
Towards Robot Learning from Spoken Language

Krishna Kodur∗

kkodur@scu.edu
Santa Clara University

Santa Clara, California, USA

Manizheh Zand∗

mzand@scu.edu
Santa Clara University

Santa Clara, California, USA

Maria Kyrarini
mkyrarini@scu.edu

Santa Clara University
Santa Clara, California, USA

ABSTRACT

The paper proposes a robot learning framework that empowers a

robot to automatically generate a sequence of actions from unstruc-

tured spoken language. The robot learning framework was able

to distinguish between instructions and unrelated conversations.

Data were collected from 25 participants, who were asked to in-

struct the robot to perform a collaborative cooking task while being

interrupted and distracted. The system was able to identify the

sequence of instructed actions for a cooking task with the accuracy

of 92.85 ± 3.87%.
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1 INTRODUCTION

People with disabilities face challenges in performing Activities of

Daily Living (ADLs), such as eating, dressing, getting into or out of

a bed or chair, taking a bath or shower, etc. According to the Centers

for Disease Control and Prevention [1], 61 million adults, one in

four adults in the United States, live with a disability. According to

World Health Organization (WHO), by 2050, the world’s population

of people aged 60 years and older will double (2.1 billion) [2].

Robotic systems have the potential to support people with disabil-

ities and the elderly in performing ADLs. Chung et al. [3] conducted

a study to investigate the most important tasks that a robotic ma-

nipulator can perform to help people with disabilities. The study
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found that eating and preparing meals are highly prioritized tasks.

Preparing a meal or cooking themselves is a very crucial task for

people with disabilities and the elderly [4]. The question arises

łHow can a robot assist a person with disabilities (end-user) to prepare

a meal while the end-user stays in control?ž.

Robot Learning from Human Demonstrations [5] and human-in-

the-loop [6] approaches enable end-users to be part of a collabora-

tive robotic task and remain in control. Moreover, the interaction

between the end-user and the robot is important to ensure that it

is not time-consuming and cognitively demanding [7]. Interacting

with the robot naturally using spoken language can enable more

effective human-robot interaction. For example, in a recent study,

people above 65 years old preferred the use of spoken language as

the most intuitive way of communication with a robot [8]. However,

the use of spoken language is still limited in robotics [9].

Figure 1: User study setup for robot learning from spoken

language.

In this paper, we propose a robot learning framework that enables

a robot to generate actions for a task from unstructured spoken

language. To demonstrate the effectiveness of the proposed work,

a small study was conducted with 25 participants. The participants

were asked to speak to a robot and teach it what actions the robot

should do in assisting them with meal preparation, as shown in

Fig.1. The robot was able to use the unstructured spoken language

of the user and learn the necessary actions it is supposed to perform

for preparing a meal.

The paper is divided into the following sections; Section 2 dis-

cusses the related work, Section 3 presents the robot learning frame-

work, Section 4 discusses the preliminary results and Section 5

concludes the work.
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2 RELATEDWORK

Robot Learning from human speech has the potential to enable

non-expert users to teach the robot desired tasks in a natural and

intuitive way. For example, Shao et al. [10] proposed a framework

that enables a robot to perform different object manipulation tasks,

such as łPut a cup in front of the bowlž. The proposed robot frame-

work consists of an architecture consisting of Bidirectional Encoder

Representations from Transformers (BERT) [11] and ResNet [12]

deep neural networks to achieve this. Input to the model is a nat-

ural language instruction and an image of the initial scene, and

the output of the model is the robot motion trajectory to achieve

the specified task. However, the proposed framework required a

fixed-templated language from the Something-Something dataset

[13]. A fixed-templated language is a set of predefined words and

sentences that the user can use to communicate with the robot. For

example, to instruct the robot to bring an object, the user must use

the format łBring me the <object>ž, where <object> can only take

words, such as bowl or cup. The robot is not able to interpret the

action that it needs to perform even for a slight modification in the

instruction, such as łGive me the <object>ž. Shao et al. aim to learn

only simple low-level pick and place actions but not high-level tasks,

such as łmaking teaž, which requires various consecutive low-level

actions. To address this issue, Giorgi et al. [14] propose a method

to learn high-level tasks, such as łmaking teaž. The authors use the

łYou Only Look Once" method (YOLO) [15] to detect the object and

use fixed-templated language to enable communication between

the robot and the human. A visual representation of the object is

then stored in the robot’s memory. To learn low-level tasks, such

as grasping an object, the state of the robot motors and the word

łgraspž is stored in its memory. The robot executes a predefined

trajectory whenever the user instructs the robot to perform the

łgraspž action. Each high-level task is stored as an array of low-

level actions; for example, to make tea, the sequence of actions that

the robot would perform would be ł_mug_grasp_lift_table_dropž,

ł_bottle_grab_lift_mug_pourž, ł_teabag_grab_pickup_mug_throwž.

Similarly, Unhelkar et al. [16] proposed łCommPlanž, a computa-

tional framework that decides if, what, and when to communicate

with the human during human-robot collaboration. The CommPlan

was used for a meal preparation task where humans and robots

communicate in making a sandwich. The CommPlan predefines

a fixed-templated language that humans and robots can use to

communicate. However, the framework focuses on when the robot

and the human can communicate in a seamless way rather than

the robot learning from human instructions. Additionally, several

researchers developed robot learning frameworks for industrial

robotic applications, such as assembly [17] or object delivery [18].

For example, Li et al. [18] propose a robotic system that the robot

is instructed by the user to perform either of these four tasks: Go

to a location, deliver an object from point A to Point B, work in as-

sembly and relocate the objects in a scene. The authors benchmark

the popular language models, such as GPT-2 [19] and GPT-Neo, to

find out the task recognition accuracy is 86.6%. In another study by

Ahn et al. [20], a method called SayCan was proposed, in which a

large language model was trained to select from a predefined set of

101 low-level tasks, such as łpick up the spongež for execution by a

robot. However, in a realistic kitchen setting, the presence of a wide

variety of objects necessitates the ability to accurately identify and

retrieve various objects. The limitations of a model that can only

select from a limited set of 101 tasks could thus restrict the overall

functionality of the robot. The authors also do not address scenarios

in which a person poses unrelated questions, such as łWhere is the

table" and how the model would handle such instances.

The presentedworks in this section use fixed-templated language

to be spoken, so that intent of the sentence is fixed beforehand, and

the system does not need to interpret it, which is not a natural way

of communication. However, cooking is an unstructured task. Per-

sons cooking a meal at home do not necessarily follow a predefined

plan for the whole process, from choosing a recipe to planning a

meal [21]. On top of being an unstructured task, the system should

be able to identify if multiple instructions are clubbed together.

E.g., łBring me the salt, pepper, and seasoning.ž In this case, the

robot has to perform three pick-and-place actions each for salt,

pepper, and seasoning. Additionally, in a home setting, the user can

also get distracted, talk with others, etc., during meal preparation

time. Everything spoken might not be directed as input to the ro-

bot. Therefore, the system should be able to distinguish between

conversations with others and valid instructions to the robot and

understand the intent of relevant instructions. The system architec-

ture classifies the text into relevant instructions for the robot and

understands its intent, which is discussed in the upcoming sections.

3 USER STUDY

A user study is conducted in order to understand how humans

would instruct a robot on the necessary actions in order to complete

a collaborative cooking task. Figure 1 shows the experimental setup,

which consists of two tables. The user sits at the table and instructs

the robot to fetch the ingredients and kitchen utensils that are

located on the second table. A user study was conducted with 25

adult participants (11 female and 14 male with mean age of 35.4 and

standard deviation of 13.1) with the approval of the Institutional

Review Board (IRB). The participants are asked to teach the robot

how to cook their favorite meal and are instructed to say łHey

robotž and then the action(-s) they would expect the robot to take.

However, the participants are not instructed on how to provide the

desired robot action. During the study, the robot is responsible for

actions related to finding and bringing objects to the participants

while the participantswould cut the ingredients and cook.Moreover,

as we are interested in data collection that is realistic and similar to a

home environment, one of the study personnel interrupts and talks

with the participant during an instruction or sounds are playing in

the background (e.g., dog barking). Participants are also allowed to

answer their phone calls and make phone calls.

During the user study, audio data were collected. While collect-

ing data, the majority had their favorite recipe, and depending on

the utensils and ingredients that they typically use at their resi-

dence, they used specific names for the utensils and ingredients. For

example, participants that chose to make pasta each had a unique

way of interacting with the robot. The system has no intention of

modifying the food-prepping or cooking steps. Instead, it is about

creating a comfortable and safe environment by helping users create

their meals.
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4 PROPOSED SYSTEM

In this work, a system that enables a robot to learn from spoken

language is presented. Figure 2 shows the proposed system, which

consists of two modules: Natural Language Understanding and

Robot Learning.

Natural Language Understanding (NLU): The task of the NLU

module is to understand the user’s intent. The audio data of the

user’s speech is converted into text using an offline transcription

model, Vosk [22], which can be run locally on the servers to pro-

tect the user’s privacy to ensure IRB guidelines. The Vosk English

language model called the łVosk-model-en-us-daanzu-20200905ž

[22] was chosen since it was trained to transcript speech from

both native and non-native English speakers. The input to this

block is the text transcribed from the user’s speech. There is a large

likelihood that several interactions will be unrelated to meal prepa-

ration during a cooking scenario. The user may get interrupted

or distracted by other people and start a conversation with them

or answer their phones. Therefore, it is crucial that the system

can distinguish between instructions directed toward the robot

and unrelated conversations. The sentences that are considered an

instruction to the robot are referred to as łvalid instructionž. To

identify and classify valid instructions from other conversations

which are considered as łinvalid instructionsž BERT [11] is used,

which is an open-source Bidirectional Encoder Representation from

Transformers created by google in 2018. Language models, such as

BERT, require a large amount of data to train. Hence, the collected

valid instruction data from 25 participants, as previously discussed

in Section 3, are randomly augmented by adding food adjectives

[23], recipe names [24], and recipe ingredients [25].

Figure 2: Proposed System for Robot Learning from Spoken

Language

The augmented dataset is called the łCollaborative Cooking datasetž.

The data collected during interruptions and distractions are a small

sample from the 25 participants and are not large enough to train

the model as examples of ‘invalid instruction’ for the robot. How-

ever, these examples of casual/distracted conversations can be ob-

tained from other datasets, such as TweetQA [26]. The TweetQA

is a dataset of informal human conversations and contains 13,757

question-and-answer pairs sampled from 17,794 tweets. Out of

which, 10,692 are used for training, and 3,065 are for testing. The

tweets from the TweetQA dataset are used to train our BERT model

as examples of łinvalid instructions.ž The BERT is used to train to

classify between valid and invalid instructions using the Binary

Cross Entropy Loss function (𝐿𝐵𝐸𝑅𝑇 ) defined as follows:

𝐿𝐵𝐸𝑅𝑇 = −

𝑘=𝑛∑︁

𝑘=0

𝑦𝑘𝑙𝑜𝑔(𝑝𝑘 ) (1)

where 𝑝𝑘 is the output class of the model, 𝑦𝑘 is the target class,

and 𝑛 is the total number of instructions, which is equal to 20,692

(10,000 from the Collaborative Cooking dataset and 10,692 from

TweetQA). After an instruction is classified as valid, it is sent to the

robot learning module.

Robot Learning: The robot learning module can perform three

possible scenarios; (1) new meal preparation, in which the user

teaches the robot steps of a new meal, and the robot learns the

sequence of the order, (2) meal execution, in which the user can

say the name of the learned meal, and the robot would know and

execute the sequences, and (3) the user does not care about teaching

the robot the entire sequence of the meal preparation; the user is

simply requesting a single robot action.

The input of the robot learning module is the valid instructions

from the natural language understanding module. The robot learn-

ing framework is responsible for building a graph based on the in-

structed actions for the cooking task. The language model Distilled

Generative Pre-trained Transformer-2 (DistilGPT2) [27] generates

robot actions from valid instructions. For example, consider a valid

instruction 𝑆 . 𝑆 needs to be tokenized before giving it as input to

the DistilGPT2 model. Tokenization is a process where a sentence

is broken down into words, and the words are converted into their

unique numerical IDs, which is called the class of the word. The

DistilGPT2 model outputs the robot action instruction in tokenized

form. To train the DistilGPT2 model, the following loss function

𝐿𝐷𝑖𝑠𝑡𝑖𝑙𝐺𝑃𝑇 2 is used:

𝐿𝐷𝑖𝑠𝑡𝑖𝑙𝐺𝑃𝑇 2 = −

𝑗=𝑛∑︁

𝑗=1

𝑘=𝑚∑︁

𝑘=1

𝑇𝑗𝑘𝑙𝑜𝑔(𝑅 𝑗𝑘 ) (2)

where𝑇𝑗𝑘 is the target class of 𝑗𝑡ℎ robot action’s 𝑘𝑡ℎ word (ground

truth), 𝑅 𝑗𝑘 is the predicted class of 𝑗𝑡ℎ robot action’s 𝑘𝑡ℎ word,

𝑚 is the maximum length of the output robot action that could

be generated, 𝑛 is the total number of valid instruction used to

train the DistilGPT2 model, which is 10,000 obtained from the

Collaborative Cooking dataset. The robot action can be considered

a special instruction that captures the intent of the task the user

instructs the robot to perform (łexecutež). The generated graph

consists of the sequence of actions for the specific learned task, as

shown in Figure 3. For example, if the user says łHey robot, bring

me the panž, the valid instruction would be generated as łAdd to

current Graph: Fetch panž. This robot action would be interpreted

as adding a node called łFetch panž to the graph. After the user has

taught the robot how to prepare a meal, the graph is stored in a

graph database, which means that the robot learned the sequence

of actions for the particular meal.

5 PRELIMINARY RESULTS

To evaluate the complete system proposed in Section 4, we used

the data from the Collaborative Cooking dataset (see Section 3). The

input of our system is the complete speech of the participant for

a task, and the output of our system is the learned graph-based

sequence of robot actions. The accuracy of the system is defined

using the total number (abbreviated as łNo.ž) of correct robot actions

generated as shown in Eq. 3.
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Omelet

Task: Denver Omelet 
Participant: Hey robot today I will be making
denver omelette and I need a saucepan, olive oil
and eggs 
DistilGPT-2 Output: Add to Graph: denver omelette
carbonara, Step-1 Fetch Saucepan, Step-2 Fetch
olive oil, Step-3 Fetch eggs

Participant: Hey robot I need ham onion 
DistilGPT-2 Output: Add to current graph: Fetch
ham Add to current graph: Fetch onion
Participant's Friend: Hey XYZ omelet smells good I
am famished 
system: Invalid command. Text not sent to
DistilGPT-2 for processing

Participant: Hey robot set a timer for 2 minutes
for the eggs to cook 
DistilGPT-2 Output: Add to current graph: Set
Timer 10 minutes

Participant: Hey robot Thank you robot for the
help we are finished 
DistilGPT-2 Output: Done 

Fetch  
Saucepan

Fetch Olive
oil Fetch eggs Fetch ham

Fetch onionSet Timer 2
minutesDone

1 2 3 4

5

67

Corresponding Graph:

Figure 3: Transcript of the speech given by a participant

during the study and the corresponding generated graph for

the sequence of robot actions.

Accuracy =

No. of correct actions generated from speech instructions
No. of speech instructions

× 100%

(3)

Another metric to evaluate the text generated from the Distil-

GPT2 model is called the BiLingual Evaluation Understudy score

(BLEU score for short), which represents how close the generated

instruction from the model is to the ground truth instruction. BLEU

score ranges from 0 to 1, with 0 meaning no match between the

generated and target sequence of actions to 1 being an exact match

between the generated and target sequence of actions.

To train the system, the augmented łCollaborative Cooking

datasetž from 16 participants is used, and to test the system, the data

from the remaining 9 participants is used. The accuracy and BLEU

score of the system depends on the training and testing data that

are used. For example, some participants used simple sentences like

łbring me the panž, while some other participants used compara-

tively more complex sentences, such as łget that green pan and put

it herež. When the system is trained using data from participants

who used simpler sentences and testing it on the data from partici-

pants who used complex sentences would result in less accuracy

and BLEU scores and vice versa. Hence, to properly evaluate the

system‘s performance, 3-fold cross-validation is used. The data is

divided into folds with respect to the participants that it originated

from. The data from 16 participants is used to train the model, and

the data from the remaining 9 participants is used to test the model.

Finally, the average accuracy and average BLEU score are calculated

from different iterations during cross-validation.

The average accuracy calculated is 92.85 ± 3.87%, and the aver-

age BLEU score calculated is 0.91 ± 0.11. There were some cases

where the system was not able to generate an action from a spoken

instruction. For example, one of the participants said ‘I feel like

eating pizzaž. This instruction was classified as invalid because it

is ambiguous whether this sentence is a casual conversation or a

valid instruction. In some cases, the DistilGPT2 was not able to gen-

erate a correct robot action instruction, e.g. łAlso I need some glass

baking dishž. The łglass baking dishž was identified as a task/recipe

name rather than an object that needs to be fetched.

6 CONCLUSION & FUTURE WORK

In this paper, we introduced a robot learning framework that en-

ables the robot to learn from unstructured spoken language. A

collaborative meal preparation scenario between individuals and

the robot is developed, and data were collected. Individuals were

comfortable communicating verbally with the robot in order to get

assistance with the meal preparations in the kitchen. We propose a

framework that automatically generates robot actions from speech

that included environmental interruptions. A 3-fold cross-validation

average accuracy and average BLEU score were calculated. The

average accuracy of the system is 92.85 ± 3.87%, and the average

BLEU score of the system is 0.91 ± 0.11, which is a very promis-

ing and positive finding. The prospect of natural interaction using

speech opens up many possibilities that can be further explored.

In the future, the graph-based sequence of actions will be con-

nected to a robot skill library, similar to [28], that would enable the

robot to perform the actions in real-time. During the data collection,

we noticed that some participants felt comfortable interacting with

the robot, and they leaned on using more fragments phrases. For

example, one of the participants did not remember how to request

the łwooden spoonž, and instead, they said łgive me the wooden

thingyž. In another case, the participant mentioned łstainerž instead

of łstrainerž. Interestingly enough, we googled the word łstainerž,

and the top search items were łstrainersž. Therefore, we plan to

have the user teach the robot the name of the items the way they

prefer to refer to them. Another observation was that several partic-

ipants used hand gestures while asking for an item. In the future, we

plan to conduct a larger study to ensure our proposed framework

is robust and publish the dataset.
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