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Abstract— A set-theoretic Failure Model and Effect Manage-
ment (FMEM) strategy for stuck/jammed actuators in systems
with redundant actuators is considered. This strategy uses
a reference governor for command tracking while satisfying
state and control constraints and, once the failure mode is
known, generates a recovery command sequence during mode
transitions triggered by actuator failures. In the paper, this
FMEM strategy is enhanced with a scheme to detect and isolate
failures within a finite time, and to handle unmeasured set-
bounded disturbance inputs. A numerical example is reported
to illustrate the offline design process and the online operation
with the proposed approach.

I. INTRODUCTION

Stuck/jammed actuators, unless properly handled by a
Failure Mode and Effect Management (FMEM) system, can
result in a marked degradation of system performance and
safety, with notable examples such as [1]. Systems that are
highly automated and designed to fulfill complex missions
often exploit actuator redundancy and comprehensive fault-
tolerant control (FTC) schemes to ensure reliability and
safety. To handle the multitude of potential failure modes,
a systematic development process of such FMEM strategies
that is capable of handling sequential failures and has guar-
anteed properties by design is highly desirable.

In this paper, we develop several enhancements to a refer-
ence governor-based set-theoretic FMEM strategy that was
introduced in our previous work [2]. This strategy handles
stuck/jammed actuators while tracking reference commands.
It relies on the reference governor for operating the system
subject to constraints in different operating modes and gen-
erates a recovery reference command sequence once failure
is detected to effect the transition into the new operating
mode with a different number of functioning actuators. The
proposed enhancements include the integration of a scheme
that detects and isolates failures in finite time before the
recovery command sequence is generated, thereby relaxing
the negligibly small time assumption for failure detection and
isolation (FDI) in [2]. Additionally, set-bounded unmeasured
disturbance inputs are handled.

The literature on FDI and failure mode reconfiguration
is extensive, see e.g., [3], [4]; however, reference com-
mand tracking in presence of state and control constraints
is often not the focus and the design of the system to
handle sequential failures is frequently not considered. In
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the reference command tracking setting, several reference
governor-based approaches have been proposed such as in
[5], [6] and references therein, with the approach closest to
ours being [5]. A notable difference is that in our work, [2],
[7] and this paper, we pursue a deterministic treatment (based
on set-theoretic control) that leads to a possibility of FDI
and failure mode reconfiguration in finite time rather than
asymptotically in a probabilistic sense, while guaranteeing
that the constraints are enforced in all operation phases.
Other approaches utilizing set-theoretic methods in systems
with failures are proposed in, e.g., [8], [9].

Fault detection and diagnosis, isolation, identification, and
reconfiguration are essential components of active FTC [10]
but they are often studied separately due to the complexity of
the individual problems. Notably, existing approaches often
do not guarantee explicitly (i.e., by design) the ability to
isolate failures and reconfigure the system operation while
satisfying constraints. Furthermore, the time required to
isolate failures and reconfigure the system operation may
not be a priori bounded or even finite. For example, in [11],
a fault-tolerant model predictive control (FTMPC) strategy
is developed based on similar to ours set-theoretic consider-
ations, but our approach is based on the reference governor
for safe command tracking, and we guarantee explicitly that
failures are isolatable and the system can be reconfigured into
the new mode within a finite and a priori known duration.
We note that in the isolation and reconfiguration phases, the
original constraints may need to be temporarily relaxed but
the amount of this relaxation is determined by the designer as
a part of the offline design process to ensure existence of the
solution. For the same reason, in certain modes constraints
may need to be tightened to ensure the system state is within
the capability of the FDI and reconfiguration scheme and
ultimately the next mode controller to handle.

To highlight the contributions, we proposed a set
membership-based reference governor-centric FTC strategy
that simultaneously (1) guarantees the safe operation in
phases of FDI and system reconfiguration and in all normal
and failure modes, (2) guarantees abilities and has finite
duration that is known before the online operation for isola-
tion and reconfiguration, (3) enables reference tracking, and
(4) handles sequential stuck/jammed actuators failures for
systems with set-bounded unmeasured disturbances.

The remainder of the paper is structured as follows. First,
the system, its operating modes, and constraints are described
in Sect. II. Then, Sect. III introduces our approach to FDI
and failure mode reconfiguration and the online computa-
tions involved, followed by the description of the offline



design that guarantees the isolability and reconfigurability
in Sect. IV. A numerical example is reported in Sect. V.
Concluding remarks are made in Sect. VI.

II. PRELIMINARIES: OPERATING MODES, SYSTEM
DYNAMICS AND CONSTRAINTS

A. Operating Modes

Consider a system with N redundant actuators. Each
actuator may fail by being stuck/jammed at a constant
position. We assume that only one failure can occur at a
time, and there is sufficient time between sequential failures
for FDI and failure mode reconfiguration. Then, there are
Ω = 2N possible modes in total, corresponding to different
combinations of stuck actuators. Each operating mode is
labeled using M ∈ {0, 1, · · · ,Ω} where, in particular, the
normal mode M = 0 has all actuators working properly, and
the failure mode M = Ω has all actuators failed.

B. System Dynamics

We consider a system with a set-bounded input disturbance
and discuss the open-loop dynamics, stabilizing nominal
controllers, and system response representations in what
follows.

1) Open-Loop Systems: Discrete-time linear models are
considered to represent system dynamics in each mode.
Three representations of the dynamics are used as follows:

xk+1 = AMxk +BMuk + FMwk, (1)
= AMxk +BM,µµM,k +BM,ddM + FMwk, (2)
= AMxk +Bµ

Muk +BM,ddM + FMwk, (3)
yk = CMxk, (4)

where xk is the state, yk is the output, and wk ∈ W is a set-
bounded unmeasured input that can represent the disturbance
where W is assumed to be a closed polytope with 0 ∈ intW .
It is assumed that the exact value of the state can be measured
without noise. The first representation (1) is a general state-
space representation where uk ∈ U is the control input and
BM is the input matrix. In (2), BMuk is split into two parts.
The first part BM,µµM,k is for the working actuators where
µM,k is the vector of the working actuator inputs. The second
part BM,ddM is for the failed actuators where dM ∈ DM is
the vector of constant inputs of the stuck/jammed actuators.
For Bµ

Muk in (3), the columns of BM corresponding to the
failed actuators are set to zero to form Bµ

M so that Bµ
Muk

equals BM,µµM,k.
2) Closed-Loop Systems: To stabilize the system and

track the given references (where the number of references
is assumed to be less than or equal to the number of working
actuators), feedback and feedforward control are used to
command the working inputs using

µ0,k = K0xk +G0vk,

µM,k = KMxk +GMvk +HMdM ∀M ∈ {1, · · · ,Ω− 1},

where KM is the stabilizing feedback gain, while GM and
HM are the feedforward gains for the references and the
failed actuator positions that are assumed to be measured or

accurately estimated. The system is assumed to be stable in
mode Ω when the system runs in open-loop so that safety
constraints can be handled by restricting the operation of its
predecessor modes.

Then, the closed-loop system can be represented by

xk+1 = ĀMxk + B̄MUM,k + FMwk, (5)

where

U0,k = vk, UΩ,k = dΩ,

UM,k =

[
vk
dM

]
∀M ∈ {1, · · · ,Ω− 1},

and ĀM and B̄M are appropriately defined (see the models
in [2] for details).

3) System Response Representations: Let xM,k denote the
predicted state of the system at time instant k in mode M .
Define, for k ≥ 1, the set, QM,k, as a polyhedral overbound
on the set of states reachable at time k by applying all
possible disturbance sequences when xM,0 = 0, that is,

QM,k ⊇ BM,dDM⊕FMW⊕AM (BM,dDM

⊕FMW)⊕ · · ·⊕Ak−1
M (BM,dDM⊕FMW),

(6)

where ⊕ stands for the Minkowski sum. Now, consider
the nominal prediction of the state with wk = 0 ∀k ≥ 0,
dM = 0, and the input command u∗

k ∈ U . We have

xuM,k = xuM,k(U
∗) = SM,kx0 + TM,kU

∗, (7)

where

SM,k = Ak
M , TM,k =

[
Ak−1

M Bµ
M Ak−2

M Bµ
M · · · Bµ

M

]
,

U∗ =
[
u∗T
0 u∗T

1 · · · u∗T
k−1

]T
.

Note that the elements of the input command U∗ sequence
corresponding to the failed input channels have no impact
to the system response since the corresponding columns of
Bµ

M are zero.
Then, by the superposition principle for linear systems,

we have
xM,k ∈ RM,k(U

∗) =
{
xuM,k(U

∗)
}⊕QM,k

=
{
SM,kx0 + TM,kU

∗}⊕QM,k.
(8)

Since W is a closed polytope, it is reasonable to assume
that QM,k in (6) are also polytopes. Note that the reachable
sets RM,k(U

∗) are polyhedral if QM,k are polyhedral.

C. Constraints

Pointwise-in-time state and control constraints are im-
posed to ensure safe operation of the system. Since the
working actuator input µM,k is a function of the state xk

and the closed-loop input UM,k, these state and control
constraints are transformed into the form:

A∗
M

[
xk

UM,k

]
≤ b∗M ,

and the safety constraints are further defined by

xk ∈ X ∗
M (UM,k) =

{
x : A∗

M

[
x

UM,k

]
≤ b∗M

}
. (9)



To accommodate the sequential failures, the safety con-
straints of the predecessor modes could be artificially tight-
ened to help the system satisfy the constraints of the subse-
quent operating modes and during the failure isolation and
reconfiguration. On the other hand, the safety constraints
could be temporarily relaxed during the failure mode isola-
tion and reconfiguration to, for example, reduce the number
of time steps needed during the mode transition, which can
help reduce the online computations. The tightened safety
constraints during the operation in each mode, as well as the
relaxed safety constraints for isolation and reconfiguration
are defined as follow:

xk ∈XM (UM,k) = X ∗
M (UM,k) ∩ X̄M (UM,k),

xk ∈XI,M (UM,k), xk ∈ XR,M (UM,k),

where the sets X̄M (UM,k), XI,M (UM,k) ⊇ X ∗
M (UM,k), and

XR,M (UM,k) ⊇ X ∗
M (UM,k) are to be designed appropriately.

One of the easiest way, if all elements of b∗M are positive, is
to use scaling factors and let

xk ∈ X (UM,k) =
{
x : A∗

M

[
xk

UM,k

]
≤ ηb∗M

}
, (10)

for X = XM ,XI,M ,XR,M respectively corresponding to η =
ηO,M , ηI,M , ηR,M , where ηO,M ∈ (0, 1] and ηI,M , ηR,M ∈
[1,∞) while they should all be as close to 1 as possible to
avoid overly restricted/relaxed operation.

III. ONLINE FDI AND RECONFIGURATION PROCESS

A. Structure Overview

Figure 1 illustrates the online process flow of the FDI
and failure mode reconfiguration strategy for the proposed
FMEM system with three phases. In phase 0, the failure
detection is run at every time step to check if there is a new
failure. If the failure is detected, the system enters phase 1
for the failure isolation, at the end of which the failure mode
M is known. Otherwise, the system continues operating
in phase 0, and a reference governor is used to generate
the modified reference vk for reference tracking without
constraint violations. Conversely, during the isolation phase,
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Fig. 1. Structural overview of the online FDI and failure mode reconfig-
uration strategy.

using a reference sequence is less straightforward than using
an open-loop input sequence since the closed-loop dynamics
are uncertain without knowing the failure mode M . Instead,
a sequence of actuator input commands U∗ is computed and
applied to the plant. Once the isolation process is over, we
know the value of M , and it is assumed that the failure has
been identified (i.e. the value of dM is known). The system
moves on to phase 2 where the nominal controller for the
isolated mode M is enabled and the reconfiguration process
is carried out. A recovery sequence of modified references
v is generated, and the system operates with this reference
sequence until the end of the reconfiguration process. Then,
the system returns to phase 0 and operates in the new mode.

B. Phase 0: Reference Tracking and Failure Detection

1) Constraint Admissible Sets: We first introduce the
definition of a constraint admissible set since both the
application of reference governor and the failure detection
use this concept. The constraint admissible set of mode
M ∈ {0, · · · ,Ω}, denoted by O∞,M , is defined as a set
of the initial state x0 and the constant closed-loop input UM

such that, with these pairs, the safety constraints given by
(10) for X = XM will be satisfied for all future time. We let

O∞,M =
{
(UM , x0) : xt ∈ XM (UM ) ∀t ∈ Z≥0,

xM,ss(UM )⊕Bϵ ⊂ XM (UM )
}
,

(11)

where xt is the system response, xM,ss(UM ) is the steady-
state point (assuming zero-disturbance) given by

xM,ss(UM ) = (I − ĀM )−1B̄MUM ,

and Bϵ is an open ball of radius ϵ > 0. By this definition,
the constraint admissible sets are positively invariant, finitely
determined, and can be represented by a finite set of affine
inequalities under mild additional assumptions [12].

2) Reference Governor: For mode M ∈ {0, · · · ,Ω− 1},
at every time step k in phase 0, in order to track the reference
command rk as close as possible without violating the safety
constraints, a reference governor is used to generate the
modified reference vk by solving the following quadratic
programming (QP) problem:

min
vk

∥rk − vk∥22 (12)

s.t. (UM,k, xk) ∈ O∞,M .

The modified reference vk is then taken by the controller to
command the input of the working actuators.

3) Failure Detection: If the system is operating in the
current mode M0 and the control input is uk, the state xk+1

is determined by (1) with M = M0. Hence, if the condition

xk+1 ̸∈ AM0xk +BM0uk⊕FM0
W (13)

holds, a new actuator failure has occurred and the isolation
phase is initiated. In the isolation phase, the successor
modes of mode M0, whose set is denoted by succ(M0), are
considered. Note that it is possible that (13) does not hold
but the new failure has already happened as the disturbance
wk ∈ W can mask the failure. However, since the system



response is close to nominally expected, the operation is
considered to be safe in this case.

C. Phase 1: Failure Isolation

1) Isolability: Once a new failure is detected, the system
enters the failure isolation phase, at the end of which the
failure mode M should be known. Consider mode M0 ∈
{0, · · · ,Ω − 1} whose successor mode is not M = Ω
(otherwise it is certain that succ(M0) = {Ω}), and any two
candidate modes M1,M2 ∈ succ(M0) where M1 ̸= M2.
Based on the measured state, it is sufficient to isolate the
failure in NI steps if there exists an isolation sequence U∗

such that the reachable sets have no common states, i.e.,

RM1,NI
(U∗)

⋂
RM2,NI

(U∗) = ∅. (14)

Then, the failure mode is the one whose reachable set
contains the measured state xNI

.
Following (8), condition (14) can be ensured if and only

if

(SM1,NI
− SM2,NI

)x0 + (TM1,NI
− TM2,NI

)U∗

̸∈ QM2,NI⊕(−QM1,NI
),

(15)

where x0 here represents the state at the beginning of the
isolation.

2) Computations to Generate the Isolation Sequence: By
the definition of QM,k, the set on the right-hand-side of (15)
is polyhedral. Consider its representation in the form of affine
inequalities:

QM2,NI⊕(−QM1,NI
) = {x : Hjx ≤ hj , j = 1, · · · , q}.

Then, (15) can be re-stated as

∃j : Hj

(
(SM1,NI

− SM2,NI
)x0

+ (TM1,NI
− TM2,NI

)U∗) > hj .
(16)

The problem becomes finding an isolation sequence U∗

such that (16) holds, and at the same time, the safety con-
straints given by (10) for X = XI,M are satisfied. This can
be handled using mixed-integer optimization applied to (16)
transformed using the “Big-M” technique (see Sect. 9.3.1
in [13]). We introduce binary integers δj ∈ {0, 1}, j =
1, · · · , q. The condition (16) can be written as

q∑
j=1

δj ≥ 1,

Hj

(
(SM1,NI

− SM2,NI
)x0 + (TM1,NI

− TM2,NI
)U∗)

≥ hj − (1− δj)M+ γ ∀j ∈ {1, · · · , q},

(17)

where M ≫ 0 is a large positive number, and γ > 0 is a
small positive number introduced to replace “>” with “≥”.
For the numerical example in Sect. V, we use M = 109 and
γ = 10−6.

The constraints (17) can now be integrated into a mixed-
integer quadratic programming (MIQP) problem, whose ob-
jective is to determine a minimum norm control sequence
U∗ that ensures the ability to distinguish the operation in
mode M1 versus operation in mode M2 without violating the

safety constraints, that is, to find the solution of the following
problem:

min
U∗,δ1,··· ,δq

∥U∗∥22 (18)

s.t. (U∗, δ1, · · · , δq, x0) ∈ C(M0),

where

C(M0) = CM1,M2
=

{
(U∗, δ1, · · · , δq, x0) :

∀j ∈ {1, · · · , q}, δj ∈ {0, 1},
q∑

j=1

δj ≥ 1,

Hj(TM1,NI
− TM2,NI

)U∗ −Mδj (19)
+ Hj(SM1,NI

− SM2,NI
)x0 ≥ hj −M+ γ,

∀t ∈ {1, · · · , NI}, xt ∈ XI,M1
(UM,t), xt ∈ XI,M2

(UM,t)
}
.

Remark 1. If there are more than two candidate modes,
constraints can be defined similar to (19) for all distinct pairs
of candidate modes, e.g., if the candidate modes are M =
1, 2, 3, then constraints should be defined for mode pairs
(1, 2), (2, 3) and (3, 1). The MIQP problem becomes

min ∥U∗∥22
s.t. (U∗, δ1,2,1, · · · , δ1,2,q1 , δ2,3,1, · · · , δ2,3,q2 ,

δ3,1,1, · · · , δ3,1,q3 , x0) ∈ C(M0),

where C(M0) = C1,2 ∩ C2,3 ∩ C3,1.

D. Phase 2: Failure Reconfiguration

When the system finished operating with the isolation
sequence, it enters the reconfiguration phase with the known
failure mode M ∈ {1, · · · ,Ω − 1} and the vector of
stuck/jammed actuator positions dM that has been identified.
In this phase, a reference sequence v =

[
vT0 · · · vTNM

]T
is generated to steer the state into the state projection of
the constraint admissible set, ProjxO∞,M , within NM steps
without violating the relaxed safety constraints given by
(10) for X = XR,M . The recovery reference sequence is
determined by solving the following QP problem:

min
v

∥r01− v∥22 (20)

s.t. xt ∈ XR,M (UM,t) ∀t ∈ {0, · · · , NM − 1},
(UM,NM

, xNM
) ∈ O∞,M ,

where t = 0 here corresponds to the beginning of the
reconfiguration phase, and by using r01 it is assumed that
the reference command stays at constant during the recon-
figuration process. The system eventually returns to phase 0
once it finished operating with the recovery sequence.

IV. CONDITIONS FOR GUARANTEED FAILURE ISOLATION
AND RECONFIGURATION

The set-membership conditions for the offline design pro-
cedure is now described. So far, three optimization problems,
(12), (18), and (20), have been introduced for different online
phases of the FMEM strategy. For the reference governor
defined by (12), the problem is feasible in the failure modes
because of the constraint (UM,NM

, xNM
) ∈ O∞,M imposed



in (20). To ensure the feasibility of failure mode isolation
and reconfiguration, i.e., for (18) and (20), we can choose the
number of steps allowed for isolation NI , the number of steps
allowed for reconfiguration NM , and the safety constraint
scaling coefficients ηO,M , ηI,M , and ηR,M .

A. Isolation Conditions

When the system is operating in mode M0 ∈ {0, · · · ,Ω−
1}, its state is contained in ProjxO∞,M0 , but when a failure
is detected, the state is in the following set:

IM0 =
⋃

M∈succ(M0)

AMProjxO∞,M0⊕BMU⊕FMW.

(21)

This implies the following result:

Proposition 1 (Isolation Condition). If the following condi-
tion holds,

IM0 ⊆ ProjxC(M0), (22)

then (18) is feasible.

B. Reconfiguration Conditions

We begin by introducing the recoverable sets, which, for
the successor modes M ∈ succ(M0), are defined as

RNM

∞,M (dM ) =
{
x0 : ∃{v0, · · · , vNM

} such that

xt ∈ XR,M (UM,t) ∀t ∈ {0, · · · , NM − 1},
(UM,NM

, xNM
) ∈ O∞,M

}
.

(23)

In mode Ω, we let the recoverable set to be the state
projection of the constraint admissible set, that is,

RNΩ

∞,Ω = ProjxO∞,Ω ∀NΩ ≥ 0, (24)

as the system runs open-loop when all actuators have failed.
At the end of the isolation phase, i.e., the beginning of

the reconfiguration phase, the system is in the known failure
mode M , and the states are in

S ′
M (dM , U∗) = {xNI

: x0 ∈ ProjxC(M0)}, (25)

where xNI
results from using the isolation sequence U∗ as-

suming the stuck/jammed actuator input is dM . Furthermore,
since the state at the beginning of the isolation x0 ∈ IM0 , if
the isolation condition (22) holds, the states are contained in

S ′′
M (dM , U∗) = {xNI

: x0 ∈ IM0
}. (26)

If we have

S ′′
M (dM , U∗) ⊆

⋂
dM∈DM

RNM

∞,M (dM ), (27)

which implies that the state at the end of the isolation phase is
in the recoverable set for any stuck/jammed actuator position,
the optimization problem (20) is guaranteed to be feasible.
However, dM and U∗ are a priori unknown. To satisfy (27),
it is sufficient to define

S(M0) = {xNI
: x0 ∈ IM0

, U∗ ∈ UNI , dM ∈ DM},
(28)

i.e., the set of states that are NI steps later of the states
in IM0 considering all possible inputs (for both working
and failed actuators) and disturbances, and impose a stricter
condition as

S(M0) ⊆
⋂

dM∈DM

RNM

∞,M (dM ). (29)

Proposition 2 (Reconfiguration Condition). If the conditions
(22) and (29) hold, then (20) is feasible.

The offline design procedure to satisfy the conditions of
Propositions 1 and 2 is demonstrated through a numerical
example in the next section.

V. NUMERICAL EXAMPLE

A. System Dynamics and Operating Modes

A mass-spring-damper system extended to consider set-
bounded input disturbance based on the numerical example
in [7] is used for illustration. The system is represented by

ẋ = Ax+Bu+ Fw, y = Cx, (30)

where x = [α λ]T is the state vector of the displacement
α and the velocity λ, u = [f1 f2]

T is the input vector of
two forces, and F = [0 1

m0
]T where m0 is the mass. The

details about the open-loop model, the process to acquire
the controllers using the Linear Quadratic Regulator (LQR)
theory, and the definitions of operating modes follow [7] so
they are not repeated here.

B. Constraints

The state and control constraints are given by

|α| ≤ αmax, |f1| ≤ f1max
, and |f2| ≤ f2max

, (31)

where αmax = 1, f1max
= 0.6, and f2max

= 0.4. In addition,
the input disturbance is bounded by

|w| ≤ wmax, (32)

where wmax = 0.02.

C. Offline Design for Guaranteed Isolability and Reconfig-
urability

In this section, we consider the case of sequential failures
where the system begins operating in mode 0, then changes
to mode 1 where f2 fails, and eventually finishes in mode
3 with both actuators failed. The case with 0-2-3 mode
transition sequence follows a similar procedure (in mode 2,
f1 fails while f2 is normal). The Bensolve toolbox [14]
is used for polyhedral computations. The design parameters,
NI , NM , ηO,M , ηI,M and ηR,M , are chosen from a grid of
values to minimize the number of time steps needed and the
changes from the original constraints due to scaling.

The offline design proceeds backward in terms of the
failure sequence, that is, we begin by considering mode 3 and
determining its recoverable set given the safety constraints.
To ensure the system state is in ProjxO∞,3 during mode 1,
we choose ηO,1 = 0.45 to satisfy ProjxO∞,1 ⊆ ProjxO∞,3.
The result is shown in Fig. 2(c). For mode 2, ηO,2 = 0.75.



Next, the isolability condition for the transition from mode
0 given by (22) with M0 = 0 is considered. We let ηO,0 = 1
so that the normal operation is not artificially restricted,
and we use ηI,1 = 1.2 to relax the safety constraints for
NI = 2 steps during the isolation phase. Note that this is
a common step for the 0-1-3 and 0-2-3 mode transitions,
as both mode 1 and 2 are the successor modes of mode
0. Hence, the parameters NI , ηI,1 and ηI,2 are adjusted
together to satisfy (22). For mode 2, we also let ηI,2 = 1.2.
Figure 2(a) illustrates the set-membership relation.

Finally, we consider the reconfigurablity for the mode
transition to M = 1. The recoverable set of mode 1 is
determined following (23), and the condition that needs to be
satisfied is (29). In this phase, we relax the safety constraints
by having ηR,1 = 1.7 and allow N1 = 15 steps for the
recovery. The set-membership relation is shown in Fig. 2(b).
For mode 2, ηR,2 = 1.9 and N2 = 22.

D. Simulations

A simulation is run for the case of 0-1-3 mode transition.
The input disturbance follows a normal distribution within
W using zero mean and the standard deviation σ = wmax/6.
The failures are set to happen in 2 and 44 sec, while the
displacement reference command switches between −0.99
and 0.99 in 20 and 40 sec. Figure 2(c) shows the state
trajectory and Fig. 2(d) shows the time-based signals for
a 60-sec simulation. Both failures are detected in one step
and the isolation and reconfiguration takes 3.4 sec in total
as determined by NI and NM for M = 1. The difference
between the reference command and the modified reference
in mode 1 shows that the operation is restricted after the
initial failure to prepare for the potential subsequent failure,
i.e., transiting to mode 3, which makes the system run in
open-loop. No constraint violations are observed during the
operation in any of the modes and phases.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

0 20 40 60

-1

0

1

0 20 40 60

0

0.5

1

0 20 40 60

Time (sec)

0
1
2
3

-4 -2 0 2 4

-10

0

10

-2 -1 0 1 2

-2

0

2

(a) (b)

(c) (d)
Fig. 2. (a) Isolation condition satisfied for M0 = 0. (b) Reconfiguration
conditions satisfied for M0 = 0. (c) State projections of O∞,M and state
trajectory. (d) Time-based signals where M is the actual mode and Mest

stands for the mode determined by the FMEM unit.

VI. CONCLUDING REMARKS

Enhancements to a reference governor-based Failure Mode
and Effect Management (FMEM) strategy for a system with
redundant actuators that can become stuck/jammed have
been developed. These enhancements ensure the ability to
detect and isolate failures within a finite time while tracking
reference commands and satisfying state and control con-
straints. Conditions have been derived that can be used in
the offline design phase to guarantee the ability to detect and
isolate failures within a pre-determined time duration and to
reconfigure the system into the next mode. The proposed
system can handle sequential failures and unmeasured set-
bounded disturbance inputs. A mass-spring damper example
with two force inputs has been reported to illustrate the
design and operation of the proposed FMEM strategy. Pos-
sible directions of future work include considering (1) other
types of failures, e.g., failures caused by actuator efficiency
degradation, failed signals that change slowly with bounded
rates, and failures related to sensors and/or communication,
and (2) challenges for implementing the strategy in real-time,
e.g., in the situation when the isolation and reconfiguration
sequences cannot be generated in time for execution due to
limitations of computational resources.
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