφ [dφ dγ− dγ+ | dθ− dθ+] , (4.40)

which we prove in appendix E.8.2. The brackets denote an “integration form” on super-

space [91]. Focusing on the φ-dependent part, we get

∫ ∞

−∞

(
1

2
eφ dφ

)
ψk

ε+λ,ε−ν(φ)∗ψk′

ε+λ,ε−ν(φ)

=
1

2π2

λ
1
2

− ik
2

+ ik′

2

ν− 1
2

− ik
2

+ ik′

2

∫ ∞

−∞
dφ e−φ

(
ε−K 1

2
−ik(2e−φ

√
νλ) + ε+K 1

2
+ik(2e−φ

√
νλ)

)

×
(
ε−K 1

2
+ik′(2e

−φ
√
νλ) + ε+K 1

2
−ik′(2e

−φ
√
νλ)

)
. (4.41)

To evaluate this integral, we use the identity32

∫ ∞

0
dx
(
K 1

2
+ik(x)±K 1

2
−ik(x)

) (
K 1

2
−ik′(x)±K 1

2
+ik′(x)

)
=
π2δ(k − k′)
cosh(πk)

, (4.43)

which holds for k, k′ > 0, and conclude that

∫ ∞

−∞

(
1

2
eφ dφ

)
ψk

ε+λ,ε−ν(φ)∗ψk′

ε+λ,ε−ν(φ) =
δ(k − k′)

4 cosh(πk)
. (4.44)

The resulting Plancherel measure is ρ(k) = cosh(πk), up to normalization. This is indeed

the known result for N = 1 JT supergravity and the N = 1 super-Schwarzian model.33

32This identity follows from a regularized version of the α = 1/2 case of (B.24). One introduces a

regulator ε, as in appendix B of [101], to evaluate

∫ ∞

0

dxK 1
2

+is−ε(x)K 1
2

+is′−ε(x) =
i

4

π

sinhπ( s+s′

2
+ iε)

π

cosh π( s−s′

2
)
. (4.42)

We have corrected a typo ε → −ε in [101]. This is because the asymptotics as x → 0 is of the form Kα(x) ∼
x−α if Re(α) > 0. The x → 0 region of the above integral is distributionally convergent ∼

∫
0

dx
x
xi(s+s′).

Regularizing it requires taking 1/2 → 1/2 − ε, with ε > 0.
33We stress that although considering the parabolic Whittaker function (matrix element of e2φH) suffices

to extract the Plancherel measure for OSp+(1|2), what would be the parabolic basis for the full group

OSp(1|2) ceases to be a basis for the semigroup OSp+(1|2): that is, the eigenfunctions of the parabolic

generators do not comprise a basis on R
+. Strictly speaking, the above argument suffices only for regions

connected to the boundary; otherwise, one needs a basis (completeness relation). To obtain an orthogonality

relation for OSp+(1|2) matrix elements with respect to the full Haar measure, one can instead work in the

hyperbolic basis (see appendix E.8).
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n=1

m=1

h

n=1

m=1

f

b/2

Figure 5. BF evaluation of disk amplitudes. We use a Hamiltonian evaluation with the dashed lines

being the fixed Euclidean time slices. Both endpoints of each time slice lie on the holographic bound-

ary, where we impose the gravitational boundary conditions. Left: disk partition function. Middle:

single boundary-anchored bilocal operator insertion on the disk. Right: Wheeler-DeWitt wavefunc-

tion Ψβ/2(φ) as a function of geodesic distance 2φ, evolving from a half-circle with length β/2.

5 Gravitational applications

In this section, we apply our previously acquired knowledge on the BF structure of N = 1

JT supergravity to find (or reproduce) gravitational amplitudes. Our treatment is rather

concise, since it can be developed in complete parallel to the bosonic JT results. We will il-

lustrate how the above calculated group-theoretic ingredients (the Whittaker functions, the

Plancherel measure, and the characters) suffice to determine JT supergravity amplitudes.

5.1 Application: disk amplitudes

We first discuss the disk partition function, as well as the insertion of a single boundary

bilocal operator on the disk (figure 5).

Within the BF framework, the evaluation of such amplitudes was worked out in [40, 41].

We refer the reader to those references for details. Here, we only summarize how knowledge

of the above structural ingredients leads to a derivation of this class of boundary correlators.

The strategy is as follows. We time-slice the Euclidean disk as shown in figure 5,

where each time slice is an interval. The Hilbert space description of a BF model on an

interval is known, where a complete set of wavefunctions consists of the representation

matrix elements Rj
ab(g) for each unitary irrep j and for each pair of representation indices.

This follows immediately from the Peter-Weyl theorem. These basis states are eigenstates

of the Hamiltonian, which acts as the Casimir Cj . In the case at hand, the boundary is the

holographic boundary where gravitational constraints are imposed. Mathematically, this

means the model is in fact a coset model, where the representation indices a and b are fixed

to a specific choice. The constraints in our case are given in terms of two parabolic indices:

ν = 1 and λ = 1. This is precisely the Whittaker function we determined above. So

Rj
ab(g) → R

−1/4+ik
ν=1,λ=1(φ), (5.1)

and these form a complete set upon summing over the momentum index k.34

34To match the conventions in the Schwarzian literature, what we call k in this section is what we call

k/2 in the rest of the paper. This should be kept in mind when comparing formulas between sections.
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These considerations immediately lead to the super-JT disk partition function

Z(β) =

∫ ∞

0
dk cosh(2πk)e−βk2

=
1

2

(
π

β

)1/2

e
π2

β . (5.2)

When a boundary bilocal operator is present, we should insert a discrete representation

matrix element in the calculation. The discrete representation Whittaker functions were

determined up to normalization in (E.158) as solutions to the Casimir eigenvalue problem,

and they take the form:

R(φ) = e−φJ2j+1

(
2
√
−νλe−φ

)
, e−φJ2j

(
2
√
−νλe−φ

)
, (5.3)

where j = −1/2,−1, . . . to produce the lowest- or highest-weight discrete representations.

The first entry above can be viewed as the bottom component, and the second as its

superpartner.35 Since this object plays the role of an operator insertion, we disregard the

precise normalization, which is ultimately just a choice. It is convenient here to define

h = −j. Discrete representations occur for h a positive half-integer. Taking the limit

ν, λ→ 0 to obtain the lowest/highest-weight Whittaker vector, we obtain36

R(φ)→ e−2hφ. (5.4)

This is to be identified with the bottom component of the bilocal operator (1.4). Given the

relation (3.23) between the bilocal operator and the geodesic distance d, we can identify

dbot ' 2φ, (5.5)

providing a direct geometric interpretation of the group coordinate φ. Notice in particular

that R(φ) → 1 when we take the limit to the identity (h = 0) insertion, as it should.

The resulting vertex function (or 3j-symbol) is then a group (coset) integral of a product

of two constrained principal series representation matrix elements (4.39) and one discrete

representation matrix element (5.4). Setting x = e−φ, we can use the integral
∫ ∞

0
dx
(
K1/2+2ik1

(x) + ε−ε+K1/2−2ik1
(x)
) (
K1/2+2ik2

(x) + ε−ε+K1/2−2ik2
(x)
)
x2h

= 4h−1

(
Γ
(

1
2 + h± i(k1 − k2)

)
Γ
(
h± i(k1 + k2)

)
+ (k2 → −k2)

)

Γ(2h)
, (5.6)

where a product over all four choices of ± is understood. Notice that both choices of

ε−ε+ give precisely the same result. These expressions are the known 3j-symbols (or vertex

functions) in N = 1 JT supergravity [39]. Inserting this quantity into the full answer for the

correlation function then gives the bottom component of the boundary two-point function:

〈Oh(τ, 0)〉bot =
1

Z(β)

1

π2

∫
dk1 dk2 e

−τk2
1−(β−τ)k2

2 cosh(2πk1) cosh(2πk2) (5.7)

× Γ
(

1
2 + h± i(k1 − k2)

)
Γ
(
h± i(k1 + k2)

)
+ (k2 → −k2)

Γ(2h)
,

in agreement with the known result obtained using super-Liouville techniques [39].

35This is not quite right: the actual superpartner is a suitable linear combination of both of these, as can

be seen from the recursion relations in equation (E.8) of [55].
36We have used that for α ∈ Z, Jα(x) ∼ x|α| as x → 0. We have also assumed that h > 1/2, which is

precisely the regime where the worldline description of section 3.3 is valid.
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Finally, just like in the bosonic case, it is interesting to note that one can write down

a Wheeler-DeWitt wavefunction Ψβ/2(φ) that creates a two-boundary state with geodesic

separation dbot = 2φ between both boundaries, evolving from half of a Euclidean disk of

boundary length β/2 (figure 5), by writing:

Ψβ/2(φ) ≡
∫
dk cosh(2πk)e− β

2
k2
e−φ

(
K1/2+2ik(2e−φ) + ε−ε+K1/2−2ik(2e−φ)

)
. (5.8)

Two copies of this “half-disk” wavefunction can be glued together to reproduce the disk

partition function:

Z(β) =

∫
dφ

(
eφ

2

)
Ψ∗

β/2(φ)Ψβ/2(φ). (5.9)

5.2 Application: defect insertions and gluing

As a further example, we discuss the insertion of hyperbolic defects in the disk and use

them to glue surfaces together in the gauge-theoretic description. For a BF theory of a

compact group G described by an action of the type (B.57), one can create a defect of

holonomy U in the disk by inserting a suitably normalized character in the region of the

disk with representation R:
χR(U)

dimR
. (5.10)

For instance, the disk amplitude with a single such insertion would be

ZU (β) =
∑

R

(dimR)2
(
χR(U)

dimR

)
e−βCR , (5.11)

where one sums over all irreps of the group G, and where CR is the quadratic Casimir of

R. These equations are nearly identical to those of 2d Yang-Mills amplitudes [102]. This

analogy was studied more closely in several works [40, 103–105].

Gravity differs from such a BF theory in two ways: firstly, as explained around figure 5,

it behaves as a coset model instead of a genuine group model. This coset restriction

essentially strips off a factor of dimR from the above amplitude: see section 2.3 of [41] for

an extensive discussion. Secondly, the relevant group is noncompact, where in our setup,

the role of dimR is played by the Plancherel measure for the principal series representations

of the positive semigroup.

Hence when applying the above procedure of inserting a defect to the gravitational

case, we need only find the expression for the suitably normalized character and insert it

into our super-JT disk partition function (5.2). The relevant representation theory does not

seem to be available in the mathematical literature, so we work it out from first principles.

Within the NS sector, the character we need is computed in appendix E.7 (in particular,

see (E.175)) and given by

χk(φ) = cos(2φk). (5.12)

A few comments are in order. Here, as everywhere in this section, we have set k → 2k

to match the gravitational convention where the energy variable E and the momentum

parameter k are related by E = k2+constant. We have stripped off the Weyl denominator of
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ff

Figure 6. Gluing together tubes by integrating over hyperbolic orbits with geodesic length 2φ for

a fixed spin structure.

this character, and we likewise glue with a flat conjugacy class measure on the supergroup.

This is merely a bookkeeping exercise, but the current normalization matches directly to

the Schwarzian limit of the super-Virasoro modular S-matrices. Indeed, using the modular

S-matrix between two nondegenerate super-Virasoro representations [106], we write:

lim
b→0

Ss
P = lim

b→0
cos (4πsP ) = cos(2φk) = χk(φ), (5.13)

where we fix s = φ/2πb and P = bk in the limit as b→ 0 [69].

Inserting (5.12) into the disk partition function gives the defect disk amplitude (or the

single-trumpet amplitude):

Zφ(β) =

∫ ∞

0
dk cos(2φk)e−βk2

=
1

2

√
π

β
e

− φ2

β , (5.14)

geometrically interpretable as a single-trumpet geometry with a neck of length 2φ, as

discussed in section 2.3. The length parameter 2φ is related to the defect parameter Λ by

φ = πΛ.

Two such trumpets can be glued together in super-Teichmüller space by using character

orthonormality (E.179). This procedure is pictorially represented in figure 6. It gives the

two-boundary amplitude:

Z(β1, β2) =

∫ ∞

0
dk e−(β1+β2)k2

=
1

2

√
π

β1 + β2
. (5.15)

Notice that this is not the same double trumpet amplitude of [44]. This discrepancy is due

to our description in terms of super-Teichmüller space, compared to their description in

terms of the moduli space of super-Riemann surfaces. The difference is a quotient by the

mapping class group, which would lead to an additional factor of φ inserted in the gluing

integral and matching to the computation of [44].37

One can likewise find the amplitude with a single elliptic defect by analytically con-

tinuing φ→ iφ to get

Zφ(β) =

∫ ∞

0
dk cosh(2φk)e−βk2

=
1

2

√
π

β
e

φ2

β , (5.16)

interpretable as a disk with a conical defect of angular periodicity 2φ. We remark that, just

as in bosonic JT gravity, this is a formal analytic continuation of the hyperbolic character

37There are also extra OSp volume factors that are omitted here. See [41] for details in the bosonic case.
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insertion because the actual elliptic character vanishes, as shown in appendix E.7. This

procedure can be phrased in many different ways. In particular, [69] used the language

of coadjoint orbits of the Virasoro group and branes in Liouville CFT: there, analytically

continued FZZT branes (dubbed iFZZT branes) were needed to access elliptic defects.

In the special case where 2φ = n odd, we have the enhanced stabilizer OSp(1|2,R), for

which the super-Virasoro modular S-matrix element [106] has the limit

lim
b→0

S(n,1)
P = lim

b→0
4 cosh

(
2πn

P

b

)
cosh(2πPb) = 4 cosh(2πnk), (5.17)

which plays the role of the character insertion in the disk amplitude. For n = 1, we get

the vacuum orbit, leading to the ordinary thermal disk partition function.38

Hence for all of the orbits discussed in section 2.2, we can obtain suitable defect

insertions to be inserted into the disk partition function. For the NS sector of interest, we

summarize them below:

• Elliptic H = U(1)Θ:

F ◦Θ f = tan
π

β
Θf, DU(1)Θ

(k) =
cosh(2πΘk)

cosh(2πk)
. (5.19)

• Special Elliptic H = OSpn(1|2,R), n odd:

F ◦n f = tan
π

β
nf, DOSpn(1|2,R)(k) =

cosh(2πnk)

cosh(2πk)
. (5.20)

• Special Elliptic H = SLn(2,R), n even:

F ◦n f = tan
π

β
nf, DSLn(2,R)(k) =

k sinh(2πnk)

cosh(2πk)
. (5.21)

• Hyperbolic H = U(1)Λ:

F ◦Λ f = tanh
π

β
Λf, DU(1)Λ

(k) =
cos(2πΛk)

cosh(2πk)
. (5.22)

• Parabolic H = U(1)0:

F ◦0 f = f, DU(1)0
(k) =

1

cosh(2πk)
. (5.23)

38For even n, we can instead work with the modular S-matrix

lim
b→0

S(n,2)
P = lim

b→0
4 sinh

(
2πn

P

b

)
sinh(2πPb) ∼ k sinh(2πnk), (5.18)

which is indeed the expected measure that gives three bosonic zero modes, corresponding to the stabilizer

SL(2,R). We leave a more careful comparison for future work.
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5.3 Application: wormhole length and complexity

As a short application of our understanding of bilocal operators, and in particular the

superspace geodesic formula (3.23), we follow [51] and utilize these correlators to compute

the geometric boundary-to-boundary wormhole length in the two-sided black hole geometry.

This geometric information is conjectured to encode the computational complexity of a

putative boundary dual by way of the “Complexity = Volume” conjecture [107], which

relates the complexity C(t) to the extremal wormhole volume V (t) as C(t) = V (t)
GLAdS

.

Since our goal in this subsection is to probe the strong-coupling regime of the super-

Schwarzian theory, it is useful to make dimensionful parameters explicit:

SN =1
Sch = −2C

∮

∂M
dτ TB(τ), (5.24)

where the coupling constant C has dimensions of length. We mostly work in units where

C = 1/2, and reinstate it here for clarity. We see from (2.18) that the action (5.24) is

normalized such that for η = 0, it reproduces the bosonic result, with C being the usual

Schwarzian coupling. In the standard second-order treatment of JT gravity, such a constant

depends on the relative normalization of the boundary values of the dilaton and metric. It

would appear in our case as a constant factor in the boundary condition (2.11), which we

have suppressed.

Within bosonic JT gravity, the classical (renormalized) wormhole length was consid-

ered in [108]. The answer is essentially the logarithm of the semiclassical boundary two-

point function, where the endpoints are separated by half a thermal circle in Euclidean time:

d(t) = ln cosh
2π

β
t ≈ 2π

β
t. (5.25)

Famously, this quantity grows linearly in time for late times t [109].

Within bosonic JT gravity, going beyond classical gravity can be done by realizing

that in any off-shell gravitational background F (t), the wormhole length is computed by

the operator:

d(t) = log
(F (t)− F (t+ iβ/2))2

∂tF (t)∂tF (t+ iβ/2)
− log ε2, (5.26)

with a term involving a UV regulator ε that is naturally measured with the proper boundary

clock time t. Subtracting this quantity gives the renormalized wormhole length. The

resulting time reparametrization F (t) results in a wiggly boundary curve, but the bulk

geometry is still a patch of AdS2. The situation is sketched in figure 7.

This operator is then inserted in the Schwarzian (or gravitational) path integral. This

calculation was done in [51], with the tantalizing result that the geodesic distance at late

times t� C still increases linearly with time:

d(t) ≈ 2π

β
t. (5.27)

Hence this late-time growth persists even after classical gravity stops being valid. Here,

we will show as an application that the same is true in JT supergravity.
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Figure 7. Extremal wormhole in the bulk geometry of the thermal system, anchored at both

boundaries at time t.

Within classical JT supergravity, since the saddle solution of the geometry is not af-

fected by the fermions, the wormhole length as a function of boundary time t is given by

precisely the same expression (5.25). The difference between the bosonic and the supersym-

metric theories is only visible when incorporating interactions with the boundary gravitino

η(t), and hence at the quantum level in the expansion in the gravitational coupling constant

GN ∼ 1/C.

The tool that we use to go beyond classical gravity is the JT supergravity bilocal

correlation function (5.7), but with the coupling parameter C made explicit:

〈Oh(τ, 0)〉bot =
1

Z

1

π2(2C)2h

∫
dk1 dk2 e

−τ
k2

1
2C

−(β−τ)
k2

2
2C cosh(2πk1) cosh(2πk2) (5.28)

× Γ
(

1
2 + h± i(k1 − k2)

)
Γ
(
h± i(k1 + k2)

)
+ (k2 → −k2)

Γ(2h)
.

Using the bottom component of the geodesic distance formula (3.23) in superspace, the

(renormalized) wormhole length at real time t is given by the following expression:

dbot(t) = − 1

Z

1

π2

∫
dk1 dk2 e

−(β/2+it)
k2

1
2C

−(β/2−it)
k2

2
2C cosh(2πk1) cosh(2πk2) (5.29)

× ∂

∂h

Γ
(

1
2 + h± i(k1 − k2)

)
Γ
(
h± i(k1 + k2)

)
+ (k2 → −k2)

(2C)2hΓ(2h)

∣∣∣∣∣
h=0

.

Now we approximate this expression at late time t� C. We use the identity

Γ(h± i(k1 − k2))

Γ(2h)
= 2

∫ ∞

−∞
dy

e2i(k1−k2)y

(2 cosh y)2h
, (5.30)

and differentiate with respect to h to rewrite the second term of (5.29) as:

dbot(t) =
1

Z

4

π2

∫
dy

∫
dk1 dk2 e

−(β/2+it)
k2

1
2C

−(β/2−it)
k2

2
2C e2i(k1−k2)y cosh(2πk1) cosh(2πk2)

× ln(2 cosh y)Γ

(
1

2
± i(k1 + k2)

)
. (5.31)

Terms where the derivative ∂/∂h acts on any of the other factors are subdominant in the

large-t regime, or t-independent. The first term of (5.29) is subdominant as well. This can
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be seen since performing the same trick requires an extra factor of 2h in the numerator,

which goes to 0 as we take h→ 0 in the end.

At late times t� C, the ki-integrals in (5.31) are dominated by their nontrivial saddle

point at k∗
i /C = 2y/t where y is positive (and large) as a consequence. One evaluates the

two ki-integrals then to be:

dbot(t) ≈
1

Z

4

π2

2πC

t

∫
dy e−β

(k∗)2

2C cosh2(2πk∗)yΓ

(
1

2
± 2ik∗

)

=
1

Z

∫
dk∗ 2e−β

(k∗)2

2C cosh(2πk∗)
k∗

C
t, (5.32)

where we have used |Γ(1/2 + ik)|2 = π/ cosh(πk). This can be viewed as the thermal

ensemble version of the microcanonical k∗

C t. For a macroscopic black hole (the thermody-

namic limit) where β � C, this integral gets further evaluated on its saddle k∗ ≈ 2πC
β ,

leading indeed to

dbot(t) ≈
2π

β
t. (5.33)

This is precisely equal to the semiclassical wormhole length, but now valid at late times

t� C where quantum gravity is strongly coupled.

These calculations, however, only use the lowest disk topology for the boundary bilocal

correlator. It is known that higher-genus corrections to boundary correlators exist and that

they are important at late times [7, 16, 17]. It is natural to suspect that these will lead to

a saturation of the complexity C(t) at very late times and cause the complexity plateau to

appear [110]. It would be interesting to understand this effect in more detail.

6 Discussion and open problems

In this work, we have advocated for a group-theoretic perspective on N = 1 JT super-

gravity. This required a great deal of the relevant OSp(1|2) supergroup theory, which we

developed independently mostly in the appendices.

Our results were obtained in the framework of gauge theory. At a basic level, one can

ask: how much of the gravitational theory does a gauge theory description even capture?

One point of view is that the gauge theory only describes the limit S0 →∞, where S0 is the

coefficient of the purely geometric term in the Euclidean JT action that weights topologies

by (eS0)χ(M). This limit simplifies the statement of holographic duality to an equivalence

between a BF theory on a fixed topology and edge modes on the boundary. For instance,

only when restricting to the disk is JT gravity equivalent to the Schwarzian theory at finite

temperature. When the path integral implements a sum over topologies, JT gravity is dual

to an ensemble of random Hamiltonians with Schwarzian density of states [7].

Therefore, it may seem that the disk probes a very limited sector of the full gravita-

tional theory. However, the disk observables (e.g., vertex functions), when supplied as input

to the dual matrix model, seem to provide all the data needed to compute multi-boundary

and higher-genus amplitudes, including amplitudes with bilocal lines [17]. Indeed, random
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matrix theory gives all multi-level spectral densities in terms of the single-level spectral den-

sity ρ0(E), which is computed as the inverse Laplace transform of the disk partition func-

tion. This fact, combined with suitable gluing rules [7] and known results on the disk [41,

69], leads to a recipe for JT gravity amplitudes on surfaces with handles, boundaries, Wilson

lines, and defects. Our results provide the ingredients in a similar recipe for JT supergravity.

Of course, the major caveat is that the gluing rules relevant to gravity transcend gauge

theory. To appreciate this caveat, we reprise the points in the introduction and summarize

their resolution in JT gravity. We phrase the following for bosonic JT gravity, but similar

statements hold if one replaces PSL(2,R) with OSp′(1|2) and T with ST and inserts the

word “super” as appropriate.

Low-dimensional gravity is a gauge theory at the level of the classical action and in

perturbation theory around classical solutions, but it differs substantially from gauge theory

at the level of the nonperturbative path integral [34, 41]. Perhaps most obviously, gauge

theory is formulated on a fixed background, so any sum over topologies that is needed to

match with the gravitational path integral must be implemented by hand. On top of this

discrepancy, the gauge and gravity path integrals also differ in the integration space within

a given topological class:

• First, classical solutions of the gauge theory do not necessarily map onto classical

solutions of the gravitational theory (nonsingular metrics). In JT gravity, we solve

this problem by restricting the BF path integral to the hyperbolic component of the

moduli space of flat (P)SL(2,R) connections, namely the component in which all

holonomies are conjugate to hyperbolic elements. This is precisely Teichmüller space

T (Σ): the space of (smooth) hyperbolic metrics on Σ, modulo diffeomorphisms that

are connected to the identity [111].

• Second, gauge transformations can be identified with diffeomorphisms that are con-

nected to the identity, but they do not account for large diffeomorphisms. In JT

gravity, we must perform a further quotient on the path integration space over ge-

ometries, thereby restricting it to the moduli space of Riemann surfaces M(Σ).

We have argued that the first point can be addressed purely within gauge theory by

carefully identifying the global form of the gauge group in the gauge theory description

of JT gravity. Namely, the moduli space of flat SL+(2,R) connections is contained in

Teichmüller space, and is conjecturally equal to it [41]. Settling both this conjecture and

the corresponding one for OSp+(1|2) are outstanding problems.

Addressing the second point seems to require going beyond gauge theory. Namely, from

the gauge theory perspective, it is more natural that higher-genus amplitudes should be

computed by integrating over Teichmüller space T (Σ), but in practice, the results converge

only for very low genus (χ ≥ 0) [41]. Matching with the true JT gravity amplitudes requires

a different gluing measure appropriate for the moduli space of Riemann surfacesM(Σ) [7].

In the latter approach, one treats the Weil-Petersson volumes as external data and glues

them to gauge theory disk amplitudes (decorated with hyperbolic defects) by restricting

the integration range of the length parameter using input that goes beyond gauge theory.
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Finally, at least two different gauge theory descriptions of bosonic JT gravity have been

proposed in the literature: one involves restricting to a subsemigroup [40, 41], and another

involves passing to the universal cover of SL(2,R) [52]. They are different quantizations

of the same classical theory that agree on the disk (the “gauge sector” of JT gravity), but

may disagree on multi-boundary or higher-genus surfaces. It remains an open question to

understand the relation between these proposals, and to test them against each other in

different situations. It also begs the question: how unique is the gauge theory description

of JT gravity?

We next survey some open problems that are worthy of further investigation, some of

which will be addressed in upcoming work [112].

Local operators and interpretation of representation carrier space. The carrier

space of the representations discussed in this work is built on the superline (x|ϑ), and

is introduced as an auxiliary object in order to construct the representation. To distill

a physical interpretation, it is useful to observe that there exist SL(2,R)-covariant local

operators in the Schwarzian models that take the form

φj(x, τ) ≡ g−1(τ) · x2j =

[
f ′(τ)

(x− f(τ))2

]j

. (6.1)

The first equality shows that this operator is found by applying “half” of the Wilson line

in (3.14) and surrounding expressions. This operator depends on a single coordinate x,

and under

f(τ)→ af(τ) + c

bf(τ) + d
, (6.2)

it transforms into a local operator within the same representation:

φj(x, τ)→ (bx′ + d)2jφj(x′, τ), x =
ax′ + c

bx′ + d
, (6.3)

namely the spin-j representation of SL(2,R).

We can play the same game in the supersymmetric case to define OSp(1|2,R)-covariant

local operators. The local operator

φj(x, ϑ, τ) ≡ g−1(τ) · x2j =

(
Dθ′

x− τ ′ + θ′ϑ

)2j

(6.4)

transforms in the spin-j representation of OSp(1|2,R). Indeed, under39

τ ′ → aτ ′ − c− βθ′

−bτ ′ + d+ δθ′ , θ′ → ατ ′ − γ + eθ′

−bτ ′ + d+ δθ′ , (6.7)

39The minus signs may look a bit odd here. They are present because it is (−τ ′, θ′) and not (τ ′, θ′) that

transforms naturally under super-Möbius transformations as in, e.g., (4.19). That action, however, preserves

D̃τ ′ = −θ′D̃θ′ with D̃ ≡ ∂θ −θ∂τ . While this action is consistent, the current choice makes contact with the

conventions in gravity (section 2). It is easy to go between these conventions by simply letting τ ′ → −τ ′.

We make similar adjustments in the super-Möbius transformations of the discrete representation carrier

space coordinates (x, ϑ).
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x

f(t1)

Figure 8. Penrose diagram of the AdS2 Poincaré patch (large triangle), with the black hole Penrose

diagram embedded within (smaller green triangle). A bilocal operator (6.1) (blue) has one endpoint

on the wiggly boundary curve (red) at proper time t1 and another endpoint at Poincaré time x,

which might be beyond the black hole horizon as it is here. The vertical axis measures global time,

and the horizonal axis the global radial coordinate.

which is a superconformal transformation that preserves the condition Dτ ′ = θ′Dθ′, the

operator (6.4) transforms as follows:

φj(x, ϑ, τ)→ (−bx′ + d+ δϑ′)2jφj(x′, ϑ′, τ), x =
ax′ − c− βϑ′

−bx′ + d+ δϑ′ , ϑ =
αx′ − γ + eϑ′

−bx′ + d+ δϑ′ ,

(6.8)

as appropriate for the spin-j representation.

From the above, it is clear that the carrier space labels x and (x|ϑ) play the role of

(super-)Poincaré coordinates of the second boundary point that is not reparametrized in

the Schwarzian path integration. This has an interesting interpretation in Lorentzian time:

whereas the first location parametrized by, e.g., F (t1) = tanh π
β f(t1) is always contained in

the exterior of the black hole −∞ < f < +∞, this is not so for the boundary time x. Hence

these local operators seem to be able to probe behind-the-horizon physics. Preliminary

studies of correlators of these objects appeared in appendix D of [39], but a more in-depth

study would be worthwhile.40 We depict the situation in figure 8.

In the literature, one sometimes encounters the alternative super-Möbius transformations

τ ′ → τ ′′ ≡ aτ ′ + b− αθ′

cτ ′ + d− γθ′
, θ′ → θ′′ ≡ βτ ′ + δ + θ′

cτ ′ + d+ γθ′
. (6.5)

These likewise respect the condition Dτ ′ = θ′Dθ′ (i.e., Dτ ′′ = θ′′Dθ′′) on account of the property D′τ ′′ =

θ′′D′θ′′ (and hence D′ = (D′θ′′)D′′ and (D′θ′′)(D′′θ′) = 1), where in addition to D ≡ ∂θ + θ∂τ , we have

defined the derivatives D′ ≡ ∂θ′ + θ′∂τ ′ and D′′ ≡ ∂θ′′ + θ′′∂τ ′′ with respect to the superfields (τ ′, θ′) and

the transformed superfields (τ ′′, θ′′). Moreover, it is common to rescale the bosonic parameters so that the

bosonic part of (6.5) coincides with an ordinary Möbius transformation [65, 113]:

(ã, b̃, c̃, d̃) ≡ e1/2(a, b, c, d) = (1 + βδ/2)(a, b, c, d), ãd̃− b̃c̃ = 1. (6.6)

Rescaling the fermionic parameters α, β, γ, δ by powers of e makes no difference. Unlike those used through-

out the text, the transformations (6.5) do not manifestly compose as a group.
40Such operators may also play a role in bulk reconstruction, namely in computing bulk-boundary corre-

lators rather than just boundary correlators.
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N = 2 JT supergravity and beyond. Since the techniques pursued in this work are

very specific to the model of interest, it is important to learn whether the structural lessons

that we draw here are broadly applicable. We make several comments along these lines.

A first hope is that the techniques employed here can be generalized to the N = 2

case. The corresponding boundary correlation functions are not known, and it would be

very useful to make progress using group-theoretic techniques.

In this setting, the holographic boundary line and carrier space of the representations

are 1|2 dimensional, parametrized by coordinates (x|ϑ, ϑ̄) where the Grassmann coordinates

are related by conjugation. The super-Möbius transformations in this case can be written

in a suggestive way using the combinations x± = x± ϑϑ̄, as in [71]:

x′
+ =

ax+ + c+ βϑ

bx+ + d+ δϑ
, x′

− =
āx− + c̄+ β̄ϑ̄

b̄x− + d̄+ δ̄ϑ̄
, (6.9)

ϑ′ =
−αx+ − γ + eϑ

bx+ + d+ δϑ
, ϑ̄′ =

−ᾱx− − γ̄ + ēϑ̄

b̄x− + d̄+ δ̄ϑ̄
. (6.10)

The 5|4 complex supernumbers a, b, c, d, e and α, β, γ, δ that parametrize the group element

satisfy 6|4 real relations between them, leading to the real 4|4-dimensional supergroup

SU(1, 1|1) ' SL(2|1) ' OSp(2|2) (6.11)

relevant for N = 2 JT supergravity. The above parametrization is that of SU(1, 1|1).

Given this transformation, it is not hard to propose a formula that constructs the

principal series representations:

(g ◦ f)(x+, x−, ϑ, ϑ̄) ≡ (bx+ + d+ δϑ)j+q(b̄x− + d̄+ δ̄ϑ̄)j−qf(x′
+, x

′
−, ϑ

′, ϑ̄′), (6.12)

where the transformed supercoordinates (6.9) and (6.10) appear on the right-hand side.

We have introduced two representation labels j = ik and q, the first interpretable in terms

of an energy label k2 and the latter interpretable in terms of an electric charge. This would

be the starting point of a similar endeavor as the one we pursued for the simpler N = 1

case in this work. We leave it for future study.

Physical considerations (e.g., the dynamics of a particle in the hyperbolic super-

plane [114, 115]) may allow for an alternative derivation of the Plancherel measure for

OSp(2|2). In particular, in [115], the following expression is found:

dµ(k) =
k tanh(πk)

k2 + 1/4
dk, (6.13)

which contracts to the scale-invariant form k−1 dk as k → ∞ and which is reminiscent of

the formula in appendix C.2 of [39] for the density of states in the N = 2 super-Schwarzian

theory. The only replacement necessary is tanh πk → sinh 2πk (see below).

Going beyond N = 2 is daunting, but recent progress for the N = 4 case is promis-

ing [116] and highlights applications to higher-dimensional near-horizon black hole physics.
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Plancherel measure: general real semisimple groups. Our story mimics the

bosonic story in which the gravitational density of states sinh 2π
√
E follows from a

Plancherel measure on the subsemigroup, whereas the measure on the full group would

be tanh π
√
E. One can then ask how generic this phenomenon is.

In the mathematics literature, the Plancherel measure for any real semisimple group

has been determined [117, 118]:

dµ(k) = dk dim(j)
∏

α∈∆+

tanh
π(k, α)

(α, α)
, (6.14)

where the dimension of a finite-dimensional irrep with highest weight j is given by Weyl’s

dimension formula:

dim(j) =

∏
α∈∆+(j + ρ, α)∏

α∈∆+(ρ, α)
. (6.15)

Using that the highest weight vector for the principal series representations can generically

be written as j = −ρ + ik, we plug into the dimension formula and simplify:

dµ(k) ∼ dk
∏

α∈∆+

(k, α) tanh
π(k, α)

(α, α)
. (6.16)

In particular, this formula holds for SL(N,R), where (α, α) = 2. However, the equation that

one finds by taking the Schwarzian/JT limit of the WN character yields (see, e.g., [119]):

dµ(k) ∼ dk
∏

α∈∆+

(k, α) sinh π(k, α), (6.17)

showing that just like for N = 2 (and up to overall prefactors), the same question arises as

to how one would effectively make the replacement tanh x/2→ sinh x.

This observation is significant for black hole physics, where the large-k regime probes

semiclassical (large) black holes. Taking inspiration from the different Plancherel measure

results (B.27), (6.16), (E.248), and (6.13), we are led to propose a formula for the large-

k asymptotics of the Plancherel measure on the principal series representations for any

semisimple Lie (super)group:41

ρ(k) ∼ k|∆+
B|−|∆+

F |, (6.18)

in terms of the number of positive bosonic roots minus the number of positive fermionic

roots. Since in these models, we identify the spacetime energy E with the quadratic

Casimir, we have the scaling E ∼ k2 at large k. Hence such a large-k polynomial density

of states can never account for the exponentially large number of microstates of a large

black hole.

Dilaton (super)gravities. It is a well-known fact that any 2d dilaton gravity theory of

the type

S = −1

2

∫
d2x
√
g (ΦR+ V (Φ)), (6.19)

41We assume the weight vector scales as k ∼ kλ, with λ an order-one weight vector, as k → +∞. This

is hence a “generic” or worst-case result that does not necessarily hold in every direction in weight space.
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including the recently considered deformations of JT gravity [120–122], has a first-order

gauge theory description with nonlinear gauge algebra, i.e., as a Poisson sigma model with

Poisson-Lie symmetry [123]. The action is

S =

∫

M
Ai ∧ dX i + P (X)ijAi ∧Aj , (6.20)

with Poisson tensor that encodes the dilaton potential V (Φ):

P (X)12 = V (X3), P (X)13 = −X2, P (X)23 = X1. (6.21)

The underlying nonlinear gauge algebra is [124, 125]:

[J, Pa] = εabη
bcPc, [Pa, Pb] = −1

2
εabV (J). (6.22)

Some explicit examples for which the resulting gauge algebra reduces to a known structure

are:

V (Φ) = 2ΛΦ → sl(2,R) Lie algebra (JT), (6.23)

V (Φ) = sinh b2Φ → Uq(sl(2,R)) quantum algebra with q = eπib2
. (6.24)

Group-theoretic techniques have been successfully applied to both of these cases. It would

be very interesting to learn whether generic dilaton (super)gravity models can be for-

mulated and solved using techniques akin to these group-theoretic techniques (and their

q-deformed cousins). For some relevant classical results on more generic dilaton gravity

models, see [126–128]. For the concrete result on the disk partition function, see [129]. See

also [130] for recent ideas in this direction.

This entire discussion pertained to the bosonic case. It would be interesting to write

down the analogous class of dilaton supergravity models following [125], in particular having

in mind the model associated to Uq(osp(1|2,R)), which would be interpretable in terms of

Liouville supergravity and the minimal superstring, as we discuss next.

Liouville supergravity. As an immediate example of the previous goal, Liouville gravity

and supergravity provide interesting setups. These theories can be formulated as (N = 1

supersymmetric) Liouville CFT coupled to a matter CFT and ghosts, and it was further ar-

gued in [54] that Liouville gravity is equivalent to a 2d dilaton gravity with potential (6.24).

In recent works, it has become clear that one can formulate disk amplitudes with boundary

tachyon vertex operators in a very similar language to JT (super)gravity [54, 55].

In fact, for bosonic Liouville gravity, it was shown in [54] that the amplitudes them-

selves are quantum (q) deformations of those in JT gravity. In particular, the structures

highlighted in this work (the Plancherel measure and the Whittaker function) are still

present in the q-deformed case. The Whittaker function itself was first derived in the con-

text of the q-deformed Toda chain [96], and was shown to lead to the correct Liouville

gravity vertex function in [54].
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We can follow similar logic for Liouville supergravity, for which the required Whittaker

function has not yet been derived in the mathematics literature. We propose the following

expression for the q-deformed Whittaker function of Uq(osp(1|2)):

ψε,±
s (x) = eπisx

∫ +∞

−∞

dζ

(4πb)−iζ/b−is/b
e−πi ε

2
(ζ2+2sζ)eπiζx (6.25)

× [SNS(−iζ)SR(−2is− iζ)± SR(−iζ)SNS(−2is− iζ)] ,

where ε = −1, 0, 1 is an additional parameter allowed by the deformation.42 The deforma-

tion parameter is q = eπib2
, with the classical limit corresponding to q → 1 or b → 0.43

Here, we will illustrate that the proposal (6.25) has the correct classical limit (4.35) de-

termined in this work. Further implications and a derivation will be treated in upcoming

work [112]. To arrive at the classical limit, we scale the variables as

ζ = 2ibt, ex = be−φ, s = bk, (6.28)

in the limit b→ 0. Using suitable b→ 0 limits of the double sine functions (6.27), we need

to evaluate the integrals

e−ikφ
∫

iR
dtΓ(t)Γ(t− ik + 1/2)e2φt = 4πie−φ/2Kik−1/2(2e−φ), (6.29)

e−ikφ
∫

iR
dtΓ(t+ 1/2)Γ(t− ik)e2φt = 4πie−φ/2Kik+1/2(2e−φ), (6.30)

leading to the limit:

ψε,±
s

(
x

πb

)
→ e−φ/2

(
Kik−1/2(2e−φ)±Kik+1/2(2e−φ)

)
. (6.31)

We have suppressed some constant factors and details about the integration contour. This

indeed yields the expression (4.35) upon setting ν = λ = 1 and absorbing the square root

of the Haar measure eφ/2 into the Whittaker functions themselves, such that the remaining

φ-integral has a flat measure. With this Whittaker function, one can indeed reproduce the

N = 1 Liouville supergravity vertex functions present in the boundary tachyon two-point

function [55], as will be shown elsewhere [112].

42The supersymmetric double sine functions that appear in this expression are defined in terms of the

ordinary double sine function Sb as follows:

SNS(x) = Sb

(
x

2

)
Sb

(
x

2
+
Q

2

)
, SR(x) = Sb

(
x

2
+
b

2

)
Sb

(
x

2
+

1

2b

)
. (6.26)

They have the following b → 0 limits:

SNS(bx) → 1√
2π

2
x

2 (2πb2)
x

2
− 1

2 Γ
(
x

2

)
, SR(bx) → 1√

2π
2

x

2
− 1

2 (2πb2)
x

2 Γ
(
x

2
+

1

2

)
. (6.27)

For more details on these definitions, we refer to the above references.
43It would be interesting to clarify the relation between this deformation and the one used in [131] in

the context of double-scaled supersymmetric SYK models. The two deformations seem to go in different

directions away from q = 1 in the complex q-plane.
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A Supernumbers

In this appendix, we define and collect our conventions for supernumbers as elements of a

Grassmann algebra.

Within a Grassmann algebra Λn over C, spanned by n Grassmann variables ϑ1, . . . , ϑn

satisfying

ϑiϑj = −ϑjϑi, ϑ2
i = 0, (A.1)

we can expand an arbitrary supernumber as

z = z0 +
∑

α

zαeα, (A.2)

where the prefactors z0 and zα are complex numbers and the basis elements eα span the

set of all elementary Grassmann elements ϑi1 · · ·ϑit with t = 1, . . . , n. To avoid spurious

cancellations, we take n→∞ throughout this work.

Following common convention [132], we refer to the purely numerical piece z0 as the

body, and the remainder as the soul of the supernumber. While the body is Grassmann-

even, the soul may have both even and odd parts. In [133], a definition of positive super-

number was formulated. One first defines the conjugate supernumber as44

z∗ = z∗
0 +

∑

α

z∗
αeα. (A.3)

This definition corresponds to taking the complex conjugate of all numerical factors, and

defining complex conjugation on Grassmann numbers as preserving the order:

(ϑ1ϑ2 · · ·ϑi)
∗ = ϑ1ϑ2 · · ·ϑi. (A.4)

A real supernumber is defined as one satisfying z∗ = z. Our choice of conjugation ensures

that combinations of the following form are real:45

(τ1 − τ2 − ϑ1ϑ2)∗ = τ1 − τ2 − ϑ1ϑ2, (A.5)

44Our definition is modified from that of [133] because we use a different definition for complex conjugation

of fermionic variables. Many different definitions are possible, and arguments can be made for each one [134].
45Another possible choice consistent with this reality condition is to take ϑ∗ = iϑ and to reverse the order

of a product of Grassmann numbers: (ϑiϑj)∗ = ϑjϑi. This choice was adopted in [80].
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where τ1, τ2 ∈ R. A nonnegative supernumber is then defined as one for which there exists

another supernumber w such that

z = ww∗. (A.6)

It was shown in [133] that a positive supernumber is automatically real (z∗ = z), and

moreover that its positivity is equivalent to the positivity of its body:

z > 0⇐⇒ z0 > 0. (A.7)

This means that only the purely numerical piece z0 of a supernumber determines whether

it is positive or negative: the soul is “infinitesimal” and therefore irrelevant to positivity.

An ordering is then naturally implemented for supernumbers that have different bodies z0,

where z1 > z2 iff z1−z2 > 0. Finally, the absolute value of a supernumber can be defined as

z ≡ sgn(z)|z|, (A.8)

where sgn(z) = 1 if z > 0 and sgn(z) = −1 if z < 0.

B Bosonic JT gravity

To orient ourselves with respect to JT supergravity, it is helpful to recall some of the cor-

responding results in the bosonic case. For all groups and semigroups considered, we focus

on the matrix elements and Plancherel measure for the continuous series irreps. Up to

numerical factors, the Plancherel measure ρ(k) is k tanh(πk) for SL(2,R) and k sinh(2πk)

for SL+(2,R). We can derive ρ(k) from the Haar measure dg and the orthogonality relation

of group matrix elements in an appropriate basis (e.g., parabolic or hyperbolic).

B.1 sl(2,R) BF theory

To set our conventions for 2d geometry, we first recall the formulation of bosonic JT gravity

as an sl(2,R) BF theory (summarized in, e.g., [7]). We work in Euclidean signature and

set the cosmological constant to Λ = 2. The Euclidean JT gravity action is

SJT = − 1

16πG

[∫

M
d2x
√
g φ(R+ 2) + 2

∫

∂M
dt
√
γ φb(K − 1)

]
, (B.1)

where φb ≡ φ|∂M. We define an orthonormal frame by

gµν = ea
µe

b
νδab, (B.2)

where a, b ∈ {0, 1}. Writing the zweibein as a one-form ea = ea
µ dx

µ, the torsion-free spin

connection ωab = ω
[ab]
µ dxµ is determined by

dea + ωa
b ∧ eb = 0. (B.3)

In 2d, we have ωab = εabω as well as

d2x
√
g = e0 ∧ e1, d2x

√
gR = 2 dω. (B.4)
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Therefore, in the first-order formulation,

1

4

∫

M
d2x
√
gφ(R+ 2) ∼ 1

2

∫

M
[φ(dω+ e0 ∧ e1) + φa(dea + εabω ∧ eb)] =

∫

M
Tr(BF), (B.5)

where we introduced the Lagrange multipliers φa to enforce the torsion constraint as well

as the sl(2,R)-valued fields B,A (the latter with field strength F = dA + A∧A) given by

BI = (φa, φ), AI = (ea, ω), B = BIJI , A = AIJI . (B.6)

The generators J0, J1, J2 satisfy

[JI , JJ ] = εIJKJ
K , Tr(JIJJ) =

1

2
ηIJ , (B.7)

where ε012 = −1 and sl(2,R) indices I, J,K ∈ {0, 1, 2} are raised and lowered by ηIJ =

diag(1, 1,−1). This basis is related to the Cartan-Weyl basis

H =
1

2


 1 0

0 −1


 , E− =


 0 0

1 0


 , E+ =


 0 1

0 0


 (B.8)

for the sl(2,R) algebra as follows:

J0 = −H, J1 =
1

2
(E− + E+), J2 =

1

2
(E− − E+). (B.9)

The contour of integration for B is understood to be imaginary in Euclidean signature.

Integrating out B implements the constraint F = 0, which reduces the path integral to an

integral over flat sl(2,R) connections A. Infinitesimal gauge transformations take the form

δεA = dε+ [A, ε], δεB = [B, ε], (B.10)

where ε is an sl(2,R)-valued parameter. For flat A, these transformations are interpretable

as infinitesimal diffeomorphisms and local Lorentz transformations.

B.2 SL(2,R) group theory

In the bosonic case SL(2,R), we choose the carrier space of the spin-j representation (on

which the Casimir evaluates to j(j + 1)) to be L2(R), with group action defined by

(g ◦ f)(x) = |bx+ d|2jf

(
ax+ c

bx+ d

)
. (B.11)

We let j ∈ C, with an eye toward the principal series representations. Using (B.8), we get

(e2φH ◦ f)(x) = e−2jφf(e2φx), (B.12)

(eγ−E− ◦ f)(x) = f(x+ γ−), (B.13)

(eγ+E+ ◦ f)(x) = |γ+x+ 1|2jf

(
x

γ+x+ 1

)
, (B.14)
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and hence the Borel-Weil realization

Ĥ = x∂x − j, Ê− = ∂x, Ê+ = −x2∂x + 2jx (B.15)

satisfying the sl(2,R) algebra

[H,E±] = ±E±, [E+, E−] = 2H. (B.16)

Note that our conventions differ from those in appendix G of [41].

Unitarity of the representation constrains the value of j. We compute that antiher-

miticity of the generators (B.15) with respect to the measure dx requires that j = −1/2+ik

for k ∈ R. (By assumption, the relevant functions on R decay sufficiently fast that integrat-

ing ∂x, x∂x, x2∂x by parts produces no boundary terms.) Moreover, a change of variables

x = dx′−c
−bx′+a in the inner product

∫
dxF (x)∗G(x) shows that if j = −1/2 + ik, then

∫
dxF (x)∗|bx+ d|2jG

(
ax+ c

bx+ d

)
=

∫
dx′

(
|−bx′ + a|2jF

(
dx′ − c
−bx′ + a

))∗
G(x′), (B.17)

so that the adjoint action is precisely by g−1.

The Plancherel measure can be computed as follows [41]. We first compute, using the

Gauss decomposition

g = eγ−E−
e2φHeγ+E+

=


 1 0

γ− 1




 eφ 0

0 e−φ




 1 γ+

0 1


 =


 eφ γ+e

φ

γ−e
φ e−φ + γ−γ+e

φ


 ,

(B.18)

the bi-invariant metric for the Poincaré patch of SL(2,R):

ds2 =
1

2
Tr((g−1dg)⊗2) = dφ2 + e2φ dγ− dγ+, (B.19)

and hence the Haar measure dg = 1
2e

2φ dφ dγ− dγ+. From the normalized wavefunctions

〈x|ν−〉 =
1√
2π
eiνx, 〈x|λ+〉 =

1√
2π
|x|2jeiλ/x, (B.20)

we deduce the mixed parabolic matrix elements

Rk,νλ(g) ≡ 〈ν−|g|λ+〉 = eiγ−νeiγ+λ〈ν−|e2φH |λ+〉 (B.21)

=
2

π
eiγ−νeiγ+λe−φ cosh(πk)

(
λ

ν

)ik

K2ik(2e−φ
√
νλ), (B.22)

where we have used (B.12) and substituted j = −1/2 + ik. In the second line, we assumed
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νλ > 0 for simplicity. Via the orthogonality relation46

∫ ∞

0

dx

x
K2iµ(x)K2iν(x) =

π2

8µ sinh(2πµ)
δ(µ− ν), (B.25)

we conclude that
∫
dg Rk,νλ(g)∗Rk′,ν′λ′(g) =

π2

2k tanh(πk)
δ(k − k′)δ(ν − ν ′)δ(λ− λ′). (B.26)

This is not the whole story because the SL(2,R) group manifold is actually covered by four

patches [136]. It can be shown that summing the contributions of all patches just gives a

factor of four, so we obtain finally

〈Rk,νλ, Rk′,ν′λ′〉 =
δ(k − k′)δ(ν − ν ′)δ(λ− λ′)

ρ(k)
, ρ(k) =

2k tanh(πk)

(2π)2
. (B.27)

This is the desired Plancherel measure.

Harmonic analysis on SL(2,R) is a well-studied subject. Let us quickly review the

salient points; we will elaborate more on the supergroup case in appendices E.5 and E.6.

Every Lie group has a left regular representation in which the group acts on itself

by left multiplication. Infinitesimally, this action corresponds to a realization in terms of

differential operators on the group manifold:

L̂E− = −∂γ− , L̂H = −1

2
∂φ + γ−∂γ− , L̂E+ = −γ−∂φ + γ2

− ∂γ− − e−2φ∂γ+
, (B.28)

from which one computes the Casimir operator to be

C = L̂2
H +

1

2

(
L̂E+L̂E− + L̂E−L̂E+

)
=

1

4
∂2

φ +
1

2
∂φ + e−2φ∂γ−∂γ+

. (B.29)

To find the eigenfunctions f with eigenvalues j(j + 1), we choose to diagonalize ∂γ− = iν

and ∂γ+
= iλ (this corresponds to working in the mixed parabolic basis). Upon setting

f(φ) = e−φg(φ), we get the Liouville minisuperspace eigenvalue problem:
(
−1

4
∂2

φ + νλe−2φ
)
g(φ) = k2g(φ) (B.30)

with potential V (φ) = νλe−2φ, where we have written j = −1/2 + ik. From this equation,

we obtain the full (delta-function normalizable) Casimir eigenfunctions:

νλ > 0 : eiνγ−eiλγ+e−φK2ik(2
√
νλe−φ), (B.31)

νλ < 0 : eiνγ−eiλγ+e−φJ2ik(2
√
−νλe−φ), (B.32)

46Assuming µ, ν > 0, the relation (B.25) follows from the identity

lim
α→0

Γ(α+ ix)Γ(α− ix)

Γ(2α)
= 2πδ(x) (B.23)

(see appendix A of [135]) applied to the α → 0 limit of
∫ ∞

0

dxx2α−1K2iµ(x)K2iν(x) =
22α−3

Γ(2α)
Γ(α± iµ± iν). (B.24)

This relation is implicit in the Kontorovich-Lebedev integral transform.
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Figure 9. Blue: Liouville potential V (φ). Red: wavefunction solution with energy eigenvalue

marked by the brown line. Left: νλ > 0 for k = 1 with energy value k2 = 1. Middle: νλ < 0 for

k = 1 with energy value k2 = 1. Right: νλ < 0 for j = 0 with energy value k2 = −1/4.

all of which have positive energy k2 (and negative Casimir eigenvalue −1/4 − k2). These

solutions can be interpreted as the continuous series representation matrices; the first one,

for instance, matches (up to normalization) with (B.21).

For the second case where νλ < 0, negative-energy solutions exist as well, leading to

the Casimir eigenfunctions:

νλ < 0 : eiνγ−eiλγ+e−φJ2j+1(2
√
−νλe−φ). (B.33)

These can be interpreted as the discrete series representation matrices, with positive

Casimir eigenvalue j(j + 1) > 0.

The Liouville eigenfunctions g(φ) are illustrated in figure 9.

The spin label j of the discrete representations is not discretized within this setup. The

reason can be traced back to the fact that we are actually finding all representation matrices

for the universal cover S̃L(2,R) of SL(2,R). For the former, it is indeed known that the

discrete representations are not truly discrete. However, because we do know from direct

computation that the discrete representations of SL(2,R) are restricted to 2j ∈ −N, we

can formulate a rule of thumb to immediately find the correct values of j within the above

analysis. For the discrete representations where νλ < 0, we demand single-valuedness of

the representation matrix element when e−φ → e2πie−φ. The BesselJ function is generically

a multi-valued function except when its index 2j+1 is an integer. This effectively causes a

restriction to 2j ∈ −N.47 We will use this trick also for the supergroup case in appendix E.6.

It would be instructive to understand this rule a bit better, for instance by comparing with

computations done in the elliptic basis [137], but for our purposes, it is sufficient.

B.3 SL+(2,R) semigroup theory

For either SL(2,R) or SL+(2,R), a basis for the spin-j representation is obtained by diag-

onalizing a chosen generator. For SL(2,R), it is convenient to work in the mixed parabolic

basis, where matrix elements of group elements are evaluated in the basis of eigenstates of

E+ on the right and E− on the left. On the other hand, the natural basis for SL+(2,R) is

the hyperbolic basis, which corresponds to diagonalizing the hyperbolic generator H. See

appendix H of [41], as well as [40, 138] for earlier discussions.

47Representations where j → −1 − j are equivalent, allowing us to choose this range of j.
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The carrier space of the spin-j representation of SL+(2,R) is L2(R+), with inner prod-

uct
∫∞

0 dx f(x)∗g(x). Consider taking the adjoints of the generators (B.15). We have

∫ ∞

0
dx f(x)∗(xn∂xg(x)) = [xnf(x)∗g(x)]∞0 −

∫ ∞

0
dx (xn−1(x∂x + n)f(x))∗g(x). (B.34)

If f ∈ L2(R+), then |f(x)|2 must decay faster than 1/x as x → ∞ and grow more slowly

than 1/x as x → 0. Therefore, to ensure that the boundary terms vanish for all f, g ∈
L2(R+), we must have n = 1, which implies that H† = −H for j = −1/2 + ik. Hence

the only sl(2,R) generator that is antihermitian on R
+ is the hyperbolic generator H:

the parabolic generators E± are not. Correspondingly, the eigenfunctions of E± are not

delta-function normalizable on R
+. Indeed, these are (ignoring the overall prefactor)

〈x|ν−〉 = e−νx, 〈x|ν+〉 = x2is−1e−ν/x (B.35)

for E− and E+, respectively, written with eigenvalues −ν. These two sets of eigenfunctions

do not satisfy orthogonality relations on R
+ (by contrast, we would have

∫
R

dx
x2 e

i(ν−ν′)/x =∫
R
dx ei(ν−ν′)x = 2πδ(ν − ν ′) for real ν, ν ′). So for SL+(2,R), only the eigenfunctions of H

furnish a basis for the carrier space.

Consider the hyperbolic basis for SL(2,R). The properly normalized eigenfunctions of

H on R
+ or R

− are

〈x|s,±〉 =
1√
2π

(±x)is−1/2 (±x > 0), (B.36)

with eigenvalue i(s− k) where s ∈ R. These form a basis on either R
+ or R

−:

δ(s1 − s2) = ±
∫ ±∞

0
dx 〈s1,±|x〉〈x|s2,±〉 =

1

2π

∫ ±∞

0

dx

x
(±x)−i(s1−s2), (B.37)

δ(x− x′) =

∫ ∞

−∞
ds 〈x|s,±〉〈s,±|x′〉 =

1

2π

∫ ∞

−∞
dα (±x)is−1/2(±x′)−is−1/2. (B.38)

We focus on R
+. The representation matrix elements of SL+(2,R) on L2(R+) in the

hyperbolic basis are denoted by

K++
s1s2

(g) ≡ 〈s1,+|g|s2,+〉. (B.39)

Their composition law is

K++
s1s2

(g1g2) =

∫ ∞

−∞
dsK++

s1s (g1)K++
ss2

(g2). (B.40)

The Gauss decomposition and metric are the same as for the Poincaré patch of SL(2,R),

but now with the additional restriction that γ−, γ+ > 0. By inserting a resolution of the

identity
∫∞

0 |x〉〈x|, applying (B.12)–(B.14) to (B.36), and using the beta function integral

B(x, y) =

∫ ∞

0

tx−1

(1 + t)x+y
dt =

Γ(x)Γ(y)

Γ(x+ y)
, (B.41)
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we compute that48

K++
s1s2

(e2φH) = e2i(s1−k)φδ(s1 − s2), (B.42)

K++
s1s2

(eγ−E−
) =

1

2π

Γ(1/2− is1)Γ(is1 − is2)

Γ(1/2− is2)
γis2−is1
− , (B.43)

K++
s1s2

(eγ+E+
) =

1

2π

Γ(1/2− 2ik + is1)Γ(is2 − is1)

Γ(1/2− 2ik + is2)
γis1−is2

+
. (B.44)

We then have the generic matrix element

K++
s1s2

(g) =

∫ ∞

−∞
ds ds′K++

s1s (eγ−E−
)K++

ss′ (e2φH)K++
s′s2

(eγ+E+
) (B.45)

=
1

2π
γn

+γ
m
− sinh2j ζ

Γ(−j −m)Γ(−j +m)

Γ(−2j)
2F1

(
−j −m,−j − n;−2j;− 1

sinh2 ζ

)
,

evaluated using the Barnes integral representation of the hypergeometric function. We

have denoted m = ik − is1 and n = ik − is2, and we have introduced the coordinate ζ

through sinh2 ζ ≡ γ+γ−e
2φ. The quantum numbers m and n are the eigenvalues of the

hyperbolic generator H [139]. The above result can also be found as a classical limit of

the q-deformed hyperbolic representation matrix element constructed in [140]. One can

show very explicitly that this expression is indeed a solution to the Casimir eigenvalue

equation. Intriguingly, it is also precisely equal to a global conformal block. Besides both

expressions being solutions to the Casimir eigenvalue equation, the deeper meaning of this

observation eludes us, but we will show in appendix F.2 that a similar observation is true

of the hyperbolic representation matrices for OSp+(1|2,R).

Unitarity of this representation, namely

∫ ∞

−∞
dsK++

s1s (g)K++
s2s (g)∗ = δ(s1 − s2), (B.46)

can be readily established using the integral representations (B.41) of (B.43)–(B.44), as

was done in [41]. Irreducibility of this representation requires a separate proof. We provide

it in appendix F.1 as a warmup for the analogous supergroup proof.

The mixed parabolic matrix elements are

Rk,νλ(g) ≡ 〈ν−|g|λ+〉 = 〈ν−|e−γ−E−
e2φHeγ+E+ |λ+〉 = eγ−νe−γ+λψk

λ,ν(φ), (B.47)

where we have defined the Whittaker functions

ψk
λ,ν(φ) ≡ 〈ν−|e2φH |λ+〉 = 2e−φ

(
λ

ν

)ik

K2ik(2e−φ
√
νλ) (B.48)

(see (4.36)). By virtue of (B.25), the latter satisfy the orthogonality relation

∫ (
1

2
e2φ dφ

)
ψk

λ,ν(φ)∗ψk′

λ,ν(φ) =
π2

4k sinh(2πk)
δ(k − k′), (B.49)

from which we read off the Plancherel measure.
48These expressions all have the correct φ, γ−, γ+ → 0 limits K++

s1s2
(1) = δ(s1 − s2) as a consequence of

the distributional identity limy→0 Γ(ix)y−ix = 2πδ(x), which in turn follows from (B.50).
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Note that we can always expand a parabolic state in the hyperbolic basis (but not vice

versa). Using the Cahen-Mellin integral

e−y =
1

2πi

∫ c+i∞

c−i∞
dsΓ(s)y−s =

1

2π

∫ ∞

−∞
dtΓ(it)y−it (y > 0) (B.50)

and the delta function identity (B.37), we compute the overlaps

〈s,+|ν−〉 =
1√
2π

Γ(1/2− is)νis−1/2, (B.51)

〈s,+|λ+〉 =
1√
2π

Γ(1/2− 2ik + is)λ2ik−is−1/2. (B.52)

Now we can insert complete sets of hyperbolic states:

〈ν−|g|λ+〉 =

∫ ∞

−∞
ds1 ds2 〈ν−|s1,+〉〈s1,+|g|s2,+〉〈s2,+|λ+〉. (B.53)

In particular, we have

ψk
λ,ν(φ) =

λ2ik

2π
√
νλ

∫ ∞

−∞
ds1 ds2 ν

−is1λ−is2Γ(1/2+is1)Γ(1/2−2ik+is2)K++
s1s2

(e2φH). (B.54)

Indeed, inserting the explicit expression (B.42) and using the identity

1

2π

∫ ∞

−∞
dsΓ(1/2 + is+ ik)Γ(1/2 + is− ik)x−2is = 2xK2ik(2x) (B.55)

reproduces the previous expression (B.48).

Whereas the orthogonality relation for the mixed parabolic matrix elements (more

precisely, Whittaker functions) ψk
λ,ν(φ) follows from an integral over the single group pa-

rameter φ of the Cartan generator H, performing the full semigroup integral would be

necessary to derive the orthogonality relation for the hyperbolic matrix elements K++.

The harmonic analysis presented in appendix B.2 can be restricted to the subsemigroup

SL+(2,R). This merely requires setting λ→ iλ and ν → −iν with ν, λ > 0. This means we

only have the case where νλ > 0, and the Casimir eigenfunctions have to be proportional to:

eνγ−e−λγ+e−φK2ik(2
√
νλe−φ), (B.56)

which is indeed our (B.48). It is important to notice that the discrete representation

matrices cannot be found in the regime νλ > 0 relevant for the subsemigroup. This is one

way of appreciating (4.11), where only the principal series representations appear in the

decomposition.

B.4 Schwarzian correlation functions

Finally, we discuss the gauge theory description of the boundary dynamics in JT gravity

and the corresponding observables. The setup is completely analogous to that in section 2.1

for the N = 1 case, so we will be brief. Including the boundary term, the BF form of the

JT gravity action (B.1) is

SJT = − 1

4πG

[∫

M
Tr(BF)− 1

2

∮

∂M
dτ Tr(BAτ )

]
, (B.57)
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whereM is assumed to be a disk. If (B.57) were merely a G-BF theory, then imposing the

boundary condition B|∂M = γAτ |∂M and integrating out B would reduce the dynamics

to that of a boundary action for a particle on the group manifold G:

Z =

∫

LG/G
[Dg] e−S[g], S[g] =

γ

8πG

∮

∂M
dτ Tr((g−1∂τg)2), (B.58)

where γ is a constant with dimensions of length and we have substituted Aτ = −∂τgg
−1

with g(τ + β) = g(τ). Instead, JT gravity is a constrained BF theory. The gravitational

degrees of freedom g take values in SL(2,R), subject to the constraint

Aτ |∂M =


 0 −T (τ)/2

1 0


 (B.59)

where T (τ + β) = T (τ) is the boundary stress tensor. Upon writing T (τ) = {F (τ), τ} (up

to an SL(2,R) redundancy), the dynamics of this constrained group element becomes that

of the Schwarzian theory:49

Z =

∫

Diff(S1)/SL(2,R)
[DF ] e−SSch[F ], SSch[F ] = −C

∮

∂M
dτ {F (τ), τ}, C ≡ γ

8πG
.

(B.60)

Moving beyond the disk, the BF boundary condition B|∂M = γAτ |∂M and its constrained

version (B.59) define gluing boundaries and holographic boundaries, respectively [41].

Further discussion of boundary conditions for JT gravity, and their relation to its

first-order formulation and boundary Schwarzian description, can be found in [142–146].

Coupling the bulk theory to a massive scalar field whose boundary value sources an

operator of dimension h, we see that the natural bilocal operators to consider in the

Schwarzian quantum mechanics are

[
F ′(τ)F ′(τ ′)

(F (τ)− F (τ ′))2

]h

. (B.61)

These Schwarzian bilocal operators are precisely equivalent to boundary-anchored Wilson

lines in the constrained BF theory, in discrete representations of lowest weight j = −h. We

now consider the group-theoretic representation of these bilocal operators. Specifically, we

consider the most general operators that can be obtained as matrix elements in arbitrary

states of a given SL(2,R) representation, rather than just those corresponding to mixed

matrix elements between lowest- and highest-weight states. These general operators can be

packaged into a Gram matrix of inner products, extending the results in appendix D of [69].

49This result coincides exactly with that derived in the second-order formalism [5, 141], starting from

Euclidean AdS2 in Poincaré coordinates: ds2 = Z−2(dF 2 + dZ2). Namely, one fixes a boundary curve

(F (τ), Z(τ)) such that gττ = 1/ε2 and φb = γ/ε, where ε is a UV cutoff. Then F (τ) is the only dynamical

variable since Z = εF ′ + O(ε3), and its action SSch[F ] comes solely from the boundary term in (B.1). The

“−1” in (B.1) subtracts a 1/ε2 divergence. The reparametrization mode F (τ), or the Poincaré time as a

function of proper time, describes fluctuations in the shape of the boundary curve. The isometry group

SL(2,R) of the hyperbolic disk preserves the boundary curve and is regarded as a gauge symmetry.
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We use the following parametrization for the boundary SL(2,R) group element and

the gravitational boundary conditions:

g−1 =


 A B

C D


 ,


 A B

C D




 0 −T (τ)/2

1 0


 =


 A′ B′

C ′ D′


 . (B.62)

Hence A and C are seen to be the two linearly independent solutions to Hill’s equation,

A′′ +
1

2
T (τ)A = 0, C ′′ +

1

2
T (τ)C = 0, (B.63)

satisfying the Wronskian condition AC ′ − A′C = 1. Up to Möbius transformations, we

have

A =
1√
F ′ , C =

F√
F ′ , (B.64)

with {F, τ} = T (τ). Using the Gauss decomposition g−1 = eγ−E−
e2φHeγ+E+

(written here

for g−1 rather than g), we identify50

eφ =
1√
F ′ , γ− = F, γ+ = −1

2

F ′′

F ′ , (B.68)

and therefore

g−1(τ) =
1√
F ′(τ)


 1 −F ′′(τ)/2F ′(τ)

F (τ) F ′(τ)− F (τ)F ′′(τ)/2F ′(τ)


 . (B.69)

So in the spin-1/2 representation, with |l.w.〉 = [ 0
1 ] and |h.w.〉 = [ 1

0 ], we compute that51

R1/2(g(t2)g−1(t1)) =


 〈h.w.|g(τ2)g−1(τ1)|h.w.〉 〈h.w.|g(τ2)g−1(τ1)|l.w.〉
〈l.w.|g(τ2)g−1(τ1)|h.w.〉 〈l.w.|g(τ2)g−1(τ1)|l.w.〉


 (B.70)

=


 −∂τ2 −∂τ2∂τ1

1 ∂τ1


 F (τ1)− F (τ2)√

F ′(τ1)F ′(τ2)
. (B.71)

50Since the defining representation of SL(2,R) is faithful, this identification of Gauss parameters is inde-

pendent of representation. We can also show this explicitly as follows. We write Hill’s equation as

E− − 1

2
T (τ)E+ = e−γ+(τ)E+

e−2φ(τ)He−γ−(t)E−

∂τ (eγ−(τ)E−

e2φ(τ)Heγ+(τ)E+

) (B.65)

= e−γ+(τ)E+

e−2φ(τ)HE−e2φ(τ)Heγ+(τ)E+ · γ′
−(τ) + e−γ̄(τ)E+

Heγ+(τ)E+ · 2φ′(τ) + E+ · γ′
+(τ)

= (E− − 2γ+(τ)H − γ+(τ)2E+) · e2φ(τ)γ′
−(τ) + (H + γ+(t)E

+) · 2φ′(t) + E+ · γ′
+(τ),

where we have used the Baker-Campbell-Hausdorff formula

eY Xe−Y = eadY X = X + [Y,X] +
1

2!
[Y, [Y,X]] + · · · (B.66)

in the last step. Matching the coefficients of the generators gives three equations, which imply that both

eφ(τ) and γ+(τ) are determined in terms of γ(τ) as

eφ(t) =
1√
γ′

−(τ)
, γ+(τ) = −1

2

γ′′
− (τ)

γ′
−(τ)

, (B.67)

while γ−(τ) satisfies {γ−(τ), τ} = T (τ), just as in (B.68).
51For simplicity, we consider a single holographic boundary: Wilson line endpoints on different holographic

boundaries could give rise to different functions F associated to the group elements at τ1 and τ2.
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To see why this is true, note that Hill’s equation can be written in the equivalent forms

g−1(τ)

(
E− − T (τ)

2
E+

)
= ∂τg

−1(τ)⇐⇒
(
E− − T (τ)

2
E+

)
g(τ) = −∂τg(τ), (B.72)

which give

g−1(τ)|l.w.〉 = g−1(τ)E−|h.w.〉 = ∂τg
−1(τ)|h.w.〉, (B.73)

〈h.w.|g(τ) = 〈l.w.|E−g(τ) = −∂τ 〈l.w.|g(τ), (B.74)

respectively. Hence all matrix elements of R1/2(g(τ2)g−1(τ1)) can be obtained as derivatives

of 〈l.w.|g(τ2)g−1(τ1)|h.w.〉.
In the finite-dimensional spin-j representation, we have

H = diag(j, j − 1, . . . ,−j), E− =
[

01×2j 0
diag(1,2,...,2j) 02j×1

]
, E+ =

[
02j×1 diag(2j,2j−1,...,1)

0 01×2j

]
.

(B.75)

Identifying the states |j〉, |j − 1〉, . . . , |−j〉 with the standard basis in R
2j+1, we have

H|m〉 = m|m〉, E±|m〉 = (j ±m+ 1)|m± 1〉. (B.76)

It is convenient to note that

(E±)n|m〉 =
(j ±m+ n)!

(j ±m)!
|m± n〉, 〈m|(E±)n =

(j ±m)!

(j ±m− n)!
〈m∓ n|. (B.77)

One can compute the matrix element 〈−j|g(τ2)g−1(τ1)|j〉 directly. Using (B.77), we have

g−1(τ1)|j〉 = eγ−(τ1)E−
e2φ(τ1)Heγ+(τ1)E+ |j〉 = e2jφ(τ1)

2j∑

n=0

γ−(τ1)n|j − n〉, (B.78)

〈−j|g(τ2) = 〈−j|e−γ+(τ2)E+
e−2φ(τ2)He−γ−(τ2)E−

= e2jφ(τ2)
2j∑

n=0

(
2j

n

)
(−γ−(τ2))n〈−j + n|.

We then find that

〈−j|g(τ2)g−1(τ1)|j〉 = [eφ(τ1)+φ(τ2)(γ−(τ1)− γ−(τ2))]2j =

[
F (τ1)− F (τ2)√
F ′(τ1)F ′(τ2)

]2j

. (B.79)

Given this result, one can determine the other matrix elements recursively. Letting |m; τ〉 ≡
g−1(τ)|m〉, Hill’s equation gives

(j −m)|m; τ〉 = ∂τ |m+ 1; τ〉+
T (τ)

2
(j +m+ 2)|m+ 2; τ〉. (B.80)

Therefore, for arbitrary j, a general matrix element does not only involve derivatives of the

fiducial matrix element (B.79). Alternatively, one can again compute 〈m′|g(τ2)g−1(τ1)|m〉
directly from (B.77).

Before moving on to the discrete lowest/highest-weight representations, we present an

alternative point of view on the finite-dimensional representations. In the basis of mono-

mials 1, x, . . . , x2j , the action of the differential operators in the Borel-Weil representation

is equivalent to that of the matrices (B.75) [76]. Starting with

〈m|m′〉 =

∫
dx 〈m|x〉〈x|m′〉 = δmm′ , (B.81)
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we fix 〈x|j〉 = x2j by demanding that E+|j〉 = 0 (the overall normalization is arbitrary).

Stipulating that the action of E± is as in (B.76) then gives

〈x|m〉 =
(2j)!

(j −m)!(j +m)!
xj+m. (B.82)

This fixes the wavefunctions of the dual states to be

〈m|x〉 =
(j −m)!

(2j)!
(−∂x)j+mδ(x), (B.83)

and in particular, 〈−j|x〉 = δ(x). It is important that j > 0, so that x2j is annihilated by

sufficiently high powers of E− = ∂x and this is a finite-dimensional representation. Note

that while δ(x) is never annihilated by powers of ∂x, putative bra states 〈m > j| have zero

overlap with all ket states. We thus have

〈x|h.w.〉j = x2j , j〈l.w.|x〉 = δ(x), 〈l.w.|g(τ2)g−1(τ1)|h.w.〉 =

∫
dx δ(x)g(τ2)g−1(τ1)x2j

(B.84)

for an ordinary Wilson line, which we can evaluate as follows:

x2j g−1(τ1)−−−−−→ (x+ F (τ1))2j

F ′(τ1)j
(B.85)

g(t2)−−−→
(F ′(τ2)x+ (F (τ1)− F (τ2))( F ′′(τ2)

2F ′(τ2)x+ 1))2j

(F ′(τ1)F ′(τ2))j
(B.86)

x=0−−→ (F (τ1)− F (τ2))2j

(F ′(τ1)F ′(τ2))j
. (B.87)

It is no more difficult to compute a general matrix element:

〈m|g(τ2)g−1(τ1)|m′〉 =
(j −m)!

(j −m′)!(j +m′)!

∫
dx δ(x)∂j+m

x (g(τ2)g−1(τ1)xj+m′
) (B.88)

=
(j −m)!

(j −m′)!(j +m′)!
e2j(φ(τ1)+φ(τ2))∂j+m

x

[ (
e−2φ(τ2)x+ (γ−(τ1)− γ−(τ2))(1− γ+(τ2)x)

)j+m′

×
(
e−2φ(τ1)(1− γ+(τ2)x) + γ+(τ1)(e−2φ(τ2)x+ (γ−(τ1)− γ−(τ2))(1− γ+(τ2)x))

)j−m′ ]∣∣∣
x=0

.

This approach has the virtue of allowing one to derive simple closed-form expressions.

We now generalize to the infinite-dimensional lowest/highest-weight representations

by setting j = −h where h > 0. The state |j〉j ≡ |h.w.〉j is still annihilated by the

corresponding E+, but is never annihilated by powers of E−. In terms of the new variable

h = −j > 0, the Wilson line is

j〈l.w.|g(τ2)g−1(τ1)|h.w.〉j =

∫
dx δ(x)g(τ2)g−1(τ1)

1

x2h
=

(F ′(τ1)F ′(τ2))h

(F (τ1)− F (τ2))2h
. (B.89)

This Schwarzian bilocal has a pole of the form (τ1 − τ2)−2h as τ1 → τ2, as required for a

1d CFT correlator [75].
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C First-order formalism

We begin by reviewing the first-order formulation of N = 1 (or N = (1, 1)) JT supergravity

as an OSp(1|2) gauge theory described in [64], building on [147]. Such an action can also

be written in superspace [148, 149], where the connection to the bosonic second-order

formulation is clearer. For a derivation of the boundary super-Schwarzian theory from JT

supergravity directly in superspace, see [74].

C.1 N = 1 supergravity

Our goal is to arrive at the BF theory description of JT supergravity, starting from the

superspace action. Due to the presence of spinors, it is convenient to work from the start

with frame fields rather than the metric.

To begin, we review a few standard facts about 2d supergeometry, as developed in [150]

and recounted in [149]. We parametrize N = 1 superspace by local coordinates

ZM = (zm, θµ) = (z, z̄, θ, θ̄), (C.1)

and we additionally introduce tangent space coordinates carrying local U(1) frame indices

A = (a, α). Bosonic frame indices a, b ∈ {0, 1} are raised and lowered by δab (with ε01 =

1), while fermionic frame indices α, β ∈ {+,−} are lowered from the right by εαβ (with

ε+− = −1). Following the notational conventions of [150], spacetime and frame indices

are denoted by letters from the middle and the beginning of the alphabet, respectively.

Lowercase Latin (Greek) letters indicate bosonic (fermionic) components, while uppercase

letters span both types. Our conventions for differential forms are that

ZMZN = (−1)|M ||N |ZNZM ,

dZM ∧ dZN = −(−1)|M ||N |dZN ∧ dZM , (C.2)

dZMZN = (−1)|M ||N |ZNdZM ,

where |M |, |N | are Z2-valued and indicate whether the coordinates are even or odd.

The supergeometry is characterized by a superzweibein, which we can write as a one-

form:

EA = EA
M dZM . (C.3)

The superzweibein and its inverse are related by

EA
MEM

B = δA
B, (C.4)

EM
AE

A
N = δM

N . (C.5)

Under local Lorentz transformations, Lorentz vectors and covectors (which can be differ-

ential forms of arbitrary degree) transform as

δV A = LA
BV

B, (C.6)

δVA = −VBL
B

A. (C.7)
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By introducing a superconnection that transforms inhomogeneously as

δΩA
B = LA

CΩC
B − ΩA

CL
C

B − dLA
B, (C.8)

we define a Lorentz-covariant superderivative that acts on Lorentz tensors as follows:

DV A = dV A + ΩA
B ∧ V B, (C.9)

DVA = dVA − ΩB
A ∧ VB. (C.10)

We write D = dZMDM , with the usual exterior derivative being d = dZM∂M . Our

derivatives act from the left, unlike in [151] and much of the supergravity literature.

In light of the fact that the 2d Lorentz group is U(1), local Lorentz transformations

and the superconnection simplify to

LA
B = LEA

B, ΩA
B = ΩEA

B, (C.11)

where Ω = ΩM dZM and EA
B is defined as follows:

Ea
b = εab, Eα

b = Ea
β = 0, Eα

β = −1

2
(γ5)α

β. (C.12)

Thus we have, for instance, DMV A = ∂MV A + ΩMEA
BV

B and DMVA = ∂MVA −
ΩMVBE

B
A. The transformation rule (C.8) then becomes simply δΩ = −dL. Our 2d

gamma matrices satisfy

{γa, γb} = 2δab, γ5 = −γ0γ1, (C.13)

from which it follows that {γa, γ5} = 0 and γ2
5 = −1. We also have

γaγb = δab − εabγ5, γaγ5 = −εabγb, (C.14)

and in particular [γa, γb] = −2εabγ5 and [γa, γ5] = −2εa
bγb. The sign in the definition of

Eα
β (C.12) is correlated with the sign in the definition of γ5 (C.13).

We define the supertorsion and the supercurvature as follows:

TA = DEA =
1

2
TA

BCE
B ∧ EC , (C.15)

RA
B = dΩA

B + ΩA
C ∧ ΩC

B =
1

2
RA

BCDE
C ∧ ED. (C.16)

These two-forms satisfy two Bianchi identities, namely

DTA = RA
B ∧ EB, (C.17)

DRA
B = 0. (C.18)

In components, the first Bianchi identity (C.17) reads

RA
[BCD] = D[BT

A
CD] + TA

E[BT
E

CD], (C.19)

where generalized (graded) antisymmetrization is understood. This entails, e.g.,

T[AB] =
1

2
(TAB − (−1)|A||B|TBA), (C.20)
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in accordance with the conventions (C.2). Using (C.11) gives

RA
B = FEA

B, F = dΩ (C.21)

since Ω ∧ Ω = 0, so that the second Bianchi identity (C.18) becomes dF = 0.

By imposing appropriate constraints on the supertorsion [150], all components of the

supertorsion and supercurvature can be expressed in terms of a single scalar superfield

R+−. As a consequence, one can also write the superconnection entirely in terms of the

superzweibein.

Namely, we define the constrained supergeometry by imposing

T a
bc = Tα

βγ = 0, T a
βγ = 2i(γa)βγ . (C.22)

These “kinematics” are motivated by the global frame for the supervielbein in flat super-

space, in which T a
βγ is nonzero and all other components vanish [151]. The algebraic

Bianchi identities for the Riemann tensor, in conjunction with (C.19), fix the remaining

components of the supertorsion in addition to those of the supercurvature. For exam-

ple, (C.14) implies that

DA(γa)αβ = 0. (C.23)

Hence, given (C.22), the identity Ra
[βγδ] = 0 reduces to

T a
b[β(γb)γδ] = 0 ⇐⇒ T a

bβ = 0. (C.24)

Similarly, the identities Ra
[bγδ] = 0 and Rα

[βγd] = 0 show that Tα
aβ and Tα

ab are propor-

tional to (γa)α
βR+− and εab(γ5)αβDβR+−, respectively. This determines all of the TA

BC .

Transformations of the superzweibein that preserve the supertorsion constraints (C.22)

are symmetries of the supergeometry. They consist of super diffeomorphisms and local

Lorentz transformations, as well as the super Weyl transformations developed in [150].

Just as a Riemann surface depends only on a conformal class of Riemannian metrics, a

super Riemann surface is a supersurface endowed with a supercomplex structure, where

the latter depends only on the superconformal class of the superzweibein (i.e., is invariant

under super Weyl transformations) [149]. Moreover, just as all two-dimensional Rieman-

nian manifolds are locally conformally flat, all two-dimensional supergeometries are locally

superconformally flat (i.e., related by super Weyl and Lorentz transformations to a flat

superspace with R+− = 0) [150].

The passage from superspace to the component formalism is aided substantially by

bringing the superzweibein and superconnection to Wess-Zumino gauge via super diffeo-

morphism and super Lorentz transformations, respectively. This gauge, along with the

supertorsion constraints, suffices to express all geometrical quantities in N = 1 superspace

(and in particular, all components of the superzweibein) in terms of three fields:

• a zweibein ea
m (the bottom component of Ea

m),

• a gravitino/Rarita-Schwinger field ψα
m (the bottom component of Eα

m),

• and an auxiliary field A (the bottom component of R+−).
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These three fields comprise the N = 1 supergravity multiplet. We will not need the full

component expansion of the superzweibein in this gauge, but instead record here only those

of the superdeterminant E = sdet(EA
M ) and the supercurvature:

E = e

[
1 +

1

2
θ̄γmψ′

m −
1

4
θ̄θ

(
A+

1

2
εmnψ̄′

mγ5ψ
′
n

)]
, (C.25)

R+− = A+ θ̄χ+
1

2
θ̄θ

(
R− 1

2
ψ̄′

mγ
mχ+

1

4
εmnψ̄′

mγ5ψ
′
nA+

1

2
A2
)
, (C.26)

where R = 2εmn∂mωn is the curvature of the spin connection

ωm = −εn`eam∂ne
a
` +

1

2
ψ̄′

mγ5γ
nψ′

n (C.27)

(the bottom component of Ωm) and the middle component of R+− is given by

χ = −2γ5ε
mnDmψ

′
n −

1

2
γmψ′

mA (C.28)

in terms of the bosonic Lorentz-covariant derivative

Dmψ
′
n = ∂mψ

′
n −

1

2
ωmγ5ψ

′
n. (C.29)

The constraint (C.27) follows from T a
bc = 0, while the constraint (C.28) follows from that

on Tα
bc. We have written the gravitino as ψ′ in anticipation of a later change of variables.

Note that (C.27) implies nonvanishing torsion in bosonic spacetime: Dme
a
n − Dne

a
m =

1
2 ψ̄

′
mγ

aψ′
n.

Above, spinor contractions are defined with respect to the Majorana conjugate

ψ̄α = ψβCβα, Cαβ = εαβ , ε+− = −1. (C.30)

Equivalently, if we regard spinors with upper indices as column vectors, then ψ̄ = ψTC.

We have the following exchange properties of spinor bilinears:

ψ̄χ = χ̄ψ, ψ̄γaχ = −χ̄γaψ, ψ̄γ5χ = −χ̄γ5ψ. (C.31)

These follow from the antisymmetry of C and the symmetry of Cγa and Cγ5, using that

matrix transpose reverses the order of Grassmann variables.

Finally, we can present the N = 1 JT supergravity action in superspace (adapted

from [74, 148]):

SN =1
JT =

1

4

[∫

Σ
d2z d2θ EΦ(R+− + 2) + 2

∫

∂Σ
dτ dθΦK

]
, (C.32)

where we have chosen a convenient overall normalization and omitted a factor of −1/4πG.

For now, we restrict our attention to the bulk term. The dilaton superfield contains the

dilaton φ, the dilatino λ, and an auxiliary field F :

Φ = φ+ θ̄λ+ θ̄θF. (C.33)

– 66 –



J
H
E
P
0
8
(
2
0
2
2
)
0
0
2

Assuming the order-preserving convention for complex conjugation of Grassmann variables,

this is a real superfield. The path integral is taken over Φ and over all supergeometries

EA
M satisfying the supertorsion constraints. In gravity, we would also sum over genera,

but to compare to gauge theory, we restrict to the disk.

To unpack the action (C.32), we use

θ̄θ = θ̄αθ
α = 2θ−θ+, (θ̄ψ)(θ̄χ) = −1

2
(θ̄θ)(ψ̄χ),

∫
d2θ θ̄θ = 2, (C.34)

where the last equation is a convenient definition. We see that

1

4π

∫

Σ
d2z d2θ ER+− =

1

4π

∫

Σ
d2z eR = χ(Σ). (C.35)

Integration over the dilaton superfield in (C.32) localizes the path integral to surfaces of

constant negative supercurvature: R+− + 2 = 0. In components, this constraint reads:

A = −2, χ = 0, R =
1

2
εmnψ̄′

mγ5ψ
′
n − 2. (C.36)

Substituting (C.28), we compute that the top component of EΦ(R+− + 2) is

eθ̄θ

[
F (A+ 2) +

1

2
φ

(
R−A− 1

2
εmnψ̄′

mγ5ψ
′
n

)
+ λ̄γ5ε

mnDmψ
′
n −

1

2
λ̄γmψ′

m

]
. (C.37)

To match to the gauge theory formulation, it is convenient to define ψm = γ5ψ
′
m so that

εmnψ̄mγ5ψn = εmnψ̄′
mγ5ψ

′
n, λ̄εmnDmψn = λ̄γ5ε

mnDmψ
′
n, λ̄εmnγmψn = −λ̄γmψ′

m,

(C.38)

where we have used (C.14) and that Dm commutes with γ5. Integrating (C.37) over super-

space and also integrating out F , we thus obtain the action in terms of component fields:

SN =1
JT =

1

2

∫

Σ
d2z e

[
1

2
φ

(
R+ 2− 1

2
εmnψ̄mγ5ψn

)
+ λ̄εmnDmψn +

1

2
λ̄εmnγmψn

]
, (C.39)

with the constraint (C.27) implicit (the component form of the action already assumes

the other constraints). More usefully, we may regard ωm as an independent field, which

requires making the constraint (C.27) explicit. The first-order action can then be written as

SN =1
JT =

1

2

∫

Σ
d2z e

[
1

2
φ

(
R+ 2− 1

2
εmnψ̄mγ5ψn

)
(C.40)

+ φa

(
εmn∂me

a
n + εabε

mnωme
b
n −

1

4
εmnψ̄mγ

aψn

)
+ λ̄εmnDmψn +

1

2
λ̄εmnγmψn

]
.

To see that the Lagrange multipliers in (C.40) indeed enforce (C.27), note that integrating

out φa results in the component-wise torsion constraints

T a
mn| ≡ ∂[me

a
n] + εabω[me

b
n] −

1

4
ψ̄[mγ

aψn] = 0, (C.41)
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where the bar indicates the bottom component. We solve for the spin connection in the

standard way [152] by writing T`[mn]|−Tm[n`]|+Tn[`m]| = 0 with T`[mn]| ≡ ea`T
a

mn|, giving:

ωm =
1

2
εcden

c (∂medn−∂nedm)− 1

2
εn`eam∂ne

a
` +

1

8
εcd(ψ̄mγcψd + ψ̄cγmψd + ψ̄cγdψm) (C.42)

=−εn`eam∂ne
a
` −

1

2
ψ̄aγ5γ

bψb. (C.43)

In 2d, the first term of (C.42) equals the second, while the last term of (C.42) simplifies

via (C.31) and (C.14). Hence we obtain the simplified form (C.43), or equivalently, (C.27).

So far, we have written the action in terms of zero-form fields. To pass to the BF

description, it is more convenient to work in terms of the one-form fields ω = ωm dzm,

ea = ea
m dzm, and ψ = ψm dzm. Note that for arbitrary one-forms ξ and ξ′, we have

ξ ∧ ξ′ = d2z ε̃mnξmξ
′
n = d2z eεmnξmξ

′
n, (C.44)

dξ = d2z ε̃mn∂mξn = d2z eεmn∂mξn, (C.45)

where the Levi-Civita symbol and tensor are related by

εmn = eε̃mn ⇐⇒ ε̃mn = eεmn, e ≡ det ea
m. (C.46)

In particular, we have

e0 ∧ e1 = d2z e, dω =
1

2
d2z eR. (C.47)

Hence we have, in shorthand notation (omitting wedge products),

SN =1
JT =

1

2

∫

Σ

[
φ

(
dω + e0e1 − 1

4
ψ̄γ5ψ

)

+ φa

(
dea + εabωe

b − 1

4
ψ̄γaψ

)
+ λ̄Dψ +

1

2
λ̄eaγaψ

]
. (C.48)

The second term enforces the constraints on the bosonic components of the supertorsion.

C.2 osp(1|2) BF theory

We consider the first-order action (C.48) where Σ is a disk with compact time coordinate

τ ∼ τ + β and radial coordinate r > 0. To rewrite it as a BF action, we again introduce

sl(2,R) (or so(2, 1)) generators via the identification (B.9), where the objects on the right

now belong to osp(1|2). Hence

JI =




1
2ΓI 02×1

01×2 0


 (C.49)

where

Γ0 =


 −1 0

0 1


 , Γ1 =


 0 1

1 0


 , Γ2 =


 0 −1

1 0


 , (C.50)
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which satisfy {ΓI ,ΓJ} = 2ηIJ where ηIJ = diag(1, 1,−1) (our conventions differ slightly

from those of [64], so as to mimic those of bosonic JT gravity). We can write the osp(1|2)

algebra as

[JI , JJ ] = εIJKJ
K , [JI , Qα] =

1

2
(ΓI)β

αQβ, {Qα, Qβ} = −1

2
(CΓI)αβJI (C.51)

with ε012 = −1 and C as in (C.30), so that

C =


 0 −1

1 0


 , CΓ0 =


 0 −1

−1 0


 , CΓ1 =


 −1 0

0 1


 , CΓ2 =


 −1 0

0 −1


 .

(C.52)

Given (B.9), the algebra (C.51) fixes

Q− = −F−, Q+ = F+, (C.53)

up to an overall sign ambiguity Q± ↔ −Q±. In this basis, the generators satisfy

STr(JIJJ) =
1

2
ηIJ , STr(QαQβ) =

1

2
εαβ . (C.54)

We now write the zero-form dilaton supermultiplet and the one-form superconnection as

osp(1|2)-valued fields:

BI = (φa, φ), AI = (ea, ω), B = BIJI + λαQα, A = AIJI + ψαQα. (C.55)

The latter has field strength

F =

(
F I − 1

4
ψ̄α ∧ (ΓIψ)α

)
JI +DψαQα, (C.56)

F I ≡ dAI +
1

2
εIJKAJ ∧AK , (C.57)

in contrast to the bosonic case where F = F IJI . Here, we have defined the so(2, 1)-covariant

derivative

Dψα ≡ dψα +
1

2
AI ∧ (ΓI)α

βψ
β, (C.58)

in contrast to the Lorentz- or diffeomorphism-covariant exterior derivative

Dψα = dψα − 1

2
ω ∧ (γ5ψ)α. (C.59)

Lastly, we set

ΓI = (γa,−γ5). (C.60)

In this basis, the γa are symmetric and γ5 is antisymmetric. We then obtain

STr(BF) =
1

2
BIFI −

1

8
BI ψ̄α ∧ (ΓIψ)α +

1

2
λ̄αDψα (C.61)

=
1

2
φ

(
dω + e0 ∧ e1 − 1

4
ψ̄α ∧ (γ5ψ)α

)
+

1

2
φa

(
dea + εabω ∧ eb − 1

4
ψ̄α ∧ (γaψ)α

)

+
1

2
λ̄αDψ

α +
1

4
λ̄αe

a ∧ (γaψ)α. (C.62)
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Comparing (C.62) to (C.48), we see that the first-order action of N = 1 JT supergravity

is precisely an osp(1|2) BF theory:

SN =1
JT =

∫

Σ
STr(BF). (C.63)

With our definition of order-preserving complex conjugation for Grassmann variables, the

spinor bilinears appearing in Lagrangians are real with real coefficients. (Reality of spinor

bilinears under the order-reversing convention can be achieved by adjusting the phase of

the charge conjugation matrix, C → iC. This amounts to pulling out a factor of −i from

the anticommutators of fermionic generators in the osp(1|2) algebra.)

The action (C.63) is manifestly invariant under gauge transformations whose infinites-

imal form is (B.10), with ε now valued in osp(1|2). Such transformations with ε = ξαQα

give, via the algebra (C.51),

δξA
I =

1

2
ξ̄ΓIψ, δξB

I =
1

2
ξ̄ΓIλ, (C.64)

δξψ
α = Dξα, δξλ

α =
1

2
BI(ΓI)α

βξ
β. (C.65)

These are equivalent to the local supersymmetry transformations

δξe
a =

1

2
ξ̄γaψ, δξω =

1

2
ξ̄γ5ψ, δξψ

α = Dξα +
1

2
ea(γa)α

βξ
β , (C.66)

δξφ
a =

1

2
ξ̄γaλ, δξφ = −1

2
ξ̄γ5λ, δξλ

α =
1

2
φa(γa)α

βξ
β +

1

2
φ(γ5)α

βξ
β. (C.67)

By an appropriate Fierz identity, the variation of the action (C.48) under (C.66)–(C.67)

vanishes exactly, incurring no boundary terms: δξS
N =1
JT = 0. The transformations (C.66)

of the supergravity multiplet, written in components as

δξe
a
m =

1

2
ξ̄γaψm, δξωm =

1

2
ξ̄γ5ψm, δξψm = Dmξ +

1

2
γmξ, (C.68)

are equivalent to the local supersymmetry transformations of [150] after imposing the

dilaton constraints (C.36) (eliminating the auxiliary field A).52

C.3 Worldline action for Wilson lines

Whereas the BF description involves integrating over the fermionic half of superspace, it

is most natural to interpret these Wilson lines directly in the full superspace. We do so by

expanding the gauge field in terms of the superzweibein and superconnection as [147]

AM ≡ EA
MJA + ΩMJ2 (A = 0, 1,+,−), Jα ≡ Qα, (C.69)

and then rewriting the Wilson line as a path integral for the worldline action of a massive

probe particle in superspace, along the lines of [52]. For earlier discussions in the context

of 3d gravity, see [78, 79] and references therein.

52The subgroup of super diffeomorphisms and local Lorentz transformations that preserves Wess-Zumino

gauge consists of ordinary diffeomorphisms, local N = 1 supersymmetry, and ordinary local Lorentz trans-

formations. By tracking the fermionic part of the allowed super diffeomorphisms, one derives the N = 1

supersymmetry transformations of the supergravity multiplet [150].
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We start by writing a Wilson line along a fixed contour C and in a given representation

h in a standard way as ∫
DΛg e

−SΛ[g,A], (C.70)

where Λ is the (dual of the) highest weight of the representation h, g(s) is a map C →
OSp(1|2) that (redundantly) parametrizes the orbit of Λ in osp(1|2) under the adjoint

action of OSp(1|2), s is the worldline coordinate along C, and SΛ[g,A] is the first-order

action53

SΛ[g,A] =

∫
ds STr(Λg−1DAg), DA ≡ ∂s +As, As(s) ≡ AM (Z(s))ŻM (s). (C.71)

The gauge redundancy in g, which amounts to right multiplication by the stabilizer of Λ

in OSp(1|2), is implicit in the domain of path integration. From the perspective of the

worldline path integral, As (the restriction of the bulk gauge field) is a background gauge

field, and it transforms in such a way that the action SΛ[g,A] is gauge-invariant under left

multiplication of g by elements of OSp(1|2).

The length of

Λ = ΛIJI + ΞαQα ∈ osp(1|2) (C.72)

is determined by the quadratic Casimir of the representation:

STr(Λ2) =
1

2
(ηIJΛIΛJ + εαβΞαΞβ) =

1

2
(ΛIΛI + ΞΞ) = 2h(h− 1/2) ≡ 2m2. (C.73)

(We assume h > 1/2 so that m is interpretable as the mass of a genuine probe particle.)

Since the adjoint action of OSp(1|2) is transitive on all Lie algebra elements of a given

length, we may further introduce a functional integral over all elements of the form

Λ(s) = Λa(s)Ja + Ξα(s)Qα(s) ≡ ΛA(s)JA, (C.74)

with length constrained by (C.73), to write the worldline path integral equivalently as

∫
DΛDΛg DΘ e−SΛ[g,A,Θ] (C.75)

where Θ is a Lagrange multiplier:

SΛ[g,A,Θ] ≡
∫
ds

[
STr(Λg−1DAg) +

i

2
Θ(ΛaΛa + ΞΞ− 4m2)

]
. (C.76)

Note that we have omitted the J2-component of Λ in (C.74), the motivation being that

the bulk path integral imposes flatness of the super gauge field, which implements the

supertorsion constraint(s) and expresses Ω in terms of E, so that the J2-component is not

independent of the J0,1-components in our setting.

53This is the worldline action for a bosonic particle on a coadjoint orbit of a supergroup [153]. The super-

symmetrization of a standard coadjoint orbit would instead lead to the worldline action for a superparticle

on a coadjoint orbit of an ordinary group [154].
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We now fix a gauge on the disk in which g = 1 along the curve C, so that g−1DAg

reduces to As = (EA
MJA + ΩMJ2)ŻM and the action becomes

1

2

∫
ds
[
ΛAE

A
M ŻM + iΘ(ΛaΛa + ΞΞ− 4m2)

]
. (C.77)

Integrating out Λa and Ξ reduces this to

i

2

∫
ds

(
1

4Θ
gMN Ż

M ŻN − 4m2Θ

)
, (C.78)

where we have written the supermetric in terms of the superzweibein:

gMN = g(MN) = EABE
A

MEB
N ≡ δabE

a
MEb

N + εαβE
α

MEβ
N . (C.79)

This is precisely the first-order form of the standard point-particle action in superspace,

with Θ playing the role of the einbein. Further integrating out Θ gives the second-order

form of the point-particle action:

m

∫
ds (gMN Ż

M ŻN )1/2. (C.80)

(Note that we have implicitly shifted the a priori real integration contour for Θ to account

for the imaginary saddle points.)

Finally, the identification of superdiffeomorphisms with gauge transformations in the

BF description for flat A shows that the Wilson line, as an operator insertion inside the

path integral of JT supergravity, is equivalent to a path integral for the action (C.80) taken

over all paths superdiffeomorphic to C.

D Details on orbits and operators

This appendix collects more details on super-Virasoro coadjoint orbits and on bilocal op-

erator calculations.

D.1 Classification of super-Virasoro coadjoint orbits

To find and characterize the different coadjoint orbits, we need to find all super-Virasoro

transformations that leave (TB(τ), TF(τ)) invariant. If one is interested only in orbits that

contain a constant representative (as we are here), then there is a shortcut to the analysis.

Due to the quotient structure of the orbit itself, it suffices to look at this constant rep-

resentative to deduce the stabilizer for the orbit of interest. This constant representative

is a solution to the super-Schwarzian equations of motion. We hence look only for the

most general classical solution with the prescribed periodicity constraints (2.54), which we

repeat here for convenience:

F (τ + β) = M · F (τ), η(τ + β) = ±η(τ), M ∈ SL(2,R). (D.1)

The solution to these equations of motion will generate all possible constant values of the

super-Schwarzian derivative, and we merely have to compare this constant value between

– 72 –



J
H
E
P
0
8
(
2
0
2
2
)
0
0
2

solutions to find the stabilizer of each orbit. The remaining undetermined coefficients in

the classical solution that retain this value then parametrize the stabilizer. The super-

Schwarzian equations of motion, associated with the Lagrangian (2.18), are given by:

δη → 2η′′′ + {F, τ} η′ = 0, (D.2)

δf → {F, τ}′ (1− ηη′) = 0. (D.3)

The general classical solution is given by:

{F, τ} =
2π2

β2
Θ2 = constant, (D.4)

F (τ) =
a tan π

β Θτ + b

c tan π
β Θτ + d

, ad− bc = 1, (D.5)

η(τ) = Γ1 cos
π

β
Θτ + Γ2 sin

π

β
Θτ + Γ3, (D.6)

in terms of a priori six parameters a, b, c, Γ1, Γ2, and Γ3. We choose to parametrize the

constant value of {F, τ} as 2π2

β2 Θ2 in terms of the parameter Θ (which may be imaginary).

Plugging this solution into (2.18) and (2.19), we get

TB(τ) =
π2

β2
Θ2, (D.7)

TF(τ) =
π2

β2
Θ2Γ3 +

π3

2β3
Θ3Γ1Γ2Γ3. (D.8)

These indeed satisfy ∂τ Sch = 0. The Grassmann parameter Γ3 = η0 changes the on-shell

value of TF(τ), and hence is not in the stabilizer generically; instead, it parametrizes differ-

ent orbits. This means that the fermionic parts of the stabilizer are parametrized by Γ1 and

Γ2 if they are allowed by the periodicity constraints when Θ ∈ N. For the bosonic pieces, for

Θ ∈ N, the full SL(2,R) group is compatible with the periodicity constraints. Otherwise,

only F → F + b remains. We hence deduce the orbit stabilizers and on-shell stress tensors

in table 2. These different orbits match with the constant-representative orbits in [68].54

By looking at the infinitesimal version of this solution space around a saddle, we can

see that the resulting zero modes match directly to specific subalgebras of the N = 1

super-Virasoro algebra, as written in the last column of table 1. One of the cases is worked

out in the next subsection.

The total energy of the constant representative (or the saddle solution) within each

orbit is given by the expression:

TB(τ) =
π2

β2
Θ2, TF(τ) =

π2

β2
Θ2η0. (D.9)

As such, all orbits discussed here have on-shell action

Son-shell =

∮
dτ TB(τ) =

π2

β
Θ2. (D.10)

54Specifically, these are the orbits denoted by (a), (b), (c), and (e) in [68], where we have corrected what

we believe is an error in orbit (c).
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Sector Orbit Stabilizer TB TF

NS Θ = n odd H = OSp(1|2,R) π2

β2n
2 0

R Θ = n even H = OSp(1|2,R) π2

β2n
2 0

NS Θ = n even H = SL(2,R) π2

β2n
2 0

R Θ = n even, with η0 6= 0 H = SL(2,R) π2

β2n
2 π2

β2n
2η0

R Θ = n odd H = SL(2,R) π2

β2n
2 π2

β2n
2η0

R/NS Θ 6∈ Z H = U(1) π2

β2 Θ2 π2

β2 Θ2η0

NS Θ = 0 H = R 0 0

R Θ = 0 H = R
1|1 0 0

Table 2. Constant-representative sVirasoro orbits.

The zero mode η0 is an additional label of the orbit, only present in the Ramond sector.

Moreover, only for the R parabolic orbit where Θ = 0 is η0 a gauge mode and therefore

dropped. For all other R cases, η0 is not a gauge mode, and its fermionic integral causes

the path integral to vanish [44].

D.2 Special elliptic orbits in the NS sector

We now assume odd n ∈ N, and look at the gauge zero modes present in the special

elliptic coadjoint orbit. The generic solution was written above in (D.4), but here we

work it out at the infinitesimal level. In terms of the variable f(τ) defined through

F (τ) = tan πn
β f(τ), the saddle solution is f(τ) = τ and the gauge zero modes in the

bosonic sector are parametrized by ε(τ):

ε(τ) = ε1 + ε2 cos
2πn

β
τ + ε3 sin

2πn

β
τ, (D.11)

where f(τ) = τ + ε(τ). In terms of the F variable, this is equivalent to

F (τ) = tan
πn

β
τ +

πn

β

[
ε1

(
1 + tan2 nπ

β
τ

)
+ ε2

(
1− tan2 nπ

β
τ

)
+ 2ε3 tan

nπ

β
τ

]
+O(ε2).

(D.12)

This can be interpreted as the infinitesimal expansion

F → F + b+ (a− 1)F − cF 2 (D.13)

of the SL(2,R) subgroup acting through Möbius transformations on F as in (D.4).

From the expansion of the (bosonic parts of the) Virasoro generators of Diff(S1|1) as

Ln = 1
i e

inτ∂τ , we can immediately identify these zero modes as generated by the SLn(2,R)

subalgebra generated by L0, Ln, L−n.55

55The super Witt algebra on Diff(S1|1), with supercircle coordinates τ |ϑ and periodicity τ ∼ τ + 2π, can

be represented by the superspace differential operators

Ln =
1

i
einτ

(
∂τ + i

n

2
ϑ∂ϑ

)
, Gn =

1√
i
einτ (∂ϑ + ϑ∂τ ). (D.14)
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The fermionic variable η has the gauge zero modes

η(τ) = ε4 cos
nπ

β
τ + ε5 sin

nπ

β
τ, (D.15)

which are antiperiodic for odd n. This corresponds to the infinitesimal action by the

sVirasoro generators Gn
2
, G− n

2
. This leads to the relation

αF(τ) ≡
√
∂τFη = ε4 sgn

(
cos

nπ

β
τ

)
+ ε5 sgn

(
cos

nπ

β
τ

)
tan

nπ

β
τ +O(ε2) (D.16)

for the bottom (fermionic) part of (2.51). Notice in particular the sign functions. If

they were absent, then all of these gauge zero modes ε1, . . . , ε5 would combine into the

infinitesimal expansion of OSp(1|2) acting through super-Möbius transformations on (τ ′, θ′)
as in (2.21). With these sign functions, the fermionic parameters in this OSp(1|2) group

flip sign when τ → τ + β. This is further implemented at the level of the group variables

in the main text.

D.3 OSp(1|2)-invariant bilocal operators

As mentioned in section 3.1, the supersymmetric Hill’s equation yields recursion relations

that allow for the computation of general matrix elements of bilocal operators: letting

|m; τ〉 ≡ g−1(τ)|m〉, we have

(j −m)|m; τ〉 = ∂τ |m+ 1; τ〉 − TF(τ)|m+
3

2
; τ〉 − (j +m+ 2)TB(τ)|m+ 2; τ〉 (D.17)

if j −m ∈ Z and

(
j −m− 1

2

)
|m; τ〉 = ∂τ |m+ 1; τ〉 −

(
j +m+

3

2

)
(TF(τ)|m+

3

2
; τ〉+ TB(τ)|m+ 2; τ〉)

(D.18)

if j − m ∈ Z + 1
2 . Note that unlike in the bosonic case, we generally need both the

highest-weight state j and the next-highest-weight state j − 1
2 as base cases.

For example, to derive the form of the bilocal operator in arbitrary states in the

spin-1/2 representation, we write the supersymmetric Hill’s equation independently of rep-

resentation as

g−1(τ)(E− + TB(τ)E+ + 2TF(τ)F+) = ∂τg
−1(τ), (D.19)

or equivalently as

(E− + TB(τ)E+ + 2TF(τ)F+)g(τ) = −∂τg(τ). (D.20)

Applying Hill’s equation to |±1
2〉 gives

g−1(τ)|−1

2
〉 = ∂τg

−1(τ)|1
2
〉, g−1(τ)|0〉 =

∂2
τ g

−1(τ)|12〉 − TB(τ)g−1(τ)|12〉
TF(τ)

. (D.21)

Similarly, applying Hill’s equation to 〈±1
2 | gives

〈1
2
|g(τ) = −∂τ 〈−

1

2
|g(τ), 〈0|g(τ) =

∂2
τ 〈−1

2 |g(τ)− TB(τ)〈−1
2 |g(τ)

TF(τ)
. (D.22)
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From these relations, we deduce that

R1/2(g(τ2)g−1(τ1)) =




−∂τ2 −∂τ2∆τ1 −∂τ2∂τ1

∆τ2 ∆τ2∆τ1 ∆τ2∂τ1

1 ∆τ1 ∂τ1


 〈−

1

2
|g(τ2)g−1(τ1)|1

2
〉 (D.23)

where ∆τ ≡ T−1
F (τ)(∂2

τ − TB(τ)), as stated in the main text.

We now turn our attention to higher-dimensional finite representations. The relevant

representation theory is summarized in appendix E.2. For such representations, we can

again compute the matrix element 〈−j|g(τ2)g−1(τ1)|j〉 directly. We have

g−1(τ1)|j〉 = e2θ−(τ1)F −
eγ−(τ1)E−

e2φ(τ1)Heγ+(τ1)E+
e2θ+(τ1)F + |j〉 (D.24)

= e2jφ(τ1)
2j∑

n=0

γ−(τ1)n(|j − n〉+ θ−(τ1)|j − n− 1

2
〉), (D.25)

in addition to

〈−j|g(τ2) = 〈−j|e−2θ+(τ2)F +
e−γ+(τ2)E+

e−2φ(τ2)He−γ−(τ2)E−
e−2θ−(τ2)F −

(D.26)

= e2jφ(τ2)
2j∑

n=0

(
2j

n

)
(−γ−(τ2))n(〈−j + n|+ θ−(τ2)(2j − n)〈−j + n+

1

2
|). (D.27)

Taking the inner product gives

〈−j|g(τ2)g−1(τ1)|j〉

= e2jφ(τ1)e2jφ(τ2)
2j∑

n=0

(
2j

n

)
γ−(τ1)n(−γ−(τ2))2j−n

+ 2je2jφ(τ1)e2jφ(τ2)
2j−1∑

n=0

(
2j − 1

n

)
γ−(τ1)n(−γ−(τ2))2j−n−1θ−(τ2)θ−(τ1) (D.28)

= e2j(φ(τ1)+φ(τ2))[(γ−(τ1)− γ−(τ2))2j + 2j(γ−(τ1)− γ−(τ2))2j−1θ−(τ2)θ−(τ1)] (D.29)

= [eφ(τ1)+φ(τ2)(γ−(τ1)− γ−(τ2) + θ−(τ2)θ−(τ1))]2j (D.30)

= [ψ1,bot(τ2)ψ2,bot(τ1)− ψ2,bot(τ2)ψ1,bot(τ1) + ψ3,bot(τ2)ψ3,bot(τ1)]2j , (D.31)

which is simply the j = 1/2 result (3.7) to the power of 2j. More general matrix elements

can be computed with the aid of the supersymmetric Hill’s equation as above.

E OSp(1|2,R) representation theory

In this lengthy appendix, we give an overview of OSp(1|2,R) representation theory. A

particular emphasis is placed on the principal series representations. Some of the results

presented here are known in the literature, but we are not aware of a comprehensive

treatment. We base our methods largely on those for SL(2,R), as written, for instance, in

the textbooks [139, 155].56

56The fact that the representation theory of OSp(1|2,R) is so closely related to bosonic representation

theory is specific to the B(0, n) ≡ OSp(1|2n) Lie supergroups: see [153] for tangentially related comments.

– 76 –



J
H
E
P
0
8
(
2
0
2
2
)
0
0
2

E.1 OSp(1|2,R) supergroup and Lie superalgebra

The supergroup OSp(1|2,R) is defined as the subgroup of GL(1|2,R) matrices

g =




a b α

c d γ

β δ e


 , (E.1)

consisting of five bosonic variables a, b, c, d, e and four fermionic (Grassmann) variables

α, β, γ, δ, that preserve the orthosymplectic form Ω: gstΩg = Ω. Explicitly,



a c −β
b d −δ
α γ e







0 −1 0

1 0 0

0 0 1







a b α

c d γ

β δ e


 =




0 −1 0

1 0 0

0 0 1


 . (E.2)

The operation gst is the supertranspose that flips the sign of one block of fermionic variables

to ensure the property (g1g2)st = gst
2 g

st
1 , which implies that this subset defines a subgroup.57

The group OSp(1|2,R) has the noncompact bosonic subgroup Sp(2,R) ' SU(1, 1) '
SL(2,R), parametrized by a, b, c, d ∈ R satisfying ad− bc = 1, which distinguishes it from

OSp(1|2) with compact bosonic subgroup Sp(2) (the latter group is discussed in, e.g., [153,

156] and sometimes denoted by UOSp(1|2)). In the following, we sometimes abuse notation

and simply denote the noncompact group of interest in this work by OSp(1|2) as well.

The condition (E.2) translates into

ad− bc− δβ = 1, e2 + 2γα = 1,

cα− aγ − βe = 0, dα− bγ − δe = 0. (E.4)

These relations can be conveniently solved into

α = ±(aδ − bβ), γ = ±(cδ − dβ), e = ±(1 + βδ), (E.5)

ad− bc = 1 + δβ, (E.6)

where one has a choice of sign that must be consistent across all relations (E.5). Taking the

Berezinian of the constraint (E.2) immediately leads to Ber g = ±1, which is precisely (E.6)

given the identities (E.5). We will hence refer to (E.6) somewhat loosely as the determinant

condition.

We end up with the OSp(1|2,R) supermatrices

g =




a b aδ − bβ
c d cδ − dβ
β δ 1 + βδ


 , g =




a b −(aδ − bβ)

c d −(cδ − dβ)

β δ −(1 + βδ)


 , (E.7)

57We deal only with even supermatrices, for which we define the supertranspose as
[
A B

C D

]st

=

[
AT −CT

BT DT

]
. (E.3)

Other conventions also exist in the literature. The Berezinian is invariant under the supertranspose.
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satisfying ad − bc = 1 + δβ, and distinguishable by the sign of the Berezinian ±1. These

two components are related to each other by applying the elementary matrix (−)F :

(−)F =




1 0 0

0 1 0

0 0 −1


 . (E.8)

One can further quotient by the Z2 subgroup generated by the matrix −I3, which again has

Berezinian −1, and thereby identify both components. This restricts us to the projective

supergroup denoted by OSp′(1|2) = OSp(1|2)/Z2 in [44]. For convenience, we may simply

choose the top sign in (E.5).

Thus an arbitrary group element is specified by 3|2 independent parameters. For later

reference, we write down the inverse group element:

g−1 =




d −b −δ
−c a β

γ −α e


 , (E.9)

which takes a simple form thanks to the OSp constraints.

The Cartan-Weyl generators of the algebra in the above defining representation are

H =




1/2 0 0

0 −1/2 0

0 0 0


 , E− =




0 0 0

1 0 0

0 0 0


 , E+ =




0 1 0

0 0 0

0 0 0


 , (E.10)

F− =




0 0 0

0 0 −1/2

1/2 0 0


 , F+ =




0 0 1/2

0 0 0

0 1/2 0


 , (E.11)

which can be readily verified to satisfy the osp(1|2) algebra:

[H,E±] = ±E±, [E+, E−] = 2H,

[H,F±] = ±1

2
F±, [E±, F∓] = −F±, (E.12)

{F+, F−} =
1

2
H, {F±, F±} = ±1

2
E±.

The corresponding Gauss-Euler representation of the first group element in (E.7) is

g(φ, γ−, γ+|θ−, θ+) = e2θ−F −
eγ−E−

e2φHeγ+E+
e2θ+F +

(E.13)

=




eφ γ+e
φ eφθ+

γ−e
φ e−φ + γ−γ+e

φ − θ−θ+ γ−e
φθ+ − θ−

eφθ− γ+e
φθ− + θ+ 1 + eφθ−θ+


 , (E.14)

which satisfies the relations (E.4).
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E.2 Finite-dimensional representations

The spin-j representation of osp(1|2) has dimension 4j+1 (or 2j+1|2j), and it decomposes

under the even part sl(2,R) as ROSp
j = RSL

j ⊕RSL
j−1/2 for j > 0 [62]. The summands in the

direct sum decomposition of the tensor product of two irreps j1 and j2 range from |j1− j2|
to j1 +j2 in half-integer steps due to the fermionic raising and lowering operators. One can

derive the generators of the spin-j representation via the Clebsch-Gordan decomposition,58

but it is easier to simply postulate that

H =


 diag(j, . . . ,−j) 0(2j+1)×2j

02j×(2j+1) diag(j − 1
2 , . . . ,−j + 1

2)


 , (E.15)

E− =




01×2j 0

diag(1, . . . , 2j) 02j×1

0(2j+1)×2j

02j×(2j+1)

01×(2j−1) 0

diag(1, . . . , 2j − 1) 0(2j−1)×1



, (E.16)

E+ =




02j×1 diag(2j, . . . , 1)

0 01×2j

0(2j+1)×2j

02j×(2j+1)

0(2j−1)×1 diag(2j − 1, . . . , 1)

0 01×(2j−1)



, (E.17)

F− =




0(2j+1)×(2j+1)

01×2j

−1
2 diag(1, . . . , 2j)

1
2I2j 02j×1 02j×2j


 , (E.18)

F+ =




0(2j+1)×(2j+1)

1
2 diag(2j, . . . , 1)

01×2j

02j×1
1
2I2j 02j×2j


 , (E.19)

where In denotes the n×n identity matrix (the fermionic generators are fixed by the stated

form of the bosonic generators up to an irrelevant normalization). One can check that the

algebra (2.7) is satisfied. This representation is equivalent to the one presented in [157].

As for SL(2,R), these finite representations are not unitary (aside from the trivial one).

58Along with the fact that the generators of the tensor product of two representations R and R′ of g are

T a
R⊗R′ = T a

R ⊗ IR′ + IR ⊗ T a
R′ .
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In the spin-j representation, we write

|j〉 =




1

0
...

0

0
...

0




, . . . , |−j〉 =




0
...

0

1

0
...

0




, |j − 1

2
〉 =




0
...

0

1

0
...

0




, . . . , |−j +
1

2
〉 =




0
...

0

0
...

0

1




. (E.20)

We then have the actions

H|m〉 = m|m〉, (E.21)

E−|m〉 =





(j −m+ 1)|m− 1〉 j −m ∈ Z,

(j −m+ 1
2)|m− 1〉 j −m ∈ Z + 1

2 ,
(E.22)

E+|m〉 =





(j +m+ 1)|m+ 1〉 j −m ∈ Z,

(j +m+ 1
2)|m+ 1〉 j −m ∈ Z + 1

2 ,
(E.23)

F−|m〉 =





1
2 |m− 1

2〉 j −m ∈ Z,

−1
2(j −m+ 1

2)|m− 1
2〉 j −m ∈ Z + 1

2 ,
(E.24)

F+|m〉 =





1
2 |m+ 1

2〉 j −m ∈ Z,
1
2(j +m+ 1

2)|m+ 1
2〉 j −m ∈ Z + 1

2 ,
(E.25)

as used in the computation of (D.31).

E.3 Casimir and sCasimir

An important aspect of Lie superalgebras is the existence of elements in the universal

enveloping algebra that commute or anticommute with all generators. They play an im-

portant role in classifying representations of the algebra.

Elements that commute with all generators span the centre of the universal enveloping

algebra. For OSp(1|2), whose universal enveloping algebra we denote by U(osp(1|2)), there

is a single such element: the quadratic Casimir

C = H2 +
1

2
(E+E− + E−E+)− (F+F− − F−F+), (E.26)

which can indeed be checked to commute with all generators H,E±, F± using (E.12).

Elements that commute with all bosonic generators and anticommute with all fermionic

generators span the scentre of the universal enveloping algebra [66]. For OSp(1|2), this is

the sCasimir operator. It is given by the expression:

Q = F+F− − F−F+ +
1

8
=

1

2
H − 2F−F+ +

1

8
. (E.27)
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It has the important property that it squares to the Casimir:

Q2 − 1

64
=

1

4
C =

1

4
H2 +

1

8
(E+E− + E−E+)− 1

4
(F+F− − F−F+). (E.28)

For example, in the defining j = 1/2 representation (E.10), it is given explicitly by

Q =
3

8




1 0 0

0 1 0

0 0 −1


 (E.29)

and is proportional to the matrix (−)F transforming between the two connected compo-

nents of OSp(1|2).

More generally, for the finite representations, the sCasimir operator is proportional to

the fermion number (−)F and is given explicitly by

Q =

(
j

2
+

1

8

)
 I2j+1 0

0 −I2j


 . (E.30)

From (E.28), one finds the Casimir C to be proportional to the identity matrix:

C = j(j + 1/2)


 I2j+1 0

0 I2j


 , (E.31)

as required by the generalization of Schur’s lemma to supergroups, which states that all

elements in the centre are proportional to the identity in an irreducible representation.

We can get a handle on the possible form of any element M in the scentre using Schur’s

superlemma [158], as follows.59 The supermatrix M2 commutes with the entire group, and

we find by Schur’s superlemma that

M2 = z


 I 0

0 I


 (E.32)

for some supernumber z. Since the square root of a supernumber has only a ± sign

ambiguity, we find that M has to be proportional to a diagonal supermatrix with only ±1

on the diagonal. We can go further if we assume that upon restricting to the maximal

bosonic subgroup, the representation falls into two irreducible components (as happens in

59We make the assumption that the field over which we work is algebraically complete.
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our case).60 Then by the ordinary Schur’s lemma applied twice to the relation


 Abody(g) 0

0 Dbody(g)


Mbody = Mbody


 Abody(g) 0

0 Dbody(g)


 , (E.35)

and by the fact that one can deduce the sign of ±√z unambiguously by knowing its body’s,

we end up with

M = λ


 I 0

0 I


 or M = λ


 I 0

0 −I


 . (E.36)

Demanding anticommutativity with the fermionic generators of the group then shows that

M = λ


 I 0

0 −I


 (E.37)

is the only possibility. This is indeed what we see explicitly in (E.30).

E.4 Principal series representations

Next to the finite-dimensional representations, the continuous representations play an im-

portant role in the harmonic analysis of OSp(1|2,R). We construct them in this section.

E.4.1 Invitation

Our goal in this section is to construct the analogue of the principal series representations

for OSp(1|2,R). We take inspiration from the case of SL(2,R):

(g ◦ f)(x) = sgn(bx+ d)ε|bx+ d|2jf

(
ax+ c

bx+ d

)
, (E.38)

where on the right-hand side, the group acts projectively by its transpose as XT g with

g =


 a b

c d


 , X =


 x

z


 . (E.39)

The transpose ensures that the group action composes as required for a representation.

The carrier space is L2(R).

60Any supergroup has a bosonic subgroup obtained by ignoring the fermionic part. For a finite represen-

tation, the resulting subgroup is of the form:

[
Abody(g) 0

0 Dbody(g)

]
. (E.33)

In the specific case of OSp(1|2), the resulting bosonic representations Abody(g) and Dbody(g) are irreducible

as seen in the explicit construction above, and we have the branching rule

Rj, supergroup → Rj, bos ⊕Rj−1/2, bos. (E.34)
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Let us now contemplate the supergroup case. The supertranspose we use was defined

earlier in (E.3). In particular, it is not an involution, but rather has order four. Therefore,

to imitate the construction for SL(2,R), we write

g =




a b α

c d γ

β δ e


 , X =




x

z

ϑ


 (E.40)

and let

X 7→ gst3
X, gst3

=




a c β

b d δ

−α −γ e


 . (E.41)

Indeed, this action can be written equivalently as61

Xst 7→ Xstg. (E.43)

Armed with these considerations, one is tempted to propose the following group action for

OSp(1|2,R) on L2(R1|1):

(g ◦ f)(x, ϑ)
?≡ sgn(bx+ d+ δϑ)ε|bx+ d+ δϑ|2jf

(
ax+ c+ βϑ

bx+ d+ δϑ
,−αx+ γ − eϑ

bx+ d+ δϑ

)
. (E.44)

However, this guess is not quite correct. Whereas the representation thus constructed is

irreducible (as we show in appendix F.1), it is not unitary. A more well-substantiated

approach is based on the method of parabolic induction, which will allow us in the end to

write down a corrected version of (E.44).

E.4.2 Parabolic induction

It is a well-known fact in the mathematical literature that the so-called noncompact pic-

ture (E.38) for defining a principal series representation of SL(2,R) has an equivalent

induced picture, where one constructs the representation induced by a parabolic sub-

group [159]. Since this idea is not as familiar to physicists, we first describe it in concrete

terms. We then generalize it to OSp(1|2,R), and in particular, show that the construc-

tion (E.44) (properly adjusted) also deserves the name of principal series representation.

An induced representation is determined as follows. Fix a Lie group G and a subgroup

H ⊂ G. Let Dλ(h) be a representation of the subgroup H on a Hilbert space V . For a

continuous function f : G→ V , the equality

f(gh) = Dλ(h)−1f(g) (E.45)

61The supertranspose acts on column vectors as follows:

[
bos

fer

]st

=
[

bos −fer

]
,

[
fer

bos

]st

=
[

fer bos

]
. (E.42)
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is consistent in the sense that f(gh1h2) = Dλ(h2)−1Dλ(h1)−1f(g) = Dλ(h1h2)−1f(g).

Then an action of the form

(g · f)(g0) ≡ f(g−1g0) (E.46)

on the reduced class of functions f satisfying (E.45) automatically defines a representation

of G. This is called an induced representation. The representation one finds in this way

will automatically be contained within the left regular representation of the group (to be

discussed in section E.5 below).

Here, we specialize the above procedure to the case where we induce from a product of

abelian subgroups. Principal series representations are defined as induced by a parabolic

subgroup P = MAN of G, where M = ZK(A) is the centralizer of A in the maximal

compact subgroup K of G, A is the abelian subgroup of positive diagonal matrices, and

N is the unipotent subgroup of upper triangular matrices with 1 on the diagonal. Picking

representations of M and A, we can construct a representation of G.

SL(2,R). We focus first on SL(2,R). We restrict to functions on the group f : G → C

respecting the constraint

f(gman) = σ(m)−1a−iλ−1f(g). (E.47)

The factors appearing in (E.47) are as follows:

• We denote by σ the character of the finite group M = {±12×2}: σ(m) = (1, 1) or

(1,−1). We distinguish between the two representations by labeling the trivial and

nontrivial representations by ε = 0, 1, respectively.

• The abelian diagonal subgroup A has 1d irreps, which for a group element diag(a, a−1)

can be parametrized as eiλ log a = aiλ, since log a is the generator and λ ∈ R is the

representation label. Due to the i in the exponent, we will be inducing from a unitary

representation of A. The shift −iλ → −iλ − 1 is given by ρ = 1
2

∑
i∈∆+ αi, half the

sum of all positive roots. This is a normalization effect wherein the Haar measure

on the group dg gets decomposed into two parts dn̄ and d(man), with a nontrivial

Jacobian which is absorbed into the transformation of the function f by including

the square root of the modular function for the subgroup P :

∆(man)1/2 = |det(Adg/man(man))|1/2 = aρ. (E.48)

This deformation is necessary to induce a unitary representation of G.62 For SL(2,R),

ρ = 1.

• Finally, one picks the trivial representation 1 for the unipotent subgroup N .

A representation is then defined by the action (E.46) within the function space (E.47).

The difficulty in making this action explicit is encoded precisely in the nontrivial structure

62In other words, we actually want to use normalized induction to induce unitary representations from

unitary representations, whereas the less sophisticated procedure that we have described in general terms

is known as unnormalized induction.
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of (E.47). For SL(2,R), this restriction can be solved explicitly by using the identity


 d −b
−c a




 1 0

−x 1


 =


 1 0

−ax+c
bx+d 1




 bx+ d −b

0 (bx+ d)−1


 , (E.49)

which we write as g−1n̄ = n̄′m′a′n′ where the last three matrices are found via the following

expansion:


 bx+ d −b

0 (bx+ d)−1


 (E.50)

=


 sgn(bx+ d) 0

0 sgn(bx+ d)




 |bx+ d| 0

0 |bx+ d|−1




 1 −b(bx+ d)−1

0 1


 .

Namely, we decompose an arbitrary group element g = n̄man into an element n̄ of the lower

triangular unipotent subgroup N̄ and an element of the parabolic subgroup P = MAN .

Then by (E.47), it suffices to consider g = n̄, and we restrict the function to this subgroup.

Using the parametrization

n̄ =


 1 0

−x 1


 (E.51)

and the identity (E.49), we can rewrite (E.46) more suggestively as

(g · f)(n̄) ≡ f(g−1n̄) = f(n̄′m′a′n′) = σ(m′)−1
∣∣a′∣∣−iλ−1

f(n̄′). (E.52)

Plugging in (E.49) and setting f(n̄) ≡ f(x), this becomes

(g · f)(x) = sgn(bx+ d)ε|bx+ d|−iλ−1f

(
ax+ c

bx+ d

)
, (E.53)

which matches our earlier definition (E.38) in the noncompact picture. This shows that the

noncompact picture and induced picture give the same outcome, a well-known statement

in the representation theory of SL(2,R).

OSp(1|2,R). Now let’s generalize this construction to OSp(1|2,R). The upper and lower

“triangular” matrices of interest are, in this case:

N =




1 x ϑ

0 1 0

0 ϑ 1


 , N̄ =




1 0 0

−x 1 ϑ

−ϑ 0 1


 . (E.54)

The abelian subgroup with positive entries is parametrized by

A =




a 0 0

0 a−1 0

0 0 1


 . (E.55)
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Finally, M is the Klein four-group Z2 × Z2 consisting of four elements diag(±1,±1,±′1),

where the first two signs are aligned. This finite group has four irreps, whose characters

take the form σ(M) = ζεζ ′ε′

if one parametrizes M = diag(ζ, ζ, ζ ′).63 We can then write an

arbitrary OSp(1|2) matrix as g = N̄MAN , which is just our Gauss-Euler parametrization.

Within OSp′(1|2) = OSp(1|2)/Z2, the matrix M parametrizes the two connected compo-

nents of OSp(1|2).

In this case, the following identity holds:




d −b −δ
−c a β

γ −α e







1 0 0

−x 1 ϑ

−ϑ 0 1


 (E.57)

=




1 0 0

−ax+c+βϑ
bx+d+δϑ 1 −αx+γ−eϑ

bx+d+δϑ
αx+γ−eϑ
bx+d+δϑ 0 1







bx+ d+ δϑ −b −bϑ− δ
0 (bx+ d+ δϑ)−1 0

0 sgn(e)(−bϑ− δ) sgn(e)


 ,

where each matrix belongs to OSp(1|2). We can again read this identity as a decomposition

of g−1n̄ = n̄′m′a′n′ into an element of the lower triangular subgroup N̄ and a remainder

in P = MAN :



bx+ d+ δϑ −b −bϑ− δ
0 (bx+ d+ δϑ)−1 0

0 sgn(e)(−bϑ− δ) sgn(e)




=




sgn(bx+ d+ δϑ) 0 0

0 sgn(bx+ d+ δϑ) 0

0 0 sgn(e)







|bx+ d+ δϑ| 0 0

0 |bx+ d+ δϑ|−1 0

0 0 1




×




1 − b
bx+d+δϑ

−bϑ−δ
bx+d+δϑ

0 1 0

0 −bϑ−δ
bx+d+δϑ 1


 . (E.58)

To induce a unitary representation, we again need to include a half-density of the form

aρ in the definition of the transformed function. This factor originates from a change of

variables on the group manifold. Therefore, for the supergroup case, we need to replace it

by a super-Jacobian, which is a Berezinian in which only the bosonic subtransformation A

63The character table of M is:

σ ζ = ζ′ = 1 ζ = −1, ζ′ = 1 ζ = 1, ζ′ = −1 ζ = ζ′ = −1

id 1 1 1 1

ε = 1, ε′ = 0 1 −1 1 −1

ε = 0, ε′ = 1 1 1 −1 −1

ε = 1, ε′ = 1 1 −1 −1 1

(E.56)
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is taken with an absolute value [44]:

sdet′ = sgn(detA) sdet . (E.59)

The precise super-Jacobian can be written as a product:

∆(man) = sdet′(Adg/man(man)) = sdet′(Adg/man(m)) sdet′(Adg/man(a)) sdet′(Adg/man(n)).

(E.60)

Analogously to the bosonic case, we have

sdet′(Adg/man(a)) = a2(ρB−ρF ), sdet′(Adg/man(n)) = 1, (E.61)

where ρB = 1
2

∑
i∈∆+

B
αi and ρF = 1

2

∑
i∈∆+

F
αi. For OSp(1|2), ρB = 1 and ρF = 1/2.64

However, the factor associated with the adjoint action of m in (E.60) is not trivial in this

case. Let’s work it out explicitly. The 1|1-dimensional vector space g/man is spanned by the

generators E− and F−. The group M is four-dimensional: m ∈ {I2|1,−I2|1, (−)F ,−(−)F }.
We easily derive the adjoint action of each of these elements on the vector space:

I2|1E
−I2|1 = E−, I2|1F

−I2|1 = F−, (E.62)

(−)FE−(−)F = E−, (−)FF−(−)F = −F−, (E.63)

from which we read off that

sdet′(Adg/man(m)) =





1 m = ±I2|1,

−1 m = ±(−)F ,
(E.64)

and hence

∆(man) = ±a2(ρB−ρF ), (E.65)

where the choice of sign depends on the element m as in (E.64).

These considerations finally lead to the definition

(g · f)(x, ϑ) = sgn(e)ε′−1/2 sgn(bx+ d+ δϑ)ε−1/2

× |bx+ d+ δϑ|−iλ−1/2f

(
ax+ c+ βϑ

bx+ d+ δϑ
,−αx+ γ − eϑ

bx+ d+ δϑ

)
.

(E.66)

From now on, we set k ≡ −λ, and we define the quantity 2j ≡ ik − 1/2 with j being the

spin representation label, yielding the Casimir C = j(j + 1/2) = −(k2/4 + 1/16) for the

principal series irreps.

We see that the principal series representations carry discrete sign labels ε, ε′. Within

the quotient OSp(1|2)/Z2, the only distinguishable cases are ε = ε′ and ε 6= ε′. The repre-

sentations for which one picks the trivial representation of M (where ε = ε′ = 0) are called

spherical principal series representations. When we restrict to the subsupersemigroup later

on, there will be no distinction between these four cases anymore, and we can remove all of

the sign factors by hand. This formula hence implies that the continuous representations of

64We note that for OSp(2|2), ρB = ρF and there is no shift by the Weyl vector. This corresponds to the

non-renormalization theorems starting with N = 2 supersymmetry.
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OSp(1|2) that emerge from the carrier space construction ((E.44), when suitably tweaked)

deserve to be called principal series representations, just as in the bosonic case. Moreover,

we learn that the carrier space consists of functions on a space of dimension equal to that

of N̄ , a fact that would seem to be important for generalization to higher supersymmetry.

The resulting representation matrices are unitary with respect to the standard inner

product on L2(N̄). In detail, this means

(f, g) =





∫
R
dx f∗(x)g(x) (bosonic case),

∫
R
dx
∫
dϑ f∗(x, ϑ)g(x, ϑ) (supersymmetric case).

(E.67)

We next demonstrate this very explicitly.

E.4.3 Unitarity

We now verify by explicit calculation that the principal series representations defined

by (E.66) are unitary, as guaranteed by the above more abstract construction.

With the measure on R
1|1 in (E.67), a representation matrix element is constructed by

performing the following operation:

〈F |g|G〉 ≡
∫
dx dϑF (x, ϑ)∗(g ·G)(x, ϑ). (E.68)

Plugging in (E.66), we can write

∫
dx dϑF (x, ϑ)∗

[
|bx+ d+ δϑ|2j

sgn(e)1/2 sgn(bx+ d+ δϑ)1/2
G

(
ax+ c+ βϑ

bx+ d+ δϑ
,−αx+ γ − eϑ

bx+ d+ δϑ

)]
.

(E.69)

We will show that the resulting representation matrix element is unitary iff 2j = ik − 1/2

by proving the identity
∫
dx dϑF (x, ϑ)∗(g ·G)(x, ϑ) =

∫
dx dϑ (g−1 · F )(x, ϑ)∗G(x, ϑ), j = −1

4
+
ik

2
, (E.70)

thus identifying the adjoint action † of g with the inverse. To begin, we make the change

of variables

x =
dx′ − c+ γϑ′

−bx′ + a− αϑ′ =
dx′ − c
−bx′ + a

+ sgn(e)
δx′ − β

(−bx′ + a)2
ϑ′, (E.71)

ϑ =
δx′ − β + eϑ′

−bx′ + a− αϑ′ =
δx′ − β
−bx′ + a

+ sgn(e)
ϑ′

−bx′ + a
. (E.72)

This gives

bx+ d+ δϑ =
1

−bx′ + a− αϑ′ . (E.73)

To perform the change of variables in the Berezin integral, we write


 A B

C D


 ≡




∂x
∂x′

∂ϑ
∂x′

∂x
∂ϑ′

∂ϑ
∂ϑ′


 =




ad−bc
(−bx′+a)2 + α+sgn(e)b(δx′−β)

(−bx′+a)3 ϑ′ sgn(e) α+bϑ′

(−bx′+a)2

sgn(e) −δx′+β
(−bx′+a)2 sgn(e) 1

−bx′+a


 ,

(E.74)
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and then compute the superdeterminant sdet′:65

(A−BD−1C)D−1 =
sgn(e)

−bx′ + a− αϑ′ =⇒ dx dϑ = dx′ dϑ′ sgn(e)

−bx′ + a− αϑ′ , (E.75)

where we used sdet′ = sgn(detA) sdet and sgn(detA) = sgn(ad− bc). This gives the final

result:

∫
dxdϑF (x,ϑ)∗

[
|bx+d+δϑ|2j

sgn(e)1/2 sgn(bx+d+δϑ)1/2
G

(
ax+c+βϑ

bx+d+δϑ
,−αx+γ−eϑ

bx+d+δϑ

)]
(E.76)

=
∫
dx′ dϑ′

[
|−bx′ +a−αϑ′|−2j∗−1

sgn(e)1/2 sgn(−bx′ +a−αϑ′)1/2
F

(
dx′−c+γϑ′

−bx′ +a−αϑ′ ,
δx′−β+eϑ′

−bx′ +a−αϑ′

)]∗
G(x′,ϑ′).

If 2j = −2j∗− 1, or j = −1/4 + ik/2 for k ∈ R, then we recognize the resulting expression

as acting with the inverse group element g−1 on F (referring to the components of g−1

in (E.9)). Hence the adjoint action is by g−1, as desired, and the representation matrix

constructed above is unitary.

E.4.4 Infinitesimal level: Lie superalgebra

We now work out the infinitesimal action of the group and explicitly construct the resulting

Lie superalgebra. Using the following parametrizations of one-parameter subgroups,

e2φH =




eφ 0 0

0 e−φ 0

0 0 1


 , eγ−E−

=




1 0 0

γ− 1 0

0 0 1


 , eγ+E+

=




1 γ+ 0

0 1 0

0 0 1


 ,

(E.77)

e2θ−F −
=




1 0 0

0 1 −θ−
θ− 0 1


 , e2θ+F +

=




1 0 θ+

0 1 0

0 θ+ 1


 , (E.78)

we read off the corresponding group actions from (E.66):

(e2φH ◦ f)(x, ϑ) = e−2jφf(e2φx, eφϑ), (E.79)

(eγ−E− ◦ f)(x, ϑ) = f(x+ γ−, ϑ), (E.80)

(eγ+E+ ◦ f)(x, ϑ) = sgn(γ+x+ 1)ε−1/2|γ+x+ 1|2jf

(
x

γ+x+ 1
,

ϑ

γ+x+ 1

)
, (E.81)

(e2θ−F − ◦ f)(x, ϑ) = f(x+ θ−ϑ, ϑ+ θ−), (E.82)

(e2θ+F + ◦ f)(x, ϑ) = sgn(1 + θ+ϑ)ε−1/2|1 + θ+ϑ|2jf

(
x

1 + θ+ϑ
,
ϑ− θ+x

1 + θ+ϑ

)
. (E.83)

65We derive the supersymmetric Jacobian in this manner, rather than from the pullback of some differ-

ential form (i.e., from the exterior derivative of Grassmann variables), because the volume measure on a

supermanifold is not a differential form (see appendix A of [44]).
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Note that sgn(1 + θ+ϑ) = 1, although we have left it explicit above. We then derive the

infinitesimal representations of the generators:66

E− = ∂x,

F− =
1

2
(∂ϑ + ϑ∂x),

H = x∂x +
1

2
ϑ∂ϑ − j, (E.84)

E+ = −x2∂x − xϑ∂ϑ + 2jx,

F+ = −1

2
x∂ϑ −

1

2
xϑ∂x + jϑ.

These obey the commutation relations

[H,E±] = ±E±, [E+, E−] = 2H,

[H,F±] = ±1

2
F±, [E±, F∓] = −F±, (E.85)

{F+, F−} = −1

2
H, {F±, F±} = ∓1

2
E±,

which amount to almost the same algebra as the osp(1|2) algebra (2.7), except that the

corresponding anticommutation relations have the opposite sign as in (2.7):

{F+, F−} = −1

2
H, {F±, F±} = ∓1

2
E±. (E.86)

These sign discrepancies come down to the fact that the bosonic generators F± that expo-

nentiate to the group elements in (E.78) are represented by fermionic differential operators.

Indeed, when the generators associated to fermionic group parameters (which are bosonic

matrices) are represented as fermionic differential operators, the anticommutation rela-

tions of the operators must be opposite to those of the matrices, because the operators

anticommute with the fermionic parameters while the matrices do not.

One can map our infinitesimal algebra (E.85) to the Lie superalgebra (2.7) by taking

(H,E−, E+, F−, F+)→ (−H,E+, E−, F+, F−). (E.87)

This reverses the signs of anticommutators while preserving the commutators. We will

hence call our infinitesimal superalgebra (E.85) the opposite Lie superalgebra.67

We call the set of differential operators (E.84) the Borel-Weil realization of (opposite)

osp(1|2). In this Borel-Weil realization, one readily computes the sCasimir:68

Q = F−F+ − F+F− +
1

8
=

(
j

2
+

1

8

)
(1− 2ϑ∂ϑ) =

(
j

2
+

1

8

)
(−)F . (E.89)

66The signs and absolute values are not relevant at the infinitesimal level. However, they do mean that

simply exponentiating the infinitesimal action would get these wrong.
67Compare to the notion of the “opposite” superalgebra in [44], which is obtained by taking

(H,E−, E+, F−, F+) → (H,−E+,−E−, F+, F−). (E.88)

This reverses the signs of commutators while preserving the anticommutators.
68Notice the slight change in this operator compared to (E.27) to accommodate the opposite Lie super-

algebra.

– 90 –



J
H
E
P
0
8
(
2
0
2
2
)
0
0
2

Using (E.28), we also obtain the Casimir operator

C = 4

(
j

2
+

1

8

)2

− 1

16
= j(j + 1/2), (E.90)

which is diagonal in this basis. Notice that C is proportional to the identity operator, and

Q is proportional to (−)F . This has to be true for finite irreps by Schur’s lemma, but it is

true for the principal series representations as well, as we see here.

When restricting (E.84) to the bosonic subgroup, we obtain the direct sum of a spin-j

Borel-Weil realization of SL(2,R) (with H,E±) and another Borel-Weil realization with

spin j − 1/2. The former part comes from acting on a purely bosonic function f(x), and

the latter from acting on a purely fermionic function ϑf(x):

ROSp
j = RSL

j ⊕RSL
j−1/2. (E.91)

However, whereas both SL(2,R) representations appearing here are irreducible, they are

not unitary since j is restricted by the left-hand side to take the value j = −1/4 + ik/2,

which is incompatible with the unitarity constraint for the SL(2,R) spin label. We will see

this feature very explicitly later on when we compute the characters of this representation

in section E.7.

Fixing j = −1/4 + ik/2, all of the bosonic generators are antihermitian with respect

to the measure dx dϑ:

H† = −H, (E−)† = −E−, (E+)† = −E+. (E.92)

This follows straightforwardly from integrating by parts, while neglecting boundary terms

(so that, e.g., ∂†
ϑ = ∂ϑ and ∂†

x = −∂x). The fermionic generators F± are not antihermitian

because they square to antihermitian operators. However, accounting for the Grassmann

statistics of the group parameters, all generators are antihermitian in the appropriate sense

(as they must be, since the representation is unitary).

Finally, we mention that both the algebra and its opposite, which differ only in the

anticommutation relations

{F+
bos, F

−
bos} =

1

2
H, {F±

bos, F
±
bos} = ±1

2
E±, (E.93)

{F+
fer, F

−
fer} = −1

2
H, {F±

fer, F
±
fer} = ∓1

2
E±, (E.94)

can be summarized by rewriting the osp(1|2) algebra entirely in terms of commutators:

[H,E±] = ±E±, [E+, E−] = 2H, (E.95)

[H, ξF±] = ±1

2
ξF±, [E±, ξF∓] = −ξF±, (E.96)

[ξ′F+, ξF−] =
1

2
ξ′ξH, [ξ′F±, ξF±] = ±1

2
ξ′ξE±, (E.97)

where we have introduced anticommuting parameters ξ, ξ′. These relations hold regardless

of whether F = Fbos or F = Ffer.
69

69The difference between the Fbos generators (E.127) and the Ffer generators (E.84) is similar to that

between the representations of the supercharges Q and the supercovariant derivatives D on superspace: the

two resulting SUSY algebras have minus sign differences in the anticommutators.

– 91 –



J
H
E
P
0
8
(
2
0
2
2
)
0
0
2

E.4.5 Super-Fourier and super-Mellin transforms

To facilitate computations, and to make contact with specific representation matrices, we

next discuss suitable bases of functions on the superline R
1|1 that diagonalize some of

the generators. These will define invertible integral transformations: the super-Fourier

transform, an inverted cousin thereof, and the super-Mellin transform.

Super-Fourier transform. The modes

ψk,α(x, ϑ) =
1√
2π
eikxeαϑ =

1√
2π

(eikx + αϑeikx), (E.98)

where α is an imaginary Grassmann number in the sense that α∗ = −α, form a basis for

the functions on the superline R
1|1:

∫ +∞

−∞
dx dϑψ∗

k,α(x, ϑ)ψk′,α′(x, ϑ) = δ(k − k′)δ(α− α′), (E.99)

∫ +∞

−∞
dk dαψ∗

k,α(x, ϑ)ψk,α(x′, ϑ′) = δ(x− x′)δ(ϑ′ − ϑ). (E.100)

They are simultaneous eigenfunctions of the commuting operators

Ê− = ∂x, ∂ϑ. (E.101)

A function on the superline can be uniquely expanded in this basis as

f(x, ϑ) =

∫
dk dαCk,αe

ikxeαϑ, (E.102)

with coefficients Ck,α = CB(k) + αCT(k) determined by the bosonic Fourier transform for

each component:

fB(x) =

∫
dk CT(k)eikx, fT(x) =

∫
dk CB(k)eikx, f(x, ϑ) = fB(x) + ϑfT(x). (E.103)

This basis (E.98) corresponds to the superanalogue of the Fourier transform, and we will

call it the super-Fourier transform. This integral transform in superspace and its variants

have been studied in the mathematics literature [160].

Inverted super-Fourier transform. Quite analogously, one can find simultaneous ei-

genfunctions of the commuting operators

Ê+ = −x2∂x − xϑ∂ϑ + 2jx, x∂ϑ, (E.104)

as

ψj
λ,α(x, ϑ) =

1√
2π

|x|ik√
x
eiλ/xeα ϑ

x =
1√
2π

(
|x|ik√
x
eiλ/x + αϑ

|x|ik
x3/2

eiλ/x

)
, (E.105)

satisfying the same orthonormality and completeness relations:
∫ +∞

−∞
dx dϑψ∗

k,α(x, ϑ)ψk′,α′(x, ϑ) = δ(k − k′)δ(α− α′), (E.106)

∫ +∞

−∞
dk dαψ∗

k,α(x, ϑ)ψk,α(x′, ϑ′) = δ(x− x′)δ(ϑ′ − ϑ). (E.107)

These modes (E.105) are somewhat like inverted Fourier modes, and we will call the cor-

responding integral transform the inverted super-Fourier transform.
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Super-Mellin transform. Finally, there is a basis associated to diagonalizing the hy-

perbolic generator H: the commuting operators

Ĥ = x∂x +
1

2
ϑ∂ϑ − j, x1/2∂ϑ (E.108)

are diagonalized by the wavefunctions

ψs,α(x, ϑ) =
1√
2π
xis−1/4eαx−1/2ϑ =

1√
2π

(xis−1/4 + αϑxis−3/4), (E.109)

with Ĥ eigenvalue i(s− k/2) (s ∈ R, by antihermiticity of Ĥ on the super half-line R
+1|1

(x > 0, ϑ)). The Grassmann variable α is the eigenvalue of the fermionic operator x1/2∂ϑ.

This operator commutes with the superspace scaling operator H because x1/2∂ϑ is scale-

invariant: [Ĥ, x1/2∂ϑ] = 0, as can be checked explicitly.

These functions transform the super half-line (x > 0, ϑ) into a new pair of coordinates

(s, α), and form an orthonormal basis with orthonormality and completeness relations:

〈ψs,α|ψs′,α′〉 =

∫ +∞

0
dx dϑψ∗

s,α(x, ϑ)ψs′,α′(x, ϑ) = δ(s− s′)δ(α− α′), (E.110)

〈x, ϑ|x′, ϑ′〉 =

∫ +∞

−∞
ds dαψ∗

s,α(x, ϑ)ψs,α(x′, ϑ′) = δ(x− x′)δ(ϑ′ − ϑ). (E.111)

This means that any function f(x, ϑ) on the super half-line can be uniquely expanded in

this basis as

f(x, ϑ) =

∫
ds dαCs,αψs,α(x, ϑ), (E.112)

with explicit expansion coefficients

Cs,α =

∫
dx dϑψ∗

s,α(x, ϑ)f(x, ϑ). (E.113)

The integral transform in superspace defined by the modes (E.109) is a superanalogue of

the Mellin transform, and we will call it the super-Mellin transform. To find a basis on the

full superline R
1|1, one needs a pair of such modes. This is identical to the description of

Rindler modes to describe physics in the right wedge of the Minkowski plane.

For all three integral transforms defined above, we have taken α to satisfy the con-

jugation property α∗ = −α. This was done so as to retain our convention that complex

conjugation preserves the order of Grassmann numbers.70

The above bases correspond to diagonalizing a single bosonic generator, augmented

with a fermionic partner that is not in the algebra. This fermionic partner is unique in the

following sense. Choosing a particular bosonic generator D to diagonalize, one can prove

that there is (up to a prefactor) only a single operator O that has the two properties:

O is fermionic, i.e., O2 = 0, (E.114)

O and D are simultaneously diagonalizable: [O, D] = 0. (E.115)

70One could alternatively extract an “i” from α and take it be real. This would require absorbing an

extra i into the measure dα, which we choose not to do.
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E.4.6 Discrete representations revisited: monomial realization

Just as for SL(2,R), one can realize the discrete representations on the carrier space R
1|1 in

terms of monomials. This complements earlier accounts of this representation [161, 162].

We work in a basis that diagonalizes H = x∂x + 1
2ϑ∂ϑ − j, and we call its eigenvalue

the weight of the state. Then the OSp(1|2) algebra has raising (lowering) operators F±

and E± that raise (lower) the weight by 1/2 and 1, respectively. If the representation has

a lowest-weight state ψLW,j(x, ϑ), then it satisfies (∂ϑ + ϑ∂x)ψLW,j(x, ϑ) = 0, leading to

ψLW,j(x, ϑ) = 1, H = −j. (E.116)

Likewise, a highest-weight state (if present in the representation) satisfies (x∂ϑ + xϑ∂x −
2jϑ)ψLW,j(x, ϑ) = 0:

ψHW,j(x, ϑ) = x2j , H = +j. (E.117)

If both of these states are present, then one needs 2j ∈ N, as one readily sees by consecutive

applications of the raising and lowering operators. The representation becomes finite, and

consists of the monomials

{1, ϑ, x, ϑx, x2, . . . , x2j}. (E.118)

For 2j /∈ N (j can be negative), the representation is unbounded either from above (lowest-

weight) or from below (highest-weight). For the group OSp(1|2), there is a further restric-

tion to 2j ∈ −N for these representations that is not visible at the level of our current

treatment. For its universal cover ÕSp(1|2), this further discretization is not present, and

we are not sensitive here to this difference.

If either such state is present in the representation space, then all states are simul-

taneous eigenfunctions of (−)F = 1 − 2ϑ∂ϑ, where ϑ∂ϑ measures the Z2 grading of the

representation space. This is because the lowest- or highest-weight state is an eigenstate

of (−)F with eigenvalue 1, and applying fermionic raising or lowering operators flips the

eigenvalue of (−)F . This hence automatically holds both for finite-dimensional represen-

tations and for lowest/highest-weight discrete representations. This leads to a natural

decomposition of the representation in terms of SL(2,R) representations [161, 162]:

ROSp
j = RSL

j ⊕RSL
j−1/2, (E.119)

with Z2-grading 0 and 1, respectively. For the principal series representations, there are

no lowest- or highest-weight states in the representation space, and hence the states need

not be eigenstates of (−)F . As examples, we refer to the super-Fourier and super-Mellin

bases constructed in section E.4.5.

Next, we define the adjoint wavefunctions for the finite representations, assuming the

same inner product as the one used for the principal series representations. The adjoint

wavefunctions are obtained by demanding orthonormality as:

〈m|m′〉 =

∫
dx dϑ 〈m|x, ϑ〉〈x, ϑ|m′〉 = δmm′ . (E.120)

Denoting the highest-weight state of the spin-j representation by |h.w.〉j = |j〉, whose

wavefunction is annihilated by F+ (and hence E+), we fix the normalization by setting

〈x, ϑ|h.w.〉j = x2j . (E.121)
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Applying E− consecutively, we construct the (normalized) monomials:

〈x, ϑ|m〉 =
(2j)!

(j −m)!(j +m)!
xj+m, j −m ∈ Z. (E.122)

This fixes the wavefunctions of the dual states to be

〈m|x, ϑ〉 =
(j −m)!

(2j)!
(−∂x)j+mϑδ(x), j −m ∈ Z, (E.123)

and in particular, we obtain the (normalized) lowest-weight state

〈l.w.|x, ϑ〉j = 〈−j|x, ϑ〉 = ϑδ(x) = δ(x, ϑ). (E.124)

The (normalized) fermionic states in the representation are constructed analogously:

〈x, ϑ|m〉 =
(2j)!

(j −m− 1
2)!(j +m− 1

2)!
ϑxj+m− 1

2 , j −m ∈ Z +
1

2
. (E.125)

This fixes the wavefunctions of the dual states to be

〈m|x, ϑ〉 =
(j −m− 1

2)!

(2j)!
(−∂x)j+m− 1

2 δ(x), j −m ∈ Z +
1

2
. (E.126)

Compare the action of the generators on these states to those in appendix E.2.71

This way of describing the finite-dimensional representations allows a direct generaliza-

tion to the infinite-dimensional lowest-weight representations [77]. As in the bosonic case,

we formally take j → −j and replace the factorials by appropriate Pochhammer symbols.

E.5 Left regular representation of OSp(1|2,R)

The most basic representation of any group is the regular representation. For a Lie (su-

per)group, the left regular representation is defined by the following group action on the

group itself:

f(g0)
g−→ f(g−1g0), (E.128)

with f : G → C. The left regular realization can be studied infinitesimally for each one-

parameter subgroup as:

L̂if(g0) ≡ d

dε
f(e−εXig0)

∣∣∣
ε=0

, (E.129)

where the generators are now realized as first-order differential operators satisfying

L̂ig = −Xig. (E.130)

71The Borel-Weil realization that furnishes a representation of the conventional (rather than the opposite)

osp(1|2) superalgebra (2.7) has instead

F̂− = −1

2
(∂ϑ − ϑ∂x), F̂+ =

1

2
x∂ϑ − 1

2
xϑ∂x + jϑ, (E.127)

with the bosonic generators the same as in (4.22).
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This definition can be worked out explicitly once a suitable coordinatization of the group

element g is chosen. We choose to work in Gauss-Euler coordinates:

g = e2θ−F −
eγ−E−

e2φHeγ+E+
e2θ+F +

. (E.131)

Using the exponentiated commutator identities

[H, eγ+E+
] = γ+E

+eγ+E+
, [eγ−E−

,H] = γ−E
−eγ−E−

,

[H, e2θ+F +
] = θ+F

+e2θ+F +
, [e2θ−F −

,H] = θ−F
−e2θ−F −

,

[F−, eγ+E+
] = γ+F

+eγ+E+
, [eγ−E−

, F+] = −γ−F−eγ−E−
,

e−φF−e2φH = e2φHF−, e−φe2φHF+ = F+e2φH ,

[eγ−E−
, E+] = eγ−E−

(−2γ−H + γ2
−E

−), (E.132)

we obtain the left regular representation of the algebra:72

L̂F − = −1

2
(∂θ− − θ−∂γ−) , (E.133)

L̂E− = −∂γ− , (E.134)

L̂H = −1

2
∂φ + γ−∂γ− +

1

2
θ−∂θ− , (E.135)

L̂F + = −1

2
e−φ (∂θ+

+ θ+∂γ+
)− 1

2
γ− (∂θ− − θ−∂γ−)−

1

2
θ−∂φ, (E.136)

L̂E+ = −e−2φ∂γ+
− γ−∂φ + γ2

− ∂γ− + γ−θ−∂θ− + e−φθ− (∂θ+
+ θ+∂γ+

) . (E.137)

Using (E.130), one can check that these differential operators satisfy the algebra:

[
L̂i, L̂j

]
g = − [Xi, Xj ] g = fijkL̂kg, i, j not both odd, (E.138)

{
L̂i, L̂j

}
g = {Xi, Xj} g = −fijkL̂kg, i, j both odd, (E.139)

which has flipped signs for all anticommutators. We hence again see the appearance of the

opposite algebra, just as for the Borel-Weil realization on the superline R
1|1.

In deriving these relations, we assumed the abstract generators Xi satisfy the alge-

bra (2.7). However, for the Borel-Weil realization in terms of differential operators on R
1|1,

we work with the opposite algebra where the fermionic generators are Grassmann-valued.

Working instead with this assumption, we can redo the above calculation to find precisely

the same set of generators (E.133)–(E.137).

We can construct the sCasimir operator in this realization as:

Q̂ = L̂F −L̂F + − L̂F +L̂F − +
1

8
(E.140)

=
1

2
e−φ (∂θ− − θ−∂γ−) (∂θ+

+ θ+∂γ+
)− 1

2
θ−∂θ−∂φ −

1

4
θ−∂θ− +

1

4
∂φ +

1

8
. (E.141)

72There exists an analogous right regular representation, where care has to be taken in the supergroup

case that those differential operators act from the right [156].
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From the definition (E.130), this operator has the property:

Q̂g = Qg, Q = F+F− − F−F+ +
1

8
, (E.142)

in the abstract basis of operators satisfying (2.7). For Grassmann-valued generators F±,

on the other hand (satisfying the opposite algebra), we find instead:

Q̂g = Qg, Q = F−F+ − F+F− +
1

8
, (E.143)

where the right-hand side is the sCasimir operator in, e.g., the Borel-Weil realization (E.89).

All of this can be viewed as consistency requirements on our calculations.

The sCasimir operator squares to the Casimir differential operator:

Ĉ =
1

4
∂2

φ +
1

4
∂φ + e−2φ∂γ−∂γ+

− 1

2
e−φ (∂θ− + θ−∂γ−) (∂θ+

+ θ+∂γ+
) . (E.144)

The above relations imply that generic representation matrix elements 〈ψ−|g|ψ+〉 for

any bra and ket states satisfy the set of coupled differential equations:

Q̂〈ψ−|g|ψ+〉 = 〈ψ−|Qg|ψ+〉,

Q̂〈ψ−|Qg|ψ+〉 =

(
j

2
+

1

8

)2

〈ψ−|g|ψ+〉, (E.145)

relating the two matrix elements 〈ψ−|g|ψ+〉 and 〈ψ−|Qg|ψ+〉. On the left-hand side, the

operator Q̂ is a differential operator acting on the supergroup coordinates φ, γ−, γ+, θ−, θ+

hidden in the representation matrix element:

〈ψ−|g|ψ+〉 = 〈ψ−|e2θ−F −
eγ−E−

e2φHeγ+E+
e2θ+F + |ψ+〉. (E.146)

On the right-hand side, the quantity Q is evaluated in either the discrete representations

or in the Borel-Weil realization (E.89). In both cases, its square is proportional to the

identity matrix, leading to (E.145).

The equations (E.145) can be decoupled by combining them into the Casimir eigenvalue

equation:

Ĉ〈ψ−|g|ψ+〉 = j(j + 1/2)〈ψ−|g|ψ+〉. (E.147)

These results then show that (irreducible) representation matrix elements solve the Casimir

eigenvalue equation. The coupled differential system (E.145) shows that in a supergroup

with a nontrivial sCasimir operator, irrep matrix elements come in pairs related by acting

with this supercharge. Recognizing this structure is important when attempting further

generalizations such as q-deformation, as will be presented elsewhere [112].

E.6 Harmonic analysis

We now solve the Casimir eigenvalue equation explicitly. To find all Casimir eigenfunctions,

following [101], we diagonalize ∂γ− = iν and ∂γ+
= iλ as well as

Ξ = (∂θ− + iθ−ν) (∂θ+
+ iθ+λ) = ξ, (E.148)
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which has a four-dimensional space of eigenvectors, split into doubly degenerate eigenspaces

for each choice of sign of ξ. They are spanned by the following eigenstates:

ξ = +
√
νλ : 1−

√
νλθ−θ+,

√
νθ− − i

√
λθ+,

ξ = −
√
νλ : 1 +

√
νλθ−θ+,

√
νθ− + i

√
λθ+, (E.149)

where we have chosen to describe the eigenspaces with eigenvectors that are either bosonic

or fermionic.

This transforms the Casimir operator into

Ĉ =
1

4
∂2

φ +
1

4
∂φ − e−2φνλ∓ 1

2
e−φ
√
νλ. (E.150)

Setting f(φ) = e−φ/2g(φ), the Casimir equation can be reformulated as a Schrödinger

equation (
−1

4
∂2

φ +

(
νλe−2φ ± 1

2

√
νλe−φ

))
g(φ) =

k2

4
g(φ) (E.151)

describing a nonrelativistic quantum particle of energy k2/4 in a Morse-like potential

V (φ) = νλe−2φ ± 1

2

√
νλe−φ. (E.152)

We draw these potentials in figure 10 below. We can shift φ→ φ+ log 4
√
|νλ| to map the

potential into a canonical form:

V (φ) =
1

16

(
sgn(νλ)e−2φ ± 2

√
sgn(νλ)e−φ

)
. (E.153)

The resulting wavefunctions depend on the relative signs of the various terms. For νλ > 0,

we get the delta-normalizable eigenfunctions:

νλ>0, ξ=+
√
νλ : g(φ)= ie−φ/2

(
K 1

2
+ik

(
2
√
νλe−φ

)
−K− 1

2
+ik

(
2
√
νλe−φ

))
,

νλ>0, ξ=−
√
νλ : g(φ)=e−φ/2

(
K 1

2
+ik

(
2
√
νλe−φ

)
+K− 1

2
+ik

(
2
√
νλe−φ

))
. (E.154)

When ξ < 0, the Morse potential has a small potential well whose height in the energy

variable k2/4 ranges over
(
− 1

16 , 0
)
. No bound states exist in this small potential well.73,74

73The Morse potential in quantum mechanics was introduced as a model for bound states of diatomic

molecules. It is amusing that here, we are in the opposite regime where no bound states exist.
74When νλ > 0 and ξ < 0, the most generic solution to the differential equation takes the form:

C1e
−φ/2

(
K 1

2
+ik

(
2
√
νλe−φ

)
+K− 1

2
+ik

(
2
√
νλe−φ

))

+ C2e
−φ/2

(
I 1

2
+ik

(
2
√
νλe−φ

)
− I− 1

2
+ik

(
2
√
νλe−φ

))
, (E.155)

where we look for solutions that are both damped at φ → ±∞ and have value of k = 0 → i/2 in order

for the energy variable k2/4 to lie in the range
(
− 1

16
, 0
)
. Since the BesselI diverges when its argument

→ ∞ and the BesselK when its argument → 0, both functions have to independently become damped.

Using the asymptotics of BesselI and the series expansion of BesselK, we see that this cannot happen unless

C1 = C2 = 0. Hence no bound states exist in the small potential well.
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Figure 10. Blue: Morse potential V (φ). Red: wavefunction solution for k = 2 with energy value

k2/4 = 1 marked by the brown line. Top left: νλ > 0, ξ > 0. Top right: νλ > 0, ξ < 0. Bottom

left: νλ < 0, ξ > 0. Bottom right: νλ < 0, ξ < 0. When νλ < 0, the Morse potential is complex-

valued. We can get intuition by realizing that in the asymptotic regions φ → ±∞, the potential

becomes real. We hence draw the “envelope” of the Morse potential instead, obtained by replacing

the imaginary coefficient
√
νλ by ±

√
−νλ. For illustrative purposes, we draw Re(g(φ)) (Im(g(φ))

is qualitatively similar). Notice the unbounded increase of oscillation frequency of these modes as

φ→ −∞, as we would expect from the profile of the potential.

For the case νλ < 0, the Morse potential becomes complex. Delta-normalizable eigen-

functions can still be constructed and take the form:

νλ<0, ξ=+
√
νλ: g(φ)=e−φ/2

(
iJ 1

2
+ik

(
2
√
−νλe−φ

)
−J− 1

2
+ik

(
2
√
−νλe−φ

))
,

νλ<0, ξ=−
√
νλ: g(φ)=e−φ/2

(
iJ 1

2
+ik

(
2
√
−νλe−φ

)
+J− 1

2
+ik

(
2
√
−νλe−φ

))
. (E.157)

All of these wavefunctions have Casimir eigenvalue 1
16 + k2

4 and fall into the principal series

(continuous) representations; they have positive energies k2/4 in the Schrödinger problem

(figure 10).

For νλ < 0, there exist eigenfunctions that are damped for positive φ. These take the

form:

g(φ) = e−φ/2
(
iJ2j+1

(
2
√
−νλe−φ

)
− sgn(ξ)J2j

(
2
√
−νλe−φ

))
, (E.158)

depending on the sign of ξ. These modes form a continuum and correspond to the lowest-

weight representation matrices of the universal cover of OSp(1|2,R). They have Casimir

Alternatively, the Morse potential eigenvalue problem

(−∂2
x + λ2(e−2x − 2e−x))ψ(x) = εnψ(x) (E.156)

has known bound-state solutions for n = 0, 1, . . . , bλ−1/2c. From (E.153), we see that we are in the limiting

case λ = 1/2, and one can check that the only (n = 0) candidate bound-state wavefunction in this limit is

indeed not normalizable.
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Figure 11. Blue: Morse potential. Red: discrete state wavefunction solution Re(g(φ)) for νλ < 0

and with the energy variable k2/4 = −1/16.

eigenvalue j(j + 1/2) for j ∈ R
+, and appear at negative energies −j(j + 1/2) − 1/16 in

the associated Schrödinger problem (figure 11).

Just as for SL(2,R) discussed in appendix B.2, the actual discretization happens when

demanding single-valuedness as a function of the complex variable z = e−φ, restricting to

2j ∈ −N and singling out the correct representations of OSp(1|2,R) (instead of its universal

cover).

It would be interesting to construct these explicitly from the representation theory

perspective, but we do not pursue this problem here.

For νλ > 0, we can summarize the four linearly independent Casimir eigenfunctions as:

(
1−
√
νλθ−θ+

)
eiνγ−eiλγ+e−φ

(
K 1

2
+ik

(
2
√
νλe−φ

)
−K− 1

2
+ik

(
2
√
νλe−φ

))
,

(√
νθ− − i

√
λθ+

)
eiνγ−eiλγ+e−φ

(
K 1

2
+ik

(
2
√
νλe−φ

)
−K− 1

2
+ik

(
2
√
νλe−φ

))
,

(
1 +
√
νλθ−θ+

)
eiνγ−eiλγ+e−φ

(
K 1

2
+ik

(
2
√
νλe−φ

)
+K− 1

2
+ik

(
2
√
νλe−φ

))
,

(√
νθ− + i

√
λθ+

)
eiνγ−eiλγ+e−φ

(
K 1

2
+ik

(
2
√
νλe−φ

)
+K− 1

2
+ik

(
2
√
νλe−φ

))
. (E.159)

Adding and subtracting, we can equivalently write the following set of linearly independent

eigenfunctions:

eiνγ−eiλγ+e−φ
(
K 1

2
+ik

(
2
√
νλe−φ

)
+
√
νλθ−θ+K− 1

2
+ik

(
2
√
νλe−φ

))
,

eiνγ−eiλγ+e−φ
(√

νλθ−θ+K 1
2

+ik

(
2
√
νλe−φ

)
+K− 1

2
+ik

(
2
√
νλe−φ

))
,

eiνγ−eiλγ+e−φ
(√

νθ−K 1
2

+ik

(
2
√
νλe−φ

)
+ i
√
λθ+K− 1

2
+ik

(
2
√
νλe−φ

))
,

eiνγ−eiλγ+e−φ
(
i
√
λθ+K 1

2
+ik

(
2
√
νλe−φ

)
+ θ−K− 1

2
+ik

(
2
√
νλe−φ

))
, (E.160)

which we will reproduce by an explicit calculation of the representation matrix element in

section E.8 below.
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For the subsemigroup OSp+(1|2,R), we need to set λ→ iλ and ν → −iν with ν, λ > 0.

This leads to the Casimir eigenfunctions:
(
1−
√
νλθ−θ+

)
eνγ−e−λγ+e−φ

(
K 1

2
+ik

(
2
√
νλe−φ

)
−K− 1

2
+ik

(
2
√
νλe−φ

))
,

(√
νθ− +

√
λθ+

)
eνγ−e−λγ+e−φ

(
K 1

2
+ik

(
2
√
νλe−φ

)
−K− 1

2
+ik

(
2
√
νλe−φ

))
,

(
1 +
√
νλθ−θ+

)
eνγ−e−λγ+e−φ

(
K 1

2
+ik

(
2
√
νλe−φ

)
+K− 1

2
+ik

(
2
√
νλe−φ

))
,

(√
νθ− −

√
λθ+

)
eνγ−e−λγ+e−φ

(
K 1

2
+ik

(
2
√
νλe−φ

)
+K− 1

2
+ik

(
2
√
νλe−φ

))
. (E.161)

Within this subsector, we are only probing the top two potentials in figure 10. In particular,

the discrete representations do not appear in the class of Casimir eigenfunctions relevant for

the subsemigroup. This is one way of arguing that only the principal series representations

appear in the conjectured Plancherel decomposition of OSp+(1|2,R) in (4.13).

E.7 Characters

In this section, we compute the characters for all of the irreps of OSp(1|2,R) discussed

up to this point. Our main interest is the principal series representations, since these

characters are used in particular to glue surfaces together in super-Teichmüller space. For

completeness and consistency, we also discuss the characters for the discrete highest-weight

and the finite-dimensional representations.

E.7.1 Principal series character

We can compute the character in the principal series representations by writing the Borel-

Weil realization of the algebra in terms of a kernel K(x, ϑ|y, ϑ′) as

f(x, ϑ) =

∫
dy dϑ′K(x, ϑ|y, ϑ′)f(y, ϑ′), (E.162)

where75

K(x, ϑ|y, ϑ′) =
|bx+ d+ δϑ|2j

sgn(e)1/2 sgn(bx+ d+ δϑ)1/2
δ

(
ax+ c+ βϑ

bx+ d+ δϑ
− y

)
δ

(−αx− γ + eϑ

bx+ d+ δϑ
− ϑ′

)
.

(E.164)

This corresponds to working in a coordinate basis on the carrier space L2(R1|1):

fx1,ϑ1(x, ϑ) ≡ 〈x, ϑ|x1, ϑ1〉 = δ(x− x1)δ(ϑ− ϑ1), (E.165)

with orthonormality and completeness relations:
∫
dx dϑ fx1,ϑ1(x, ϑ)∗fx2,ϑ2(x, ϑ) = δ(x1 − x2)δ(ϑ1 − ϑ2), (E.166)

∫
dx1 dϑ1 fx1,ϑ1(x, ϑ)∗fx1,ϑ1(y, ϑ′) = δ(x− y)δ(ϑ− ϑ′). (E.167)

75A fermionic delta function works in much the same way as a bosonic one. In particular, we have
∫
dϑ δ(ϑ− f(α))F (ϑ) = F (f(α)) (E.163)

for any fermionic quantity f(α). The proof proceeds by writing F (ϑ) = F0 + ϑF1, using δ(ϑ − f(α)) =

ϑ− f(α), and taking care of the minus sign obtained by pulling f(α) through the measure.
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In the coordinate basis, the representation matrices have the simple form of (E.164):

Rk
x|ϑ,y|ϑ′(g) = K(x, ϑ|y, ϑ′). (E.168)

The character χj(g) in representation j is then computed as

χj(g) ≡
∫
dx dϑK(x, ϑ|x, ϑ) (E.169)

=
∫
dx dϑ

|bx+ d+ δϑ|2j

sgn(e)1/2 sgn(bx+ d+ δϑ)1/2
δ

(
ax+ c+ βϑ

bx+ d+ δϑ
− x

)
δ

(−αx− γ + eϑ

bx+ d+ δϑ
− ϑ

)
.

The superspace integral evaluates to all of the fixed points of the supergroup action on the

superline.

To simplify the calculation, we use the fact that the character is a class function. For

a group element of hyperbolic conjugacy class, we can hence consider

g =




eφ 0 0

ε e−φ 0

0 0 ±1


 , (E.170)

without loss of generality. We focus first on the R sector (+). The parameter ε serves as

a regulator since the number of fixed points jumps at ε = 0. We assume φ > 0 in the

following. For this particular group element, we get:

χj(g) =

∫
dx dϑ |εx+ e−φ|2jδ

(
eφx

εx+ e−φ
− x

)
δ

(
ϑ

εx+ e−φ
− ϑ

)
. (E.171)

The bosonic delta function evaluates to

δ

(
eφx

εx+ e−φ
− x

)
=

δ(x)

e2φ − 1
+
δ(x− eφ−e−φ

ε )

1− e−2φ
, (E.172)

giving two fixed points at x = 0 and x = +∞, respectively. The fermionic delta function

gives:

δ

(
ϑ

εx+ e−φ
− ϑ

)
=

1− εx− e−φ

εx+ e−φ
ϑ. (E.173)

Doing the integrals in (E.171) then gives:

χR
j (g) =

(e−φ)2j(eφ − 1)

e2φ − 1
+

(eφ)2j(e−φ − 1)

1− e−2φ
= i

sin(kφ)

cosh(φ/2)
, (E.174)

where we used j = −1/4 + ik/2 in the last line. An analogous computation for the NS

sector gives instead:

χNS
j (g) = i

cos(kφ)

sinh(φ/2)
. (E.175)

Notice that this character can be decomposed into SL(2,R) continuous irrep characters as:

cosh((4j + 1)φ/2)

sinh(φ/2)
=

cosh((2j + 1)φ)

sinhφ
+

cosh(2jφ)

sinhφ
. (E.176)
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However, this cannot be interpreted as a sum of unitary SL(2,R) principal series characters

since the left-hand side requires j = −1/4 + ik/2, whereas the first and second terms on

the right-hand side require Re(j) = −1/2 and Re(j) = 0, respectively. This is an example

of the statement made earlier that the principal series representations cannot be obtained

as a direct sum of those of the SL(2,R) subgroup [162].

For a group element in the elliptic conjugacy class, g is equivalent to an element:

g =




cos θ sin θ 0

− sin θ cos θ 0

0 0 ±1


 . (E.177)

Then for the bosonic delta function in the definition (E.169), the evaluation boils down to

the SL(2,R) calculation. The resulting character vanishes since there are no fixed points on

the real line R of an elliptic SL(2,R) element. However, to make contact with elliptic defects

in JT (super)gravity, one needs a formal analytic continuation of the hyperbolic defects,

by letting φ→ iφ. We comment on this in the main text. Finally, the parabolic conjugacy

class is of lower dimensionality and will not be important for the coming discussions.

The characters should satisfy an orthonormality relation:
∫
dµ(t)χj(t)χj′(t)∗ = δ(j − j′) (E.178)

for some measure dµ(t) = dµ(φ) on the space of hyperbolic conjugacy class elements, and

where we can restrict to the hyperbolic conjugacy class elements since the elliptic characters

vanish and the parabolic characters are of measure zero. Since the supergroup at hand falls

apart into two connected components, this equality boils down to two explicit relations
∫ +∞

−∞
dµ(φ)χNS

j (φ)χNS
j′ (φ)∗ = δ(j − j′), (E.179)

∫ +∞

−∞
dµ(φ)χR

j (φ)χR
j′(φ)∗ = δ(j − j′), (E.180)

where we insert the characters (E.175) and (E.174). In order to prove this relation, we will

need the correct measure on the space of conjugacy class elements dµ(φ), which follows

from the superanalogue of the Weyl integration formula. We turn to this next, and come

back to the relation (E.179) and its interpretation further on.

E.7.2 Interlude: Weyl integration formula for compact supergroups

We first review the proof of the Weyl integration formula in a physicist’s fashion, and then

generalize it to compact Lie supergroups.

Recall that every group element g is conjugate to an element in a maximal torus

(conjugacy theorem):

g = ctc−1, c ∈ G/T, t ∈ T, (E.181)

where one considers the left coset gT . This writing is not unique, with the ambiguity being

parametrized by the Weyl group:

W (T ) =
N(T )

T
=
{
x ∈ G/T |xtx−1 ∈ T, ∀t ∈ T

}
. (E.182)
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To elaborate, suppose we have two ways of writing g = c1t1c
−1
1 = c2t2c

−1
2 . Then t1 =

c−1
1 c2t2c

−1
2 c1. Set w ≡ c−1

2 c1. If w ∈ T , then c1 ∼ c2 and the two ways of writing g are

equivalent in the decomposition of G into G/T × T . If w ∈ G/T , then the above equality

implies w ∈ N(T )/T = W (T ), the Weyl group. This is hence the only ambiguity in the

decomposition (E.181).

Since W (T ) is a finite group, this just implies that one has a |W |-fold covering of the

group G: ∫

G
dg f(g) =

1

|W |

∫

G/T ×T
d(ctc−1) f(ctc−1). (E.183)

Next, we need to perform the change of variables (E.181) explicitly and track the Jacobian

in the transformation. The Maurer-Cartan one-form can be written out explicitly as:

g−1dg = ct−1c−1dc tc−1 − dc c−1 + ct−1dt c−1 (E.184)

= Ad(c)
[
Ad(t−1)− 1

]
c−1dc+ Ad(c)t−1dt. (E.185)

The metric is written as

ds2 = Tr(g−1dg ⊗ g−1dg). (E.186)

Writing g−1dg =
∑

i,j JijX
i dxj , we can rewrite it as:

ds2 = Tr(g−1dg ⊗ g−1dg) = JijJ
i
k dx

jdxk, (E.187)

where indices are raised with the Cartan-Killing metric hi` = Tr(XiX`). This immediately

leads to the Haar measure det J
∧

i dx
i.

In our case, since we have t−1dt =
∑

i,j tijT
i dxj and c−1dc =

∑
i,j cijE

i dyj and the

Cartan generators are orthogonal to the other generators (with respect to the Cartan-

Killing metric), the metric is block diagonal. We can extract the Jacobian from this

transformation explicitly as:

J = det Ad(c)g det(Ad(t−1)− 1)g/t, (E.188)

where

det Ad(c)g = 1 (E.189)

for a unimodular group. The remaining determinant is evaluated explicitly as:

det(Ad(t−1)− 1)g/t =
∏

α

(eα(t) − 1) =
∏

α>0

−4

∣∣∣∣sinh
α(t)

2

∣∣∣∣
2

= (−)#roots/2 |∆(t)|2 , (E.190)

by exponentiating the algebra to get Ad(t−1)Xα = t−1Xαt = e−α(t)Xα and by the sym-

metry α↔ −α of the root space. We end up with the Weyl integration formula:

∫

G
dg f(g) =

1

|W |

∫

T
dt |∆(t)|2

(∫

G/T
dc f(ctc−1)

)
. (E.191)

For a Lie supergroup, the only difference is that some of the coordinates are Grassmann

numbers, and hence the Jacobian in the above coordinate transformation gets replaced by a
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super-Jacobian, which is a Berezinian with an absolute value sign included for the bosonic

subtransformation:

∆R(t) ≡ sdet′(Ad(t−1)− 1)g/t =

∏
α∈∆B

|eα(t) − 1|
∏

α∈∆F
(eα(t) − 1)

=

∏
α∈∆+

B
4 sinh2 αB(t)

∏
α∈∆+

F
−4 sinh2 αF (t)

, (E.192)

where we used the common notation ∆B and ∆F for the bosonic and fermionic roots,

respectively, and the + superscript indicates a restriction to the positive roots of said

statistics.

In the case that the Lie supergroup is disconnected, one has to perform a calculation

as above for each connected component. For the specific case where there exists a sCasimir

operator that distinguishes the connected components from one another (which is the case

for, e.g., OSp(1|2n)), we can work out an explicit formula. For the component of the Lie

supergroup connected to the element (−)F (satisfying sdet(−)F = −1 and ((−)F )2 = 1),

we instead parametrize:

g = c(−)F tc−1, (E.193)

in terms of which the preceding argument goes through identically with t → (−)F t and

t−1(−)Fd(−)F t = t−1dt. The only difference appears in the end:76

∆NS(t) ≡ sdet′(Ad(t−1(−)F )−1)g/t =

∏
α∈∆B

|eα(t) − 1|
∏

α∈∆F
(eα(t) + 1)

=

∏
α∈∆+

B
4 sinh2 αB(t)

∏
α∈∆+

F
4 cosh2 αF (t)

, (E.194)

because Ad(t−1(−)F )Xα = t−1(−)FXα(−)F t = (−)ε(α)t−1Xαt = (−)ε(α)e−α(t)Xα, where

ε(α) denotes the Z2 grading of the root α. This is because (−)F commutes with all bosonic

generators but anticommutes with all fermionic ones. We end up with the supergroup Weyl

integration formula:

∫

G
dg f(g) =

1

|WR|

∫

T
dt

∫

G/T
dc∆R(t)f(ctc−1) +

1

|WNS|

∫

T
dt

∫

G/T
dc∆NS(t)f(c(−)F tc−1).

(E.195)

A comment on the Weyl groups is in order. Assuming the Cartan subalgebra is the same

as the one from the bosonic subalgebra (which happens for, e.g., a basic superalgebra [62]),

the element (−)F commutes with the component T of the maximal torus connected to the

identity. This means the full maximal torus contains two connected components that are

related by multiplying by (−)F . The above Weyl group is then computed with respect to

this full maximal torus. In this case, one has WR = WNS, but this is not necessarily true

in the more generic case. See figure 12.

E.7.3 Principal series character revisited

For a noncompact supergroup, the decomposition (E.181) is further complicated by the fact

that not every element is conjugate to an element within the same maximal torus. This

corresponds to the different types of conjugacy classes: elliptic, parabolic, and hyperbolic

76We use the fact that there are an even number of fermionic roots.

– 105 –



J
H
E
P
0
8
(
2
0
2
2
)
0
0
2

(-)FT (-)F T

1 (-)F
1

Figure 12. Schematic of the topology of the compact supergroup discussed here, with two con-

nected components related by acting with (−)F . The full maximal torus =
{
T, (−)FT

}
.

for OSp(1|2,R). This situation basically entails a further summation over these three types

of classes to allow for a decomposition of any group element:

∫

G
dg f(g) =

∑

type i

[
1

|Wi,R|

∫

Ti

dti

∫

G/Ti

dc∆R(t)f(ctic
−1)

+
1

|Wi,NS|

∫

Ti

dti

∫

G/Ti

dc∆NS(t)f(c(−)F tic
−1)

]
. (E.196)

This corresponds to the supergroup analogue of the Harish-Chandra formula for reduc-

tive (possibly noncompact) Lie groups. While we have no proof for the general case, for

OSp(1|2,R), we have explicit knowledge of the conjugacy classes and the above formula

manifestly holds for the three types elliptic, parabolic, and hyperbolic.

For OSp(1|2,R), the characters are zero for elliptic holonomy. Since the parabolic

conjugacy class is of measure zero, we focus on the hyperbolic class. In this case, we have

two bosonic roots and two fermionic roots for which:

eαB(t) = e±2φ, eαF (t) = e±φ, (E.197)

which is found by exponentiating the algebra relations:

[H,E±] = ±E±, [H,F±] = ±1

2
F±. (E.198)

Hence we find:

∆NS(t) =
(e2φ − 1)(1− e−2φ)

(eφ + 1)(e−φ + 1)
= 4 sinh2(φ/2), (E.199)

∆R(t) =
(e2φ − 1)(e−2φ − 1)

(eφ − 1)(e−φ − 1)
= 4 cosh2(φ/2). (E.200)

Since the Weyl supergroup for a fixed component (R or NS) has two elements in this case
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(just as for SL(2,R)),77 we can indeed verify the orthonormality relations:

1

|WNS|

∫
dφ 4 sinh2(φ/2)χNS

j (φ)χNS
j′ (φ)∗ = 2

∫
dφ cos(kφ) cos(k′φ) = 2πδ(k − k′), (E.203)

1

|WR|

∫
dφ 4 cosh2(φ/2)χR

j (φ)χR
j′(φ)∗ = 2

∫
dφ sin(kφ) sin(k′φ) = 2πδ(k − k′). (E.204)

Since φ is interpretable as the geodesic length, this means that a complete set of states for

cutting open a surface is obtained by summing over all geodesic lengths. This calculation

is performed in the main text in section 5.2.

E.7.4 Discrete representations and relations

The characters of the finite representations can be calculated easily and are given by:78

χ0NS
j (g) = STre2φH =

+2j∑

n=−2j

enφ =
sinh(4j+1)φ

2

sinh φ
2

=
sinh(2j+1)φ

sinhφ
+

sinh2jφ

sinhφ
, (E.205)

χ0R
j (g) = STr[(−)F e2φH ] =

+2j∑

n=−2j

(−)n−2jenφ =
cosh(4j+1)φ

2

cosh φ
2

=
sinh(2j+1)φ

sinhφ
− sinh2jφ

sinhφ
,

for hyperbolic holonomy parametrized by φ. In the last equalities, we made explicit the

decomposition ROSp
j = RSL

j ⊕ RSL
j−1/2 of the representation in terms of SL(2,R) finite

representations. Note that χ0NS
j (1) = dimR and that χ0R

j (1) = #B −#F is the Witten

index counting the number of bosonic states minus the number of fermionic states.

In the highest-weight discrete representations, the characters are given by:

χ+NS
j (g) = STr e2φH =

−2j∑

n=−∞
enφ =

e−(4j−1)φ/2

2 sinh φ
2

, (E.206)

χ+R
j (g) = STr[(−)F e2φH ] =

−2j∑

n=−∞
(−)n−2jenφ =

e−(4j−1)φ/2

2 cosh φ
2

. (E.207)

If we analytically continue the principal series representation characters (E.175) and (E.174)

to j ∈ N/2, we get the equalities:

χNS
j (g) = χ+NS

j+1/2(g) + χ−NS
j+1/2(g) + χ0NS

j (g), (E.208)

χR
j (g) = −χ+R

j+1/2(g)− χ−R
j+1/2(g) + χ0R

j (g), (E.209)

77The normalizer is given by:

N(T ∪ (−)FT ) =








eφ 0 0

0 e−φ 0

0 0 ±ε


 ,




0 −eφ 0

e−φ 0 0

0 0 ±ε


 , φ ∈ R, ε = ±1




. (E.201)

Modding out by the maximal torus, we get the Weyl group:

W (T ∪ (−)FT ) =








1 0 0

0 1 0

0 0 1


 ,




0 −1 0

1 0 0

0 0 1







. (E.202)

78We use the same notation for these characters as in the book [155].
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corresponding to decomposing the representation into its irreducible representation con-

tent.79 Adding up these equations and dividing by two, we get the well-known SL(2,R)

relation for the character [155]:

χSL
j (g) = χ+SL

j+1 (g) + χ−SL
j+1 (g) + χ0SL

j (g), (E.210)

corresponding to the insertion of the projection operator 1
2(1 + (−)F ) onto bosonic states.

This corresponds to the decomposition of the Borel-Weil realization at j ∈ N/2 as ROSp
j =

RSL
j ⊕RSL

j−1/2, and the diagonalization of (−)F .

E.8 Whittaker function and Plancherel measure

In this section, we explicitly compute the mixed parabolic representation matrix element.

This serves both as an example, and to introduce a relatively convenient basis in which to

compute the Plancherel measure on the principal series representations of OSp(1|2,R).

The Plancherel measure for SL(2,R) can be found by computing the orthogonality

relation of the representation matrix elements:
∫
dg Rk

νλ(g)∗Rk′

ν′λ′(g) =
δ(k − k′)δ(ν − ν ′)δ(λ− λ′)

ρ(k)
, (E.211)

where ρ(k) = k tanh πk. This calculation was performed explicitly in the mixed parabolic

basis in [41].

This result is basis-independent. For instance, in the coordinate basis on R, the rep-

resentation matrices satisfy a similar orthogonality relation:
∫
dg Rk

xy(g)∗Rk′

x′y′(g) =
δ(k − k′)δ(x− x′)δ(y − y′)

ρ(k)
. (E.212)

Notice that the basis does not need to diagonalize any of the generators in order to make

use of it and derive this orthogonality relation.

For OSp(1|2,R), the representation is defined on the carrier space L2(R1|1), and hence

the coordinate representation calculation of the Plancherel measure would yield:
∫
dg Rk

x|θ,y|ζ(g)∗Rk′

x′|θ′,y′|ζ′(g) =
δ(k − k′)δ(x− x′)δ(θ − θ′)δ(y − y′)δ(ζ − ζ ′)

ρ(k)
, (E.213)

where the “indices” of the representation matrices are 1|1 coordinates x|θ, y|ζ, etc. We have

already used this coordinate representation when computing the characters in appendix E.7.

Here, we will write down the representation matrices explicitly within a super-Fourier basis

on R
1|1 introduced in E.4.5, and perform the above calculation to determine ρ(k).

E.8.1 Mixed parabolic matrix element

The mixed parabolic mode eigenfunctions are given by the coordinate space expressions

〈x, ϑ|λ+, α〉 =
1√
2π

(
1 +

αϑ

x

) |x|ik√
x
eiλ/x, (E.214)

〈x, ϑ|ν−, β〉 =
1√
2π

(1− βϑ)eiνx. (E.215)

79Notice the signs appearing for the R sector. This can happen when rearranging the supertrace of a

larger matrix into supertraces of its blocks.

– 108 –



J
H
E
P
0
8
(
2
0
2
2
)
0
0
2

We parametrize the group element in Gauss-Euler form:

g = e2θ−F −
eγ−E−

e2φHeγ+E+
e2θ+F +

. (E.216)

Writing j = −1/4 + ik/2, we have the group actions

(e2φH ◦ f)(x, ϑ) = e(1/2−ik)φf(e2φx, eφϑ), (E.217)

(eγ+E+ ◦ f)(x, ϑ) = (γ+x+ 1)−1/2|γ+x+ 1|ikf
(

x

γ+x+ 1
,

ϑ

γ+x+ 1

)
, (E.218)

(e2θ+F + ◦ f)(x, ϑ) = |1 + θ+ϑ|−1/2+ikf

(
x

1 + θ+ϑ
,
ϑ− θ+x

1 + θ+ϑ

)
, (E.219)

where we have used 1 + θ+ϑ = |1 + θ+ϑ|. The action of the non-Cartan group elements on

the states (E.214) and (E.215) gives:80

〈x, ϑ|eγ+E+
e2θ+F + |λ+, α〉 =

1√
2π
eiλγ+

(
1 + θ+α+

(α+ iλθ+)ϑ

x

) |x|ik√
x
eiλ/x, (E.221)

〈ν−, β|e2θ−F −
eγ−E− |x, ϑ〉 =

1√
2π
eiνγ−(1 + θ−β + (β + iνθ−)ϑ)e−iνx. (E.222)

Inserting a resolution of the identity
∫
dx dϑ |x, ϑ〉〈x, ϑ|, we therefore obtain the represen-

tation matrix element:

〈ν−,β|g|λ+,α〉 (E.223)

=
1

2π
eiνγ−eiλγ+e−φ

∫
dx

(
(β+ iνθ−)(1+θ+α)+

(1+θ−β)(α+ iλθ+)

x

) |x|ik√
x
e−iνe−φx+iλe−φ/x

=
2

π
eiνγ−eiλγ+e−φ cosh

(
πk

2

)[
(β+ iνθ−)(1+θ+α)e−iπ/4

(
λ

ν

)1/4+ik/2

K 1
2

+ik(2e−φ
√
νλ)

+(1+θ−β)(α+ iλθ+)e
iπ/4

(
λ

ν

)−1/4+ik/2

K 1
2

−ik(2e−φ
√
νλ)

]
.

In the first equality, we have used the Cartan action (E.79) and shifted x→ e−φx. In the

second equality, we have used the integral formula

∫ ∞

0
dxx2j−1e±(iνe−φx−iλe−φ/x) = 2e±iπj

(
λ

ν

)j

K2j(2e−φ
√
νλ), (E.224)

which holds for ν, λ > 0 and which follows from (4.36) after analytic continuation in ν, λ

via (ν, λ)→ e−φ(e∓iπ/2ν, e±iπ/2λ) [41]. This matrix element (E.223) has four independent

80The latter expression can be computed, e.g., as the conjugate of 〈x, ϑ|e−γ−E−

e2θ−(F −)† |ν−, β〉. Crucially,

when acting on functions whose top components are fermionic such as (E.214) and (E.215), we have (F−)† =

− 1
2
(∂ϑ +ϑ∂x) (in contrast to the situation in section 4.3). This follows from the fact that on such functions,

∫
dx dϑ f(x, ϑ)∗∂ϑg(x, ϑ) = −

∫
dx dϑ (∂ϑf(x, ϑ))∗g(x, ϑ). (E.220)

On the other hand, the bottom components f(x, 0) are still assumed to be bosonic, so that ϑ commutes

with any f(x, ϑ).
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components when expanding in both Grassmann numbers α and β. Each of these four

components is readily checked to be equivalent to one of the four Casimir eigenfunctions

given in (E.160) above. This indeed shows that this representation matrix element is a

solution to the Casimir eigenvalue equation, as it should be by consistency.

Next, we want to evaluate the orthogonality relation

∫
dg 〈ν−, β|g|λ+, α〉∗k2

〈ν ′
−, β

′|g|λ′
+, α

′〉k1 , (E.225)

for which we require explicit knowledge of the Haar measure on OSp(1|2,R), to which we

turn next.

E.8.2 Interlude: Haar measure on OSp(1|2)

The Haar measure on supergroups is defined analogously as for bosonic groups and can be

determined in a physical manner by considering the Maurer-Cartan metric on the algebra:

ds2 =
1

2
STr(g−1dg ⊗ g−1dg) = Gij dx

idxj . (E.226)

Upon choosing an arbitrary parametrization of the group element g in terms of coordinates

x1, . . . , xn, the volume form is determined as:

ω =
√

sdetGdx1 ∧ · · · ∧ dxn. (E.227)

For the specific case of OSp(1|2), this calculation can in principle be done. Writing the

Maurer-Cartan one-form as

g−1dg =
∑

i,j

JijX
i dxj , (E.228)

the resulting transformation matrix J is:

J =




2 −2γ+e
2φ 0 −2eφθ+ − 2γ+e

2φθ− 0

2γ+ −γ2
+
e2φ 1 −γ2

+
e2φθ− − 2γ+e

φθ+ −θ+

0 e2φ 0 e2φθ− 0

2θ+ −2γ+e
2φθ+ 0 2γ+e

φ + 2γ+θ−θ+ 2

0 −2e2φθ+ 0 2eφ + 2e2φθ−θ+ 0




(E.229)

where the rows are ordered as (H,E+, E−, F+, F−) and the columns as (φ, γ−, γ+, θ−, θ+),

with Berezinian

sdet J =
detA

det(D − CA−1B)
=
−2e2φ

−4eφ
=

1

2
eφ. (E.230)

The matrix J is roughly a square root of the metric, since Gij = 1
2Jkih

k`J`j = 1
2JkiJ

k
j

where indices are raised with the Killing form:

hk` ≡ STr(XkX`) = diag


1

2
,


 0 1

1 0


 ,


 0 1

2
1
2 0




 , (E.231)

with sdethk` = 2. Hence
√

sdetG = sdet J , as given by (E.230) above.
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However, there is a more sophisticated mathematical argument that requires virtually

no calculation once one proves several auxiliary results first. It goes as follows. Consider

the supergroup GL(p|q,R). The Haar measure for this supergroup is given by:81

ω =
1

(sdetx)p+q

∧

i,j

dxij , (E.232)

in terms of the (p+ q)2 entries xij of the matrix.82

Restricting to subgroups of GL(p|q,R) is done by imposing a suitable matrix delta

function such as δ(gstΩg − Ω). This matrix delta function generically contains several

copies of the same component delta function, which we define to be omitted. The Haar

measure on the subgroup is then proportional to

ω =
δ(gstΩg − Ω)

(sdetx)p+q

∧

i,j

dxij . (E.233)

Indeed, one readily checks left/right invariance under the subgroup directly.

For the specific case of OSp(1|2), this delta-function constraint reduces to a product

of two bosonic and two fermionic delta functions:

δ(ad− bc− δβ − 1)δ(e2 + 2γα− 1)δ(cα− aγ − βe)δ(dα− bγ − δe). (E.234)

Using these delta functions to evaluate the d, e, γ, δ integrals respectively, we pick up the

additional factor
1

a

1

2e
(a+ βα) =

1

2
, (E.235)

where we made use of the relation e = 1− αβ/a. The Haar measure becomes:83

ω =
1

2
[da db dc | dα dβ] . (E.236)

If one is interested in the parametrization in Gauss-Euler coordinates, then we perform the

coordinate transformation

a = eφ, b = γ+e
φ, c = γ−e

φ, α = eφθ+, β = eφθ− (E.237)

to map (eφ, γ−, γ+, θ−, θ+) to (a, b, c, α, β) and find Berezinian 1. So we get the Haar measure

in the Gauss-Euler parametrization as:

ω =
1

2
eφ [dφ dγ− dγ+ | dθ− dθ+] , (E.238)

matching the above explicit computation.

81The wedge product notation is slightly formal here. We will adhere to the notation of [91] below.
82The proof mimics the bosonic proof for GL(n,R). We identify the set of matrices with a vector space

R
p2+q2|2pq, where each element of the matrix becomes a separate component of the vector. The ordering of

this identification is chosen to go “down” each column before proceeding with the next column on the right.

With this identification, the left action of the group g → g0g gets mapped into a corresponding left action

on the vector space x → g0x, where the matrix g0 is now a (p + q)2 × (p + q)2 dimensional supermatrix

that is block diagonal with (p+ q) copies of the original g0. This directly leads to the left invariance of the

measure (E.232). Right invariance is checked analogously.
83We have used the notation of [91] to denote the superspace version of a top differential form.
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E.8.3 Orthogonality and Plancherel measure

With this Haar measure (E.238), we can proceed with the orthogonality calculation:

∫
dg 〈ν−, β|g|λ+, α〉∗k2

〈ν ′
−, β

′|g|λ′
+, α

′〉k1 . (E.239)

The evaluation of this integral is quite involved. In the process, we will have need of the

following relations:

∫ +∞

0
dx
(
K 1

2
+ip(x)K 1

2
+ip′(x) +K 1

2
−ip(x)K 1

2
−ip′(x)

)
=

π2

cosh πp
δ(p+ p′), (E.240)

∫ +∞

0
dx
(
K 1

2
+ip(x)K 1

2
−ip′(x) +K 1

2
−ip(x)K 1

2
+ip′(x)

)
=

π2

cosh πp
δ(p− p′). (E.241)

After inserting the representation matrices (E.223), we first evaluate the γ− and γ+ integrals,

yielding a factor of

4π2δ(ν − ν ′)δ(λ− λ′). (E.242)

Next, we get four terms by pairwise multiplication of the two terms in (E.223) for each

matrix element. Doing the θ− and θ+ integrals projects onto the θ−θ+ component of the

integrand, leaving the following remaining part of the integral to be evaluated:

2

π2
cosh

(
πk1

2

)
cosh

(
πk2

2

)∫
dφ e−φ(Idiag + Icross) (E.243)

where (setting x = 2e−φ
√
νλ) the contributions from the diagonal terms and the cross

terms arising from the multiplication are84

Idiag = −iν(α− α′)(β − β′)
(
λ

ν

) 1
2

+
i(k1−k2)

2

K 1
2

+ik1
(x)K 1

2
−ik2

(x)

− iλ(α− α′)(β − β′)
(
λ

ν

)− 1
2

+
i(k1−k2)

2

K 1
2

−ik1
(x)K 1

2
+ik2

(x), (E.244)

Icross = i(iναα′ + iλββ′ + νλ− αα′ββ′)
(
λ

ν

) i(k1−k2)

2

K 1
2

+ik1
(x)K 1

2
+ik2

(x)

− i(−iναα′ − iλββ′ − νλ+ αα′ββ′)
(
λ

ν

) i(k1−k2)

2

K 1
2

−ik1
(x)K 1

2
−ik2

(x). (E.245)

Using (E.240), we can see that the Icross contribution is proportional to δ(k1 + k2), which

vanishes under our assumption ki > 0.

84Note that complex conjugation acts on the fermionic parts of the matrix elements as if α, β are imaginary

Grassmann numbers, and in order-preserving fashion. The order-preserving convention was important for

our proof of the unitarity of the principal series representations in appendix E.4.3, since conjugation should

leave a super-Möbius transformation invariant.
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Finally, using (E.241), we obtain the orthogonality relation:
∫
dg 〈ν−, β|g|λ+, α〉∗k2

〈ν ′
−, β

′|g|λ′
+, α

′〉k1

= −8iδ(α− α′)δ(β − β′)δ(ν − ν ′)δ(λ− λ′) cosh

(
πk1

2

)
cosh

(
πk2

2

)(
λ

ν

) i(k1−k2)

2

×
∫ ∞

−∞
dφ e−φ

√
νλ
[
K 1

2
+ik1

(x)K 1
2

−ik2
(x) +K 1

2
−ik1

(x)K 1
2

+ik2
(x)
]

(E.246)

= −4π2iδ(α− α′)δ(β − β′)δ(ν − ν ′)δ(λ− λ′) cosh2
(
πk1

2

)
δ(k1 − k2)

cosh(πk1)
, (E.247)

from which we read off the Plancherel measure

ρ(k) =
1

4π2

cosh(πk)

cosh2
(

πk
2

) =
1

2π2

cosh(πk)

1 + cosh(πk)
. (E.248)

This expression holds for the spherical principal series representations (where ε = ε′ = 0).

We can readily generalize it to the other principal series representations, getting:

ρ(k) =
1

2π2

cosh(πk)

1 + (−)ε cosh(πk)
. (E.249)

The change is caused by dividing cosh(πk) by sinh2
(

πk
2

)
instead of cosh2

(
πk
2

)
when ε =

−1.

E.8.4 Global structure of the OSp(1|2) group manifold

Finally, we must address the subtlety that the OSp(1|2) (super)group (super)manifold

consists of multiple patches, and that the Gauss decomposition (4.24) we have used covers

only one of them (this is not an issue for OSp+(1|2)). It is helpful to recall how this works in

the case of ordinary linear groups. In general, GL(N,C) is covered by N ! patches (or cells)

where each patch has a Gauss decomposition of the form g = LDUω with L and U lower

and upper triangular unidiagonal matrices, D a diagonal matrix, and ω a permutation

matrix. The LDU decomposition for subgroups of GL(N,C) is induced by this one. Our

parametrization (B.18) for g ∈ SL(2,R) assumes ω = 1, and has the further limitation that

it requires positive diagonal entries for D = e2φH in (B.18). To cover the entire SL(2,R)

group manifold, we must therefore allow ω to range over all signed permutation matrices

in the group, leading to four patches given by taking g 7→ gω with ω ∈ {1,−1, s,−s} and

s ≡ [ 0 1
−1 0

]
[136].

By analogy with the case of SL(2,R), we postulate that the various patches of OSp(1|2)

are given by multiplying the Gauss parametrization in (4.24) on the right by

Ω ≡ ±

 ω 0

0 1


 , ω ∈






 1 0

0 1


 ,


 −1 0

0 −1


 ,


 0 1

−1 0


 ,


 0 −1

1 0





 ,

(E.250)

which comprise the only signed permutation matrices in OSp(1|2). This would imply that

eight patches are required to cover the OSp(1|2) group manifold. This group consists of two
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connected components, one containing the identity and one containing minus the identity,

which are distinguished by the sign of the Berezinian. The projective group OSp′(1|2) would

contain only four patches, and its resulting measure would be half that of the full group.85

With this setup in place, we now consider the results for the inner product in different

patches of OSp(1|2). The overall sign of Ω cancels out of the computation, so we focus on

the four independent choices of g. In addition to the original (ω = 1) patch

g =




eφ γ+e
φ eφθ+

γ−e
φ e−φ + γ−γ+e

φ − θ−θ+ γ−e
φθ+ − θ−

eφθ− γ+e
φθ− + θ+ 1 + eφθ−θ+


 (E.251)

(reproduced from (4.25)), we have the ω = −1 patch

g




−1 0 0

0 −1 0

0 0 1


 =




−eφ −γ+e
φ eφθ+

−γ−eφ −e−φ − γ−γ+e
φ + θ−θ+ γ−e

φθ+ − θ−
−eφθ− −γ+e

φθ− − θ+ 1 + eφθ−θ+


 , (E.252)

which is given by taking

eφ → −eφ, θ+ → −θ+ (E.253)

in g, the ω = s patch

g




0 1 0

−1 0 0

0 0 1


 =




−γ+e
φ eφ eφθ+

−e−φ − γ−γ+e
φ + θ−θ+ γ−e

φ γ−e
φθ+ − θ−

−γ+e
φθ− − θ+ eφθ− 1 + eφθ−θ+


 , (E.254)

which is given by taking

eφ → −γ+e
φ, γ− → γ− +

e−2φ

γ+

− e−φ

γ+

θ−θ+, γ+ → −
1

γ+

, θ− → θ− +
e−φ

γ+

θ+, θ+ → −
θ+

γ+

(E.255)

in g, and the ω = −s patch

g




0 −1 0

1 0 0

0 0 1


 =




γ+e
φ −eφ eφθ+

e−φ + γ−γ+e
φ − θ−θ+ −γ−eφ γ−e

φθ+ − θ−
γ+e

φθ− + θ+ −eφθ− 1 + eφθ−θ+


 , (E.256)

which is given by taking

eφ → γ+e
φ, γ− → γ−+

e−2φ

γ+

−e
−φ

γ+

θ−θ+, γ+ → −
1

γ+

, θ− → θ−+
e−φ

γ+

θ+, θ+ →
θ+

γ+

(E.257)

85In SL(2,R), the Z2 quotient to PSL(2,R) simply folds the single connected component in half, whereas

in OSp(1|2), the Z2 quotient to OSp′(1|2) identifies the two connected components. The difference is that

in SL(2,R), ±I are continuously connected, while in OSp(1|2), they are not.
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in g. We write

〈ψ|ψ′〉|ω ≡
∫
d(gΩ) 〈ν−, β|gΩ|λ+, α〉∗k2

〈ν ′
−, β

′|gΩ|λ′
+, α

′〉k1 . (E.258)

Let us first derive 〈ψ|ψ′〉|−1 by taking eφ → −eφ and θ+ → −θ+ in our earlier computation of

〈ψ|ψ′〉|1 = 〈ψ|ψ′〉. The effect of taking eφ → −eφ is that instead of using the transformation

rule

(e2φH ◦ f)(x, ϑ) = (e−φ)−1/2|e−φ|ikf(e2φx, eφϑ) (E.259)

to compute each matrix element (wavefunction), we should use the action

(e2φH ◦ f)(x, ϑ) = (−e−φ)−1/2|−e−φ|ikf(e2φx, eφϑ) = −ie(1/2−ik)φf(e2φx, eφϑ). (E.260)

Thus each matrix element is modified by an overall phase of −i, but these phases cancel

after conjugation and leave no imprint in the inner product. Taking θ+ → −θ+ flips the

sign of both the integrand and the Haar measure, again having no effect (recall that the

fermionic part of the super-Jacobian (E.59) does not involve an absolute value). Similar

statements apply to 〈ψ|ψ′〉|−s and 〈ψ|ψ′〉|s, which are related by right multiplication by

the ω = −1 element. Finally, an explicit computation along the lines of that for SL(2,R)

in appendix G of [41] shows that 〈ψ|ψ′〉|1 = 〈ψ|ψ′〉|s. Therefore, we conclude that

〈ψ|ψ′〉|1 = 〈ψ|ψ′〉|−1 = 〈ψ|ψ′〉|s = 〈ψ|ψ′〉|−s. (E.261)

Summing over the different patches leads to an overall factor of eight in the inner product,

and hence the Plancherel measure

ρ(k) =
1

16π2

cosh(πk)

1 + cosh(πk)
. (E.262)

F OSp+(1|2,R) representation theory

In this appendix, we collect some useful results on the subsemigroup OSp+(1|2,R). In

particular, we prove that the restriction of the principal series representations of the full

supergroup OSp(1|2,R) to its positive subsemigroup leads to representations that are still

irreducible and unitary. The irreducibility proof is given in section F.1, and the unitarity

proof is given in section F.2. This appendix complements the description in the main text

in section 4.3, where one can find the definition of the principal series representations of

the subsemigroup OSp+(1|2,R).

F.1 Irreducibility

In this subsection, we prove irreducibility of the principal series representations. Because

the only valid basis on the subsemigroup is the hyperbolic basis introduced in E.4.5 in terms

of the super-Mellin transform, the proof differs from the usual one that uses the elliptic

basis. Hence we first redo the proof in the bosonic case for SL(2,R) and SL+(2,R). This

in particular proves irreducibility for the bosonic subsemigroup, a result that had not yet

been shown explicitly. After that, we generalize the construction and prove irreducibility

for the subsupersemigroup as well.
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SL+(2,R) and SL(2,R). For the bosonic system, irreducibility has been proven in the

mathematics literature (see, e.g., section 6.4.2 of [155]) in terms of a carrier space on S1

for which one has a discretized (countably infinite) set of modes einθ, n ∈ Z, diagonaliz-

ing the elliptic one-parameter subgroup
(

cos θ sin θ
− sin θ cos θ

)
, which is the exponentiated Cartan

generator J0 of SU(1, 1). Since the representation of an abelian subgroup of the principal

series representation is equivalent to its regular representation, each invariant subspace is

one-dimensional and occurs with multiplicity one. The argument proceeds to show that,

assuming the invariant subspace of the full group SL(2,R) is nonempty, at least one eigen-

mode of the subgroup is present. By acting with the full group, one then shows that it

has to contain all of them, except when 2j ∈ N. In the latter case, the representation

decomposes into a combination of lowest, highest, and finite irreps.

To generalize this argument to the supersymmetric case, it is convenient to redo the

analysis for a carrier space R with continuous modes diagonalizing the hyperbolic generator

H of SL(2,R). To simplify matters, we immediately specialize to the subsemigroup where

we take carrier space R
+. We come back to the full group below.

The generator H = −x∂x +j is readily diagonalized by the orthonormal Rindler modes

ψs(x) =
1√
2π
xis−1/2 (F.1)

forming a complete basis on R
+, where one explicitly sees that each eigenspace indeed

occurs with multiplicity one. Now assume a single such mode ψs(x) is contained within I.

Acting on this mode with the one-parameter parabolic subgroup generated by E− = ∂x,

we obtain the translated modes

1√
2π

(x+ a)is−1/2, a > 0, (F.2)

all part of the same invariant subspace. Now, taking a suitable linear combination of these

modes as:86

∫ +∞

0
da (x+ a)is−1/2aib−1 =

Γ(ib)Γ(1/2− is− ib)
Γ(1/2− is) xis−1/2+ib, (F.3)

we obtain another single such mode with s→ s+ b. Since b ∈ R, we can generate all of the

basis modes and hence we span the entire space. An exception occurs when 1/2− is ∈ −N,

in which case one might not be able to generate all basis functions. This cannot occur

unless is− 1/2 = j −m is an integer, and in particular can only happen if 2j ∈ N, leading

to the same conclusion as above.

The generalization to the full group SL(2,R) is not that hard. In this case, one has a

doubled hyperbolic basis, covering both the x > 0 and the x < 0 regions:

ψs,+(x) =
1√
2π
xis−1/2, x > 0, ψs,−(x) =

1√
2π

(−x)is−1/2, x < 0. (F.4)

These functions form a complete and orthonormal basis for any function on the entire real

line, where the x > 0 and x < 0 regions live independent lives. The analysis for the x > 0

86To ensure convergence, one requires a regulator ib → ib+ ε. The integral only converges in a distribu-

tional sense when ε = 0, which is sufficient for our purposes.
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region proceeds along precisely the same lines as above. The analysis for the x < 0 region

requires only some small changes. In particular, one transforms a single mode into

1√
2π

(−x+ a)is−1/2, a > 0, (F.5)

and uses

∫ +∞

0
da (−x+ a)is−1/2aib−1 =

Γ(ib)Γ(1/2− is− ib)
Γ(1/2− is) (−x)is−1/2+ib, (F.6)

thus spanning all of the x < 0 hyperbolic eigenmodes.

OSp+(1|2,R) and OSp(1|2,R). Now let’s generalize the argument to the subsuper-

semigroup OSp+(1|2,R). One might think that the simplest route is to make use of a

doubled basis starting with

ψs,s′(x, ϑ) =
1√
2π

(
xis−1/2 + ϑxis′−1/2

)
. (F.7)

These modes are orthonormal and complete for the bosonic and fermionic components

separately, and hence form a basis for functions on the super half-line (x, ϑ). These modes,

however, do not correspond to eigenmodes of any of the generators, and hence the above

irreducibility argument fails.

A hyperbolic eigenmode takes the form:

ψs,α(x, ϑ) =
1√
2π

(
xis−1/4 + αϑxis−3/4

)
. (F.8)

Since H generates a one-parameter subgroup of OSp(1|2), invariant subspaces of the full

group decompose into invariant subspaces of the subgroup. Since the latter is abelian,

the invariant subspaces are one-dimensional. A new feature, however, is that these sub-

spaces themselves occur more than once, with a continuous multiplicity
∫

⊕ dα. We write

schematically:

Hinv =
⊕

s

Hinv(H)

∫

⊕
dα. (F.9)

However, this degeneracy is intuitively only “infinitesimal,” and we expect that due to the

peculiarities of Grassmann numbers, it will not affect the argument.

The argument proceeds along similar lines as the bosonic argument, except that we

have to define what is meant precisely by linear independence in supervector spaces:

A set of supervectors Vi is linearly dependent iff there exist ci ∈ Λ∞, not all

zero, such that
∑

i ciVi = 0.

Suppose that the invariant subspace of OSp(1|2) contains a single hyperbolic eigenmode:

ψs,α(x, ϑ) =
1√
2π

(
xis−1/4 + αϑxis−3/4

)
. (F.10)
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We should really understand this as an equivalence class generated by identifying linearly

dependent modes, i.e.,

ψs,α(x, ϑ) ∼ cψs,α(x, ϑ), c ∈ Λ∞. (F.11)

A specific linearly dependent (equivalent) function is then:

ψs,α=0(x, ϑ) =
1√
2π
xis−1/4. (F.12)

One can view the transition from (F.10) to (F.12) as coming from the idea that the soul

of any function is infinitesimal, and thus irrelevant for the argument at hand. Acting with

the one-parameter parabolic subgroup generated by E− = ∂x, we get

∫ +∞

0
da (x+ a)is−1/4aib−1 =

Γ(ib)Γ(1/4− is− ib)
Γ(1/4− is) xis−1/4+ib, (F.13)

so we generate all possible bodies of all hyperbolic eigenmodes. Instead acting with the

one-parameter subgroup generated by F−, we obtain:

1√
2π

(x− δϑ)is−1/4 =
1√
2π
xis−1/4 − 1√

2π
(is− 1/4)δϑxis−5/4, (F.14)

which is a linear combination of our starting mode and a new mode. Acting with E− on

the new mode, we can obtain:

∫ +∞

0
da (x+ a)is−5/4aib+1/2−1 =

Γ(ib+ 1/2)Γ(3/4− is− ib)
Γ(5/4− is) xis−3/4+ib, (F.15)

producing the generic soul parts of all hyperbolic eigenmodes:

δϑxis−3/4+ib. (F.16)

In particular, this shows that we are able to generate all hyperbolic eigenmodes:

ψs,δ(x, ϑ) =
1√
2π

(
xis−1/4 + δϑxis−3/4

)
. (F.17)

Hence the invariant subspace spans the entire representation, making the principal series

representation irreducible, as was to be shown.

The generalization to the entire supergroup OSp(1|2,R) is again just a doubling of the

argument with appropriate sign factors. The details are left implicit.

F.2 Unitarity

In this subsection, we write down explicit formulas for the representation matrices using the

only basis available for the subsemigroup: the hyperbolic basis introduced in section E.4.5.

This is a basis on R
1|1 consisting of the super-Mellin eigenmodes. Moreover, we use these

formulas to give a brute-force proof that the resulting matrix elements are unitary.

Within this hyperbolic basis, the explicit matrix elements are computed as

K++
s1|α1,s2|α2

(g) = 〈s1|g|s2〉 =

∫ +∞

0
dx dϑψ∗

s1|α1
(x, ϑ)(g · ψs2|α2

(x, ϑ)). (F.18)
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For each of the five constituent one-parameter subgroups corresponding to the generators

H, F+, F−, E−, and E+, one obtains the respective matrix elements (j = −1
4 + ik

2 ):

K++
s1|α1,s2|α2

(φ) = e2i(s2−k/2)φδ(s1 − s2)δ(α1 − α2), (F.19)

K++
s1|α1,s2|α2

(θ+) = δ(s1 − s2)δ(α1 − α2) + (−α1α2 − (ik − is2 − 1/4)) δ(s1 − s2 + i/2)θ+,

K++
s1|α1,s2|α2

(θ−) = δ(s1 − s2)δ(α1 − α2) + (α1α2 − (is2 − 1/4)) δ(s1 − s2 − i/2)θ−,

K++
s1|α1,s2|α2

(γ−) =
1

2π

[
α1

Γ(−is1 + 1/4)

Γ(−is2 + 1/4)
− α2

Γ(−is1 + 3/4)

Γ(−is2 + 3/4)

]
Γ(is1 − is2)γis2−is1

− ,

K++
s1|α1,s2|α2

(γ+) =
1

2π

[
α1

Γ(is1 + 1/4− ik)

Γ(is2 + 1/4− ik)
− α2

Γ(is1 + 3/4− ik)

Γ(is2 + 3/4− ik)

]
Γ(is2 − is1)γis1−is2

+
.

Unitarity. These representation matrix elements are unitary. This is a statement that

we proved before for the full group in section E.4.3, but it is necessary to redo the proof for

the subsemigroup. As examples, let’s first consider some of the one-parameter subgroups

separately. For H, we get simply
∫
ds dαK++

s1|α1,s|α(φ)K++
s2|α2,s|α(φ)∗ (F.20)

=

∫
ds dα e2i(s2−k/2)φδ(s1 − s)δ(α1 − α)e−2i(s2−k/2)φδ(s2 − s)(−)δ(α2 − α)

= δ(s1 − s2)δ(α2 − α1).

For E−, we obtain
∫
ds dαK++

s1|α1,s|α(γ−)K
++
s2|α2,s|α(γ−)

∗ (F.21)

=
1

4π2

∫
ds dα

∫
dx dy

[
−α1x

−is−1/4(x+ γ−)
is−3/4 + αx−is1−3/4(x+ γ−)

is1−1/4
]

× (−)
[
−α2x

−is−1/4(x+ γ−)
is−3/4 + αy−is2−3/4(y + γ−)

is2−1/4
]

= δ(s1 − s2)δ(α2 − α1).

Finally, for F+, we write
∫
ds dαK++

s1|α1,s|α(θ+)K
++
s2|α2,s|α(θ+)

∗ (F.22)

=

∫
ds dα [δ(s1 − s)δ(α1 − α) + (−α1α− (ik − is− 1/4)) δ(s1 − s+ i/2)θ+]

× [−δ(s2 − s)δ(α2 − α) + (−α2α+ (ik − is+ 1/4)) δ(s2 − s− i/2)θ+]

= δ(s1 − s2)δ(α2 − α1),

where extreme care has to be exerted for relative minus signs. Notice the ordering in the

fermionic delta function. The calculations for the remaining two generators can be done

similarly. Since all of these individual objects satisfy the unitarity property, and since one

can use the Gauss-Euler decomposition to write the full matrix element as a composition,

K++
s1|α1,s2|α2

(g) =

∫
dsi1 · · · dsi4 dαi1 · · · dαi4 (F.23)

×K++
s1|α1,si1

|αi1
(θ−)K

++
si1

|αi1
,si2

|αi2
(γ−)K

++
si2

|αi2
,si3

|αi3
(φ)K++

si3
|αi3

,si4
|αi4

(γ+)K
++
si4

|αi4
,s2|α2

(θ+),
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after pairwise simplification using the unitarity of the constituents, one obtains
∫
ds dαK++

s1|α1,s|α(g)K++
s2|α2,s|α(g)∗ = δ(s1 − s2)δ(α2 − α1), (F.24)

which proves that these matrices are unitary, much like what happens in the bosonic

case (B.46).

Explicit expressions. For the full matrix element, we can do the resulting integrals

explicitly. This leads to some suggestive results, as we now show. Writing j = −1/4+ ik/2,

n = −is2 + ik, and m = −is1 + ik, we find the full representation matrix for the bosonic

subgroup (i.e., the case θ− = θ+ = 0):

Rk
s1|α1,s2|α2

(gB) = α1Gj
m,n(gB) + α2Gj−1/2

m,n (gB), (F.25)

where we introduced the notation

Gj
m,n(gB) ≡ 1

2π
γn

+
γm
− sinh2j ζ

Γ(−j −m)Γ(−j +m)

Γ(−2j)
2F1

(
−j −m,−j − n;−2j;− 1

sinh2 ζ

)
,

(F.26)

and where sinh2 ζ = γ+γ−e
2φ. The full representation matrix element is then:

Rk
s1|α1,s2|α2

(g) = α1Gj
m,n(gB) + α2Gj−1/2

m,n (gB) (F.27)

+ θ−
(
(m− 1/2)Gj

m−1/2,n(gB)− α1α2Gj−1/2
m−1/2,n(gB)

)

+ θ+

(
−α1α2Gj

m,n−1/2(gB)− (2j + n)Gj−1/2
m,n−1/2(gB)

)

+ θ−θ+

(
−(m− 1/2)α2Gj

m− 1
2

,n− 1
2

(gB) + (2j + n)α1G
j− 1

2

m− 1
2

,n− 1
2

(gB)

)
.

Just as we noticed in the bosonic case in appendix B.3, it is intriguing to note that all of

these components can be interpreted as global superconformal blocks [77, 163, 164].
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