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Abstract—Robots have the potential to assist people in daily
tasks, such as cooking a meal. Communicating with the robots
verbally and in an unstructured way is important, as spoken
language is the main form of communication for humans. This
paper proposes a novel framework that automatically generates
robot actions from unstructured speech. The proposed frame-
work was evaluated by collecting data from 15 participants
preparing their meals while seating on a chair in a randomly
disrupted environment. The system can identify and respond to
a task sequence while the user may be engaged in unrelated
conversations, even if the user’s speech might be unstructured
and grammatically incorrect. The accuracy of the proposed
system is 98.6%, which is a very promising finding.

Index Terms—Human-robot collaboration, Robot Action Gen-
eration, Natural Language Processing, Assistive Cooking, Speech

I. INTRODUCTION

According to the Centers for Disease Control and Preven-
tion [1], 61 million adults in the United States live with a
disability, which may include mobility, cognition, hearing,
vision, and self-care challenges. People with disabilities often
need support to perform Activities of Daily Living (ADLs).
Independent living gives purpose and meaning to a person’s
life which improves the person’s confidence, self-esteem, and
quality of life.

Robots have the potential to assist people with disabilities
to get some degree of independence. For example, robots
have been used to provide drinks to people with severe motor
impairments [2], [3] or help them eat [4], [5]. However, meal
preparation may be a challenging task for people with disabili-
ties. A study [6] that interviewed 30 people with disabilities in
New Jersey (USA) found that cooking is a very complex task
as most kitchens are not accessible to people in wheelchairs
or people who are blind due to structural barriers (e.g., the
counter is too high, impossible-to-reach storage cupboards,
narrow spaces, flat-screen interface for microwaves and ovens,
etc.). Robotic systems could assist people who would like
to cook by opening cupboards, picking and bringing the
ingredients and the kitchen utensils, operating the appliance,
etc., while individuals can focus on actual cooking. Therefore,
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considering cooking as a human-robot collaborative scenario
[7] is beneficial for people with disabilities.

Another important aspect of human-robot collaboration is
the method of interaction. Spoken language interaction is a
natural way for humans to communicate with their compan-
ions. However, our ability to communicate with robots via
speech is very limited and restrictive [8]. For example, it
is expected that the person interacting with the robot will
provide specific instructive words for robotic actions. A recent
study [9] developed a Wizard of Oz prototyping method to
investigate how humans would interact with an industrial robot
via speech. The participants of the study were able to instruct
the virtual robot to move cubes and make a pyramid with
them. The findings of the study suggest a high preference for
speech input and the automatic generation of robotic actions.

Fig. 1. Experimental Setup for Human-Robot Collaborative Cooking.

This paper presents a robotic framework that enables a
robotic system to generate automatically a sequence of actions
for a collaborative cooking scenario from spoken language,
as shown in Fig. 1. The proposed framework was evaluated
by collecting data from 15 individuals and, during the study,
random distractions and interruptions were introduced while
they were interacting with the robot. The presented work con-
tributes to the research and development of assistive robots by
proposing the following: (I) a language model that can identify
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the intended task-related instructions to the robot from an
unstructured speech (including distractions and interruptions),
and (II) automatic generation of a graph-based sequence of
robotic actions from spoken language.

The rest of the paper is organized into the following
sections: Section 2 discusses the related work, Section 3
the Experimental setup and data collection, Section 4 the
proposed system, and Section 5 the experimental results.
Finally, Section 7 concludes the work and provides future
directions of research.

II. RELATED WORK

Interpreting the task that is spoken to the robot is one of
the critical aspects and yet challenging in a robotic assistive
system, especially for assisting the user in managing their daily
lives, such as cooking their meals. Unhelkar et al. [10] pro-
posed “CommPlan”, a computational framework that decides
if, what, and when to communicate with the human during
human-robot collaboration. The CommPlan was used for a
meal preparation task where humans and robots communicate
in making a sandwich. The CommPlan predefines a set of
spoken words that humans and robots can use to communicate.
However, predefining a set of words does not provide a natural
way of communication for humans, as humans have the ability
to express the same exact action with different words and
sentences.

Gonzdlez et al. [11] propose using syntactic rule-based
parsers for extracting key action words (e.g. “start”, “stop”,
etc.) for natural human-robot interaction in an industrial set-
ting. However, the syntactic rule-based parsers might not be
efficient in grasping a complex sentence [12]. To alleviate this
issue Choi et al. [12] used Generative Pre-trained Transformer
2 (GPT-2) [13] to understand the user intent in a more
natural way. Choi et al. [12] in their paper used GPT-2
to understand and execute the high-level verbal commands
to perform motion-planning tasks, such as pick & place or
assembly for industrial robots. In their architecture, the GPT-
2 receives an input string such as “Please begin assembly of
the casing base”, which is then converted into an instruction
task string, and then the framework instructs the robot to begin
assembling the casing base. Similarly, Li et al. [14] propose a
system called "ToD4IR” that uses the dialogues between the
human and the robot where the human instructs the robot to
perform either of these four tasks: Go to a location, deliver
an object from point A to Point B, work in assembly and
relocate the objects in a scene. The authors benchmark the
popular language models, such as GPT-2 and GPT-Neo to find
out the task recognition accuracy is 86.6%. Li et al. [14] and
Choi et al. [12] focus on manufacturing related tasks that are
structured scenarios.

In contrast, the presented work focuses on a meal prepa-
ration scenario that is unstructured. Additionally, to make
the scenario more realistic, we introduced distractions and
interruptions, such as a person trying to chat with the robot’s
user, a dog barking, the robot’s user talking on the phone,
etc. To the best of our knowledge, this is the first framework

that focuses on generating automatic robotic actions from
unstructured spoken language and at the same time identifying
the relevant task instructions from unrelated ones.

ITII. EXPERIMENTAL SETUP AND DATA COLLECTION

The focus of our experimental setup is to understand how
people would talk to a robot in order for it to pick and bring
ingredients and kitchen utensils for cooking a meal of their
interest. The setup includes two tables; one table has all the
ingredients and kitchen utensils while the other table has a
chair where the study’s participant sits. The setup includes a
microphone that records the interactions at the two tables. Fig
1 shows the experimental setup for this study. One of the study
personnel pretends that s/he is the robotic assistant and follows
the participant’s instructions, while another study personnel
interrupts and talks with the participant during an instruction
or playing sounds (e.g. dog barking). Participants were allowed
to answer their phone calls and make phone calls, as we
were interested to collect data that are realistic. A mobile
manipulator was also present in the room so the participants
had a better understanding of what a robotic assistant looks
like and its capabilities. Additionally, the participants were
instructed to only use speech as a communication method
and to imagine they were talking to a robot. Therefore, the
participants were instructed to say ‘“Hey robot” and then the
action they would expect the robot to take. The participants
were not instructed on how to provide the desired robot action.
Each participant had the option to provide instructions for
up to three meals of their choice, based on the available
ingredients.

To collect data, 15 participants were selected, and Table
I shows the participant’s age, gender, and if they have fa-
miliarity with robots. The audio was recorded during the
studies in accordance with Institutional Review Board (IRB)
[15] Protocol ID 22-08-1827 and the described experimental
setup was followed. The audio was recorded in ROSBags
[16], a file format in Robot Operating System (ROS) for
storing data. During the data collection, all the participants
provided instructions to the robot for assisting them to prepare
a meal. By not restricting the way the participants would talk
to a robot, we observed the following behaviors. Fourteen
participants used filler words (e.g. actually, literally, like I said,
you know, what I am trying to say) or sounds during the study.
Twelve participants mentioned the name of the recipe (e.g.
pasta with tomato sauce, carbonara, etc.) at the start of each
meal preparation. Moreover, six participants thought that the
meal preparation was completed but then realized that they
would like to add additional steps. Four participants requested
the robot to track the time and three participants forgot the
name of the ingredients or the utensils they needed. Only one
participant thanked the robot when giving commands. The
collected dataset from the participants has been named the
“cooking assistance” dataset for further reference throughout
the paper.
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Fig. 2. Overview of the automatic generation of robot actions framework for collaborative tasks from speech

TABLE I
PARTICIPANTS’ DEMOGRAPHICS: AGE GROUP, GENDER OF THE
PARTICIPANTS, AND IF THEY ARE FAMILIAR WITH ROBOTS

Age Range Gender (M: Male, F: | Number of participants
Female) familiar with Robots
18-30 OM IF 6
31-40 IM 1F 2
51-60 IM IF 2
>60 IM OF 0

IV. PROPOSED SYSTEM

The proposed system is shown in Figure 2, which consists of
four modules described in detail in the following subsections.

A. Speech to Text Conversion

The first module of our system converts the speech (audio)
data into text. There are two options for transcribing the
audio to text; (1) online services from Google or Amazon
[17] and (2) offline models, such as Vosk [18]. As Vosk
gives the capability for offline transcription and runs locally
on our server ensuring data privacy according to the IRB
guidelines, it was preferred in comparison with online speech-
to-text services. Vosk provides multiple trained models which
can convert audio from 20+ languages to text. Out of all the
models available, the Vosk English language model called the
“Vosk-model-en-us-daanzu-20200905” [18] was chosen since
it was trained to transcript speech from both native and non-
native English speakers. The output of this module is the text
transcript of the spoken language, which is further processed
by the text classification module.

B. Text Classification

As we set up our study to be realistic, there is a significant
chance that numerous conversations may not be relevant to
meal preparation. For example, the user may get interrupted by
other people and start a conversation with them or answer their
phone. Therefore, it is vital that the system can distinguish
between robot commands and unrelated conversations. One
method that can classify if the text is a valid command or
not is the open-source Bidirectional Encoder Representation
from Transformers (BERT) [19], which is created by google
in 2018. The data collected from the 15 participants is not
enough to train a BERT model as it requires a large amount
of data, such as the BookCorpus dataset [20], which contains
text data from 11,038 unpublished books. To overcome this
issue, the relevant data which is the valid commands given to
the robot saying ‘Hey robot’, are augmented to increase its

size. The data are augmented with random food names (e.g.
Pizza, Steak, etc.) from [21], random food adjectives such as
spicy and savory, etc. and also with different ingredients such
as tomato and butter, etc. and different utensil names such as
pan, pot, and different appliance names such as oven, toaster,
etc. For example, if the participant says “I want to make
pasta” during the data collection, this sentence is modified
to “I want to make spicy and savory Pasta” and added to the
cooking assistance dataset. From the data collected it can be
inferred that there were two main types of commands that the
participants asked the robot: (I) To fetch objects and (II) To
set a timer.

To train the model to classify the commands intended for the
robot as ‘valid command’, the collected valid commands from
randomly chosen ten participants are augmented. Therefore,
the cooking assistance dataset contains 10K examples of valid
commands to the robot. Moreover, during the collection of
the cooking assistance dataset, the participants were distracted
while giving commands to the robot. There were cases where
the participant said ‘Hey robot’ and went on to have a phone
call rather than giving the command to the robot. The data
collected during interruptions are a small sample and are not
enough to train the model as examples of ‘invalid command’
for the robot. However, these examples of casual/distracted
conversations can be easily obtained from other datasets, such
as TweetQA [22]. The TweetQA is a dataset of informal
human conversations and contains 13,757 question-and-answer
pairs sampled from 17,794 tweets. Out of which 10,692 are
used for training and 3065 are for testing. Both the questions
and tweets from the TweetQA dataset are used to train our
BERT model as examples of ‘invalid command’.

The Binary Cross Entropy loss function is used to train the
BERT model with our dataset. Let p; be the output class of
the model and y;, be the target class, then the loss function L
can be defined as follows:

k=n
L=-> ylog(ps) (D
k=0

where n is the total number of examples in the dataset,
which is around 20,692 samples (10,000 from the cooking
assistance dataset and 10,692 from TweetQA). The model is
trained for 20 epochs with a learning rate of 10~° and weight
decay 0.01 using Adam with weight decay optimizer [23].
The classified invalid commands are discarded, while the valid
commands are processed further by the next module.
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C. Robot Action Generation

The next step in our system is to generate a sequence of
robot actions for the task based on the commands that have
been classified as valid by the text classification module. The
sequence of robot actions is organized as a graph and each
robot action is a graph node. The edge of the graph describes
which step it is (e.g. step 1, step 2, etc.).

The robot action generation module utilizes the causal
language model, called Distilled Generative Pre-trained
Transformer-2 (DistilGPT-2) [24], which is used to extract the
important words from the valid command (e.g. if a user says
“Hey robot, can you bring me the tomato”, DistilGPT-2 will
extract the words “bring” and “tomato’”). As mentioned in the
earlier subsection IV-B, a large amount of data is required
to train language models. Hence, the same augmented dataset
with just the valid commands that trained the BERT model is
used to finetune the DistilGPT-2 model, which is pretrained
with the WebText Dataset [13] from Huggingface [24].

Consider the input sentence .S, which represents a valid
command. S needs to be separated (tokenized) into individual
words. Considering the tokenization yielded ¢ words (tokens)
S = Sy, S1, 59,...,5;. Let the maximum number of tokens
possible be m. The tokens are passed into the DistilGPT-2
model 6 to generate the robot action R which contains m
tokens, as follows:

R:0(507517S27 aS’L) (2)

Let the ground truth of the robot action be 7" which contains
m tokens, then the total loss L used to train the DistilGPT-2
model is calculated using the following cross-entropy loss:

j=m
L=~ Tilog(R)) 3)
§=0

The generated robot actions from the DistilGPT-2 model
are then converted into graph nodes and added to the graph
of the task. Figure 3 shows an example of the participant’s
speech and the graph generated from our system to describe
the sequence of robot actions for the desired task. Most
participants provided the task’s name (e.g. Let’s make pasta
with tomato sauce) when they start instructing the robot.
However, three participants forgot to give the name of a task.
In this case, we created an “unknown task” graph. After
the participant provided all the instructions, then the graph
includes the sequence of all robot actions required for the
specific task. In the future, this graph can be used to directly
control a mobile manipulator that is capable to recognize
objects in the scene and fetch them for the user.

V. EXPERIMENT RESULTS

To evaluate the complete system, we used the data from
the cooking assistance dataset. The input of our system is the
complete speech of the participant for a task and the output
of our system is the graph-based sequence of actions. Our
testing set consists of the data from the five participants who

Task: Pasta Carbonara

Participant: Hey robot today I will be making
pasta carbonara and I need a saucepan, olive oil
and pasta

DistilGPT-2 Output: Add to Graph: pasta carbonara,
Step-1 Fetch Saucepan, Step-2 Fetch olive oil,
Step-3 Fetch pasta

~ipant: Hey robot I need garlic bacon egg and

DistilGPT-2 Output: Add to current graph: bacon,
Add to current graph: Fetch egg, Add to current
graph: Fetch cream

Participant: Hey robot And then I need the
chopping board and knife

DistilGPT-2 Output: Add to current graph: Fetch
chopping board, Add to current graph: Fetch knife

Participant: Hey robot I need also the spatula
DistilGPT-2 Output: Add to current graph: Fetch

spatula

Participant's Friend: Hey maria what are you
making today, smells delicious

System: Invalid command. Text not sent to
DistilGPT-2 for processing

Participant: Well I am trying to make pasta, you
more than welcome to join me
m: Invalid command. Text not sent to

DistilGPT-2 for processing

Participant: Hey robot I just realized that I
forgot the black pepper and oregano can you get
them for me

DistilGPT-2 Output: Add to current graph: Fetch
black pepper, Add to current graph: Fetch oregano

Participant: Hey robot I think you should take a
break for until like 10 minutes and then we can
continue the recipe

DistilGPT-2 Output: Add to current graph: Set
Timer 10 minutes

Participant: Hey robot I need the strainer so that
I can takeout the pasta from the pot

DistilGPT-2 Output: Add to current graph: Fetch
strainer

Participant: Hey robot Thank you robot for the
help we are finished
DistilGPT-2 Output: Done

Corresponding Graph:

Pasta
Carbonara,
10
Fetch
spatula

Fig. 3. Transcript of the speech given by a participant during the study and
the corresponding generated graph for the sequence of robot actions.

were excluded from the training dataset. The accuracy, which
is the number of correctly generated robot actions divided by
the total number of robot actions requested by the participant,
is then calculated for the testing set. The accuracy of the
system is calculated to be 98.6%. Moreover, the BiLingual
Evaluation Understudy (BLEU score) is also calculated, which
ranges from 0 to 1, with 0 meaning no match between the
generated and target sequence of actions to 1 being an exact
match between the generated and target sequence of actions.
The BLEU score for the system is 0.9847.

The results are very positive and there are very few cases
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in which our system fails; however, additional data from more
participants may be needed to verify the results in a larger
testing sample. It is also important to discuss the failures of our
system. For example, the sentence “Hey Robot, can you give
me some more?” is classified as a valid command and added
to the graph. This is not correct as it is not clear what the robot
should actually fetch more of. This case is more of a limitation
than a false prediction because when the participant was giving
the command to the robot, there was a long pause between
“Hey Robot, can you give me some more” and “water”. This
is the limitation of the system where the user cannot give a
long pause in between giving a command to the robot. Another
example that our system failed was because it replaced some
words with synonyms; for example, the participant asked for a
pot but the generated robot action was “bring pan”. The words
are very near in meaning but nevertheless different.

VI. CONCLUSION AND FUTURE WORK

In the presented work, a collaborative cooking scenario
between a human and a robot is introduced. The human com-
municates with the robot verbally and provides instructions
on how it can be of assistance. We propose a framework
that automatically generates robot actions from speech that
included environmental interruptions. A small study of 15
people was conducted to evaluate our system. The accuracy of
the system is 98.6%, which is a very promising and positive
finding. However, the system has a few failed cases.

In the future, we plan to have a more extensive study
to ensure our proposed framework is robust and the dataset
will be published. Additionally, the graph-based sequence of
actions will be connected to a robot skill library, similar to
[25], that would enable the robot to perform the actions in
real time.
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