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Summary

In this paper, we propose a set-membership based localization approach for mobile
robots using infrastructure-based sensing. Under an assumption of known uncer-
tainties bounds of the noise in the sensor measurement and robot motion models,
the proposed method computes uncertainty sets that over-bound the robot 2D body
and orientation via set-valued motion propagation and subsequent measurement
update from infrastructure-based sensing. We establish theoretical properties and
computational approaches for this set-theoretic localization method and illustrate its
application to an automated valet parking example in simulations, and to omnidi-
rectional robot localization problems in real-world experiments. With deteriorating
uncertainties in system parameters and initialization parameters, we conduct sen-
sitivity analysis and demonstrate that the proposed method, in comparison to the
FastSLAM, has a milder performance degradation, thus is more robust against the
changes in the parameters. Meanwhile, the proposed method can provide estimates
with smaller standard deviation values.
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1 INTRODUCTION

One of the major challenges for navigating mobile robots safely is in their accurate and reliable localization1. A promising
approach is to leverage the infrastructure-based sensing and wireless communications/V2X2. With the increasing computational
capability of hardware, real-time simultaneous localization and mapping (SLAM) has been more widely adopted for mobile
robot localization tasks in unmapped environments3. In particular, with prior knowledge of the surroundings, the infrastructure-
based SLAM is an appealing centralized localization approach as it reduces computational burden by treating individual agent’s
localization tasks independently4. However, quantification of the localization uncertainties is generally handled by the estimation
of confidence intervals or ellipsoids within probability-based methods, e.g. Bayesian filters, particle filters1, etc. Adequate
explicit uncertainty bounds, which are crucial for the operation of safety-critical systems, as illustrated by the following mobile
robot localization example in Fig. 1, could be difficult to generate via probabilistic methods.

Specifically, suppose a centralized closed-circuit television (CCTV) system that collects measurements associated with the
robot is set up as shown in Fig. 1, and suppose the FastSLAM5 based on particle filtering is used to estimate the area covered by
the robot’s body. As shown in Fig. 1, localization results with fewer particles tend to underestimate the area. If we further use
the estimated area in a planning module6, the one which fails to contain the entire robot body may eventually cause a collision.
Though the estimated areas with larger numbers of particles, e.g. 500 and 1000, over-bound the robot body, the increased
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FIGURE 1 FastSLAM estimated robot body area.

sampling and computation burden impedes the online deployment of the FastSLAM. In fact, the estimated area is guaranteed to
contain the robot body if and only if we sample an infinite number of particles. We also note that statistical properties of the noise
and uncertainty on which probabilistic estimates depend are often assumed; however, they may not necessarily hold in practice.

In this paper, in order to obtain quantitative deterministic uncertainty bounds on estimated states unavailable with probabilis-
tic approaches, we extend the set-theoretic localization approach7 to the infrastructure based sensing setting8,9,10. The proposed
method can be readily adapted to both camera and lidar sensor systems. With the assumption of bounded robot dynamics
uncertainty and measurement noise, the proposed approach guarantees that the actual states are necessarily within the esti-
mated uncertainty sets, which provides a desired quantitative uncertainty bound on the estimated states. Polytopes are used to
approximate the uncertainty sets to reduce conservativeness. We use the automated valet parking as an example to validate the
effectiveness of the proposed method in simulations, and compare the results with the ones using the FastSLAM. Moreover, we
also demonstrate that the proposed algorithm can be readily applied to real-world systems via indoor hardware experiments on
a mobile robot.

The main contributions of this paper are as follows: (1) We extend the existing set-theoretic localization approach7 to an
infrastructure-based sensing setting. (2) We use polytopes to approximate the uncertainty sets which reduces conservativeness as
compared to boxes7 and is still computationally efficient due to low dimensional characteristics of the problem. (3) We demon-
strate the proposed algorithm in a simulated auto-valet parking and a real-world ominidirectional robot localization applications.
(4) In a sensitivity analysis, compared to the FastSLAM, we demonstrate the proposed method is more robust and can provide
estimates with smaller standard deviation values in presence of changes in the system parameters and initial conditions.

2 RELATED WORK

Estimation problems11 associated with localization in robotics have been extensively studied. Algorithms such as the classical
Kalman filter, particle filter, Bayesian filter, and unscented Kalman filter have been considered for the robotics localization
problems1,11,12. A comprehensive review of invariant Kalman filtering that uses the geometric structure of the state space and
the dynamics to improve the performance of the extended Kalman filter (EKF) is available in the literature13. Our method has a
similar structure as the convectional filtering algorithms that predict the states via a dynamics model and subsequently update the
prediction using sensor measurements. Unlike the probabilistic methods such as the EKF, the proposed algorithm uses set-valued
motion prediction and measurement update to yield a deterministic estimation of uncertainty bounds for robotics localization,
mapping, and system state estimation problems14,15,16,7,17,18,19.

In scenarios of real-time exploration tasks, SLAM algorithms are necessary as the environment information is unknown to
the robots1. For SLAM problems, probabilistic methods, for example, EKF SLAM20,21 and FastSLAM5 have been developed
and widely adopted. With the advances in computing power, matrix and graph optimization algorithms22, such as iSAM23 and
GTSAM24, have become feasible for real-time implementation. SLAM algorithms that rely on visual sensors e.g. monocular,
stereo, or RGB-D cameras25,26,27,28 have also been proposed. In contrast to the classical SLAM problem, our method exploits an
infrastructure-based sensing setting, and a prior knowledge of the environment. Moreover, our method is based on centralized
localization and hence is able to reduce computational burden by treating individual agents’ localization tasks independently4.

A wide range of sensors and their combinations have been considered for localization applications. Localization using
point clouds generated from lidar sensors has been explored29,30 and a more general review of the lidar point cloud regis-
tration algorithms was presented by Pomerleau et al.31. As a more economical sensor option, visual cameras have been used
in visual localization and visual odometry generation32. With the development of machine learning, significant progress in
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outdoor visual place recognition and visual localization has been achieved33,34,35,36,32. Meanwhile, sensor fusion such as visual-
inertia odometry37 and visual-lidar fusion38 have proved to be effective in mobile robot localization. In our problem setting,
as long as the aforementioned sensor systems can provide range and/or angle measurements, they can be directly used as the
infrastructure-based sensors in our localization algorithm.

3 PROBLEM FORMULATION AND PRELIMINARIES

As shown in Fig. 2, we consider a localization system in an 𝑋 − 𝑌 plane Ω ∈ ℝ2 that comprises 𝑚 (𝑚 ≥ 2) infrastructure-
installed sensors, where each individual sensor is located at a certain point in the 𝑋 − 𝑌 plane, and a mobile robot, to which 𝑛
identical sensor detection markers are attached such that the entire robot body is in the convex hull of the markers. We assume
that the sensor system is able to measure the relative angle and/or the relative range of the markers to the sensors. If the sensors’
installation positions and orientations were perfectly known, the sensor system could function as a global positioning system
for the markers, and subsequently, could localize the robot body area as the convex envelope formed by the markers. However,
the actual sensor position and orientation is estimated during the initial calibration39 and these estimates may have errors. Thus,
the actual sensor’s position and orientation may not be accurately known; in this paper, we assume that the 𝑖𝑡ℎ sensor’s actual
position and orientation states are a priori known to belong to an uncertainty set 𝐿𝑖 ∈ ℝ2 × [−𝜋, 𝜋] as shown in Fig. 2.

FIGURE 2 Illustrations of the set-theoretic localization approach.

We denote the actual robot body and orientation as 𝑃𝑥𝑦 ⊂ Ω and 𝑝̂𝜃 ∈ [−𝜋, 𝜋], respectively, and represent the 𝑖𝑡ℎ marker’s
actual position by 𝑝̂𝑖 = [𝑝̂𝑖,𝑥 𝑝̂𝑖,𝑦]𝑇 ∈ Ω. Given robot dynamics, it is possible to derive the equations of motion for the markers.
We assume that the marker dynamics can be represented by the following expressions,

𝑝̂𝑖(𝑘 + 1) = 𝑓𝑖
(

𝑝̂𝑖(𝑘), 𝑢̂(𝑘) +𝑤𝑢(𝑘)
)

+𝑤𝑖
𝑓 (𝑘), 𝑖 = 1,… , 𝑛, (1)

where the control input 𝑢̂(𝑘) ∈ ℝ|𝑢| is subject to an unknown additive noise 𝑤𝑢(𝑘) ∈ ℝ|𝑢|, and 𝑤𝑖
𝑓 (𝑘) ∈ ℝ2 represents the

unmodeled disturbance. We assume that the noise𝑤𝑢(𝑘) and disturbance𝑤𝑖
𝑓 (𝑘) are bounded such that |

|

𝑤𝑢(𝑘)|| ≤ 𝜖𝑢, ‖‖
‖

𝑤𝑖
𝑓 (𝑘)

‖

‖

‖∞
≤

𝜖𝑓 with known upper bounds 𝜖𝑢 ∈ ℝ|𝑢| and 𝜖𝑓 ∈ ℝ. These bounds are characterized from measurements collected during
preliminary experimentation with the robots.

We denote the 𝑖𝑡ℎ sensor’s actual state as 𝑙𝑖 = [𝑙𝑖,𝑥 𝑙𝑖,𝑦 𝑙𝑖,𝜃]𝑇 ∈ 𝐿𝑖 where the actual installation position is 𝑙𝑖,𝑥𝑦 = [𝑙𝑖,𝑥 𝑙𝑖,𝑦]𝑇 ∈ Ω
and the actual orientation is 𝑙𝑖,𝜃 ∈ [−𝜋, 𝜋]. Each single measurement vector ℎ𝑖,𝑗∗(𝑘) ∈ ℝ|𝑔| from the 𝑖𝑡ℎ sensor obeys the
following sensor model,

ℎ𝑖,𝑗∗(𝑘) = 𝑔𝑖
(

𝑙𝑖(𝑘), 𝑝̂𝑗∗(𝑘)
)

+𝑤𝑖,𝑗∗
𝑔 (𝑘), (2)

where the marker identity 𝑗∗ ∈ {1,… , 𝑛} is latent as all markers are identical to the sensor system and 𝑤𝑖,𝑗∗
𝑔 (𝑘) ∈ ℝ|𝑔| is the

unknown additive noise. We assume the noise 𝑤𝑖,𝑗∗
𝑔 (𝑘) is bounded by a known upper bound 𝜖𝑔 ∈ ℝ|𝑔| such that ||

|

𝑤𝑖,𝑗∗
𝑔 (𝑘)||

|

≤ 𝜖𝑔 .
This bound is determined, for instance, from sensor accuracy specification by the sensor manufacturer.

Considering all the aforementioned uncertainties in both the robot dynamics and the sensor measurements, we aim to develop
an algorithm that estimates the actual robot body 𝑃𝑥𝑦 and orientation 𝑝̂𝜃 based on the models (1), (2) under the above bounded
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noise/uncertainty assumptions. Specifically, at time step 𝑘, we treat the actual robot body 𝑃𝑥𝑦(𝑘), the actual robot orientation
𝑝̂𝜃(𝑘), the markers’ actual position {𝑝̂𝑖(𝑘)}𝑖=1,…,𝑛, and the sensors’ actual states {𝑙𝑖(𝑘)}𝑖=1,…,𝑚 as unknown and consider the uncer-
tainty sets {𝑃𝑖(𝑘)}𝑖=1,…,𝑛 and {𝐿𝑖(𝑘)}𝑖=1,…,𝑚, where 𝑝̂𝑖(𝑘) ∈ 𝑃𝑖(𝑘) and 𝑙𝑖(𝑘) ∈ 𝐿𝑖(𝑘). Note that sensor uncertainties sets 𝐿𝑖(0)
can be generated through the initial calibration39 and the marker uncertainty sets 𝑃𝑖(0) can be initialized by coarse localization
using robot on-board sensors40. At time step 𝑘 + 1, the markers’ positions are updated by a given control signal 𝑢̂𝑘 through the
dynamics in (1). Afterwards, based on (2), each individual 𝑖𝑡ℎ sensor in the localization system produces a set of measurements
𝑀𝑙𝑖(𝑘 + 1) = {ℎ𝑖,𝑗∗(𝑘 + 1)}, 𝑖 = 1,… , 𝑚.

As shown in Fig 2, the goals of our set-theoretic localization method are as follows:

1. Given control 𝑢̂(𝑘), the sensor uncertainty sets {𝐿𝑖(𝑘)}𝑖=1,…,𝑚, the marker uncertainty sets {𝑃𝑖(𝑘)}𝑖=1,…,𝑛, and the measure-
ments {𝑀𝑙𝑖(𝑘 + 1)}𝑖=1,…,𝑚, compute the sensor uncertainty sets {𝐿𝑖(𝑘 + 1)}𝑖=1,…,𝑚 and estimate marker uncertainty sets
{𝑃𝑖(𝑘+ 1)}𝑖=1,…,𝑛 based on (1) and (2) such that 𝑙𝑖 ∈ 𝐿𝑖(𝑘+ 1) for 𝑖 = 1,… , 𝑚 and 𝑝̂𝑖(𝑘+ 1) ∈ 𝑃𝑖(𝑘+ 1) for 𝑖 = 1,… , 𝑛.

2. Based on the uncertainty sets {𝐿𝑖(𝑘+1)}𝑖=1,…,𝑚, {𝑃𝑖(𝑘+1)}𝑖=1,…,𝑛, estimate two sets𝑃𝑥𝑦(𝑘+1) ⊂ Ω and𝑃𝜃(𝑘+1) ⊂ [−𝜋, 𝜋]
such that the robot body is entirely contained in the estimated set, i.e., 𝑃𝑥𝑦(𝑘 + 1) ⊂ 𝑃𝑥𝑦(𝑘 + 1) and the orientation is
within the estimated interval, i.e., 𝑝̂𝜃(𝑘 + 1) ∈ 𝑃𝜃(𝑘 + 1).

4 MATHEMATICAL MODEL

FIGURE 3 Modeling of an infrastructure-based localization system.

In this paper, as shown in Fig. 3, we assume the robot is a front-wheel drive vehicle that is subject to longitudinal velocity
and steering control 𝑢̂ = [𝑣̂ 𝛿]𝑇 ∈ ℝ2, where the unknown additive noise 𝑤𝑢 = [𝑤𝑣 𝑤𝛿]𝑇 is bounded by 𝜖𝑢 = [𝜖𝑣 𝜖𝛿]𝑇 , i.e.,
|

|

𝑤𝑣
|

|

≤ 𝜖𝑣 and |

|

𝑤𝛿
|

|

≤ 𝜖𝛿 . Then, the robot kinematics can be represented by a discrete-time model,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑝̂𝜃(𝑘 + 1) = 𝑝̂𝜃(𝑘) +
(𝑣̂ +𝑤𝑣) ⋅ 𝑑𝑡

𝓁
⋅ sin (𝛿 +𝑤𝛿)

𝑝̂𝑥(𝑘 + 1) = 𝑝̂𝑥(𝑘) + (𝑣̂ +𝑤𝑣) ⋅ 𝑑𝑡 ⋅ cos 𝑝̂𝜃(𝑘) ⋅ cos (𝛿 +𝑤𝛿)
𝑝̂𝑦(𝑘 + 1) = 𝑝̂𝑦(𝑘) + (𝑣̂ +𝑤𝑣) ⋅ 𝑑𝑡 ⋅ sin 𝑝̂𝜃(𝑘) ⋅ cos (𝛿 +𝑤𝛿)

, (3)

where 𝑑𝑡 is the sampling period, 𝓁 is the length of the robot wheelbase, and [𝑝̂𝑥 𝑝̂𝑦]𝑇 is the center of the robot rear wheel axis.
In what follows, we derive the markers’ equations of motion (1) in Sec. 4.1 and the sensor measurement model (2) , which
generates angle and range measurements in Sec. 4.2.

4.1 Robot and Marker Kinematics Models
Derived from (3), and as a realization of (1), the kinematics of the 𝑖𝑡ℎ marker are represented by

𝑝̂𝑖(𝑘 + 1) = 𝑝̂𝑖(𝑘) +
[

𝑑𝑖(𝑣̂ +𝑤𝑣, 𝛿 +𝑤𝛿) ⋅ cos (𝜃𝑖(𝑣̂ +𝑤𝑣, 𝛿 +𝑤𝛿 , 𝑝̂𝜃(𝑘)))
𝑑𝑖(𝑣̂ +𝑤𝑣, 𝛿 +𝑤𝛿) ⋅ sin (𝜃𝑖(𝑣̂ +𝑤𝑣, 𝛿 +𝑤𝛿 , 𝑝̂𝜃(𝑘)))

]

+𝑤𝑖
𝑓 (𝑘), (4)
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where

𝑑𝑖(𝑣, 𝛿) = 𝑣 ⋅ 𝑑𝑡 ⋅

√

(
Δ𝓁𝑖 sin 𝛿

𝓁
)2 + (cos 𝛿)2 −

Δ𝓁𝑖
𝓁

⋅ sinΔ𝜃𝑖 ⋅ sin (2𝛿),

𝜃𝑖(𝑣, 𝛿, 𝑝̂𝜃(𝑘)) = 𝑝̂𝜃(𝑘) + Δ𝜃𝑖 + atan2
(

Δ𝓁𝑖 tan 𝛿 − 𝓁 sinΔ𝜃𝑖,𝓁 cosΔ𝜃𝑖
)

,

Δ𝓁𝑖 =
√

(𝑝̂𝑖,𝑥 − 𝑝̂𝑥)2 + (𝑝̂𝑖,𝑦 − 𝑝̂𝑦)2, Δ𝜃𝑖 = atan2
(

𝑝̂𝑖,𝑦 − 𝑝̂𝑦, 𝑝̂𝑖,𝑥 − 𝑝̂𝑥
)

, which are assumed to be given, are the polar coordinates
in a local robot frame as shown in Fig. 3. The detailed derivation is available in Appendix A.

4.2 Sensor Measurement Model
We assume that a sensor, e.g., stereo camera or lidar, is capable of producing angle measurement 𝛼 and range measurement 𝑟.
Consequently, each individual measurement is a vector ℎ𝑖,𝑗 = [𝛼𝑖,𝑗 𝑟𝑖,𝑗]𝑇 , which contains the angle and range measurements
corresponding to an marker of unknown identity 𝑗 ∈ {1,… , 𝑛}, from the 𝑖𝑡ℎ sensor. As a realization of (2), the measurement
model can be represented by

[

𝛼𝑖,𝑗(𝑘)
𝑟𝑖,𝑗(𝑘)

]

=

[

atan2(𝑝̂𝑗,𝑦(𝑘) − 𝑙𝑖,𝑦(𝑘), 𝑝̂𝑗,𝑥(𝑘) − 𝑙𝑖,𝑥(𝑘)) − 𝑙𝑖,𝜃(𝑘)
√

(𝑝̂𝑗,𝑦(𝑘) − 𝑙𝑖,𝑦(𝑘))2 + (𝑝̂𝑗,𝑥(𝑘) − 𝑙𝑖,𝑥(𝑘))2

]

+
[

𝑤𝑖,𝑗
𝑎 (𝑘)

𝑤𝑖,𝑗
𝑟 (𝑘)

]

, (5)

where the unknown additive noise 𝑤𝑖,𝑗
𝑔 (𝑘) = [𝑤𝑖,𝑗

𝑎 (𝑘) 𝑤𝑖,𝑗
𝑟 (𝑘)]𝑇 ∈ ℝ2 is bounded by 𝜖𝑔 = [𝜖𝑤𝑎 𝜖𝑤𝑟]𝑇 ∈ ℝ2, i.e., ||

|

𝑤𝑖,𝑗
𝑎 (𝑘)||

|

≤ 𝜖𝑤𝑎

and |

|

|

𝑤𝑖,𝑗
𝑟 (𝑘)||

|

≤ 𝜖𝑤𝑟 . Note that in our problem setting, as long as the infrastructure-based sensor can measure the range and/or
angle of markers, there is no restriction on the sensor’s type, i.e., it can be a monocular camera, lidar, et al. We also note that the
marker can be virtual, such as ORB41 or SIFT42 features with object detection43 such as vehicle wheel detection44,45 to refine
the region of interest.

5 SET-THEORETIC LOCALIZATION

For simplification of the presentation, in Sec. 5.1 and Sec. 5.2, we assume the sensor system measures only the relative angles
from the markers to the sensors, e.g. using monocular cameras, and the measurement is labeled with the corresponding marker
identity. We first use the marker kinematics model to propagate the uncertainty sets (Sec. 5.1), then update the sets with corre-
sponding measurements derived from the infrastructure-based sensors (Sec. 5.2). By incorporating the geometrical constraints
between individual markers, we can improve the estimation accuracy of the robot body and orientation (Sec. 5.3). Then, we
extend our method to the scenario where the actual measurement-to-marker correspondence is latent (Sec. 5.4). An extension
of the proposed method to the sensor case with both range and angle measurements, e.g., using stereo cameras, is introduced in
Sec. 5.5. We conclude the section with a set over-approximation strategy to simplify the set operations (Sec. 5.6).

5.1 Motion Propagation
For the sensor uncertainty set propagation, we decompose 𝐿𝑖 into two bounded sets 𝐿𝑖,𝑥𝑦 ⊂ Ω and 𝐿𝑖,𝜃 ⊂ [−𝜋, 𝜋] such that
𝐿𝑖 ⊂ 𝐿𝑖,𝑥𝑦 × 𝐿𝑖,𝜃 and × stands for the Cartesian product, which simplifies the update computations in Sec. 5.2. Then, based on
(4), the uncertainty sets 𝑃𝑖 of the 𝑖𝑡ℎ marker and 𝐿𝑖,𝑥𝑦, 𝐿𝑖,𝜃 of the 𝑖𝑡ℎ sensor are updated as

𝑃𝑖(𝑘 + 1|𝑘) = 𝑃𝑖(𝑘)⊕
(

𝐷𝑖,𝑥(𝑘) ×𝐷𝑖,𝑦(𝑘)
)

⊕ 2(𝜖𝑓 ), (6)

{

𝐿𝑖,𝑥𝑦(𝑘 + 1|𝑘) = 𝐿𝑖,𝑥𝑦(𝑘)
𝐿𝑖,𝜃(𝑘 + 1|𝑘) = 𝐿𝑖,𝜃(𝑘)

, (7)

where ⊕ denotes the Minkowski sum, 2(𝜖𝑓 ) is an 𝓁2-norm ball of radius 𝜖𝑓 , and

𝐷𝑖,𝑥(𝑘) =
{

𝑑𝑥 ∈ ℝ ∶ 𝑑𝑥 = 𝑑𝑖(𝑣, 𝛿) ⋅ cos (𝜃𝑖(𝑣, 𝛿, 𝑝𝜃)), |𝑣 − 𝑣̂| ≤ 𝜖𝑣, ||
|

𝛿 − 𝛿||
|

≤ 𝜖𝛿 , 𝑝𝜃 ∈ 𝑃𝜃(𝑘)
}

,

𝐷𝑖,𝑦(𝑘) =
{

𝑑𝑦 ∈ ℝ ∶ 𝑑𝑦 = 𝑑𝑖(𝑣, 𝛿) ⋅ sin (𝜃𝑖(𝑣, 𝛿, 𝑝𝜃)), |𝑣 − 𝑣̂| ≤ 𝜖𝑣, ||
|

𝛿 − 𝛿||
|

≤ 𝜖𝛿 , 𝑝𝜃 ∈ 𝑃𝜃(𝑘)
}

,

are the intervals that bound the displacements of the 𝑖𝑡ℎ marker along 𝑋 and 𝑌 axis, respectively. We note that 𝐷𝑖,𝑥, 𝐷𝑖,𝑦 can be
computed using interval arithmetic. Equation (7) reflects the fact that the sensors are stationary.
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5.2 Measurement Update
Given measurements 𝑀𝑙𝑖(𝑘+ 1) = {𝛼𝑖,𝑗}, 𝑖 = 1,… , 𝑚, we first update the uncertainty set 𝐿𝑖,𝜃 , and then we sequentially update
𝐿𝑖,𝑥𝑦 and 𝑃𝑗 . Based on (5), we update the sensor orientation uncertainty set as follows,

𝐿𝑖,𝜃(𝑘 + 1) = 𝐿𝑖,𝜃(𝑘 + 1|𝑘)
⋂

⎛

⎜

⎜

⎝

⋂

𝛼𝑖,𝑗∈𝑀𝑙𝑖

[𝜓𝑖,𝑗 , 𝜙𝑖,𝑗]
⎞

⎟

⎟

⎠

, (8)

where 𝜓𝑖,𝑗 , 𝜙𝑖,𝑗 are derived from each individual measurement 𝛼𝑖,𝑗 as

𝜓𝑖,𝑗 = 𝜓(𝐿𝑖,𝑥𝑦, 𝑃𝑗 , 𝛼𝑖,𝑗) = 𝛽𝑚𝑖𝑛 − 𝛼𝑖,𝑗 − 𝜖𝑤𝑎 ,
𝜙𝑖,𝑗 = 𝜙(𝐿𝑖,𝑥𝑦, 𝑃𝑗 , 𝛼𝑖,𝑗) = 𝛽𝑚𝑎𝑥 − 𝛼𝑖,𝑗 + 𝜖𝑤𝑎 ,

and 𝛽𝑚𝑖𝑛, 𝛽𝑚𝑎𝑥 are defined as follows

𝛽𝑚𝑖𝑛 = min
𝑙𝑖,𝑥𝑦∈𝐿𝑖,𝑥𝑦(𝑘+1|𝑘),
𝑝𝑗∈𝑃𝑗 (𝑘+1|𝑘)

(

atan2(𝑝𝑗,𝑦 − 𝑙𝑖,𝑦, 𝑝𝑗,𝑥 − 𝑙𝑖,𝑥)
)

,

𝛽𝑚𝑎𝑥 = max
𝑙𝑖,𝑥𝑦∈𝐿𝑖,𝑥𝑦(𝑘+1|𝑘),
𝑝𝑗∈𝑃𝑗 (𝑘+1|𝑘)

(

atan2(𝑝𝑗,𝑦 − 𝑙𝑖,𝑦, 𝑝𝑗,𝑥 − 𝑙𝑖,𝑥)
) (9)

with bounded sets 𝐿𝑖,𝑥𝑦(𝑘 + 1|𝑘) and 𝑃𝑗(𝑘 + 1|𝑘). We note that interval [𝜓𝑖,𝑗 , 𝜙𝑖,𝑗] is the possible orientation of the 𝑖𝑡ℎ camera
such that the measurement 𝛼𝑖,𝑗 is plausible, i.e., the measurement noise does not exceed the defined bound 𝜖𝑤𝑎 . Please refer to
Appendix.B for the detailed proof.

Subsequently, with the updated 𝐿𝑖,𝜃(𝑘+ 1) and measurements 𝑀𝑙𝑖(𝑘+ 1), 𝑖 = 1,… , 𝑚, we estimate the uncertainty sets 𝐿𝑖,𝑥𝑦
and 𝑃𝑗 as follows

𝐿𝑖,𝑥𝑦(𝑘 + 1) = 𝐿𝑖,𝑥𝑦(𝑘 + 1|𝑘)
⋂

⎛

⎜

⎜

⎝

⋂

𝛼𝑖,𝑗∈𝑀𝑙𝑖

(

𝑃𝑗(𝑘 + 1|𝑘)⊕𝐿𝑀 (𝑝𝑗 , 𝛼𝑖,𝑗)
)

⎞

⎟

⎟

⎠

, (10)

𝑃𝑗(𝑘 + 1) = 𝑃𝑗(𝑘 + 1|𝑘)
⋂

⎛

⎜

⎜

⎜

⎝

⋂

𝑖=1,…,𝑚,
𝛼𝑖,𝑗∈𝑀𝑙𝑖

((

𝐿𝑖,𝑥𝑦(𝑘 + 1)⊕ 𝑃𝑀 (𝑙𝑖, 𝛼𝑖,𝑗)
))

⎞

⎟

⎟

⎟

⎠

, (11)

where the sets 𝐿𝑀 and 𝑃𝑀 are defined as

𝐿𝑀 (𝑝𝑗 , 𝛼𝑖,𝑗) ∶= {[𝑙𝑥 𝑙𝑦]𝑇 ∈ ℝ2
|

|

|

|

𝛼𝑖,𝑗 − atan2(−𝑙𝑦,−𝑙𝑥) + 𝜃𝑐
|

|

|

≤ 𝜖𝑤𝑎 + 𝛿𝜃𝑐}, (12)

𝑃𝑀 (𝑙𝑖, 𝛼𝑖,𝑗) ∶= {[𝑝𝑥 𝑝𝑦]𝑇 ∈ ℝ2
|

|

|

|

𝛼𝑖,𝑗 − atan2(𝑝𝑦, 𝑝𝑥) + 𝜃𝑐
|

|

|

≤ 𝜖𝑤𝑎 + 𝛿𝜃𝑐}, (13)
with 𝜃𝑐 − 𝛿𝜃𝑐 , 𝜃𝑐 + 𝛿𝜃𝑐 being the minimum and maximum of 𝐿𝑖,𝜃(𝑘 + 1), respectively. In fact, in the coordinate frame with 𝑝𝑗
as the origin, the set 𝐿𝑀 (𝑝𝑗 , 𝛼𝑖,𝑗) represents a feasible region of 𝑙𝑖 for which measurement 𝛼𝑖,𝑗 is plausible. Analogously, in a
reference frame centered at the 𝑖𝑡ℎ camera, the 𝑗𝑡ℎ marker should belong to the set 𝑃𝑀 (𝑙𝑖, 𝛼𝑖,𝑗) given the measurement 𝛼𝑖,𝑗 .

5.3 Robot Body and Orientation Estimation
Before estimating the robot body and orientation, we can exploit a rigid body constraint for two arbitrary markers 𝑝̂𝑖, 𝑝̂𝑗 ∈
{𝑝̂𝑖}𝑖=1,…,𝑛 of the form ‖

‖

‖

𝑝̂𝑖 − 𝑝̂𝑗
‖

‖

‖2
= 𝑟𝑖𝑗 to further reduce the sizes of the uncertainty sets as follows

𝑃𝑖(𝑘 + 1) = 𝑃𝑖(𝑘 + 1) ∩
(

𝑃𝑗 ⊕ 2(𝑟𝑖𝑗)
)

,
𝑃𝑗(𝑘 + 1) = 𝑃𝑗(𝑘 + 1) ∩

(

𝑃𝑖 ⊕ 2(𝑟𝑖𝑗)
)

,
(14)

where 2(𝑟𝑖𝑗) represents a 𝓁2-norm ball of radius 𝑟𝑖𝑗 .
Based on the set propagation in (6), (7), measurement updates in (19), (20), (21) and set refinement by rigid body constraint

in (14), the robot body is over-bounded by a convex envelope 𝑃𝑥𝑦(𝑘 + 1) as shown in Fig. 4 which can be represented as

𝑃𝑥𝑦(𝑘 + 1) ∶= 𝚌𝚘𝚗𝚟𝙷𝚞𝚕𝚕({𝑃𝑖(𝑘 + 1)}𝑖=1,…,𝑛), (15)
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FIGURE 4 Robot body estimation using convex envelope of marker uncertainty sets.

where convHull() is a standard set operation that computes a convex envelope of the given sets. The convex hull computa-
tions can be realized using set computational toolboxes, e.g. CORA46,47,48. Consequently, we can update the robot orientation
uncertainty set as follows

𝑃𝜃 =
⋂

𝑖,𝑗=1,…,𝑛, 𝑖≠𝑗
[𝛽
𝑖𝑗
− Δ𝜃𝑖𝑗 , 𝛽𝑖𝑗 − Δ𝜃𝑖𝑗] (16)

where Δ𝜃𝑖𝑗 is the offset angle between the vector from 𝑝̂𝑖 to 𝑝̂𝑗 and the actual robot orientation 𝑝̂𝜃 , and where

𝛽
𝑖𝑗
= min

𝑙𝑖,𝑥𝑦∈𝐿𝑖,𝑥𝑦(𝑘+1),
𝑝𝑗∈𝑃𝑗 (𝑘+1)

(

atan2(𝑝𝑗,𝑦 − 𝑙𝑖,𝑦, 𝑝𝑗,𝑥 − 𝑙𝑖,𝑥)
)

,

𝛽𝑖𝑗 = max
𝑙𝑖,𝑥𝑦∈𝐿𝑖,𝑥𝑦(𝑘+1),
𝑝𝑗∈𝑃𝑗 (𝑘+1)

(

atan2(𝑝𝑗,𝑦 − 𝑙𝑖,𝑦, 𝑝𝑗,𝑥 − 𝑙𝑖,𝑥)
)

.

5.4 Latent Measurement-to-marker Correspondence
With the assumption of latent measurement-to-marker correspondence, we first deduce the possible correspondence solutions,
then, the proposed method presented in Sec. 5.1-5.3 is changed to use modified set updates in (8), (10) and (11). Consider an
ordered set of measurements 𝑀𝑙𝑖(𝑘 + 1) = {𝛼(𝑞)𝑖,𝑗′(𝑘 + 1)}𝑞=1,…,

|
𝑀𝑙𝑖 |

at time step 𝑘 + 1 by the 𝑖𝑡ℎ sensor that contains ||
|

𝑀𝑙𝑖
|

|

|

≤ 𝑛
numbers of measurements, the superscript (𝑞) indicates the order of each individual measurement in the measurement queue and
each measurement 𝛼(𝑞)𝑖,𝑗′ has a unique correspondence to one of the 𝑛 markers. However, due to the measurement noise in (5) and
the state estimation uncertainties in (6) and (7), it’s possible that one measurement 𝛼(𝑞)𝑖,𝑗′ becomes feasible to multiple markers
(e.g., 𝑗′ ∈ {𝑗∗, 𝑗1, 𝑗2,…}) where the the actual measurement-to-marker correspondence (e.g., 𝑗′ = 𝑗∗) is latent. Furthermore, we
introduce a matrix 𝐶𝑙𝑖 of size ||

|

𝑀𝑙𝑖
|

|

|

×𝑛 to include all possible measurement-to-marker correspondence solutions given estimated
uncertainty sets where 𝐶𝑙𝑖(𝑞, 𝑗) = 1 or 0 indicates the 𝑞𝑡ℎ measurement 𝛼(𝑞)𝑖,𝑗′ ∈ 𝑀𝑙𝑖 can or cannot be a feasible measurement of
the 𝑗𝑡ℎ marker. For instance, suppose we have two measurements for four markers from the 𝑖𝑡ℎ sensor, and we can represent all
possible measurement-to-marker correspondence using a matrix

𝐶𝑙𝑖(𝑘 + 1) =
[

0 0 1 0
1 0 1 1

]

,

which implies the first measurement 𝛼(1)𝑖,𝑗1 can be associated with the third marker, i.e., 𝑗1 = 3, and the second measurement 𝛼(2)𝑖,𝑗2
is a possible measurement corresponding to the first, third and fourth markers, i.e., 𝑗2 ∈ {1, 3, 4}. Based on the definition of
𝐶𝑙𝑖 , we can deduce possible measurement-to-marker correspondence that are self-consistent and mutually exclusive, i.e., only
one entry equals to 1 in each row and column of the matrix 𝐶𝑙𝑖 . Again, in the aforementioned example, there are two possible
measurement-to-marker correspondences as follows

𝐶 (1)
𝑙𝑖
(𝑘 + 1) =

[

0 0 1 0
1 0 0 0

]

, 𝐶 (2)
𝑙𝑖
(𝑘 + 1) =

[

0 0 1 0
0 0 0 1

]

,

and the actual correspondence must be one of these.
To obtain 𝐶𝑙𝑖(𝑘+ 1) from 𝑀𝑙𝑖(𝑘+ 1), consider an individual measurement 𝛼(𝑞)𝑖,𝑗′ ∈𝑀𝑙𝑖(𝑘+ 1), we note that any marker 𝑝𝑗 that

satisfies the following condition is a candidate to measurement 𝛼(𝑞)𝑖,𝑗′ :

𝑃𝑗(𝑘 + 1|𝑘)
⋂

(

𝐿𝑖,𝑥𝑦(𝑘 + 1|𝑘)⊕ 𝑃 ′
𝑀 (𝑙𝑖, 𝛼

(𝑞)
𝑖,𝑗′)

)

≠ ∅, (17)

where
𝑃 ′
𝑀 (𝑙𝑖, 𝛼

(𝑞)
𝑖,𝑗′) ∶= {[𝑝𝑥 𝑝𝑦]𝑇 ∈ ℝ2

|

|

|

|

𝛼(𝑞)𝑖,𝑗′ − atan2(𝑝𝑦, 𝑝𝑥) + 𝜃0
|

|

|

≤ 𝜖𝑤𝑎 + 𝛿𝜃}, (18)
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and 𝜃0−𝛿𝜃, 𝜃0+𝛿𝜃 are the minimum and maximum of𝐿𝑖,𝜃(𝑘+1|𝑘), respectively. This is due to the fact that the marker associated
with the 𝑞𝑡ℎ measurement is necessarily within 𝐿𝑖,𝑥𝑦(𝑘 + 1|𝑘) ⊕ 𝑃 ′

𝑀 (𝑙𝑖, 𝛼
(𝑞)
𝑖,𝑗′). Then, we can obtain 𝐶𝑙𝑖(𝑘 + 1), 𝑖 = 1,… , 𝑚

by examining the criteria in (17) for all measurements obtained from every sensor. We can enumerate through all the possible
unique solutions contained in 𝐶𝑙𝑖(𝑘 + 1) according to the principles of mutual exclusivity and logical self-consistency as in
the aforementioned example. This way, for each 𝑀𝑙𝑖(𝑘 + 1), we are able to generate one or multiple measurement-to-marker
correspondence solutions 𝐶 (𝜇)

𝑙𝑖
(𝑘 + 1), 𝜇 = 1,… , 𝑐, which contain the actual measurement-to-marker correspondence.

Given multiple matching solutions 𝐶 (𝜇)
𝑙𝑖

(𝑘 + 1), 𝜇 ∈ {1,… , 𝑐} for 𝑀𝑙𝑖(𝑘 + 1) = {𝛼(𝑞)𝑖,𝑗′(𝑘 + 1)}, the update procedures for
𝐿𝑖,𝜃(𝑘+ 1) and 𝐿𝑖,𝑥𝑦(𝑘+ 1) are similar to (8), (10) by applying union operation over all 𝐶 (𝜇)

𝑙𝑖
, 𝜇 ∈ {1,… , 𝑐} so that 𝑙𝑖,𝜃 , 𝑙𝑖,𝑥𝑦 are

necessarily within

𝐿𝑖,𝜃(𝑘 + 1) = 𝐿𝑖,𝜃(𝑘 + 1|𝑘)
⋂

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑐
⋃

𝜇=1

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⋂

𝑞, 𝛼(𝑞)
𝑖,𝑗′

∈𝑀𝑙𝑖 ,

𝐶 (𝜇)
𝑙𝑖

(𝑞,𝑗)=1

[𝜓(𝐿𝑖,𝑥𝑦, 𝑃𝑗 , 𝛼
(𝑞)
𝑖,𝑗′), 𝜙(𝐿𝑖,𝑥𝑦, 𝑃𝑗 , 𝛼

(𝑞)
𝑖,𝑗′)]

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (19)

𝐿𝑖,𝑥𝑦(𝑘 + 1) = 𝐿𝑖,𝑥𝑦(𝑘 + 1|𝑘)
⋂

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑐
⋃

𝜇=1

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⋂

𝑞, 𝛼(𝑞)
𝑖,𝑗′

∈𝑀𝑙𝑖 ,

𝐶 (𝜇)
𝑙𝑖

(𝑞,𝑗)=1

(

𝑃𝑗(𝑘 + 1|𝑘)⊕𝐿𝑀 (𝑝𝑗 , 𝛼
(𝑞)
𝑖,𝑗′)

)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (20)

respectively. For update of 𝑃𝑗(𝑘+1), given multiple correspondence solutions𝐶 (𝜇)
𝑙𝑖

(𝑘+1), 𝜇 = 1,… , 𝑐 for𝑀𝑙𝑖 , we suppose there
is no corresponding measurement of the 𝑗𝑡ℎ marker in the actual correspondence 𝐶 (𝜇∗)

𝑙𝑖
, i.e., ∄𝑞 ≤ 𝑛, such that 𝐶 (𝜇∗)

𝑙𝑖
(𝑞, 𝑗) = 1. In

this case, all the measurements in𝑀𝑙𝑖 are irrelevant to the 𝑗𝑡ℎ marker, which is supposed to be filtered out by the algorithm. In our
framework, one can only conclude𝑀𝑙𝑖 certainly contains measurement of the 𝑗𝑡ℎ marker if there is a corresponding measurement
in all correspondence solutions, i.e., 𝑀𝑙𝑖 ∈ 𝑀 𝑗 and 𝑀 𝑗 = {𝑀𝑙𝑖 , 𝑖 = 1,… , 𝑚 | ∀𝜇 ∈ {1,… , 𝑐}, ∃𝑞 ≤ 𝑛, 𝐶 (𝜇)

𝑙𝑖
(𝑞, 𝑗) = 1}.

Consider all 𝑀𝑙𝑖 ∈𝑀 𝑗 , 𝑖 = 1,… , 𝑚, the actual marker position 𝑝̂𝑗 is necessarily within

𝑃𝑗(𝑘 + 1) = 𝑃𝑗(𝑘 + 1|𝑘)
⋂

⎛

⎜

⎜

⎜

⎜

⎝

⋂

𝑖=1,…,𝑚,
𝑀𝑙𝑖∈𝑀

𝑗

⎛

⎜

⎜

⎜

⎜

⎝

𝐿𝑖,𝑥𝑦(𝑘 + 1)⊕
⋃

𝜇=1,…,𝑐,
𝛼(𝑞)
𝑖,𝑗′

∈𝑀𝑙𝑖 , 𝐶
(𝜇)
𝑙𝑖

(𝑞,𝑗)=1

𝑃𝑀 (𝑙𝑖, 𝛼
(𝑞)
𝑖,𝑗′)

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

. (21)

5.5 Sensors with Range and Angle Measurements
With angle and range measurements, the measurement update process of 𝐿𝑖,𝑥𝑦 and 𝑃𝑗 follows Sec. 5.2 and 5.4 where 𝐿𝑀 in
(12), 𝑃𝑀 in (13) and 𝑃 ′

𝑀 in (18) are redefined as

𝐿𝑀 (𝑝𝑗 , 𝛼𝑖,𝑗 , 𝑟𝑖,𝑗) ∶=
⎧

⎪

⎨

⎪

⎩

[𝑙𝑥 𝑙𝑦]𝑇 ∈ ℝ2|
|

|

|

|𝛼𝑖,𝑗 − atan2(−𝑙𝑦,−𝑙𝑥) + 𝜃𝑐| ≤ 𝜖𝑤𝑎 + 𝛿𝜃𝑐
|

|

|

|

𝑟𝑖,𝑗 −
√

𝑙2𝑥 + 𝑙2𝑦
|

|

|

|

≤ 𝜖𝑤𝑟

⎫

⎪

⎬

⎪

⎭

,

𝑃 ′
𝑀 (𝑙𝑖, 𝛼𝑖,𝑗 , 𝑟𝑖,𝑗) ∶=
⎧

⎪

⎨

⎪

⎩

[𝑝𝑥 𝑝𝑦]𝑇 ∈ ℝ2|
|

|

|

|𝛼𝑖,𝑗 − atan2(𝑝𝑦, 𝑝𝑥) + 𝜃𝑐| ≤ 𝜖𝑤𝑎 + 𝛿𝜃𝑐 ,
|

|

|

|

𝑟𝑖,𝑗 −
√

𝑝2𝑥 + 𝑝2𝑦
|

|

|

|

≤ 𝜖𝑤𝑟

⎫

⎪

⎬

⎪

⎭

,

𝑃𝑀 (𝑙𝑖, 𝛼𝑖,𝑗 , 𝑟𝑖,𝑗) ∶=
⎧

⎪

⎨

⎪

⎩

[𝑝𝑥 𝑝𝑦]𝑇 ∈ ℝ2|
|

|

|

|𝛼𝑖,𝑗 − atan2(𝑝𝑦, 𝑝𝑥) + 𝜃0| ≤ 𝜖𝑤𝑎 + 𝛿𝜃,
|

|

|

|

𝑟𝑖,𝑗 −
√

𝑝2𝑥 + 𝑝2𝑦
|

|

|

|

≤ 𝜖𝑤𝑟

⎫

⎪

⎬

⎪

⎭

.
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The proposed method in Sec. 5.1-5.5 has the following property (the proof is available in Appendix B):

Proposition 1. Assume 𝑙𝑖,𝑥𝑦(0) ∈ 𝐿𝑖,𝑥𝑦(0), 𝑙𝑖,𝜃(0) ∈ 𝐿𝑖,𝜃(0), 𝑝̂𝑗(0) ∈ 𝑃𝑗(0) and 𝑖 = 1,… , 𝑚, 𝑗 = 1,… , 𝑛. Then, based on
the set-theoretic method in (6), (7), (19), (20), (21), (14), (15) and (16), the actual robot body 𝑃𝑥𝑦(𝑘) and orientation 𝑝̂𝜃(𝑘) are
confined to the estimated uncertainty sets 𝑃𝑥𝑦(𝑘), 𝑃𝜃(𝑘) for all 𝑘 > 0, i.e., 𝑃𝑥𝑦(𝑘) ⊂ 𝑃𝑥𝑦(𝑘), 𝑝̂𝜃(𝑘) ∈ 𝑃𝜃(𝑘), ∀𝑘 ≥ 0.

Proposition 1 ensures that the proposed method, based on the aforementioned bounded uncertainty/disturbance assumptions,
is able to estimate uncertainty sets that bound the actual robot body and orientation at all times.

5.6 Uncertainty Set Approximation
In this paper, we approximate the uncertainty sets using polytopes instead of boxes7. The benefit of this approximation is that it
reduce the conservativeness while this decrease of conservativeness comes at the cost of the increased computational time and
effort (which is less of a concern for infrastructure-based computations in this paper as compared to onboard computations).
The approximation is illustrated in Fig. 5, where 𝐿𝑀 in (12) and 𝑃𝑀 in (13) can be represented by two circular sectors in the
angular sensor system, e.g., if monocular cameras are used, and two annular sectors in the angular and range sensor system,
e.g., if stereo cameras are used. We use convex polygons to over-bound 𝐿𝑀 and 𝑃𝑀 where 𝜃1,2 = (𝛼𝑖,𝑗 + 𝜃𝑐) ± (𝜖𝑤𝑎 + 𝛿𝜃𝑐) and
𝑟1,2 = 𝑟𝑖,𝑗 ± 𝜖𝑤𝑟 in Fig. 5 are the angle span and range span of the (circular/annular) sectors, respectively.

FIGURE 5 Illustrations of set approximations by convex polygons.

6 SIMULATION AND EXPERIMENTAL RESULTS

In this section, we apply the proposed set-theoretic localization method to an automated valet parking example (Fig. 6). As
illustrated in Fig. 6, a simulated parking space equipped with 21 sensors that are assumed to be stereo cameras is built based
on the Automated Parking Valet toolbox49 in MATLAB. Since the vehicle’s equations of motion in the simulation follow the
kinematics in (3), we assume no unmodeled disturbance in (4), i.e.,𝑤𝑖

𝑓 = 0, and other noise terms are sampled randomly within
their respectively defined bounds. Meanwhile, each camera has a 70◦ field of view and a 20 m maximum measurement range.
We assume the actual measurement-to-marker correspondence is latent to the sensor system. A vehicle of length 𝑐𝑙 = 4 m, width
𝑐𝑤 = 1.8 m and wheelbase 𝓁 = 2.1 m is navigating within the parking space tracking a reference trajectory. We assume that
four identical markers, denoted as 𝑝𝑖, 𝑖 = 1, 2, 3, 4, are attached to the four vertices of the rectangle that is the vehicle’s body.
We apply the proposed method to localize the vehicle body 𝑃𝑥𝑦 and orientation 𝑝̂𝜃 , with a sampling period of 𝑑𝑡 = 0.5 s, and
the results are compared with the ones using the FastSLAM1.

The initialization and the detailed operations during the iterations of the proposed algorithm and the FastSLAM are dis-
cussed in Sec. 6.1. We quantitatively compare the localization performances of our algorithm against the FastSLAM in Sec. 6.2.
Then, the sensitivity analysis results of the proposed algorithm to the system and initialization parameters are discussed in
Sec. 6.3. A simulation example, where the proposed method is shown to mitigate the uncertainties in the sensors’ orien-
tations and positions, is presented in Sec. 6.4. Moreover, the real-world experimental results with an omnidirectional robot
and lidar-based infrastructure sensing system are presented in Sec. 6.5. The code and demonstration videos are available in
https://github.com/XiaoLiSean/SetThmSLAM.

https://github.com/XiaoLiSean/SetThmSLAM
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FIGURE 6 Simulation results of the vehicle tracking a reference trajectory in a parking space.

6.1 Initialization and Iteration of Algorithms
For the initialization of the proposed method, we initialize the uncertainty sets {𝐿𝑖,𝑥𝑦}𝑖=1,…,𝑚, {𝑃𝑖}𝑖=1,…,𝑛 as boxes, {𝐿𝑖,𝜃}𝑖=1,…,𝑚
as intervals centered at their actual states {𝑙𝑖,𝑥𝑦}𝑖=1,…,𝑚, {𝑝𝑖}𝑖=1,…,𝑛, {𝑙𝑖,𝜃}𝑖=1,…,𝑚, respectively. We also note that long term aging
or malicious interference with the sensors could lead to the violation of our assumption, i.e., the sensors’ initial uncertainty sets
𝐿𝑖,𝑥𝑦(0), 𝐿𝑖,𝜃(0) contain the corresponding actual states, in which case regular maintenance and re-calibration is necessary. The
FastSLAM is initialized with 100 particles. Each particle independently stores camera and marker states, i.e., {𝑙(𝑠)𝑖,𝑥𝑦, 𝑙

(𝑠)
𝑖,𝜃}𝑖=1,…,𝑚,

{𝑝(𝑠)𝑖 }𝑖=1,…,𝑛, 𝑠 = 1,… , 100, which are randomly sampled from the aforementioned uncertainty sets, i.e., {𝐿𝑖,𝑥𝑦, 𝐿𝑖,𝜃}𝑖=1,…,𝑚,
{𝑃𝑖}𝑖=1,…,𝑛.

During iterations, we use CORA46,47,48 in MATLAB to implement set operations between polytopes, e.g. Minkowski sums,
intersections of polytopes, etc. In the FastSLAM, we estimate 𝑃𝑥𝑦 using the command enclosePoints() in CORA to compute
a convex polygon that encloses all marker points {𝑝(𝑠)1 , 𝑝

(𝑠)
2 , 𝑝

(𝑠)
3 , 𝑝

(𝑠)
4 }𝑠=1,…,100 stored in the particles. From the snapshot in Fig. 6,

the estimated uncertainty set using the FastSLAM (green solid line) at times fails to contain the entire vehicle body. In contrast,
the proposed method guarantees that the vehicle body is always contained within the estimated set (blue solid line), which is
consistent with Proposition 1.

6.2 Estimation Performance
At time step 𝑘 = 0, for the proposed method, we initialize {𝑃𝑖}𝑖=1,…,𝑛 and {𝐿𝑖,𝑥𝑦}𝑖=1,…,𝑚 as boxes of size 𝑉 (𝑃𝑖) = 1 m2 and
𝑉 (𝐿𝑖,𝑥𝑦) = 0.01 m2, respectively, and {𝐿𝑖,𝜃}𝑖=1,…,𝑚 as intervals of size 𝑉 (𝐿𝑖,𝜃) = 2 deg. The particles in the FastSLAM
randomly sample their states from the initialized boxes and intervals above. The markers’ equations of motion are subject to
noises 𝑤𝑣, 𝑤𝛿 with bounds 𝜖𝑣 = 0.1 m∕s and 𝜖𝛿 = 0.5 deg, respectively. We assume the angle and range measurement noises
of each cameras are bounded by 𝜖𝑤𝑎 = 1 deg, 𝜖𝑤𝑟 = 0.1 m. In addition, two metrics, namely

𝑚1 =
𝑉 (𝑃𝑥𝑦 ∩ 𝑃𝑥𝑦)
𝑉 (𝑃𝑥𝑦)

,

𝑚2 = |

|

max𝑃𝜃 − 𝑝̂𝜃|| + |

|

min𝑃𝜃 − 𝑝̂𝜃|| ,
are used to evaluate the estimation performance of the algorithm. For 𝑚1 ∈ [0, 1], which is used for evaluating vehicle body
estimation performance, the closer the value is to 1, the better is the estimation performance. Similarly for metric 𝑚2 ∈ [0,+∞),
which is used for evaluating vehicle orientation estimation performance, the closer the value is to 0, the better is the estimation
performance.
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FIGURE 7 Comparison of state estimates between the proposed method and the FastSLAM in a single vehicle path around the
parking space: (a) Logical value encoding if the actual vehicle body 𝑃𝑥𝑦 and orientation 𝑝̂𝜃 are in the corresponding estimated
sets. (b) Volume of intersection between estimated and actual vehicle body 𝑉 (𝑃𝑥𝑦 ∩ 𝑃𝑥𝑦) divided by 𝑉 (𝑃𝑥𝑦). (c) Deviation
between the estimated and actual vehicle orientation. The width of the strip represents the size of the estimated uncertainty set.
(d) Sum of |

|

max𝑃𝜃 − 𝑝̂𝜃|| (i.e., the deviation between the maximum in 𝑃𝜃 and the actual vehicle orientation) and |

|

min𝑃𝜃 − 𝑝̂𝜃||
(i.e., the deviation between the minimum in 𝑃𝜃 and the actual vehicle orientation).

As illustrated in Fig. 7a, our algorithm preserves the claimed property in Proposition 1, i.e., both actual vehicle body and
orientation are guaranteed to be contained within the estimated uncertainty sets computed by the proposed method. Furthermore,
as shown in Fig. 7b, the proposed method has a more steady and higher value of 𝑉 (𝑃𝑥𝑦∩𝑃𝑥𝑦)

𝑉 (𝑃𝑥𝑦)
compared with the one using the

FastSLAM. This is attributed to the containment property of the uncertainty sets estimated by the proposed algorithm, while
the uncertainty sets computed by the FastSLAM tend to drift away from the actual ones (in fact, there is a zero overlaps between
the estimated and actual vehicle bodies after 60 steps). Similar results are observed in the orientation estimation, as shown
in Figs. 7c and 7d, the estimates generated by the proposed algorithm (red strip) contain the red dash line, which indicates
𝑝̂𝜃(𝑘) ∈ 𝑃𝜃(𝑘), ∀𝑘 ≥ 0. Meanwhile, the results by the FastSLAM fail to contain it and gradually deviate from the actual
orientation line. Differently from the probabilistic methods, e.g., the FastSLAM, the proposed set theoretic localization method
computes the uncertainty sets via deterministic set-valued motion propagation and measurement update so that no estimation
biases occur, which is easily induced through the weight-based re-sampling procedure in the FastSLAM. This can be further
verified by the observation that the strip by the proposed method distributes more evenly around the actual orientation line
compared to the one by the FastSLAM in Fig. 7c.

6.3 Sensitivity Analysis
In this section, we conduct sensitivity analysis of the proposed algorithm to different sensor noise bounds 𝜖𝑤𝑎 , 𝜖𝑤𝑟 , initialization
uncertainties 𝑉 (𝑃𝑖(0)) and control signal noise bounds 𝜖𝑣, 𝜖𝛿 , and compare the results with the ones using the FastSLAM.
Same metrics used in Sec. 6.2 are adopted here for performance comparison between different algorithms. The corresponding
results are shown in Figs. 8, 9, 10, respectively, where each data point on the solid line is the mean value of the aforementioned
evaluation metrics in Sec. 6.2 and the standard deviation is visualized using shaded strips.

As shown in Figs. 8a and 8c, the proposed algorithm is more robust to the changes in measurement noise bounds in vehicle
body estimation, as the mean value of the metric𝑚1 stays at a steady level while the results from the FastSLAM fluctuate, and the
standard deviation of the proposed method is smaller. Similar results can also be observed in vehicle orientation estimation as
shown in Figs. 8b and 8d. In fact, the smaller standard deviations and less fluctuated mean values with the changing parameters
are due to the fact that our method performs the set estimation in a deterministic way. In contrast, the FastSLAM re-samples
particles at each time step, which increases the randomness and leads to larger standard deviation values. We also note that,
as shown in Figs. 8b and 8d, the mean values from the proposed method are larger than the ones from the FastSLAM, which
implies that the proposed method yields more conservative vehicle orientation estimates to guarantee 𝑝̂𝜃 ∈ 𝑃𝜃 .
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(a) (b)

(c) (d)

FIGURE 8 Sensitivity analysis to measurement noise bounds: (a) vehicle body estimation with different angle measurement
noise bounds 𝜖𝑤𝑎 . (b) vehicle orientation estimation with different angle measurement noise bounds 𝜖𝑤𝑎 . (c) vehicle body esti-
mation with different range measurement noise bounds 𝜖𝑤𝑟 . (d) vehicle orientation estimation with different range measurement
noise bounds 𝜖𝑤𝑟 .

(a) (b)

FIGURE 9 Sensitivity analysis to initial marker position uncertainties 𝑉 (𝑃𝑖(0)): (a) vehicle body estimation with different
𝑉 (𝑃𝑖(0)). (b) vehicle orientation estimation with different 𝑉 (𝑃𝑖(0)).

The sensitivity analysis results to varying initial uncertainty set size of marker position are shown in Figs. 9a and 9b. The
proposed method yields larger (smaller) mean values and smaller standard deviations in the vehicle body (orientation) estimates,
which indicates that the proposed method estimates smaller vehicle body and orientation uncertainty sets compared to the ones
by the FastSLAM. The sensitivity analysis results to varying control signal noise are shown in Figs. 10a and 10c. Though the two
methods have similar performance in terms of the mean values of 𝑚1, the proposed method can provide estimates with smaller
standard deviation values. Again, the results of vehicle orientation estimation by the proposed method, as shown in Figs. 10b
and 10d, are more conservative as a result of enforcing 𝑝̂𝜃 ∈ 𝑃𝜃 . In conclusion, against uncertainties in the system parameters
and initialization conditions, though the proposed algorithm has more conservative vehicle orientation estimates, it is more
robust and ensures that the states are confined to the corresponding uncertainty sets, and it can provide smaller estimation error.
For vehicle body estimates, the proposed method has a similar performance as the FastSLAM against measurement and control
signal noise bounds, while being more robust to marker initialization uncertainties than the FastSLAM.

6.4 Accommodating Sensor Uncertainties
At time step 𝑘 = 0, we initialize the proposed method with the same parameters as in Sec. 6.2. Meanwhile, we increase the
uncertainties in the initial camera positions and orientations. As shown in Fig. 11, we initialize {𝐿𝑖,𝑥𝑦}𝑖=1,…,𝑚 as boxes of size
𝑉 (𝐿𝑖,𝑥𝑦) = 25 m2, and {𝐿𝑖,𝜃}𝑖=1,…,𝑚 as intervals of size 𝑉 (𝐿𝑖,𝜃) = 20 deg. Fig. 11 visualizes the sensors’ and vehicle’s uncer-
tainty sets at four different simulation time steps, 𝑘 = 0, 5, 10, 15. The sizes of the camera orientation and position uncertainty
sets 𝐿𝑖,𝜃 , 𝐿𝑖,𝑥𝑦, 𝑖 = 1, 2, 6, 20 are decreasing significantly as a result of the update process (19),(20) with small uncertainties in
vehicle orientation and body estimation at 𝑘 = 0, 5. However, due to uncertainties in control signals, we observe enlarged vehicle
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(a) (b)

(c) (d)

FIGURE 10 Sensitivity analysis to control signal noise bounds: (a) vehicle body estimation with different velocity noise bounds
𝜖𝑣. (b) vehicle orientation estimation with different velocity noise bounds 𝜖𝑣. (c) vehicle body estimation with different steering
noise bounds 𝜖𝛿 . (d) vehicle orientation estimation with different steering noise bounds 𝜖𝛿 .

FIGURE 11 Schematic of updating sensor uncertainty sets when the vehicle is accurately localized.

body and orientation uncertainty sets from 𝑘 = 0 to 𝑘 = 15. Consequently, the updated uncertainty sets 𝐿𝑖,𝜃 , 𝐿𝑖,𝑥𝑦, 𝑖 = 3, 4, 7
have larger sizes than those of𝐿𝑖,𝜃 , 𝐿𝑖,𝑥𝑦, 𝑖 = 1, 2, 6, 20. Thus, a robot with small orientation and body uncertainty sets is able to
mitigate the uncertainties in the sensor orientations and positions. This property can be applied in the sensor calibration process
where the robot is well-localized using a third-party global positioning system allowing us to calibrate the sensor parameters
and uncertainty sets using the robot localization information.

6.5 Real-world Experiment Results
To verify the applicability of the proposed method, we set up a sensing system to conduct real-time estimation of an omnidirec-
tional robot body that is visualized as a circle of known radius 𝑟 in Fig. 12. As shown in Fig. 12, the localization system consists
of three lidars (RPLidar A1M850). We attach a vertical bar to the center of the robot and use it as the lidar detection marker 𝑝̂1
such that the task is translated to estimate an uncertainty set 𝑃1 that bounds the robot center, i.e., 𝑝̂1 ∈ 𝑃1. Subsequently, we can
estimate the uncertainty set, i.e., 𝑃𝑥𝑦 = 𝑃1⊕2(𝑟), that entirely bounds the robot body 𝑃𝑥𝑦 given the circle radius 𝑟. Meanwhile,
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FIGURE 12 Omnidirectional robot localization using lidar measurements: (Left) Photo of the test field with three RPLidars
(infrastructure based sensors), and an omnidirectional robot attached with a detection marker. (Right) Test results using the
proposed method.

to embed the omnidirectional robot kinematics into the algorithm setting, we define a maximum speed of the robot as 𝑣𝑚𝑎𝑥. Sub-
sequently, in the motion propagation (6), we define 𝜖𝑓 = 𝑣𝑚𝑎𝑥 ⋅ 𝑑𝑡, set 𝐷𝑖,𝑥(𝑘) ×𝐷𝑖,𝑦(𝑘) = ∅, and overestimate the ball 2(𝜖𝑓 )
with a square ∞(𝜖𝑓 ) in the 𝑋 − 𝑌 plane. The measurement update can then be performed following the proposed method.

We attach three visual detection markers to the robot so that we can obtain the actual position of the robot center from
the OptiTrack motion capture system as the ground-truth information. The robot is controlled by user via Arduino platform
where the maximum speed constraint is enforced. The lidar measurements are transmitted to a master computer, where the
proposed localization is performed on MATLAB software, through USB connections and are decoded using 3rd party Python
library 2. The OptiTrack measurements is transmitted to the master computer using a Python SDK 3 provided by the OptiTrack.
Based on the aforementioned kinematics assumption of the robot, we note that the synchronization of the control signal and
lidar measurements can be conveniently achieved by setting 𝜖𝑓 = 𝑣𝑚𝑎𝑥 ⋅ 𝑑𝑡 where 𝑑𝑡 = 1∕𝑓 and 𝑓 is the lidar measurement
transmission frequency.

We first calibrate the range and angle measurement noise bounds as 𝜖𝑤𝑟 = 0.073 m and 𝜖𝑤𝑎 = 8.05◦, respectively. With a
robot trajectory that covers the majority area of the test field, we calibrate the noise bounds as the maximum errors between
measurements from OptiTrack and the ones from lidars. The robot navigates in the test field with a maximum speed of 𝑣𝑚𝑎𝑥 =
0.10 m∕s. As shown in Fig. 12, the proposed set theoretic localization method guarantees that the estimated uncertainty set
(green line) always contains the robot body (circle with a radius of 0.12 m). This result demonstrates the possibility for real-world
implementation of the proposed method. 4

7 CONCLUSION

In this paper, a set-theoretic localization algorithm that relies on the infrastructure-based sensing has been proposed. The theo-
retical properties and computational approaches for this set-theoretic localization method have been established. The theoretical
properties have also been validated through simulations and real-world experiments. Sensitivity analysis to uncertainties in sys-
tem parameters and initialization conditions has been conducted. By comparing with the state-of-the-art FastSLAM algorithm,
the sensitivity analysis results demonstrated that the proposed method was more robust and ensured that the states were confined
to the corresponding uncertainty sets, yet provided smaller estimation errors. Future work will focus on extending the proposed
method to localization problems to a higher-dimensional state space, i.e., position and orientation estimation of aerial vehicles.

2The python library is available at https://pypi.org/project/pyrplidar/
3The OptiTrack SDK is available at https://optitrack.com/software/natnet-sdk/
4A demontration video can be found at https://user-images.githubusercontent.com/58400416/133294083-76bd6d9f-2807-4ab0-ba4e-ffa9abc69788.mp4

https://pypi.org/project/pyrplidar/
https://optitrack.com/software/natnet-sdk/
https://user-images.githubusercontent.com/58400416/133294083-76bd6d9f-2807-4ab0-ba4e-ffa9abc69788.mp4
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APPENDIX

A MARKER KINEMATICS

(a) (b)

FIGURE A1 Illustration of the 𝑖𝑡ℎ marker’s kinematics.

We use the bicycle model to simplify the kinematics of the vehicle as shown in Fig. A1a. Based on the geometric relationship,
we can derive the following equations,

𝑟1 =
𝓁

tan 𝛿
, 𝑟2 =

𝓁
sin 𝛿

,
whereby we can obtain the following quantities,

𝜃0 =
𝑣 ⋅ 𝑑𝑡
𝑟2

, 𝑟3 =
(

𝑟21 + Δ𝓁2
𝑖 − 2𝑟1Δ𝓁 cos(Δ𝜃𝑖 −

𝜋
2
)
)1∕2

.

Then, as shown in Fig. A1b, the displacement of the 𝑖𝑡ℎ marker is equal to

𝑑𝑖(𝑣, 𝛿) = 𝜃0𝑟3 = 𝑣 ⋅ 𝑑𝑡 ⋅

√

(
Δ𝓁𝑖 sin 𝛿

𝓁
)2 + (cos 𝛿)2 −

Δ𝓁𝑖
𝓁

⋅ sinΔ𝜃𝑖 ⋅ sin (2𝛿). (A1)

Moreover, it can be shown that
sin 𝜃1 =

𝑟1
Δ𝓁𝑖

sin (3𝜋
2

− Δ𝜃𝑖 − 𝜃1)

which yields
𝜃1 = atan2

(

−𝓁 cosΔ𝜃𝑖,Δ𝓁𝑖 tan 𝛿 − 𝓁 sinΔ𝜃𝑖
)

.
Afterwards, the angle 𝜃𝑖 of the 𝑖𝑡ℎ marker satisfies

𝜃𝑖(𝑣, 𝛿, 𝑝̂𝜃(𝑘)) = 𝑝̂𝜃(𝑘) + Δ𝜃𝑖 + 𝜃1 −
3𝜋
2

= 𝑝̂𝜃(𝑘) + Δ𝜃𝑖 + atan2
(

Δ𝓁𝑖 tan 𝛿 − 𝓁 sinΔ𝜃𝑖,𝓁 cosΔ𝜃𝑖
)

. (A2)

The kinematics model in (4) can be shown from (A1) and (A2).

B PROOF OF PROPOSITION 1

We assume the following condition
𝑙𝑖,𝑥𝑦(𝑘) ∈ 𝐿𝑖,𝑥𝑦(𝑘), 𝑙𝑖,𝜃(𝑘) ∈ 𝐿𝑖,𝜃(𝑘), 𝑝̂𝑗(𝑘) ∈ 𝑃𝑗(𝑘),

𝑖 = 1,… , 𝑚, 𝑗 = 1,… , 𝑛,
(B3)
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holds for 𝑘 = 0 during initialization. Through the propagation and update of uncertainty sets, if the condition in (B3) being
true for 𝑘 + 1 can be induced from same condition being satisfied at time step 𝑘, the actual states 𝑙𝑖,𝑥𝑦, 𝑙𝑖,𝜃 , 𝑝̂𝑗 stay in the
corresponding uncertainty sets 𝐿𝑖,𝑥𝑦, 𝐿𝑖,𝜃 , 𝑃𝑗 , respectively, by principle of induction. Afterward, it’s convenient to verify that
the robot body and orientation are contained in 𝑃𝑥𝑦, 𝑃𝜃 . For simplification, we provide the proof for the monocular camera that
the stereo case resembles.

B.1 Motion Propagation
First, we examine the propagation process in (6), (7). The displacement vector in (4) can be shown to satisfy the following
property

[

𝑑𝑥
𝑑𝑦

]

=
[

𝑝̂𝑖,𝑥(𝑘 + 1) − 𝑝̂𝑖,𝑥(𝑘)
𝑝̂𝑖,𝑦(𝑘 + 1) − 𝑝̂𝑖,𝑦(𝑘)

]

∈ 𝐷𝑖,𝑥𝑦(𝑘)

where

𝐷𝑖,𝑥𝑦(𝑘) =
{[

𝑑𝑥
𝑑𝑦

]

∈ ℝ2 ∶
[

𝑑𝑥
𝑑𝑦

]

=
[

𝑑𝑖(𝑣, 𝛿) ⋅ cos (𝜃𝑖(𝑣, 𝛿, 𝑝𝜃))
𝑑𝑖(𝑣, 𝛿) ⋅ sin (𝜃𝑖(𝑣, 𝛿, 𝑝𝜃))

]

, |𝑣 − 𝑣̂| ≤ 𝜖𝑣, ||
|

𝛿 − 𝛿||
|

≤ 𝜖𝛿 , 𝑝𝜃 ∈ 𝑃𝜃(𝑘)
}

.

By the definition of 𝐷𝑖,𝑥(𝑘), 𝐷𝑖,𝑦(𝑘), we have 𝐷𝑖,𝑥𝑦(𝑘) ⊂ 𝐷𝑖,𝑥(𝑘) × 𝐷𝑖,𝑦(𝑘). Considering 𝑤𝑖
𝑓 ∈ 2(𝜖𝑓 ) and 𝑝̂𝑗(𝑘) ∈ 𝑃𝑗(𝑘), the

set inclusion 𝑝𝑗(𝑘 + 1|𝑘) ∈ 𝑃𝑗(𝑘 + 1|𝑘) is guaranteed by the Minkowski sum in (6). Given that the sensors are stationary,
𝑙𝑖,𝑥𝑦(𝑘 + 1|𝑘) ∈ 𝐿𝑖,𝑥𝑦(𝑘 + 1|𝑘) and 𝑙𝑖,𝜃(𝑘 + 1|𝑘) ∈ 𝐿𝑖,𝜃(𝑘 + 1|𝑘) follow from (B3) given (7).

B.2 Measurement-to-marker Correspondence
Consider measurements from the 𝑖𝑡ℎ camera. We now show that the proposed method in Sec. 5.4 can guarantee the possible
solutions 𝐶 (𝜇)

𝑙𝑖
, 𝜇 = 1,… , 𝑐, contain the actual one 𝐶 (𝜇∗)

𝑙𝑖
. Given 𝑀𝑙𝑖 = {𝛼(𝑞)𝑖,𝑗∗(𝑘 + 1)}, we suppose the 𝑞𝑡ℎ measurement 𝛼(𝑞)𝑖,𝑗∗

is, in fact, a measurement of the 𝑗∗𝑡ℎ marker. In the reference frame taking 𝑙𝑖,𝑥𝑦 as origin, the coordinates of the 𝑗∗𝑡ℎ marker are
𝑝̂𝑗∗(𝑘 + 1|𝑘) − 𝑙𝑖,𝑥𝑦(𝑘 + 1|𝑘) and satisfy

𝑤𝑖,𝑗∗
𝑎 (𝑘 + 1) = 𝛼(𝑞)𝑖,𝑗∗(𝑘 + 1) − atan2(𝑝̂𝑗∗,𝑦 − 𝑙𝑖,𝑦, 𝑝̂𝑗∗,𝑥 − 𝑙𝑖,𝑥) + 𝑙𝑖,𝜃 ,

by (5) where we omit the notations (𝑘 + 1|𝑘) for simplicity. Since the noise |

|

|

𝑤𝑖,𝑗∗
𝑎 (𝑘 + 1)||

|

≤ 𝜖𝑤𝑎 is bounded and 𝑙𝑖,𝜃(𝑘 + 1|𝑘) ∈
𝐿𝑖,𝜃(𝑘 + 1|𝑘) ⊂ [𝜃0 − 𝛿𝜃, 𝜃0 + 𝛿𝜃], it can be shown from (18) that

𝑝̂𝑗∗(𝑘 + 1|𝑘) − 𝑙𝑖,𝑥𝑦(𝑘 + 1|𝑘) ∈ 𝑃 ′
𝑀 (𝑙𝑖, 𝛼

(𝑞)
𝑖,𝑗∗).

Given 𝑙𝑖,𝑥𝑦(𝑘 + 1|𝑘) ∈ 𝐿𝑖,𝑥𝑦(𝑘 + 1|𝑘) from B.1 and equation above, the actual marker position satisfies

𝑝̂𝑗∗(𝑘 + 1|𝑘) = 𝑙𝑖,𝑥𝑦(𝑘 + 1|𝑘) +
(

𝑝̂𝑗∗(𝑘 + 1|𝑘) − 𝑙𝑖,𝑥𝑦(𝑘 + 1|𝑘)
)

∈ 𝐿𝑖,𝑥𝑦(𝑘 + 1|𝑘)⊕ 𝑃 ′
𝑀 (𝑙𝑖, 𝛼

(𝑞)
𝑖,𝑗∗).

Furthermore, as 𝑝̂𝑗∗(𝑘 + 1|𝑘) ∈ 𝑃𝑗∗(𝑘 + 1|𝑘) from B.1, the nonempty condition in (17) is satisfied, therefore, 𝐶𝑙𝑖(𝑞, 𝑗
∗) = 1.

Same conclusion can be applied to each single measurement in 𝑀𝑙𝑖(𝑘 + 1). Thus, the actual solution 𝐶 (𝜇∗)
𝑙𝑖

is guaranteed to be
presented in the correspondence matrix 𝐶𝑙𝑖(𝑘 + 1). An algorithm examining the logical self-consistency in 𝐶𝑙𝑖(𝑘 + 1) will keep
𝐶 (𝜇∗)
𝑙𝑖

as one of the solutions 𝐶 (𝜇)
𝑙𝑖

, 𝜇 ∈ {1,… , 𝑐}.

B.3 Measurement Update
In the following discussion, we first present the proof with only one measurement-to-marker solution that is actual, then, the
extension to case with multiple correspondences will be presented.
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B.3.1 Update of 𝐿𝑖,𝜃
Given only one solution of𝑀𝑙𝑖(𝑘+1) = {𝛼(𝑞)𝑖,𝑗 (𝑘+1)} that is actual, we can obtain 𝑙𝑖,𝜃(𝑘+1) ∈ [𝜓𝑖,𝑗 , 𝜙𝑖,𝑗] for each measurement
𝛼(𝑞)𝑖,𝑗 (𝑘 + 1) by (5) and (9). Indeed, consider the entire set of measurements, we have

𝑙𝑖,𝜃(𝑘 + 1) ∈
⋂

𝛼(𝑞)𝑖,𝑗 ∈𝑀𝑙𝑖

[𝜓𝑖,𝑗 , 𝜙𝑖,𝑗],

which, combining with 𝑙𝑖,𝜃(𝑘+1) ∈ 𝐿𝑖,𝜃(𝑘+1|𝑘), proves (8). Moreover, if multiple solutions 𝐶 (𝜇)
𝑙𝑖
, 𝜇 = 1,… , 𝑐 are given where

the actual one 𝐶 (𝜇∗)
𝑙𝑖

is contained, the following relationship can also be established

𝑙𝑖,𝜃(𝑘 + 1) ∈
⋂

𝑞, 𝛼(𝑞)
𝑖,𝑗′

∈𝑀𝑙𝑖 ,

𝐶 (𝜇∗)
𝑙𝑖

(𝑞,𝑗)=1

[𝜓𝑖,𝑗 , 𝜙𝑖,𝑗] ⊂
𝑐
⋃

𝜇=1

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⋂

𝑞, 𝛼(𝑞)
𝑖,𝑗′

∈𝑀𝑙𝑖 ,

𝐶 (𝜇)
𝑙𝑖

(𝑞,𝑗)=1

[𝜓(𝐿𝑖,𝑥𝑦, 𝑃𝑗 , 𝛼
(𝑞)
𝑖,𝑗′), 𝜙(𝐿𝑖,𝑥𝑦, 𝑃𝑗 , 𝛼

(𝑞)
𝑖,𝑗′)]

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Given 𝑙𝑖,𝜃(𝑘 + 1) ∈ 𝐿𝑖,𝜃(𝑘 + 1|𝑘) and equation above, we can show 𝑙𝑖,𝜃(𝑘 + 1) ∈ 𝐿𝑖,𝜃(𝑘 + 1) as in (19).

B.3.2 Update of 𝐿𝑖,𝑥𝑦
Given measurement 𝛼𝑖,𝑗 and in a reference frame centered at 𝑝̂𝑗 , the coordinates of the 𝑖𝑡ℎ camera [𝑙′𝑥 𝑙

′
𝑦]
𝑇 = 𝑙𝑖,𝑥𝑦(𝑘 + 1|𝑘) −

𝑝̂𝑗(𝑘 + 1|𝑘) satisfy
atan2(−𝑙′𝑦,−𝑙

′
𝑥) = 𝛼𝑖,𝑗 + 𝑙𝑖,𝜃(𝑘 + 1|𝑘) −𝑤𝑖,𝑗

𝑎 (𝑘 + 1)

by (5). Since the noise |

|

|

𝑤𝑖,𝑗
𝑎 (𝑘 + 1)||

|

≤ 𝜖𝑤𝑎 and 𝑙𝑖,𝜃(𝑘 + 1|𝑘) ∈ 𝐿𝑖,𝜃(𝑘 + 1|𝑘) ⊂ [𝜃𝑐 − 𝛿𝜃𝑐 , 𝜃𝑐 + 𝛿𝜃𝑐], it can be shown that

𝑙𝑖,𝑥𝑦(𝑘 + 1|𝑘) − 𝑝̂𝑗(𝑘 + 1|𝑘) ∈ 𝐿𝑀 (𝑝𝑗 , 𝛼𝑖,𝑗)

from (12). Given 𝑝̂𝑗(𝑘 + 1|𝑘) ∈ 𝑃𝑗(𝑘 + 1|𝑘) from propagation and equation above, the actual camera position satisfies

𝑙𝑖(𝑘 + 1|𝑘) = 𝑝̂𝑗(𝑘 + 1|𝑘) +
(

𝑙𝑖,𝑥𝑦(𝑘 + 1|𝑘) − 𝑝̂𝑗(𝑘 + 1|𝑘)
)

∈ 𝑃𝑗(𝑘 + 1|𝑘)⊕𝐿𝑀 (𝑝𝑗 , 𝛼𝑖,𝑗).
Considering all the measurements, the actual camera position is within the set intersection

⋂

𝛼𝑖,𝑗∈𝑀𝑙𝑖

(

𝑃𝑗(𝑘 + 1|𝑘)⊕𝐿𝑀 (𝑝𝑗 , 𝛼𝑖,𝑗)
)

,

which together with 𝑙𝑖,𝑥𝑦(𝑘 + 1) ∈ 𝐿𝑖,𝑥𝑦(𝑘 + 1|𝑘) proves (10).
Similar to B.3.1, if multiple solutions are given including the actual one, the following relationship can also be established

𝑙𝑖,𝑥𝑦(𝑘 + 1|𝑘) ∈
⋂

𝑞, 𝛼(𝑞)
𝑖,𝑗′

∈𝑀𝑙𝑖 ,

𝐶 (𝜇∗)
𝑙𝑖

(𝑞,𝑗)=1

(

𝑃𝑗(𝑘 + 1|𝑘)⊕𝐿𝑀 (𝑝𝑗 , 𝛼
(𝑞)
𝑖,𝑗′)

)

⊂
𝑐
⋃

𝜇=1

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⋂

𝑞, 𝛼(𝑞)
𝑖,𝑗′

∈𝑀𝑙𝑖 ,

𝐶 (𝜇)
𝑙𝑖

(𝑞,𝑗)=1

(

𝑃𝑗(𝑘 + 1|𝑘)⊕𝐿𝑀 (𝑝𝑗 , 𝛼
(𝑞)
𝑖,𝑗′)

)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Eventually, with 𝑙𝑖,𝑥𝑦(𝑘 + 1) ∈ 𝐿𝑖,𝑥𝑦(𝑘 + 1|𝑘), we can prove 𝑙𝑖,𝑥𝑦(𝑘 + 1) ∈ 𝐿𝑖,𝑥𝑦(𝑘 + 1) as in (20).

B.3.3 Update of 𝑃𝑗
It’s likely that only a subset of cameras have corresponding measurements of the 𝑗𝑡ℎ marker. Similarly, we note that

𝑝̂𝑗(𝑘 + 1) − 𝑙𝑖,𝑥𝑦(𝑘 + 1) ∈ 𝑃𝑀 (𝑙𝑖, 𝛼𝑖,𝑗).
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As 𝑙𝑖,𝑥𝑦(𝑘 + 1) ∈ 𝐿𝑖,𝑥𝑦(𝑘 + 1) from B.3.2, we have

𝑝̂𝑗(𝑘 + 1) ∈ 𝐿𝑖,𝑥𝑦(𝑘 + 1)⊕ 𝑃𝑀 (𝑙𝑖, 𝛼𝑖,𝑗).

Considering 𝑀𝑙𝑖 , 𝑖 = 1,… , 𝑚 that contain measurement of the 𝑗𝑡ℎ marker and 𝑝̂𝑗(𝑘 + 1) ∈ 𝑃𝑗(𝑘 + 1|𝑘) from B.1, the actual
marker position satisfies 𝑝̂𝑗(𝑘 + 1) ∈ 𝑃𝑗(𝑘 + 1) as derived in (11).

Again, given multiple solutions for𝑀𝑙𝑖 , one can only conclude𝑀𝑙𝑖 certainly contains measurements of the 𝑗𝑡ℎ marker if there
is a corresponding measurement in all solutions, i.e., ∀𝜇 ∈ {1,… , 𝑐}, ∃𝑞 ≤ 𝑛, 𝐶 (𝜇)

𝑙𝑖
(𝑞, 𝑗) = 1. Given such a set of measurements

𝑀𝑙𝑖 ∈𝑀 𝑗 , we notice that

𝑝̂𝑗(𝑘 + 1) − 𝑙𝑖,𝑥𝑦(𝑘 + 1) ∈ 𝑃𝑀 (𝑙𝑖, 𝛼𝑖,𝑗) ⊂
⋃

𝜇=1,…,𝑐,
𝛼(𝑞)
𝑖,𝑗′

∈𝑀𝑙𝑖 , 𝐶
(𝜇)
𝑙𝑖

(𝑞,𝑗)=1

𝑃𝑀 (𝑙𝑖, 𝛼
(𝑞)
𝑖,𝑗′).

Given 𝑙𝑖,𝑥𝑦(𝑘 + 1) ∈ 𝐿𝑖,𝑥𝑦(𝑘 + 1) from B.3.2, we have

𝑝̂𝑗(𝑘 + 1) ∈ 𝐿𝑖,𝑥𝑦(𝑘 + 1)⊕
⋃

𝜇=1,…,𝑐,
𝛼(𝑞)
𝑖,𝑗′

∈𝑀𝑙𝑖 , 𝐶
(𝜇)
𝑙𝑖

(𝑞,𝑗)=1

𝑃𝑀 (𝑙𝑖, 𝛼
(𝑞)
𝑖,𝑗′).

Consider all 𝑀𝑙𝑖 ∈𝑀 𝑗 , 𝑖 = 1,… , 𝑚 and 𝑝̂𝑗(𝑘 + 1) ∈ 𝑃𝑗(𝑘 + 1|𝑘), the actual marker position 𝑝̂𝑗(𝑘 + 1) ∈ 𝑃𝑗(𝑘 + 1) as derived
in (21).

B.4 Robot Body and Orientation Estimation
Points that are at most 𝑟 distance away from 𝑝𝑖 locate in 𝑃𝑖 ⊕ 2(𝑟). If ‖

‖

‖

𝑝̂𝑖 − 𝑝̂𝑗
‖

‖

‖2
= 𝑟𝑖𝑗 , the actual marker position 𝑝̂𝑗 ∈

𝑃𝑖 ⊕ 2(𝑟𝑖𝑗). Thereby, the set refinement by rigid body constrains in (14) preserves the property that 𝑝̂𝑗 ∈ 𝑃𝑗(𝑘 + 1). Finally,
given the assumption of the robot body being in the convex hull of the markers, 𝑃𝑥𝑦 in (15) over-bounds the entire robot body
𝑃𝑥𝑦, i.e., 𝑃𝑥𝑦 ⊂ 𝑃𝑥𝑦. The proof of the actual robot orientation 𝑝̂𝜃 ∈ 𝑃𝜃 follows a similar procedure as in B.3.1.
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