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ABSTRACT

The paper proposes a robot learning framework that empowers a
robot to automatically generate a sequence of actions from unstruc-
tured spoken language. The robot learning framework was able
to distinguish between instructions and unrelated conversations.
Data were collected from 25 participants, who were asked to in-
struct the robot to perform a collaborative cooking task while being
interrupted and distracted. The system was able to identify the
sequence of instructed actions for a cooking task with the accuracy
of 92.85 + 3.87%.

CCS CONCEPTS

« Computer systems organization — External interfaces for
robotics; Robotic autonomy; - Human-centered computing
— Accessibility technologies.

KEYWORDS

robot learning, natural language understanding, assistive robots,
collaborative robots

ACM Reference Format:

Krishna Kodur, Manizheh Zand, and Maria Kyrarini. 2023. Towards Robot
Learning from Spoken Language. In Companion of the 2023 ACM/IEEE In-
ternational Conference on Human-Robot Interaction (HRI "23 Companion),
March 13-16, 2023, Stockholm, Sweden. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3568294.3580053

1 INTRODUCTION

People with disabilities face challenges in performing Activities of
Daily Living (ADLs), such as eating, dressing, getting into or out of
a bed or chair, taking a bath or shower, etc. According to the Centers
for Disease Control and Prevention [1], 61 million adults, one in
four adults in the United States, live with a disability. According to
World Health Organization (WHO), by 2050, the world’s population
of people aged 60 years and older will double (2.1 billion) [2].
Robotic systems have the potential to support people with disabil-
ities and the elderly in performing ADLs. Chung et al. [3] conducted
a study to investigate the most important tasks that a robotic ma-
nipulator can perform to help people with disabilities. The study
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found that eating and preparing meals are highly prioritized tasks.
Preparing a meal or cooking themselves is a very crucial task for
people with disabilities and the elderly [4]. The question arises
“How can a robot assist a person with disabilities (end-user) to prepare
a meal while the end-user stays in control?”.

Robot Learning from Human Demonstrations [5] and human-in-
the-loop [6] approaches enable end-users to be part of a collabora-
tive robotic task and remain in control. Moreover, the interaction
between the end-user and the robot is important to ensure that it
is not time-consuming and cognitively demanding [7]. Interacting
with the robot naturally using spoken language can enable more
effective human-robot interaction. For example, in a recent study,
people above 65 years old preferred the use of spoken language as
the most intuitive way of communication with a robot [8]. However,
the use of spoken language is still limited in robotics [9].

Figure 1: User study setup for robot learning from spoken
language.

In this paper, we propose a robot learning framework that enables
a robot to generate actions for a task from unstructured spoken
language. To demonstrate the effectiveness of the proposed work,
a small study was conducted with 25 participants. The participants
were asked to speak to a robot and teach it what actions the robot
should do in assisting them with meal preparation, as shown in
Fig.1. The robot was able to use the unstructured spoken language
of the user and learn the necessary actions it is supposed to perform
for preparing a meal.

The paper is divided into the following sections; Section 2 dis-
cusses the related work, Section 3 presents the robot learning frame-
work, Section 4 discusses the preliminary results and Section 5
concludes the work.
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2 RELATED WORK

Robot Learning from human speech has the potential to enable
non-expert users to teach the robot desired tasks in a natural and
intuitive way. For example, Shao et al. [10] proposed a framework
that enables a robot to perform different object manipulation tasks,
such as “Put a cup in front of the bowl”. The proposed robot frame-
work consists of an architecture consisting of Bidirectional Encoder
Representations from Transformers (BERT) [11] and ResNet [12]
deep neural networks to achieve this. Input to the model is a nat-
ural language instruction and an image of the initial scene, and
the output of the model is the robot motion trajectory to achieve
the specified task. However, the proposed framework required a
fixed-templated language from the Something-Something dataset
[13]. A fixed-templated language is a set of predefined words and
sentences that the user can use to communicate with the robot. For
example, to instruct the robot to bring an object, the user must use
the format “Bring me the <object>", where <object> can only take
words, such as bowl or cup. The robot is not able to interpret the
action that it needs to perform even for a slight modification in the
instruction, such as “Give me the <object>". Shao et al. aim to learn
only simple low-level pick and place actions but not high-level tasks,
such as “making tea”, which requires various consecutive low-level
actions. To address this issue, Giorgi et al. [14] propose a method
to learn high-level tasks, such as “making tea”. The authors use the
“You Only Look Once" method (YOLO) [15] to detect the object and
use fixed-templated language to enable communication between
the robot and the human. A visual representation of the object is
then stored in the robot’s memory. To learn low-level tasks, such
as grasping an object, the state of the robot motors and the word
“grasp” is stored in its memory. The robot executes a predefined
trajectory whenever the user instructs the robot to perform the
“grasp” action. Each high-level task is stored as an array of low-
level actions; for example, to make tea, the sequence of actions that
the robot would perform would be “_mug_grasp_lift_table_drop”,
“_bottle_grab_lift_mug_pour”, “_teabag_grab_pickup_mug_throw”.
Similarly, Unhelkar et al. [16] proposed “CommPlan”, a computa-
tional framework that decides if, what, and when to communicate
with the human during human-robot collaboration. The CommPlan
was used for a meal preparation task where humans and robots
communicate in making a sandwich. The CommPlan predefines
a fixed-templated language that humans and robots can use to
communicate. However, the framework focuses on when the robot
and the human can communicate in a seamless way rather than
the robot learning from human instructions. Additionally, several
researchers developed robot learning frameworks for industrial
robotic applications, such as assembly [17] or object delivery [18].
For example, Li et al. [18] propose a robotic system that the robot
is instructed by the user to perform either of these four tasks: Go
to a location, deliver an object from point A to Point B, work in as-
sembly and relocate the objects in a scene. The authors benchmark
the popular language models, such as GPT-2 [19] and GPT-Neo, to
find out the task recognition accuracy is 86.6%. In another study by
Ahn et al. [20], a method called SayCan was proposed, in which a
large language model was trained to select from a predefined set of
101 low-level tasks, such as “pick up the sponge” for execution by a
robot. However, in a realistic kitchen setting, the presence of a wide
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variety of objects necessitates the ability to accurately identify and
retrieve various objects. The limitations of a model that can only
select from a limited set of 101 tasks could thus restrict the overall
functionality of the robot. The authors also do not address scenarios
in which a person poses unrelated questions, such as “Where is the
table" and how the model would handle such instances.

The presented works in this section use fixed-templated language
to be spoken, so that intent of the sentence is fixed beforehand, and
the system does not need to interpret it, which is not a natural way
of communication. However, cooking is an unstructured task. Per-
sons cooking a meal at home do not necessarily follow a predefined
plan for the whole process, from choosing a recipe to planning a
meal [21]. On top of being an unstructured task, the system should
be able to identify if multiple instructions are clubbed together.
E.g., “Bring me the salt, pepper, and seasoning.” In this case, the
robot has to perform three pick-and-place actions each for salt,
pepper, and seasoning. Additionally, in a home setting, the user can
also get distracted, talk with others, etc., during meal preparation
time. Everything spoken might not be directed as input to the ro-
bot. Therefore, the system should be able to distinguish between
conversations with others and valid instructions to the robot and
understand the intent of relevant instructions. The system architec-
ture classifies the text into relevant instructions for the robot and
understands its intent, which is discussed in the upcoming sections.

3 USER STUDY

A user study is conducted in order to understand how humans
would instruct a robot on the necessary actions in order to complete
a collaborative cooking task. Figure 1 shows the experimental setup,
which consists of two tables. The user sits at the table and instructs
the robot to fetch the ingredients and kitchen utensils that are
located on the second table. A user study was conducted with 25
adult participants (11 female and 14 male with mean age of 35.4 and
standard deviation of 13.1) with the approval of the Institutional
Review Board (IRB). The participants are asked to teach the robot
how to cook their favorite meal and are instructed to say “Hey
robot” and then the action(-s) they would expect the robot to take.
However, the participants are not instructed on how to provide the
desired robot action. During the study, the robot is responsible for
actions related to finding and bringing objects to the participants
while the participants would cut the ingredients and cook. Moreover,
as we are interested in data collection that is realistic and similar to a
home environment, one of the study personnel interrupts and talks
with the participant during an instruction or sounds are playing in
the background (e.g., dog barking). Participants are also allowed to
answer their phone calls and make phone calls.

During the user study, audio data were collected. While collect-
ing data, the majority had their favorite recipe, and depending on
the utensils and ingredients that they typically use at their resi-
dence, they used specific names for the utensils and ingredients. For
example, participants that chose to make pasta each had a unique
way of interacting with the robot. The system has no intention of
modifying the food-prepping or cooking steps. Instead, it is about
creating a comfortable and safe environment by helping users create
their meals.
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4 PROPOSED SYSTEM

In this work, a system that enables a robot to learn from spoken
language is presented. Figure 2 shows the proposed system, which
consists of two modules: Natural Language Understanding and
Robot Learning.

Natural Language Understanding (NLU): The task of the NLU
module is to understand the user’s intent. The audio data of the
user’s speech is converted into text using an offline transcription
model, Vosk [22], which can be run locally on the servers to pro-
tect the user’s privacy to ensure IRB guidelines. The Vosk English
language model called the “Vosk-model-en-us-daanzu-20200905"
[22] was chosen since it was trained to transcript speech from
both native and non-native English speakers. The input to this
block is the text transcribed from the user’s speech. There is a large
likelihood that several interactions will be unrelated to meal prepa-
ration during a cooking scenario. The user may get interrupted
or distracted by other people and start a conversation with them
or answer their phones. Therefore, it is crucial that the system
can distinguish between instructions directed toward the robot
and unrelated conversations. The sentences that are considered an
instruction to the robot are referred to as “valid instruction”. To
identify and classify valid instructions from other conversations
which are considered as “invalid instructions” BERT [11] is used,
which is an open-source Bidirectional Encoder Representation from
Transformers created by google in 2018. Language models, such as
BERT, require a large amount of data to train. Hence, the collected
valid instruction data from 25 participants, as previously discussed
in Section 3, are randomly augmented by adding food adjectives
[23], recipe names [24], and recipe ingredients [25].

D i "“h
= ¢
M Natural Robot

Language Learning
Understanding

Figure 2: Proposed System for Robot Learning from Spoken
Language

The augmented dataset is called the “Collaborative Cooking dataset”.
The data collected during interruptions and distractions are a small
sample from the 25 participants and are not large enough to train
the model as examples of ‘invalid instruction’ for the robot. How-
ever, these examples of casual/distracted conversations can be ob-
tained from other datasets, such as TweetQA [26]. The TweetQA
is a dataset of informal human conversations and contains 13,757
question-and-answer pairs sampled from 17,794 tweets. Out of
which, 10,692 are used for training, and 3,065 are for testing. The
tweets from the TweetQA dataset are used to train our BERT model
as examples of “invalid instructions.” The BERT is used to train to
classify between valid and invalid instructions using the Binary
Cross Entropy Loss function (Lggrr) defined as follows:

k=n

Lygrr == ), yklog(pi) (1
k=0
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where py is the output class of the model, yi is the target class,
and n is the total number of instructions, which is equal to 20,692
(10,000 from the Collaborative Cooking dataset and 10,692 from
TweetQA). After an instruction is classified as valid, it is sent to the
robot learning module.

Robot Learning: The robot learning module can perform three
possible scenarios; (1) new meal preparation, in which the user
teaches the robot steps of a new meal, and the robot learns the
sequence of the order, (2) meal execution, in which the user can
say the name of the learned meal, and the robot would know and
execute the sequences, and (3) the user does not care about teaching
the robot the entire sequence of the meal preparation; the user is
simply requesting a single robot action.

The input of the robot learning module is the valid instructions
from the natural language understanding module. The robot learn-
ing framework is responsible for building a graph based on the in-
structed actions for the cooking task. The language model Distilled
Generative Pre-trained Transformer-2 (DistilGPT2) [27] generates
robot actions from valid instructions. For example, consider a valid
instruction S. S needs to be tokenized before giving it as input to
the DistilGPT2 model. Tokenization is a process where a sentence
is broken down into words, and the words are converted into their
unique numerical IDs, which is called the class of the word. The
DistilGPT2 model outputs the robot action instruction in tokenized
form. To train the DistilGPT2 model, the following loss function

LpistitgpT2 is used:

Jj=nk=m
Lpistiicpr2 = — Z Tjklog(Rjk) @
i=1 k=1

kth

where Ty is the target class of j*h robot action’s word (ground

truth), Rjy is the predicted class of j’h robot action’s k' word,
m is the maximum length of the output robot action that could
be generated, n is the total number of valid instruction used to
train the DistilGPT2 model, which is 10,000 obtained from the
Collaborative Cooking dataset. The robot action can be considered
a special instruction that captures the intent of the task the user
instructs the robot to perform (“execute”). The generated graph
consists of the sequence of actions for the specific learned task, as
shown in Figure 3. For example, if the user says “Hey robot, bring
me the pan”, the valid instruction would be generated as “Add to
current Graph: Fetch pan”. This robot action would be interpreted
as adding a node called “Fetch pan” to the graph. After the user has
taught the robot how to prepare a meal, the graph is stored in a
graph database, which means that the robot learned the sequence
of actions for the particular meal.

5 PRELIMINARY RESULTS

To evaluate the complete system proposed in Section 4, we used
the data from the Collaborative Cooking dataset (see Section 3). The
input of our system is the complete speech of the participant for
a task, and the output of our system is the learned graph-based
sequence of robot actions. The accuracy of the system is defined
using the total number (abbreviated as “No.”) of correct robot actions
generated as shown in Eq. 3.
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Task: Denver Omelet

Participant: Hey robot today I will be making
denver omelette and I need a saucepan, olive oil
and eggs

DistilGPT-2 Output: Add to Graph: denver omelette
carbonara, Step-1 Fetch Saucepan, Step-2 Fetch

olive oil, Step-3 Fetch eggs

Participant: Hey robot I need ham onion
DistilGPT-2 Output: Add to current graph:
ham Add to current graph: Fetch onion

Fetch

Participant's Friend: Hey XYZ omelet smells good I
am famished

system: Invalid command. Text not sent to
DistilGPT-2 for processing

Participant: Hey robot set a timer for 2 minutes
for the eggs to cook

DistilGPT-2 Output: Add to current graph:
Timer 10 minutes

Set

Participant: Hey robot Thank you robot for the
help we are finished

DistilGPT-2 Output: Done

Corresponding Graph:

2 ive\ 3
Fetch Olive Fetch eggs

7 _[Set Timer 2\ 8
minutes

Figure 3: Transcript of the speech given by a participant
during the study and the corresponding generated graph for
the sequence of robot actions.

No. of correct actions generated from speech instructions
No. of speech instructions

X 100%
®)
Another metric to evaluate the text generated from the Distil-
GPT2 model is called the BiLingual Evaluation Understudy score
(BLEU score for short), which represents how close the generated
instruction from the model is to the ground truth instruction. BLEU
score ranges from 0 to 1, with 0 meaning no match between the
generated and target sequence of actions to 1 being an exact match
between the generated and target sequence of actions.

To train the system, the augmented “Collaborative Cooking
dataset” from 16 participants is used, and to test the system, the data
from the remaining 9 participants is used. The accuracy and BLEU
score of the system depends on the training and testing data that
are used. For example, some participants used simple sentences like
“bring me the pan”, while some other participants used compara-
tively more complex sentences, such as “get that green pan and put
it here”. When the system is trained using data from participants
who used simpler sentences and testing it on the data from partici-
pants who used complex sentences would result in less accuracy
and BLEU scores and vice versa. Hence, to properly evaluate the

Accuracy =

115

Krishna Kodur, Manizheh Zand, and Maria Kyrarini

system's performance, 3-fold cross-validation is used. The data is
divided into folds with respect to the participants that it originated
from. The data from 16 participants is used to train the model, and
the data from the remaining 9 participants is used to test the model.
Finally, the average accuracy and average BLEU score are calculated
from different iterations during cross-validation.

The average accuracy calculated is 92.85 + 3.87%, and the aver-
age BLEU score calculated is 0.91 + 0.11. There were some cases
where the system was not able to generate an action from a spoken
instruction. For example, one of the participants said ‘I feel like
eating pizza”. This instruction was classified as invalid because it
is ambiguous whether this sentence is a casual conversation or a
valid instruction. In some cases, the DistilGPT2 was not able to gen-
erate a correct robot action instruction, e.g. “Also I need some glass
baking dish”. The “glass baking dish” was identified as a task/recipe
name rather than an object that needs to be fetched.

6 CONCLUSION & FUTURE WORK

In this paper, we introduced a robot learning framework that en-
ables the robot to learn from unstructured spoken language. A
collaborative meal preparation scenario between individuals and
the robot is developed, and data were collected. Individuals were
comfortable communicating verbally with the robot in order to get
assistance with the meal preparations in the kitchen. We propose a
framework that automatically generates robot actions from speech
that included environmental interruptions. A 3-fold cross-validation
average accuracy and average BLEU score were calculated. The
average accuracy of the system is 92.85 + 3.87%, and the average
BLEU score of the system is 0.91 + 0.11, which is a very promis-
ing and positive finding. The prospect of natural interaction using
speech opens up many possibilities that can be further explored.

In the future, the graph-based sequence of actions will be con-
nected to a robot skill library, similar to [28], that would enable the
robot to perform the actions in real-time. During the data collection,
we noticed that some participants felt comfortable interacting with
the robot, and they leaned on using more fragments phrases. For
example, one of the participants did not remember how to request
the “wooden spoon”, and instead, they said “give me the wooden
thingy”. In another case, the participant mentioned “stainer” instead
of “strainer”. Interestingly enough, we googled the word “stainer”,
and the top search items were “strainers”. Therefore, we plan to
have the user teach the robot the name of the items the way they
prefer to refer to them. Another observation was that several partic-
ipants used hand gestures while asking for an item. In the future, we
plan to conduct a larger study to ensure our proposed framework
is robust and publish the dataset.
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