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Abstract: Intelligent multi-purpose robotic assistants have the potential to assist nurses with a variety
of non-critical tasks, such as object fetching, disinfecting areas, or supporting patient care. This paper
focuses on enabling a multi-purpose robot to guide patients while walking. The proposed robotic
framework aims at enabling a robot to learn how to navigate a crowded hospital environment while
maintaining contact with the patient. Two deep reinforcement learning models are developed; the
first model considers only dynamic obstacles (e.g., humans), while the second model considers static
and dynamic obstacles in the environment. The models output the robot’s velocity based on the
following inputs; the patient’s gait velocity, which is computed based on a leg detection method,
spatial and temporal information from the environment, the humans in the scene, and the robot. The
proposed models demonstrate promising results. Finally, the model that considers both static and
dynamic obstacles is successfully deployed in the Gazebo simulation environment.

Keywords: robotic walking assistant; reinforcement learning; patient–robot co-navigation; shared
control; crowd navigation

1. Introduction

The nursing profession in the United States is critical to the provision of healthcare
services and constitutes a large segment of the healthcare workforce. According to the
US Bureau of Labor Statistics, the demand for nurses is expected to increase by 9% from
2020 to 2030 [1], driven by the increasing incidence of chronic diseases and the aging
population’s need for healthcare services. The health and wellness (both physical and
mental) of healthcare professionals, including nurses [2], are crucial to ensuring safe and
high-quality healthcare delivery. A recent study [3] conducted across six countries high-
lights the relationship between nurse burnout and perceptions of care quality, emphasizing
the importance of addressing the well-being of nurses in the healthcare system. Nurse
burnout is a widespread phenomenon that can lead to decreased energy, increased fa-
tigue, and a decline in patient care. According to Mo et al. [4], the COVID-19 pandemic
has only exacerbated the situation, with nurses facing increased workloads, exposure to
the virus, and the emotional stress of caring for patients in a high-stakes environment.
Nurses shoulder a multitude of responsibilities, including the evaluation of a patient’s
condition, documentation of medical histories, vital signs and symptoms, administration
of treatments, collaboration with physicians and other healthcare practitioners, transfer
or ambulation of patients, especially during post-surgery, and procurement of medical
supplies. Addressing nurse burnout is essential to ensure the sustainability of the nursing
workforce and to maintain safe and high-quality healthcare delivery. This can be achieved
through a range of interventions, including providing adequate staffing levels, promoting
work–life balance, and using robots. The utilization of robots for routine tasks, such as
procurement of items or patient ambulation, allows for a reduction in the workload of
nurses and enables them to concentrate on tasks that require their specialized knowledge
and skills.
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In recent years, to assist nurses with some of their routine tasks, with the advances
in robotic technology and artificial intelligence (AI), robots have the potential to perform
some of their routine tasks, which allows nurses to focus on actual patient care. In response
to the COVID-19 pandemic, various robotic systems have been introduced to enhance
hospital logistics, including disinfection of spaces and patient care [5,6]. These systems
include robots that perform delivery tasks and object retrieval, reducing the need for human
interaction in potentially contaminated areas and freeing up medical personnel to focus
on more critical tasks [7], rehabilitation [8,9], walking assistance [10], and monitoring vital
signs [11] that are essential components of patient care, which help improve patient out-
comes and support the healing process. However, most hospitals cannot afford to acquire
and assign specialized robots for each task. A unified robotic system that could cover a
large range of hospital tasks is a potential solution. Accordingly, following the example
of industrial applications utilizing multi-purpose robotic systems [12,13], a commercially
available mobile manipulator could be reconfigured to assist nurses in a variety of tasks.

Our prior work [14–17] has presented a multi-purpose intelligent nursing assistant
called MINA, which is a commercially available mobile manipulator and can assist with
fetching objects, gait monitoring, and the possibility of teleoperation by the nurses. This
paper aims to add additional functionality to MINA by enabling the robot to assist a
patient in navigating safely in a hospital. It is assumed that the patient is able to walk
with minimum support (e.g., a cane or a nurse holding their hand) and is required to
walk for rehabilitation purposes with supervision (e.g., after surgery). However, hospital
environments can be busy and tumultuous places, and their hallways can be crowded
spaces filled with people moving around or sitting, chairs, carts, medical equipment, beds,
etc. Therefore, a robotic walking assistant (RWA) must avoid collisions with humans or
objects at all costs while maintaining physical contact with the patient that is assisted
during walking. Naturally, the patient–robot co-navigation in these crowded environments
can be a very challenging task.

Reinforcement learning (RL) [18] is a powerful technique for training deep learning
models, particularly in scenarios where the model must learn to navigate a complex
environment with obstacles. The key advantage of RL is its ability to identify the optimal
path to take in the presence of obstacles and to generalize in unseen scenarios that may
arise in a real-world environment. The ability to generalize is crucial for ensuring that the
trained model can effectively navigate and respond to new and dynamic obstacles, making
it a preferred method for training deep learning models in real-world applications.

This paper aims to utilize a multi-purpose mobile manipulator to assist patients while
walking by safely guiding them through crowded hallways. The contribution of this paper
is a proposed deep reinforcement learning-based framework that enables safe patient–robot
co-navigation, including static and dynamic obstacle avoidance, by utilizing the speed
of the patient’s gait and the information of the environment. The proposed framework
is evaluated in a simulated environment, and the extended framework is successfully
deployed in Gazebo, which is a realistic simulation environment. The frameworks and the
environment are based on an open-source robot operating system (ROS) [19].

The rest of the paper is organized into the following sections; Section 2 discusses the
related work, Section 3 defined the problem, Section 4 the proposed system for patient–robot
co-navigation, and Section 5 presents and discusses the results. Section 6 concludes the work
and discusses future directions of research.

2. Related Work

2.1. Robotic Walking Assistants

There are several types of robotic walking assistants (RWAs), such as wearable robots
that provide gait [20,21] or balance [22,23] rehabilitation or non-wearable robotic systems
that provide support during walking [24,25]. This paper focuses on RWAs that are not
wearable. RWAs can have different designs, such as smart canes or walking frames, and
different capabilities (e.g., obstacle avoidance, gait analysis, etc.).
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Abubakar et al. [26] proposed a walking assistant robot called adaptive robotic nursing
assistant (ARNA), which is a service robot that helps patients with day-to-day activities,
such as walking and sitting. It comprises an armbar to sense torque and support the
patient, a seven-degree-of-freedom (DOF) arm, and a multitude of sensors for obstacle
detection, such as an ultrasonic sensor, a LIDAR, and an RGB-Depth (RGB-D) camera. As
an additional safety measure, the robot is equipped with a bump sensor to abruptly stop
when it hits an obstacle. One of ARNA’s tasks is to support a person while walking behind
the robot. Although ARNA is able to detect nearby obstacles, it is not designed to navigate
around them and relies on the patient to guide the robot around the obstacle. Ramanathan
et al. [27] proposed a visual perception pipeline that can help patients cross the obstacle, but
their pipeline mainly focuses on the task of crossing rather than maneuvering the obstacles.

Another assistive robot is called Mobile Collaborative Robotic Assistant (MOCA) [12]
and comprises an omnidirectional robot with a 7-DOF robotic arm along with a soft hand
as an end effector. MOCA is a collaborative robot, and its primary purpose is to collaborate
with humans on industrial work, such as drilling, tasks that require teleoperation, or
co-manipulation of objects. MOCA has been used as a platform to improve standing
balance performance while measuring body posture [28]. However, the system has not
been used for walking assistance. Moreover, Chalvatzaki et al. [24] proposed a custom-
made intelligent robotic rollator called iWalk, which uses LIDAR for gait detection and
an RGB-D camera for detecting if the patient loses balance and falls to the ground. While
iWalk calculates the patient’s gait parameters and provides extra functionality for patient
fall detection, it is still not designed to detect obstacles and maneuver the patient around
them.

In the previous examples, it is obvious that the human is mainly in control of the robot,
and the robot is compliant with the user’s commands. The systems presented so far focus
on supporting the patient and rely on human guidance to avoid obstacles. This may burden
the patient as they have to focus on their walk and, at the same time, guide the robot around
obstacles. However, to achieve an intuitive interaction between the robot and the patient,
a shared navigation approach is essential. This means that whenever the robot detects
an obstacle (static or dynamic), it should gently steer the patient away from the obstacle
without losing contact with the patient. This behavior can be called shared control between
the patient and the robot. In order to avoid static obstacles and support the patient at the
same time, Garcia et al. [29] proposed the use of a commercially available socially assistive
robot called Pepper, which is a humanoid robot. The Pepper robot is equipped with touch
sensors on the left and right shoulders that sense the pressure applied by the patient and
move forward. In addition, the Pepper robot comes with built-in LIDAR, infrared, and
sonar sensors used for obstacle avoidance by reducing the robot’s reliance on the user’s
input. The system is able to avoid static obstacles but does not take into account dynamic
obstacles, e.g., humans in the environment. Song et al. [30] proposed a shared control
strategy for walking assistance for a robot. The strategy is implemented on a custom-made
prototype robot that consists of a torque sensor at the arm level to sense the steering input
of the patient and two LIDARs just above the ground level for gait estimation and obstacle
avoidance. In this control scheme, the inputs from both LIDARs and the torque sensor are
used to generate the velocity command for the robot (output), which actively guides the
user in a direction that avoids collisions.

The presented robots focus on estimating gait parameters and adjusting their speed to
the human walking speed and also sensing the static obstacles in the environment. Some of
the work also focuses on avoiding static obstacles. However, in crowded environments,
such as hospitals, humans are present, and they move around. Therefore, it is important for
an RWA to have the ability to detect static and dynamic obstacles and to safely navigate in
space without causing any harm and, at the same time, support the patient during walking.
This is a very challenging but important task that the proposed research addresses. The
following subsection focuses on crowd navigation methods for mobile robots.
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2.2. Crowd Navigation Using Reinforcement Learning

Safe and efficient navigation through human crowds is essential for RWAs in hospitals
to move from one point to another while assisting the patients. Reinforcement learning
(RL) techniques have been successfully used in a variety of tasks obstacle avoidance tasks.
Wenzel et al. [31] used RL to avoid obstacles, such as walls, using the images from the
camera as input. RL techniques have been used to navigate a robot through crowded
workspaces [32]. Choi et al. [33] presented a study where they deployed an RL algorithm
called soft actor–critic algorithm (SAC) [34] on a large mobile base robot, SR7, in a real-world
setting to navigate both static and dynamic obstacles. To enhance the robot’s navigational
capabilities, global path planners were integrated into the system. The efficacy of the
developed SAC algorithm was compared with conventional path planning approaches,
such as the timed elastic band (TEB) [35] and dynamic window approach (DWA) [36]. The
study revealed that the SAC algorithm demonstrated superior generalization abilities in
unfamiliar environments compared to traditional path-planning techniques. This finding
underscores the need to explore obstacle avoidance using RL algorithms further. To train
a reinforcement learning algorithm to find an optimal path through a crowded space, a
simulation environment is required.

Biswas et al. [37] proposed a simulation environment based on real-world datasets,
UCY [38] and ETH [39], which are collected from a group of pedestrians at different loca-
tions. Furthermore, the authors recreate virtual surroundings that match the actual physical
sites where pedestrian data were collected. Biswas et al. [37] proposed a simulation envi-
ronment based on real-world datasets, such as UCY [38] and ETH [39], which are collected
from a group of pedestrians at different locations. Moreover, the authors recreate virtual
surroundings corresponding to the physical sites where pedestrian data were gathered.
Similarly, Chen et al. [40] proposed another easy-to-use RL simulation environment that
uses optimal reciprocal collision avoidance (ORCA) [41] to simulate the walking pattern
of people in a crowd. Chen et al. also proposed an attention-based deep reinforcement
learning method, called deep V-learning, for efficiently navigating the robot through the
crowd. The deep V-learning method models human-to-human interactions that are near
the robot and human–robot interactions using a self-attention mechanism for better ma-
neuverability. The mobile robot is able to move from one point to the next while avoiding
humans (dynamic obstacles). However, in the V-learning model, the robot agent cannot
handle static obstacles and freezes. To tackle this issue, Liu et al. [42] proposed a framework
called social obstacle avoidance using deep reinforcement learning (SOADRL) that enables
a mobile robot to maneuver the crowd. SOADRL uses static maps that explicitly specify the
position of static obstacles as an additional input. SOADRL only considers 2–7 pedestrians
in the simulation when static obstacles are present, and the success rate is 60% for a mobile
robot with a limited field of view (FOV) of 72 degrees. In addition, the deep V-learning
and SOADRL methods focus on small mobile robots that are easy to maneuver and do
not consider any human–robot interaction requiring physical contact, e.g., walking with
a patient.

Another RL-based crowd navigation technique (called DS-RNN, and based on spa-
tiotemporal graphs (St-graphs)) was proposed by Liu et al. [43], which outperformed
many open-sourced crowd navigation strategies. St-graphs are graph-based methods for
representing spatiotemporal high-level structures. The graph’s nodes typically represent
input features (e.g., human body key points, location of objects, etc.), and the edges capture
the spatiotemporal interactions between the features. The st-graphs have been used to
model a variety of human activity detection and anticipation. For example, Jain et al. [44]
used St-graphs to anticipate human actions, such as drinking, in a series of human–object
interactions. Vemula et al. [45] proposed the use of st-graphs for modeling crowd behavior
without any robotic interactions. The authors consider the influence of each pedestrian over
all the pedestrians both in the vicinity and far away. Similarly, Liu et al. [43] used the same
St-graphs approach to train a model, which is then used by a robot to anticipate the crowd
movement and navigate the crowd safely. St-graph has factors that observe node and edge
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features at each time step and perform some computation on these features [44]. Each
factor is represented by a recurrent neural network (RNN). The structure of the St-graph is
modeled in such a way that the combined RNN network (node and edge RNNs) captures
the relationship between spatial and temporal features to predict the optimum velocity
the robot should take to reach the goal. For crowd navigation, the spatial features are the
current locations of each pedestrian/human, and the temporal feature is the robot’s velocity.
This technique outperforms deep V-learning in success rate, defined as the percentage of the
number of times the robot successfully reaches the destination. Furthermore, the authors
note that this method scales well with an increasing number of humans. However, this
method does not take into account static obstacles and does not consider any human–robot
interaction requiring physical contact.

All of the aforementioned RL techniques focus on mobile robots without direct physical
contact with a human. However, being close to the patient and supporting the patient are
crucial aspects of a walking assistant robot. In addition to that, all of the RL techniques
only limit their human interactions by training their RL algorithms not to cross the person’s
boundary radius. Simply not crossing the person’s boundary is not enough; the robot
should also adhere to social norms while passing by people. To address this issue, Joosse
et al. [46] focus on specifying explicit limits on interpersonal distance by conducting
numerous social experiments where a robot approaches humans. The humans were given
a survey to fill up to express their comfort/discomfort levels. The authors conclude in
their research that anywhere between 0.0 and 0.45 m is a personal boundary between the
humans, and the robot can pass anywhere between 1.2 and 3.6 m from the humans without
raising their discomfort levels. Furthermore, the authors also state that a slow-approaching
robot has a speed of 0.4 m/s and a fast-approaching robot has 1 m/s. From this paper, it
can be concluded when the robot navigates the crowd, the robot’s speed should be low
while passing by a human in the crowd.

The robots discussed in this section focus on a single task from a set of multiple char-
acteristics that an autonomous walking assistant robot should possess. For example, some
robots focus on gait tracking and static obstacle tracking, and some on crowd navigation.
For crowd navigation, the mobile robots do not include any physical contact with a human
guiding them in the crowd. However, both gait tracking and crowd navigation are essential
for an RWA that could be used in hospitals. The robot walking assistant should always
support the patient while walking and, at the same time, avoid static obstacles (e.g., sofas,
beds, chairs, etc.) and also dynamic obstacles (e.g., crowds) to be able to work safely in hos-
pitals. To the best of our knowledge, the presented work addresses the gap between robotic
crowd navigation and robotic walking assistance. The next section presents the problem
statement and the proposed architecture that encompasses all the essential characteristics
of an RWA.

3. Problem Statement

The hypothesis and significance of this research are that developing an intelligent
multi-purpose robotic assistant, which can support and guide patients while walking, as
well as help them maneuver obstacles in a crowded hospital environment using deep
reinforcement learning models, could be a promising solution to assist nurses with non-
critical tasks and enhance patient care. The primary objective of this work is to explore the
development of a model architecture capable of providing adequate support to patients
during walking tasks while also facilitating their ability to navigate through obstacles.

In patient–robot co-navigation, the goal is to guide a patient from one location to
another while avoiding static obstacles, such as furniture, and navigating through crowds.
The patient’s gait velocity in x- and y-directions, denoted as vt

p,x and vt
p,y at time t, respec-

tively, can be affected by noise. To ensure safe navigation, a parameterized function must
be created to output the optimal velocity for the robot based on the current environmental
state and the patient’s gait velocity. The function should take into account the locations of
the patient and obstacles (both static and dynamic), as well as the patient’s gait velocity.
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The robot should stop when the patient stops and guide the patient’s ambulation when in
close proximity, safely leading the patient to the destination while avoiding collisions with
any obstacles.

The representation of the position of the individuals in a crowd can be described
mathematically as (pt

cn,x, pt
cn,y), where n represents the index of the nth human. The ve-

locity of the robot is represented by vt
r,x, vt

r,y, and its heading angle is represented by βt
r.

Information on the static obstacles in the environment can be obtained using a LIDAR
sensor, which can be encoded into an array

⋃nL
i=1 Lt

i , where nL is the number of obstacles
and can be calculated by dividing the LIDAR’s angular coverage by its angular resolution.
A multi-output parameterized function can be defined to model the relationship between
the crowd, the robot, and the obstacles, as shown below in Equation (1):

vt
r,x, vt

r,y = fθ(
n
⋃

i=1

(pt−1
ci,x − pt−1

rx , pt−1
ci,y − pt−1

ry ),
nL
⋃

i=1

Li, vt−1
p,x , vt−1

p,y , vt−1
r,x , vt−1

r,y , βt
r) (1)

The function fθ can be learned using reinforcement learning, where θ represents the set
of parameters of the function. To handle the complexity of this massive model with multiple
inputs, the learning process is divided into two stages. In the first stage, a reinforcement
learning model, referred to as Model V1, is trained to consider only the dynamic obstacles.
In the second stage, another reinforcement learning model with a similar architecture,
referred to as Model V2, is trained to incorporate both dynamic and static obstacles. Finally,
Model V2 is deployed in a realistic simulation environment Gazebo to test Model V2. For
the development of the system, it is assumed that the patient can ambulate independently
(does not fall) yet requires minimal assistance from the healthcare professionals, i.e., nurses.
The manual muscle testing (MMT) [47] scale is a widely recognized method for assessing
the strength of various muscle groups in patients. This scale assigns a numerical rating
to each muscle group, ranging from 0 to 5, based on the patient’s ability to move against
resistance. A rating of 4/5 indicates that the muscle group in question is capable of
movement against resistance but with less than full strength. In the context of robotic
assistance by the proposed RWA for patients, a minimum MMT score of 4/5 for both
the arms and legs is recommended, but its usage must depend on the discretion of the
physician. This can be considered one of the limitations. Therefore, the robot is intended to
serve as additional support for individuals who need aid while walking.

4. Proposed System for Patient–Robot Co-Navigation

This section presents the proposed system for the patient–robot co-navigation and
its architecture. The main task of the system is to help ambulate the patient in a crowded
environment, e.g., a hospital. The proposed system is considered an RWA as it provides
assistance during the patient’s walking; the system supports the patient in avoiding static
and dynamic obstacles.

The hardware setup of the RWA, shown in Figure 1, consists of an omnidirectional
mobile base (Clearpath Ridgeback) and a 7-DOF robotic arm (Franka Emika Panda). The
mobile base is equipped with two LIDARs, i.e., one on the front and one on the rear of the
mobile base. An RGB-D camera (Intel Realsense D435i) is mounted on the mobile base. The
mobile base and robotic arm can be substituted with any other robot of choice equipped
with similar sensors.

An overview of the proposed architecture for the RWA system is shown in Figure 2.
First, the RWA system detects the patient’s legs and estimates their position. It is assumed
that the patient walks at the rear of the robot. The robotic arm is configured and locked in a
specific manner, as depicted in Figure 1, to facilitate patient support. This configuration is
designed to ensure that the robot remains stable and secure while providing the necessary
assistance to the patient. If the patient is close to the rear of the robot and starts walking,
the RWA detects and estimates the leg’s position and then estimates the gait velocity.
Subsequently, the RWA starts moving with the same velocity as the patient’s gait velocity.
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At the same time, the data from the RGB-D camera and front LIDAR are used to perceive
the environment by recognizing static (e.g., chairs, beds, tables, walls) and dynamic (e.g.,
humans, moving objects) obstacles. The data from environmental perception, the patient’s
gait parameters, and the robot’s parameters (current robot pose and robot’s goal pose) are
the inputs to a reinforcement learning (RL) module. The RL module outputs the robot’s
velocity, factoring in the shared control properties between the robot and the patient. It is
assumed that the final goal of the patient is known to the robot. For example, the patient
may need to perform the 3 m and 6 m walk tasks defined by a nurse or a therapist. Since
the task is known to the robot and the patient, both will require to work together to reach
the goal. In the consequent subsections, the patient’s leg detection, gait velocity estimation,
and shared control in crowd environments using RL are presented in detail.

Intel Realsense D435i

Clearpath Ridgeback

mobile base

Franka Emika Panda

Inbuilt Front LIDARInbuilt Rear LIDAR

Figure 1. The hardware setup of the multi-purpose robotic system.

Reinforcement Learning

✔
✖

✖

Destination

Patient

Human Static 

Obstacle

Figure 2. Overview of the patient–robot co-navigation framework.

4.1. Leg Detection and Gait Velocity Calculation

The first step of our system is to detect the legs of the patient using the data from the
rear laser scanner and then to calculate the gait velocity of the patient. Our prior work [15]
presented a convolutional neural network (CNN)-based method to detect the legs. This
method uses a U-Net architecture [48], which is a fully convolutional network developed
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predominantly for image segmentation tasks and works with fewer training data. The
data from the laser scanner are transformed into a binary grayscale image, and it is called
the occupancy grid image (shown in Figure 3a). The occupancy grid includes critical
information about the environment, such as the patient’s legs, walls, and other obstacles.
The U-Net is trained on leg segmentation from the dataset provided by Aparicio et al. [49],
which consists of laser scanner data and segmented leg positions. The U-Net segments all
the legs in the scene, but only the one closer to the robot’s rear is considered the patient. Let
the position of the segmented legs be the vector Lp with respect to the coordinate system
of the laser scanner {L} (shown in Figure 1). It is important to compute the position of the
segmented legs with respect to the coordinate system of the robot’s base {R} (shown in
Figure 1). The transformation matrix R

L T of the coordinate system {L} with respect to the
coordinate system {R} is known. The position of the segmented legs Rp with respect to the
coordinate system {R} is calculated by Equation (2).

Rp = R
L T · Lp (2)

The final step is to use the position of the legs calculated in the robot’s coordinate
frame as input to an extended Kalman filter [50], which outputs the patient’s gait velocity.
The patient’s gait velocity is then used by the reinforcement learning method, which is
discussed in the next subsection.

(a) Occupancy Grid (b) Legs segmented in Occupancy Grid
from (a)

Figure 3. (a) Occupancy grid from LIDAR data; (b) leg detection from our prior work (right) [15].

4.2. Shared Control in Crowded Environments Using Reinforcement Learning

4.2.1. Shared Control Considering Only Dynamic Obstacles (Model V1)

Shared control between the patient and the robot is crucial for two reasons: (i) the robot
needs to adjust its speed according to the patient’s gait velocity to maintain interaction
with the patient, and (ii) the robot needs to navigate the patient safely through the crowded
environment. In the proposed work, RL is used to achieve shared control between the robot
and the human. RL methods are already used to enable robots to navigate, as mentioned in
Section 2.2; however, the robots do not have physical interactions with humans.

In the presented work, a deep RL architecture is proposed, which extends the crowd
navigation capabilities of the network architecture proposed by Liu et al. [43], where
st-graph is used, and each factor of st-graph observes node and edge features at each
time step. Figure 4 shows our network architecture and consists of four recurrent neural
networks (RNNs), where each is a factor graph representation of the st-graph; (i) crowd
spatial edge RNNc, (ii) patient temporal edge RNNp, (iii) robot temporal edge RNNr, and
(iv) node RNNn.
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The RNNc grasps the spatial interactions between each detected human in the crowd
and the robot. The spatial interactions at a particular time (t) can be represented as a
list of distances from each human to the robot, which can be represented as

⋃n
i=1(pci,x −

prx, pci,y − pry), where (pcn,x, pcn,y) are the 2D coordinates of the nth human with respect
to the robot’s base coordinate system (pr,x, pr,y). The RNNr captures the relationship
between the temporal dependency of the robot’s velocity and the spatial crowd. To learn
the temporal dependency, the temporal features of the robot, which are the corresponding
location and velocities of the robot in the x and y direction, denoted by (pr,x, pr,y, vr,x, vr,y),
are used as input so that the RNN can learn to adjust its trajectory from the initial starting
point to the goal. The goal coordinates are denoted by (gr,x, gr,y); the radius and heading
direction of the robot are denoted by ρrobot and θ, respectively. The ρrobot in our case is set
to 1.21 m, which is the radius of the Clearpath Ridgeback robot, 0.96 m + 0.25 m, which is
the boundary of the robot. The RNNp captures the temporal dynamics between patient
gait velocity and the robot. In order to implement the shared control between the patient
and the robot, this RNN takes the patient’s gait velocity in x and y directions, which can be
represented as (vp,x, vp,y).

Robot
Temporal
Features

Patient
Temporal 
Features

Robot Node
Features

Attention
Mechanism 

V(st)

vr,x, vr,y

Crowd Spatial
features

Concatenation 

Dot product

Figure 4. Proposed framework for the patient–robot co-navigation in environments with dynamic
obstacles (Model V1).

The outputs of RNNr, RNNc, and RNNp are required to be combined in such a way
that the importance of each RNN output at that particular instance is known. For example,
if the patient is close enough to the robot but very close to another human, at that instance,
the highest priority of the robot should be to move away from the human. Similarly, if
the humans are far from the robot but the robot is moving away from the patient at that
instance, the robot should decrease its velocity so that the patient will not lose contact with
the robot. An attention mechanism is used to teach the model to recognize these traits
from the inputs and adjust accordingly to the robot’s velocity. The attention mechanism
proposed by Vaswani et al. [51] is used in this framework. For humans in the environment,
let the output of the RNNc at a given time t be [st

c1
, st

c2
, st

c3
, . . . , st

cn
], where ci denotes the ith

human. Similarly, let the output of the RNNp be st
p at a given time t. Vt can be defined as

the concatenation of the outputs of RNNc and RNNp, which are [st
c1

, st
c2

, st
c3

, . . . , st
cn

, st
p]. Let

the output of RNNr be st
r. The attention mechanism assigns relative weights to the inputs,

which means that the attention mechanism determines the inputs that it should focus on.
The first step is that the inputs Vt should be projected into an embedding space. This is
computed by multiplying it with the matrix WQ, and the output of the multiplication is Qt.
st

r is the output of RNNr, whose inputs are (pr,x, pr,y, vr,x, vr,y), i.e., the current position and
velocity of the robot. The task is to calculate the relative importance of each human and
patient by assigning weights to each of them. For example, if a human moves very close to
the robot, the human should obtain a higher weight than other pedestrians. Likewise, if the
patient is moving away from the robot, then the patient needs to be given a higher weight
so that the robot adjusts its path and is in the vicinity of the robot. Therefore, st

r is multiplied
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with matrix WK to convert it to the embedded space, and the output of the multiplication
is Kt. The attention is calculated as shown in Equation (3), where alphat represents the
relative weights of the human and patient data that the model should immediately give
attention to, and attt is the re-weighted Vt.

Qt = VtWQ,
Kt = st

rWK,

αt = softmax
(

1√
n+1

Qt
(

Kt
)>)

attt =
(

Vt
)>

αt

. (3)

Both WK and WQ are learned while training the model. The output of the attention
module is attt. This weighted vector attt is concatenated with the robot node features
xt = [pr,x, pr,y, vr,x, vr,y, gr,x, gr,y, vr,max, θ, ρrobot] and passed as input to the final node RNN
RNNn. The output of this RNN is ot; which is defined in the Equation (4) shown below:

ot = RNNn(o
t−1, [attt, xt]) (4)

Subsequently, the output ot is passed through a fully connected layer, resulting in the
determination of both the value function V(st) and the policy distribution π(at|st). The
value V(st) is the model’s projected value function for how good a state st is for the robot
to be in. π(at|st) is the action that the robot should take given a state st, which in our
case is the velocity the robot should take, which is vr,x, vr,y. The total number of trainable
parameters for this model is 613294.

The crowd navigation and shared control can be formulated into a reinforcement
learning problem in the following way: A robot interacting with the environment can be
modeled as an episodic Markov decision process (MDP). Assuming the whole environment
starts from a random initial state at time t = 0, at every discrete point in time, denoted
as t, the robot operates by selecting an action, at, based on its policy function, π(at|st).
The policy maps the current state, st, to a probability distribution over the set of possible
actions, from which the robot selects its action, where st denotes the states of the whole
environment (robot, humans, and patients). As a result of executing its chosen action, the
robot receives a reward and transitions to the next state. The state transition and reward
represent the consequences of the action taken in the current state and serve as the basis
for the robot’s decision-making process in the subsequent time step. Let µt be the reward
the robot has for transiting the state st to st+1 and the γ be the discount factor, the total
expected reward until the episode ends would be µ = ∑

∞
k=0(γ

kµk), where k is the total
number of time steps. An episode includes all of the timesteps from the start until the robot
reaches the goal. To ensure that the model learns a policy of shared control and crowd
navigation, the proximal policy optimization (PPO) RL algorithm proposed by Schulman
et al. [52] is used. the loss function used in PPO is a combination of the clipped surrogate
objective and the entropy bonus as proposed by Schulman et al. The reward function µk

proposed by Liu et al. [43] is modified to include the co-navigation objectives of our system,
and it is as follows:

µk =



























−20 dt
min < 0

−20 dt
p,r > 0.25

2.5(dt
min − 0.25) 0 < dt

min < 0.25
10 dt

goal < ρrobot

2(−dt
goal + dt−1

goal) otherwise

(5)

At each time step (t), dt
min represents the smallest possible distance between the robot

and any individual who is not the patient (i.e., any human excluding the patient) at that
time. The reward function is designed to incentivize the robot’s behavior toward reaching
its goal while avoiding collisions with humans and maintaining contact with the patient.
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The distance between the robot and the goal, dt
goal , and the distance between the robot and

the patient, dt
p,r, are used as features in the reward function. The robot is rewarded for

reducing dt
goal and penalized for increasing dt

p,r when it is close to humans or too far away
from the patient. The robot is also punished for moving away from the patient beyond
a certain threshold distance. The objective of the reward function is to lead the robot to
move toward its target while ensuring the preservation of a secure separation from human
entities and maintaining physical contact with the designated patient. If dt

p,r is less than
0.25 m, it is considered that the robot and the patient are in contact. In accordance with
the prescribed metric for the successful completion of the robot’s objective, denoted as
dt

goal < 0.25 m, a reward of 10 is granted. This incentive scheme aligns with the assertion of
Sutton et al. [53], i.e., reward structures with steep gradients are effective in shaping certain
behaviors, both positively and negatively. To this end, a punitive penalty of −20 is imposed
as a negative reward for undesirable actions, while a positive reward of 10 is granted
for accomplishing the desired objective. Notably, the reward for collision with objects is
substantially more punitive, as collisions in the real world can lead to severe consequences.
Consequently, the collision with objects is met with a steeply negative reward.

The proposed model architecture encourages learning from the spatial and temporal
features, and the reward function used in training by PPO enforces the rules of shared
control and co-navigation. However, this model only focuses on dynamic obstacles. In the
next subsection, this proposed model architecture is extended to include static obstacles as
well.

4.2.2. Shared Control Considering Dynamic and Static Obstacles (Model V2)

In the previous section, the proposed model architecture in Figure 4 only takes into
consideration dynamic obstacles, such as humans. However, in practical cases, there are
static obstacles, such as walls, tables, etc., which the robot needs to avoid. Therefore, the
proposed architecture is extended to consider both static and dynamic obstacles. Figure 5
shows the modified architecture where a block called “Static map features” is added. This
block comprises the field of view (FOV) of the laser scanner data that shows all of the nearby
obstacles (

⋃nL
i=1 Lt

i ). These laser scanner data are used as input for the RNNs. The output
of RNNs is concatenated with the outputs of RNNp and RNNc (instead of just RNNp and
RNNc in the case of dynamic obstacles only), and are provided as input to the attention
mechanism. The rest of the architecture remains the same as the proposed architecture
in Section 4.2.1. The modified architecture is shown in Figure 5. The total number of
trainable parameters for this model is 766617. However, as the modified architecture needs
to avoid static obstacles, the reward function in Equation (5) needs to be updated to include
punishment for when the robot hits the static obstacles. Equation (6) shows the updated
reward function, where the shortest distance between the robot and any obstacle is defined
as dt

o.

µk =



































−20 dt
min < 0

−20 dt
p,r > 0.25

−20 dt
o < 0.3

2.5(dt
min − 0.25) 0 < dt

min < 0.25
10 dt

goal < ρrobot

2(dt−1
goal − dt

goal) otherwise

(6)

The modified architecture can enable the robot and the patient to avoid both static and
dynamic obstacles. The next section discusses the simulation environment used to train the
model using PPO RL and the results between prior work and the proposed frameworks.
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Figure 5. Proposed framework for the patient–robot co-navigation in environments with dynamic
and static obstacles (Model V2).

5. Experimental Evaluation

5.1. Experimental Setup

A simulation environment is required to train the RL model to learn the shared control
principles. As our framework requires a patient who walks together with a robot, the
simulation environment proposed by Liu et al. [43] is updated to include this functionality.
The patient walks behind the robot with a gait velocity in x and y directions (vp,x,vp,y).
Initially, the robot and patient are initialized, such that the distance between them is less
than 0.25 m to ensure that they are in contact.A random goal, different from the initial
starting point, is selected as the target that the robot must navigate the human to. Then, the
patient’s gait velocity is simulated as follows:

vp,x = vr,x +N (0, 1)
vp,y = vr,y +N (0, 1)

(7)

where the notation N (0, 1) represents a normal distribution with a mean of 0 and standard
deviation of 1 meter per second. This distribution is commonly used to model random
variables that are centered around 0 and have similar magnitudes. In this case, it could
be used to model the random fluctuations in the patient’s velocity. The selection of the
standard deviation value is based on the limits specified by Joosse et al. [46], in that the
speed of a robot approaching a human should not be more than 1 m/s. As the robot adjusts
to the speed of the patient, the patient’s velocity should not be more than 1 m/s to adhere to
social norms. Adding a normal noise to the velocity components simulates the real-world
scenario where the tracked gait velocity is not in the same direction or magnitude as the
robot, but it would be nearly equal. Finally, after each time step, the positions of each
human i in the scene (pci ,x,pci ,y), the robot (pr,x,pr,y), and the patient (pp,x,pp,y), respectively,
are updated based on Equation (8).

pci ,x[t + 1] = pci ,x[t] + vci ,x[t]∆t
pci ,y[t + 1] = pci ,y[t] + vci ,y[t]∆t
pr,x[t + 1] = pr,x[t] + vr,x[t]∆t
pr,y[t + 1] = pr,y[t] + vr,y[t]∆t
pp,x[t + 1] = pp,x[t] + vp,x[t]∆t
pp,y[t + 1] = pp,y[t] + vp,y[t]∆t

(8)

Figure 6 shows simulation environments used to train the presented framework for
co-navigation with only dynamic obstacles (Model V1) and with both static and dynamic
obstacles (Model V2). Nvidia RTX 3090 was utilized for training both V1 and V2 models,
with each model requiring 16 hours to complete 1000 epochs of training. In the following
subsection, the experimental results are presented and discussed.
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Text

(a) Model V1 Simulation Environment (b) Model V2 Simulation Environment

Figure 6. RL simulation environment for the patient–robot co-navigation training.

5.2. Experimental Results

To evaluate our model (V1), which considers only dynamic obstacles, we compare
its performance with the baseline method DSRNN [43] (Table 1). We also compare our
second model (V2), which considers both static and dynamic obstacles, with the baseline
method SOADRL [42] (Table 2). The following metrics have been defined: (i) success
rate, (ii) timeout rate, (iii) collision rate, (iv) contact loss rate, and (v) navigation time. In
relation to the present system, it was imperative to assess the safety and temporal demands
associated with patient mobility. Consequently, we incorporated various metrics, such
as contact loss rate to ensure sustained grip of the robotic arm by the patient, navigation
time to gauge the duration required to complete the walking task, timeout rate to prevent
the reinforcement learning algorithm from learning inefficient policies that prolong short
distance coverage, collision rate to evaluate the safety of robot navigation around obstacles,
and lastly, success rate to comprehensively assess the system’s overall performance. The
success rate is the percentage of trials in which the robot reaches the goal without colli-
sions with other humans while keeping contact with the patient. The timeout rate is the
percentage of trials that require more than 100 timesteps for the robot to reach the goal.
The collision rate is the percentage of trials where the robot collides with a human, and the
contact loss rate is the percentage of trials where the robot moves away from the patient,
and the contact is lost. The lower the contact loss rate, the better the model supports the
patient throughout the trial. Finally, the navigation time is the time (in seconds) that the
robot is required to reach the goal from the start.

Table 1. Comparison between the baseline model [43] and the proposed model V1 with FOV 70◦.

Number of
Humans

Dynamic Collision Rate (%) Contact Loss Rate (%) Timeout Rate (%) Success Rate (%)
Navigation Time

(in s)

Baseline Proposed
Model V1

Baseline Proposed
Model V1

Baseline Proposed
Model V1

Baseline Proposed
Model V1

Baseline Proposed
Model V1

5 30 18 NA 18 0 0 70 82 12.58 10.13

10 46 32 NA 12 0 0 54 68 13.06 11.93

17 60 54 NA 10 0 0 40 46 15.05 12.07
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Table 2. Comparison between the baseline model SOADRL [42] and the proposed model V2 with
FOV 70◦.

Number of Humans
Dynamic Object

Collision Rate (%)
Static Object

Collision Rate (%)
Contact Loss

Rate (%)
Timeout
Rate (%)

Success
Rate (%)

Navigation Time
(in s)

Baseline Proposed
Model V2

Baseline Proposed
Model V2

Baseline Proposed
Model V2

Baseline Proposed
Model V2

Baseline Proposed
Model V2

Baseline Proposed
Model V2

Baseline Proposed
Model V2

2–7 5 36 8 4 2 NA 10 0 0 60 90 NA 11.44

2–7 10 36 24 2 14 NA 12 0 0 60 62 NA 19

5.3. Discussion

The performances of Model V1 and Model V2 were evaluated under a limited field of
view (FOV) of 70◦, with varying numbers of human obstacles present. A total of 50 trials
were conducted for each configuration, and the results were recorded and analyzed.

In Table 1, the metrics from model V1, which maneuver around dynamic obstacles,
are compared to their respective baseline. The parameters are the dynamic collision rate,
contact loss rate, timeout rate, success rate, and navigation time. In Table 2, the metrics
from model V2, which maneuver around both static and dynamic obstacles, are compared
to their respective baseline. It was found that as the number of humans in the scene
increased, the success rate of the models decreased. The proposed model demonstrates
superior collision rates when compared to the baseline models, with the exception of Model
V2 when it was tested with 10 humans and static obstacles (as opposed to 2–7 humans
and static obstacles in the baseline model). Despite achieving a better collision rate when
navigating around dynamic objects, the collision rate for static objects was observed to be
higher. This phenomenon can be attributed to the increased number of humans present
in the environment, thereby highlighting the impact of human presence on collision rates.
However, it is imperative to acknowledge that the contact loss rate is a parameter that
solely pertains to our model and, hence, renders any comparison of a success rate with
respect to baselines unfeasible. Therefore, to ensure a fair comparison, the success rate
is considered as the subtraction of the sum of the object collision rate (dynamic for V1,
dynamic and static for V2) and the timeout rate from 100.

It is obvious from the experimental results that the success rate surpasses that of
the baseline methods. There is the concept that contact loss refers to the scenario where
the distance between the robot and the patient exceeds 25 cm from our reward function
mentioned in Equations (5) and (6), which is less than the average arm length of an
individual. This parameter has been established to create a secure environment for the
patients, such that if they desire to abruptly halt the robot, it would instantaneously come to
a stop while still being grasped by the patient’s hands. Finally, Model V2 was implemented
in the Gazebo simulation environment to assess its ability to assist patients and avoid
obstacles, which is further discussed in the subsequent section of the research.

5.4. Simulation Using Gazebo

For gait tracking and crowd maneuvering, a test environment in Gazebo [54] was
developed, as shown in Figure 7. The developed simulation mimics a real-world scenario of
a patient walking behind a robot amidst a crowd and evaluates the robot’s ability to assist
the patient. The crowd is simulated using the social force model to model crowds [55]. First,
the patient can gradually walk at their own speed toward the robot. Then, the robot senses
the patient and prepares to assist the patient. Finally, once the patient is near the robot and
starts using it as support, they co-navigate to the destination avoiding both the crowd and
any other static obstacles, such as furniture that obstruct the path. The patient’s velocity is
sensed using the LIDAR leg detector U-Net model, as discussed in Section 4.1. An Intel
Realsense D435i camera is loaded to the front of the robot, which uses Yolov5 [56] to detect
humans and track them. The front laser actively scans for any obstacles in the environment.
The patient’s gait velocity, pedestrian spatial information, front laser readings, and the
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robot’s current state are inputted into the RL model V2 (explained in Section 4.2.2). The
model outputs the velocity values that need to be set on the robot.

Figure 7. Human–robot co-navigation in Gazebo.

The model also outputs a predicted action value. The action value of the robot
determines how good it is for the robot to be in a particular state or to do a certain action in
that state. The concept of “how good” is described in terms of projected future rewards
or, to be more accurate, expected returns. This video https://youtu.be/LqCMkvKuM8E,
(accessed on 30 March 2023) shows the model V2 controlling the robot in Gazebo. On the
left side, a terminal is shown that constantly prints the action value predicted by the model.
Initially, when the robot faces an obstacle and moves toward the obstacle, the action value
is negative. However, once the robot adjusts its path and avoids the furniture, the values
are positive. The robot is able to reach its goal without losing contact with the patient.
As evident from the data presented in Tables 1 and 2, the contact loss rate of model V2
is not always zero. This highlights the importance of implementing measures to prevent
contact loss, such as stopping the robot when the distance between the robot and the patient
exceeds a certain threshold, such as 0.25 m. A flowchart illustrating the control system of
the robot, including this safety feature, is depicted in Figure 8.

Due to the COVID-19 pandemic and its impact on real-world robotic studies [57], a
real-world evaluation is not yet possible. Our goal, in the future, will be to evaluate our
models in a real-world lab environment to ensure safety, and then in a hospital environment.
It is also important to note that recent findings have shown that deep learning models
may lead to incorrect behaviors if the data that are trained on are sparse [58]. As robot
navigation may have to deal with sparse and noisy data in the real world, we plan to
evaluate the correctness of the behavior of our RL-based framework.



Appl. Sci. 2023, 13, 4576 16 of 19

Model V2

Robot
Temporal
Features

Patient
Temporal 
Features

Crowd
Spatial

Features

Static Map
Features

Set Robot
velocity to (0, 0)

Real Environment

Set Robot Velocity
to (vr,x,vr,y) Yes dmin < 0.25

No

(vr,x,vr,y)

Figure 8. Flowchart of how the Model V2 is used to control the robot in a realistic Gazebo simulation.

6. Conclusions and Future Work

The paper proposes a shared control framework that integrates both spatial and
temporal considerations into the decision-making process of a robot for navigating in a
crowd and providing walking support to a patient. The presented work addresses the
gap between robotic crowd navigation and robotic walking assistance. Our proposed
models enable co-navigation between a patient and a robot. Two models are proposed
and evaluated; the first model enables the patient–robot co-navigation in environments
with dynamic obstacles, and the second enables co-navigation in environments with static
and dynamic obstacles. Both models were evaluated and compared with baseline methods
with respect to collision rates. The first model outperforms the baseline model with respect
to collisions with humans. In contrast, the second model outperforms the baseline model
with respect to both the success rate and collisions with humans. Additionally, the results
show that our models can maintain contact with the patient. Finally, our model, which
avoids both dynamic and static obstacles, was implemented in Gazebo successfully. This
is a promising step towards deploying the model on a real-world mobile platform. As
of now, our system is designed to assist patients with a minimum MMT level of 4/5.
Our next step will be to evaluate our model in a real-world laboratory setting (e.g., a
crowded hallway at our university) and then in a clinic or hospital setting. We are also
interested in extending our work to other environments where co-navigation may be
needed. Additionally, we plan to expand the system to accommodate patients with a lower
rating than 4 for rehabilitation purposes.
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