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Abstract—The commonsense natural language inference (CNLI) tasks aim to select the most likely follow-up statement to a contextual
description of ordinary, everyday events and facts. Current approaches to transfer learning of CNLI models across tasks require many
labeled data from the new task. This paper presents a way to reduce this need for additional annotated training data from the new task
by leveraging symbolic knowledge bases, such as ConceptNet. We formulate a teacher-student framework for mixed symbolic-neural
reasoning, with the large-scale symbolic knowledge base serving as the teacher and a trained CNLI model as the student. This hybrid
distillation process involves two steps. The first step is a symbolic reasoning process. Given a collection of unlabeled data, we use an
abductive reasoning framework based on Grenander’s pattern theory to create weakly labeled data. Pattern theory is an energy-based
graphical probabilistic framework for reasoning among random variables with varying dependency structures. In the second step, the
weakly labeled data, along with a fraction of the labeled data, is used to transfer-learn the CNLI model into the new task. The goal is to
reduce the fraction of labeled data required. We demonstrate the efficacy of our approach by using three publicly available datasets
(OpenBookQA, SWAG, and HellaSWAG) and evaluating three CNLI models (BERT, LSTM, and ESIM) that represent different tasks.
We show that, on average, we achieve 63% of the top performance of a fully supervised BERT model with no labeled data. With only
1000 labeled samples, we can improve this performance to 72%. Interestingly, without training, the teacher mechanism itself has
significant inference power. The pattern theory framework achieves 32.7% accuracy on OpenBookQA, outperforming
transformer-based models such as GPT (26.6%), GPT-2 (30.2%), and BERT (27.1%) by a significant margin. We demonstrate that the
framework can be generalized to successfully train neural CNLI models using knowledge distillation under unsupervised and
semi-supervised learning settings. Our results show that it outperforms all unsupervised and weakly supervised baselines and some
early supervised approaches, while offering competitive performance with fully supervised baselines. Additionally, we show that the
abductive learning framework can be adapted for other downstream tasks, such as unsupervised semantic textual similarity,
unsupervised sentiment classification, and zero-shot text classification, without significant modification to the framework. Finally, user
studies show that the generated interpretations enhance its explainability by providing key insights into its reasoning mechanism.

Index Terms—Multiple choice CNLI, Commonsense Reasoning, Pattern Theory
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1 INTRODUCTION

We can partition natural language understanding into
different problem domains, such as classification, common-
sense reasoning, machine reading comprehension, and sum-
marization. Within each domain, there are various specific
tasks. One open problem is task transfer learning, which
involves transferring a model from a source task to a differ-
ent target task within a specific domain. Typical solutions
require a large amount of labeled data from the target
domain. However, we consider task transfer learning with
the constraint that we have only a minimal set of labeled
data in the target domain but have access to a symbolic
commonsense knowledge base. Although the underlying
problem formulation, i.e., text classification, may be similar,
each task presents different challenges, such as domain-
specific semantics, multi-hop reasoning, and contextual in-
formation, that make them distinct from one another. For ex-
ample, answering questions about everyday events requires
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a different set of reasoning capabilities than answering
open-domain, fact-based questions, even though both tasks
fall under the broader category of question-answering. In
this work, we focus primarily on the different commonsense
natural language inference (CNLI) tasks in the common-
sense reasoning domain.

Common formulations of CNLI tasks involve selecting
the most likely follow-up statement from a list of choices
in specific domains such as everyday facts and events.
For instance, the SWAG task (Situations With Adversar-
ial Generations) [1] consists of multiple-choice sentence
completions derived from captions of consecutive events
of videos in ActivityNet [2] and the Large Scale Movie
Description Challenge (LSMDC) [3]. The questions span
many domains, so formulating a complete solution requires
reasoning over prior knowledge, establishing semantic re-
lationships among entities, and language comprehension.
Other examples of CNLI tasks include the general-purpose
knowledge inference task (OpenBookQA [4]) and the how-
to instruction tasks (HellaSWAG [5]). The typical approach
to solving such tasks has been to adapt pre-trained deep-
networks-based language models such as BERT [6], GPT [7],
and more recently, GPT-3 [8] for a specific CNLI task in
a supervised manner. This approach has yielded state-of-
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Fig. 1. Given unlabeled data from the target task, we use a general
commonsense reasoning framework based on pattern theory to create
weakly-labeled data using symbolic knowledge bases, e.g., ConceptNet.
This is the teacher. We then distill its implicit knowledge to train a student
to build specialist models for the target task.

the-art performance on several CNLI benchmarks through
large-scale pre-training on vast amounts of unlabeled data.

Despite such success of pre-trained models, switching
the trained model from one CNLI task (the source) to
another (the target) is a harder problem. As an illustra-
tion, consider the BERT model for three CNLI tasks: (i)
everyday situations (SWAG) [1], (ii) general-purpose knowl-
edge [4] (OpenBookQA), and (iii) how-to instructions (Hel-
laSWAG) [5]. To switch a BERT model trained on, say, SWAG
(the source task) to OpenBookQA (the target) requires the
availability of large amounts of labeled training data in the
target task, i.e., OpenBookQA. Table 1 shows the trans-
ferability of BERT across tasks with different amounts of
labeled data in the target tasks: (i) when a large amount of
labeled training data is available for the target task, (ii) when
only 1, 000 labeled training samples are available in the target
task, and (iii) when no labeled training data is available at
all. The highlighted diagonal percentages represent the best
BERT performance that can be achieved on the respective
task. The off-diagonal percentages represent the general-
ization performance from the source to the target task. We
observe a significant drop in performance for all cross-task
generalization scenarios. The performance is poor across
tasks when there is no labeled data. With a large amount
of labeled data, the performance is better, but it drops when
there is limited labeled data available for the target task.
Training with robust adversarial filtering seems to reduce
overfitting and helps models trained on HellaSWAG to
generalize to out-of-task data. However, it requires careful
selection and refinement of training data.

To reduce the dependence on labeled training data,
we utilize the knowledge stored in large-scale symbolic
knowledge bases such as ConceptNet [9], [10] to provide
weak supervision for CNLI models in the target task. The
approach builds on the idea of abductive reasoning [11] for
distilling knowledge from the symbolic knowledge base.
Figure 1 shows the overall approach. We start with un-
labeled data in the target domain and generate weakly
labeled data using a pattern theory-based reasoning frame-
work that leverages large-scale symbolic knowledge bases.

For training CNLI models, we use a student-teacher setup
introduced in knowledge distillation [12], [13]. However,
unlike the standard teacher-student setup where both the
teacher and the student are deep-learning models, we have
a hybrid setup where the teacher is the large-scale symbolic
knowledge base, and the student is the CNLI model to
be trained. We formulate the teacher-student distillation as
a two-step process. First, we use a pattern theory-based
inference engine to weakly label the data by leveraging the
commonsense knowledge base. Second, we use this weakly-
labeled data along with an optional fraction of labeled train-
ing data to train CNLI models on task-specific data. Our
approach differs from works such as COMET [14], which
uses large-scale information in deep neural networks for
knowledge base expansion and completion. Instead, we use
large-scale knowledge to develop task-specific models.

We use Grenander’s pattern theory formalism [15] to
express this reasoning framework. Pattern theory is a graph-
ical, energy-based probabilistic framework that can reason
over random variables with varying dependency structures.
The underlying structure is represented as compositions
of simpler patterns. Each element of the structure, called
generators, combines with each other through local inter-
actions via links called bonds. These interactions are con-
strained by both local and global regularities captured by
an overarching graph structure. A probability structure over
the representations captures the diversity of patterns. The
many incarnations of graphical models of patterns, such
as directed acyclic graphs (DAG), Markov random fields
(MRF), Gaussian random fields, and formal languages, can
be shown to be special cases (see Chapter 6 of [16]).

A significant departure from current approaches to CNLI
is the use of symbolic reasoning to first construct a “contextu-
alized interpretation” of the evidence (the question or context)
and each of the provided hypotheses (the answer choices),
expressed in a graph-like structure using pattern theory.
An example of a contextualized interpretation is illustrated
in Figure 4. We define an interpretation as a connected
representation that captures the semantic structure of the
evidence. An interpretation is a deeper and more meaning-
ful representation of observed concepts (actors, actions, and
actor-object interactions) and unobserved concepts (back-
ground knowledge of concepts) or ”contextualization cues.”
We use these interpretations to perform “inference to the best
explanation” (IBE) to find the most plausible hypothesis.

To demonstrate the effectiveness of the proposed frame-
work, we chose unsupervised commonsense natural lan-
guage inference as the primary task for evaluation. The
CNLI task is naturally conducive to abductive reasoning
since it requires reasoning over observations in the context
of prior knowledge to ascertain plausibility. It requires com-
plex, multi-hop reasoning that goes beyond simple pairwise
relationships and requires a deeper understanding of the
semantic relationships among concepts in the hypotheses,
especially in an unsupervised setting without gold-standard
labels. We show that the framework can be expanded, with-
out significant rewiring, into other downstream tasks, such
as semantic textual similarity [17] (Section 6.3), sentiment
analysis [18] (Section 6.4), and zero-shot text classification
(Section 6.5), while providing an explainable interface (Sec-
tion 6.2) to the underlying reasoning mechanism.
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TABLE 1
Transferability of BERT across CNLI tasks: OpenBookQA (OBQA), SWAG and HellaSWAG (HSWAG). We list the accuracies for different

combinations of source and target tasks. We evaluate performance under three different sizes of the labeled training data from the target task: (i)
the entire labeled set is available, (ii) when only 1, 000 labeled samples are available, and (c) when no labeled sample is available.

Source task
Target task

All Labeled Samples 1000 Labeled Samples NoneOBQA SWAG HSWAG OBQA SWAG HSWAG

OBQA 56.6 30.6 30.2 38.8 24.4 24.6 27.1
SWAG 20.03 86.6 71.4 28.2 58.5 41.9 41.4

HSWAG 25.63 34.6 46.7 26.1 26.7 29.8 28.9

The contributions of this work are that we have formu-
lated a novel pattern theory-based abductive reasoning frame-
work to abstract task-relevant information in large-scale
symbolic knowledge bases into task-specific neural net-
works. This hybrid knowledge distillation mechanism is
new and can be used to train CNLI models using large-scale
symbolic knowledge bases with few labeled training data.

We have structured the paper as follows: In Section 2, we
review related work on the methods and techniques used
in our work. The overview of the approach is outlined in
Section 3, followed by details of Grenander’s pattern theory-
based formulation of the symbolic teacher in Section 4. In
Section 5, we show how the knowledge is distilled into the
task-specific student network. Sections 6.2, 6.3, 6.4, 6.5,
and 6.6 present a thorough performance evaluation of the
proposed approach along with ablation studies. Section 7
provides error analysis and discusses future directions for
error mitigation.

2 RELATED WORK

Commonsense natural language inference (CNLI) has pri-
marily been addressed in current literature as a type of
question-answering, along with other tasks such as compre-
hension [19] and natural language inference (NLI) [1], [5],
[20]. Related downstream tasks include fact-checking [21]
and semantic textual similarity [17], [22], which use CNLI to
assess the factual and semantic accuracy of text. Approaches
to these tasks can be divided into two categories: semantic
similarity matching and relevance matching models. Simi-
larity matching models involve computing semantic similar-
ity between question and answer representations, typically
using a neural network model such as BERT [6], OpenAI
GPT [7], ESIM [23] and Fast-Text [24] and LSTM based
approaches. Other approaches use a ”compare, attend, and
aggregate” framework to quantify the relevance between
answers and questions [25], starting with vector represen-
tations of both and aggregating the relevance for a final
prediction. Other approaches represent some of the early
supervised models such as FastText [24], which use a bag of
words to represent the language for QA.

Commonsense knowledge bases are large repositories
of structured knowledge extracted from raw textual data
that express relational information between entities present
in everyday facts and events. They are typically repre-
sented as graphs or hypergraphs, with nodes consisting
of concepts and edges expressing the relationship between
them. Over the years, several knowledge bases have been
curated, such as ConceptNet [10], Cyc [26], FrameNet [27],

DBPedia [28], WordNet [29], and ATOMIC [30], each fo-
cusing on capturing a specific aspect of commonsense
knowledge. For example, ConceptNet captures the seman-
tic relationships between concepts through a hypergraph,
with edges spanning 34 different assertions such as IsA,
RelatedTo, AtLocation, and more. ATOMIC focuses
on inferential knowledge, capturing 9 if-then relations ex-
pressed over variables to encode cause-vs-effect and agent-
vs-theme knowledge. The knowledge expressed in these
large-scale repositories is typically manually curated, with
recent efforts focusing on knowledge base completion [31],
[32] to expand existing knowledge bases by predicting
relationships between concepts. While previous work has
focused on supervised learning to leverage knowledge bases
for various tasks in natural language processing and com-
puter vision [33], [34], [35], our student-teacher framework
eliminates the need for supervised training by using the in-
herent symbolic knowledge in large-scale knowledge bases
as the teacher to distill commonsense knowledge and train
student models for downstream tasks such as CNLI.

Knowledge-based approaches to question answering
[36], [37], [38], [39] have gained traction to reduce the
increasing reliance on large, human-annotated datasets for
commonsense NLI. Such approaches construct large reposi-
tories of knowledge by enhancing existing sources of knowl-
edge, such as ConceptNet [10] and ATOMIC [30], with
auxiliary, domain-specific knowledge extracted from text,
such as QASC [40]. Synthetic question-answer pairs are con-
structed from these custom-built knowledge bases to pre-
train language models for zero-shot and few-shot question
answering. Some approaches, such as KagNet [41], KTL [37],
MHGRN [42], QAGNN [38], OCN [43], KEAR [44], and
KnowledgePath [39], to name a few, have integrated com-
monsense knowledge found in symbolic knowledge bases,
such as ConceptNet and ATOMIC, into neural networks
using knowledge-injection techniques (such as attention
and graph neural networks) to enhance performance on
CNLI tasks through supervised learning. Other approaches
leverage the knowledge captured in large language models,
such as BERT [6], as supervision for CNLI using different
mechanisms, such as consistency optimization [45], ques-
tion rewriting [46], and leveraging the autoregressive pre-
training objective to rank answer options [47], [48]. Our
approach falls under this category of models that reduce the
requirements for annotated training data for commonsense
NLI. However, we do not require the construction of addi-
tional, specialized knowledge bases, additional mechanisms
for question rewriting, or ensembling for CNLI. Further-
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Fig. 2. Overall approach is illustrated here. We adopt a hybrid teacher-student framework, with a commonsense knowledge base as the teacher
and a CNLI model, trained in a source task, as the student. Given a collection of unlabeled data from the target task, we use a symbolic abductive
reasoning framework based on Grenander’s pattern theory to create weakly labeled data. A CNLI model is then trained with this weakly labeled
data along with an (optional) small labeled data to adapt to a target task.

more, the intermediate graphs generated through pattern
theory-based reasoning capture the complex semantic re-
lationships among concepts in each hypothesis to provide
an explainable interpretation for understanding its internal
reasoning mechanism.

Knowledge distillation was first introduced in [12] and
later generalized by [13] as a method to transfer the knowl-
edge learned from larger, more complex models into smaller,
more compact networks. This method usually involves
training the smaller network (called the student) using
soft targets, which are generated by the larger model (the
teacher) in addition to the ground truth labels. This allows
the soft targets to act as a regularizer and helps to learn
better representations. The knowledge distillation frame-
work has been used in various applications such as action
recognition [49], visual understanding [50], [51], visual dia-
log [52], and model compression [53], among others. In the
traditional student-teacher framework, the teacher model is
usually a large, high-performing model or an ensemble of
such models, which is trained in a supervised manner on
large-scale training data and used to train smaller, compact
student networks. Therefore, the distillation process is more
straightforward, where the student is trained on targets pro-
vided by the teacher network’s predictions. However, in our
case, the teacher is a symbolic knowledge base and requires
a reasoning mechanism to effectively distill knowledge for a
specific task, i.e., CNLI, on unlabeled data. It is to be noted
that all these knowledge distillation approaches involve the
training of a large teacher network in a supervised manner.

Abductive reasoning, introduced by Peirce [11], refers to
“inference to the most plausible explanation for incomplete obser-
vations” and has not been extensively explored in literature
from a computational viewpoint. While it is considered to
be the source of reasoning used by humans in everyday
situations [54], surprisingly few computational models have
been introduced. Most of the existing models are logic-
based, such as abductive reasoning in formal contexts [55],
[56]. A recent abductive reasoning approach is abductive
NLI [57], which is framed as supervised question answering.

3 APPROACH OVERVIEW

In this work, we propose a hybrid, unsupervised knowledge
distillation approach that uses a symbolic teacher model
based on pattern theory to distill general-purpose knowl-
edge from largescale knowledge bases for commonsense

natural language inference. In this work, we propose a
hybrid, unsupervised approach to distill general-purpose
knowledge from large-scale knowledge bases for common-
sense natural language inference, using a symbolic teacher
model based on pattern theory. In contrast to traditional
knowledge distillation applications, the teacher network is
not trained in a supervised manner. Instead, we use the idea
of abductive reasoning as a mechanism to leverage general-
purpose knowledge from symbolic knowledge bases, such
as ConceptNet [9], [10], for the CNLI task. The overall
approach is illustrated in Figure 2. Given a contextual de-
scription Et and multiple plausible follow-up hypotheses
{Hn}, we formulate an energy-based abductive reasoning
framework expressed in Grenander’s pattern theory formal-
ism [15] to evaluate the likelihood of each hypothesis and
choose the most likely one that completes the observation.

Abductive reasoning typically involves inferring the
most plausible hypothesis that completes the observed ev-
idence. This reasoning process typically starts with a set of
observations, both complete and incomplete, and attempts
to find the most likely explanation for the occurrence of
these observations. At the core of this process is common-
sense knowledge that evaluates the plausibility of each
hypothesis and identifies the hypothesis with the maximum
evidence to support its validity. Formally, we define ab-
ductive reasoning as an optimization process that aims to
find the optimal hypothesis Hi ∈ {H1, H2, H3, . . . Hn} that
has the maximum probability of occurrence, conditioned
upon the observed evidence Et and prior commonsense
knowledge about the evidence, Ct.This can be expressed as
the optimization for

arg max
Hi∈{H1,H2,H3,...Hn}

p(Hi|Ct, Et) (1)

where Et represents the observed evidence from the input
data at time t. This optimization involves empirically com-
puting the probability of occurrence for each hypothesis Hi

given the commonsense knowledge Ct.
In the proposed framework, we represent the context

as the observed evidence, the answer candidates as the
hypotheses, and ConceptNet as the source of commonsense
knowledge. As opposed to logic-based reasoning, we use
semantics driven by natural language to drive the reasoning
process. Hence, assigning a likelihood for any given hy-
pothesis requires a complete understanding of the observed
evidence, which requires interpreting the semantic structure
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that links the recognized actors, their actions, and interac-
tions. We express this semantic structure through a graph-
based representation called an interpretation and express it
in terms of Grenander’s canonical representation of general
pattern theory [15], [58], [59]. Each interpretation is a con-
textualized representation of each hypothesis-evidence pair
and conditioned by commonsense knowledge. Evaluating
the likelihood of each hypothesis allows us to weakly label
data from the target task, which can then be used to train
CNLI models specific to a given task.

4 SYMBOLIC TEACHER: PATTERN THEORY

At the core of our approach lies the notion of contextualiza-
tion. Contextualization, first defined by Gumperz [60], in-
volves the use of relevant presuppositions from prior knowl-
edge to maintain involvement in the current task. More
specifically, presupposition refers to the inherent knowledge
of a concept, such as its properties and shared semantics
with other concepts. This allows us to construct interpreta-
tions that go beyond simple pairwise relationships and pre-
defined logic and rules. Contextualization has two distinct
advantages: (1) it enables us to capture semantic relation-
ships among concepts whose co-occurrence has not been
observed, and (2) it helps us move towards an open-world
paradigm and bypass the need for annotated training data
to learn these semantic associations.

Formally, we represent concepts as gi for i = 1, . . . , N ,
and we use giRgj to represent semantic relationships
between two concepts. Then, the contextualization cue
is a concept, gk, that satisfies the following assertion:
not
(
giRgj

)
∧ giRgk ∧ gkRgj . This means that two concepts

that do not have a direct, previously observed relationship
can be correlated using contextualization cues. For example,
in Figure 4, the use of contextualization cues such as person,
music, and instrument allow us to establish a semantic asso-
ciation between the concepts woman, seat, nervous, and stage.
These interpretations are expressed through a graph-based
representation driven by pattern theory [15], [58].

Concepts as Generators: We represent concepts as gen-
erators, gi ∈ Gs, where Gs is the collection of all generators
required to express the semantics of a given environment.
Each generator, gi, represents a single atomic element that
expresses the presence of a concept. We allow for two
different types of generators based on their provenance.
Grounded generators (g

1
, g

2
, . . . , g

q
∈ GE) are concepts

whose presence in the interpretation can be grounded
to their presence in the evidence. Ungrounded generators
(ḡ1, ḡ2, . . . , ḡq ∈ GC ), on the other hand, represent essential,
contextual knowledge about grounded generators. The term
grounding is used to differentiate concepts based on their
presence in the evidence. In Figure 4, the concepts per-
son, instruments, and music are the ungrounded generators,
whereas the other concepts represent the grounded gen-
erators. While the ungrounded generators are not directly
observed, they are essential to understanding the semantic
relationship between the actor (woman) and the object of
interest (piano), moving beyond simple, pairwise semantics.

Expressing Associations using Bonds: Each of the con-
cepts shares a semantic relationship with other generators.
These associations can represent specific semantics such as

spatial, temporal, and social, to name a few. We express
these semantics through links called bonds. The direction of
the bonds signifies the semantics of a concept and the type of
relationship shared with its bonded generator. For example,
the generators piano and instruments are semantically related
through the assertion that “a piano is an instrument”. The
energy of a bond is used to quantify the strength of the
semantic relationship expressed between two generators
and is given by the function:

bsem(β′(gi), β
′′(gj)) = ws tanh(φ(β′(gi), β

′′(gj))). (2)

where β′ and β′′ represent the bonds from the generators
gi and gj , respectively; φ(·) is the strength of the assertion
expressed in the bond; and ws is a constant used to weight
the bond energies. The sentence structure (see Section 4.3),
represented by the dependency graph, is used to scale the
value of ws for capturing the structural properties of the
sentence, in addition to the semantic properties. We use tanh
to normalize the assertion strength to range from −1 to 1
and hence express both positive and negative assertions. We
use ConceptNet [9], [10] as the source of these bonds.

Interpretations as Configurations. The semantics of the
observed data are expressed through complex structures
called configurations (c). Generators combine through their
local bond structures. An example of a configuration is
shown in Figure 4. Each configuration has an underlying
graph topology specified by a connector graph σ ∈ Σ,
where Σ is the set of all available connector graphs. σ, also
called the connection type, defines the directed connections
between generators. Formally, we define a configuration c
as a connector graph σ whose sites 1, . . . , n are populated
by generators g1, . . . , gn expressed as,

c = σ(g1, . . . , gi); gi ∈ GS . (3)

The semantic content of the configuration c is defined by the
choice of generators g1, g2, . . . , gi. For example, in Figure 4,
the sentence “On stage, a woman takes a seat at the piano. She
nervously sets her fingers on the keys.” can be represented as
a configuration (or interpretation) with a set of grounded
concepts (stage, woman, nervous, etc.) and ungrounded
concepts (person, instrument, and music).

The probability of a given configuration c can be com-
puted by the energy E(c) of the configuration c. The energy
of a configuration c is defined as the sum of the bond ener-
gies (Equation 2) formed by the bond connections between
generators in the configuration and is given by

E(c) = −
∑

(β′,β′′)∈c

bsem(β′(gi), β
′′(gj)) (4)

The probability of the configuration is given by P (c) ∝
e−E(c). Hence, lower energy indicates higher probability.

4.1 Finding Optimal Interpretations
The large-scale and general nature of commonsense knowl-
edge bases can introduce noise and bias into the reasoning
process. Naively considering the energy of the configuration
to be the sum of the energies of the semantic bonds can
produce very large interpretations, introducing a number of
ungrounded generators that are not relevant to the inter-
pretation. To construct interpretations using concepts that
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Fig. 3. The proposed abductive reasoning process is illustrated here. Given an observed evidence and putative hypotheses, contextualized
interpretations are constructed. Inference to the best explanation is done using pairwise comparisons to rank the plausibility of the hypotheses.
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Fig. 4. An example of how natural language sentences are expressed
as contextualized interpretations in the pattern theory framework.

are most relevant to the observed evidence, we postulate
that the optimal interpretation minimizes the number of
ungrounded generators while maximizing its probability.

The process for constructing the optimal contextualized
interpretation for a configuration with two grounded gener-
ators gi and gj is as follows:

1) Extract the subgraph of all related concepts from
ConceptNet, representing the contextual properties
of the given generators gi and gj up to depth d.

2) Construct configurations that represent all
grounded concepts and their semantic relationships.

3) Compute the energy of each configuration obtained
and find the optimal configuration, i.e., the one with
the lowest energy.

The computational complexity of this process isO(kN2),
where k is the number of configurations considered from
ConceptNet for each set of N grounded generators. Since
we restrict the contextualization to a depth of d, the number
of configurations considered is limited. As seen in Table 11,

increasing d results in larger configurations, but does not
significantly improve the performance.

The task of constructing the contextualized evidence is
finding an optimal interpretation, c, given the evidence gen-
erators Et, a set of hypothesis generators Hi, and the prior
knowledge in terms of the ConceptNet graph,CN . We factor
this probability into two parts: a likelihood term, p(Gf |c),
and a prior, p(c|CN ), normalized by the distribution over
the evidence, where Gf = Hi

⋃
Et, the combined set of

both evidence and hypothesis generators. The probability of
the optimal configuration c can be computed as follows:

p(c|CN , Gf ) =
p(Gf |c)p(c|CN )

p(Gf |CN )
(5)

This probability can be captured using energy functions:

P (c|CN , Gf ) =
1

Z
e−E(Gf |c)−E(c|CN ) (6)

Here, E(Gf |c) represents the energy of the configu-
ration c that involves the grounded generators and the
detected concepts, and E(c|CN ) captures the energy of the
ungrounded generators. Hence, the total energy E(c) of a
configuration c, as defined in Equation 4, is updated to be
the sum of these energies: E(c) = E(Gf |c) + E(c|CN ).
Each of the terms E(c|CN ) and E(Gf |c) is computed by
only summing the energy of all bonds over the ungrounded
generators and grounded generators, respectively.

It should be noted that the second term in the exponen-
tialE(c|CN ) is not the entire subgraph from ConceptNet but
rather the subset that minimizes the overall energy. Hence,
the energy of the optimal configuration is given by:

E(c|CN ) =
∑

(β′,β′′)∈c

bsem(β′(gi), β
′′(gj)) +Q(c) (7)

whereQ(c) is a quality factor that restricts the inference pro-
cess from constructing configurations with degenerate cases
such as unconnected or isolated generators. It is formally
defined as

Q(c) = k
∑
ḡi∈G′

∑
βj
out∈ḡi

[D(βjout(ḡi))] (8)
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where G′ is a collection of ungrounded generators present
in the configuration c, βout represents each out-bond of
generator gi and D(.) is a function that returns a Boolean
value specifying whether the given bond is open i.e., it is
not connected to another generator.

We illustrate this process with a simple example. Given
a context of a question sentence, ”The sun is responsible
for,” and the answer option (hypothesis) ”plants sprouting,
blooming, and wilting,” we first extract the list of concepts
using the NLTK framework and lemmatize them to ensure
that we can find them in ConceptNet. We restrict the con-
cepts to nouns, verbs, and adjectives. Hence, Gf is given
by sun, responsible, plants, sprout, bloom, wilt. The first
step in contextualization is the extraction of the subgraph
connecting all grounded concepts and their properties up to
a depth d. This results in the extraction of several concepts,
some of which are shown in Figure 5. As can be seen, these
are all concepts that connect the grounded concepts and
can add lots of noise if included as is. The second step is
to extract all possible subgraphs that connect all grounded
concepts. This can include several possible combinations,
some of which are illustrated in Figure 5. We compute the
energy of each configuration or subgraph using Equation 5.
The third and final step is to find the subgraph with the min-
imum energy and hence the maximum probability. For this
step, we sort the subgraphs by their energies and choose the
highest-ranking configuration as the final configuration for
the evidence-hypothesis pair. The entire process is shown in
Figure 5. It can be seen that it is not a trivial task and hence
provides optimal use of the knowledge base for providing
a contextualized representation. Note that the configuration
on the right has more nodes, and hence a simple sum over
the bond energy would result in lower energy. Here, the
quality factor restricts the number of ungrounded genera-
tors added to the configuration.

4.2 Knowledge Source: ConceptNet

To model the semantics of the interpretations, we use a large
commonsense knowledge base as the source of knowledge
about concepts and their semantic associations. While our
approach is general enough to handle multiple sources of
commonsense knowledge [30], [61], [61], we use Concept-
Net [9], [10] as the source of general human knowledge.
ConceptNet is a general-purpose knowledge base that maps
concepts and their semantic associations into a large-scale,
traversable semantic network. It encodes multi-domain se-
mantic information in a hypergraph, with nodes represent-
ing concepts connected through labeled, weighted edges.
The semantic relationships between concepts are populated
automatically from various sources of knowledge, such
as DBPedia [28], Wiktionary, WordNet [29], the OpenCyc
ontology [26], and Open Mind Common Sense [62]. Con-
ceptNet contains more than 3 million concepts connected
through 34 different assertions (semantic relations), with
each assertion specifying and quantifying the semantic rela-
tionship between the two concepts, such as HasProperty,
IsA, and RelatedTo. Note that the assertion RelatedTo
expresses a generic, positive semantic relationship between
two concepts, while the other named assertions, such as IsA
and Has SubEvent, express specific relationships between

concepts. Hence, they may act as a source of noise when
using ConceptNet as a source of knowledge. The weight
of each edge determines the validity of the assertion. In
this work, we consider all the concepts in ConceptNet to
be the generator space Gs and quantify the bonds between
generators. Hence, the edge weights are used to populate
the value of φ(·) in Equation 2 and determine the validity of
the contextualized evidence.

4.3 Capturing Sentence Structure
Creating a contextualized interpretation by simply utilizing
the words in the sentences can be too naive and can intro-
duce noise into the reasoning process. To this effect, we use
the NLTK framework [63] to parse the sentence and extract
the dependency graph between concepts such as nouns and
verbs and their associated descriptors such as adjectives
and adverbs, respectively. We use the dependency graph
to capture the structural associations among these extracted
concepts to modulate the semantic relationships as extracted
from ConceptNet. We scale the energy of the semantic bond
energy, defined in Equation 2, with the dependency struc-
ture. The value of ws is scaled by 0.5 if there is no structural
dependency between the concepts and scaled by 1.0 if there
is a dependency. Hence, the dependency graph is the initial,
underlying graph structure for the interpretation, allowing
us to capture the semantics of the question and the answer
choice beyond simple, naive semantic relationships between
concepts from ConceptNet and reducing the dependency on
ConceptNet assertions. Although this seems simple, we see
from Section 6 that the use of the dependency graph has
a significant impact on the approach’s performance when
given large sentences that require complex reasoning.

5 CNLI STUDENT: KNOWLEDGE DISTILLATION

Our goal is to distill general-purpose knowledge into CNLI
models that can function in a given task, given a symbolic
teacher framework. We divide this distillation mechanism
into two steps. First, we generate weakly-labeled training data
by utilizing the pattern theory-based abductive reasoning
approach detailed in Section 4, using unlabeled data from
a target task along with a small amount of labeled data.
Second, we use this weakly-labeled data to train a student
CNLI model using a knowledge distillation approach. This
process helps to reduce the need for supervised training of
the teacher network, thus decreasing the requirement for
large amounts of labeled data in a target task.

5.1 IBE: Inference to the Best Explanation
The first step in the hybrid knowledge distillation process
is the generation of weakly-labeled data. In the abductive
reasoning framework, we refer to this step as inference to
the best explanation since the interpretation with the highest
probability is the configuration with the most support from
ConceptNet, which is captured in its energy. In our frame-
work, this involves constructing contextualized interpreta-
tions for each of the available hypotheses Hi ∈ Hn along
with the observed evidence Et. The “plausibility” of each
hypothesis can be obtained by computing the probability
of the configuration as defined in Equation 4. Note that
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The sun is responsible for plants sprouting,
blooming and wilting

{sun, responsible, plant, sprout, bloom, wilt}

Input Sentence (Evidence + Hypothesis)

Grounded Concepts

Syntactic Dependency

Contextualized
Concepts

(a)

Sun

Sprout
Bloom

Responsible

Wilt

RelatedTo

Plant

RelatedTo

RelatedTo

MannerOf

Develop
Synonym

Solarize

RelatedTo

RelatedTo

Hot

IsA`
ActorSynonymAgent

RelatedTo

Sun

Cause

Sprout

Bloom

RelatedTo

Responsible

Wilt

RelatedTo

RelatedToPlantRelatedTo

DecayRelatedTo

MannerOf

Weather

RelatedTo

FlowerRelatedTo

Synonym

Sun Yellow Dwarf
IsA

Sprout

Bloom
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RelatedTo

IsA

RelatedTo

Plant Disease

DecayMannerOf

Cause RelatedTo

RelatedTo

Energy: -5.83 Energy: -3.57 Energy: -2.33

(b)

Fig. 5. An illustration of the contextualization process. (a) shows the input evidence and hypotheses and the resulting ConceptNet subgraph that is
extracted for reasoning. (b) shows three plausible contextualized interpretations and their corresponding energies. The interpretation with the least
energy (first on the left) i.e., highest probability is highlighted in red. Grounded concepts are in white and ungrounded are in red with dotted margins.

a configuration’s energy, as defined in Equation 4, is pro-
portional to its probability and does not directly provide its
probability. To find the probability of each configuration, their
energies must be normalized using a partition function,
which can be intractable since it requires reasoning over
all possible configurations that can be present for each
hypothesis. Therefore, we use pairwise comparisons between
the available hypotheses, as illustrated in Figure 3, to find
the highest-ranking hypothesis and negate the need for
computing the partition function. We use the premise from
the Bradley–Terry model [64] to obtain the outcome of the
pairwise comparison between two given configurations, as
illustrated in Figure 3. The pairwise comparison between
configurations cHi

and cHj
is given by Equation 9:

P (cHi
> cHj

) =
P (cHi

)

P (cHi
) + P (cHj

)
(9)

Here, P (cHi
) is the probability of the contextualized inter-

pretation of the evidence Et and a given hypothesis Hi.
When this comparison is performed with all available hy-
potheses Hn, it becomes the optimization for the inference
defined in Equation 1. Note that in some instances, there can
exist a case of indifference, where two hypotheses can have
different configurations with identical energies, and hence the
probability P (cHi

> cHj
) would be 0.5. Any indifference

in the outcome is decided by choosing the hypothesis with
the highest energy among grounded concept generators.
This ensures that the effect of noise introduced through the
contextualization process is kept minimal.

5.2 Training Student Models

Our framework allows for training specialist models (BERT,
GPT-2, RoBERTa, etc.) for different tasks. However, we
would like to point out that the goal of our framework is
to distill commonsense knowledge from repositories such
as ConceptNet into neural NLI models for faster inference.
The pattern theory model (IBE), i.e., the ”teacher” model,
works unsupervised on all tasks without requiring any
training data - synthetic or otherwise [36], [37], [38], and
still offers competitive performance to these approaches on
all benchmarks. Note that this is not necessarily ”zero-shot”
since we do not learn a representation or semantic mapping
for each domain in order to allow for NLI on different
tasks. Given hypotheses and a premise, we ascertain their
probability without the need for any kind of training as
long as a large-scale, generalized knowledge base such as
ConceptNet is present.

We distill the knowledge from the abductive reasoning
framework into a specialist neural network (such as BERT
or LSTMs) by presenting the hypothesis selected from IBE
as the target for optimization. The probability of each hy-
pothesis is given by Equation 10:

P (Hi) =
exp(E(ci)/T )
n∑
j

exp(E(cj))/T
(10)

Here, E(ci) represents the energy for the given hypothesis
Hi, and its corresponding probability is given by P (ci).
T represents the temperature parameter which modulates
the probability assigned to each of the target hypotheses.
When T →∞, all hypotheses have uniform probability, and
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T = 1 represents the standard softmax function. Equation
10 is used to construct the targets for the neural network.
We use the energy of each configuration to assign soft-
probabilities for the neural network to train on. These soft-
probabilities are used in place of one-hot vectors from
the ground truth. The temperature function allows us to
distill the commonsense knowledge from ConceptNet to
the supervised models by enabling us to present cases of
indifference from the IBE process (Section 5.1) to the model.
This allows us to condition. This allows us to condition
the model with cases of semantic indifference, which helps
the training process move beyond the structural and co-
occurrence-based context.

6 EXPERIMENTAL EVALUATION

Data: We evaluate the proposed reasoning approach’s per-
formance on three different CNLI datasets spanning var-
ious domains. The SWAG [1] dataset consists of 113k
multiple-choice questions derived from captions of consec-
utive events of videos in the ActivityNet Captions [2] and
the Large Scale Movie Description Challenge (LSMDC) [3]
datasets. The videos cover various domains and hence
require reasoning across tasks, temporal scales, and phys-
ical interactions to complete the task. The HellaSWAG [5]
dataset is another visually grounded CNLI dataset consist-
ing of around 70k multiple-choice questions. It is a more
challenging domain introduced by populating question-
answer pairs by completing how-to articles from WikiHow.
The OpenBookQA [4] dataset is a more challenging CNLI
dataset that requires a deeper understanding of both the
topic (common sense knowledge) and the language ex-
pressed. There are around 6,000 questions based on an
”open book” of core, ”common sense” facts. We compare
two versions of the proposed approach on all datasets.
We represent the purely symbolic model as ”IBE,” whose
final label is decided by the reasoning process described in
Section 5.1. ”PT+BERT” indicates that a BERT model is fine-
tuned using the knowledge distillation approach described
in Section 5.2, with the labels populated by the ”IBE” model.
We use the official train, dev, and test split for all datasets.

Challenges: The use of adversarial filtering in SWAG
and HellaSWAG datasets ensures that the effect of annota-
tion artifacts is reduced and hence allows us to evaluate the
robustness of our approach. These datasets offer three sig-
nificant challenges: (i) questions go beyond what is observed
in natural language and require reasoning across a variety
of themes such as physical, social, temporal, and spatial;
(ii) language descriptions are grounded in vision, which
makes the reasoning over language concepts susceptible to
variations in the physical world; and (iii) require a much
deeper common sense understanding than simple linguistic
entailment for complex, multi-hop reasoning.

6.1 Quantitative Evaluation

We evaluate our approach to help transfer learn CNLI
models under different evaluation settings. First, we eval-
uate the ability of the proposed approach to accelerate
the training process of large neural networks like BERT in
a semi-supervised learning setting, where limited amounts

TABLE 2
Semi-supervised learning results where a limited number of labeled
data is made available during training. We significantly improve BERT’s

performance with limited labeled data and unlabeled data.

Labeled Data OpenBookQA HellaSWAG
BERT PT + BERT BERT PT + BERT

None 27.1 35.6 28.9 30.2

10 26.7 31.6 28.3 28.4
25 26.7 32.8 28.6 28.7
50 26.9 34.0 28.8 29.1
100 27.1 35.8 28.9 29.4
500 28.2 42.2 29.8 30.1
1000 38.8 44.6 30.4 31.1
2500 43.6 45.8 30.8 32.6

ALL 56.6 - 46.7 -

of labeled data are available along with large amounts of
unlabeled data. Second, we evaluate the performance of the
abductive reasoning framework (IBE) in the generalized,
zero-shot question-answering setting where no target task
data is available for transfer learning. Finally, we evaluate
our performance on the unsupervised open-domain question
answering where the goal is to answer multiple-choice
questions without using domain-specific auxiliary data.

6.1.1 Semi-Supervised Question Answering
We first evaluate the proposed framework for transfer
learning under a semi-supervised learning setting, where
large amounts of unlabeled data are present along with
a small set of labeled data in the target task. We com-
pare it against a fully supervised BERT model that has
access to the entire set of labeled data as a baseline. We
summarize the results in Table 2. We vary the amount of
available labeled data from as few as 10 samples to 2500
samples along with unlabeled examples and evaluate on
OpenBookQA and HellaSWAG, two of the more challenging
datasets under low data regimes. It can be seen that with
as few as 500 labeled samples, we obtain 42.2% accuracy
on OpenBookQA, a number which requires 2, 500 labeled
samples (50.7% of the training set) for the fully supervised
BERT to achieve. Similarly, on HellaSWAG, when 2500
labeled training samples are available, we achieve 32.6%
accuracy, which outperforms very strong fully supervised
baselines such as a Bidirectional LSTM trained with GloVe
embeddings and ESIM with ELMO embeddings (Table 6).
Considering that this is only 6% of the training data, this
is a remarkable performance and helps significantly reduce
the training required for adapting models to novel tasks.

6.1.2 Zero-shot Question Answering
We evaluated the zero-shot ability of language models, such
as GPT and GPT-2, and supervised models like BERT by
ranking candidate options through computing the likeli-
hood of each option. We calculated the probability of the
combined sentence, including both evidence and each hy-
pothesis, and chose the best ranking option as the output.
This is a natural baseline for our model, as we replaced
the symbolic pattern theory network with the knowledge
acquired through the pre-training process. Given that all
models were trained on corpora similar to ConceptNet, this
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TABLE 3
Evaluation in the zero-shot setting on three benchmark data sets

Approach OpenBookQA SWAG HellaSWAG

GPT 26.6 41.3 27.8
GPT-2 30.2 40.2 22.9
BERT 27.1 41.1 28.7
IBE 32.7 38.4 28.9

PT+ BERT 35.6 43.6 30.2

is the closest setting to IBE. We summarized the results in
Table 3. IBE, our symbolic reasoning process using Concept-
Net as the source of knowledge, outperformed GPT, GPT-2,
and BERT in the zero-shot setting by a large margin. It is
noteworthy that all three models were trained on corpora
similar to ConceptNet and, in BERT’s case, trained explicitly
for next sentence prediction. Our use of explicit, symbolic
representation of commonsense knowledge and contextu-
alized representations allowed us to perform complex rea-
soning and help generalize to novel tasks without explicit
re-training, even when faced with adversarial filtering.

We also evaluated the ability of our approach to train
BERT in an unsupervised manner using our PT+BERT ap-
proach, where BERT is trained on the task using the knowl-
edge distillation approach in Section 5.2. It can be seen that
we consistently improved the ability of BERT to generalize
to novel tasks through self-supervised abductive reasoning.
We showed that abductive reasoning provided significant
gains (9% in absolute accuracy) on OpenBookQA, which
required complex and, in some cases, multi-hop reasoning
that required a much deeper commonsense understanding
than simple linguistic entailment. It is interesting to note
that PT+BERT performed better than IBE alone and BERT
alone, indicating that the use of knowledge distillation
helped capture commonsense assertions beyond pure sym-
bolic reasoning and sequence-based representations.

6.1.3 Unsupervised Transfer Learning for CNLI
Finally, we evaluate our approach on unsupervised CNLI
and compare it against baselines with varying degrees of
supervision. Our approach does not use any training data;
we answer the question by choosing the correct answer
choice, purely using ConceptNet as a source of knowledge.

We begin by evaluating on OpenBookQA, which is
designed as a benchmark for answering multiple-choice
questions about recurring science themes and principles.
The dataset is constructed to evaluate the ability to perform
question answering using ”broad common knowledge,”
using a set of core facts and an optional set of secondary
facts. We compare against four broad types of baselines
and summarize the results in Table 4. The first category of
baselines consists of systems that rely completely on prior
knowledge and use reasoning mechanisms such as self-
talk [46], TupleInference [65], and entailment computation
(DGEM [66]). We also compare against large, pre-trained
language models such as GPT, GPT-2, and BERT to evaluate
the use of learned, neural knowledge representation for
question answering. Our approach IBE and PT+BERT also
belong to this category since we do not use any core facts
or additional auxiliary data. In the second category, we

compare against models such as KTL [36], MR [37], and
consistency optimization [45], which, while not training
directly on the data, train auxiliary mechanisms to rewrite
questions or use auxiliary, domain-specific prior knowledge
for answering questions. In the third category, we allow
these approaches to have access to the task-specific set of
core facts and the auxiliary data for unsupervised ques-
tion answering. Finally, we compare against fully super-
vised models such as ESIM [23], BERT [6], QAGNN [38],
OCN [43], and KnowledgePath [39].

It can be seen that we significantly outperform all unsu-
pervised baselines, with and without access to task-specific
knowledge, including BERT, GPT, and GPT-2. Our approach
(both PT only and PT+BERT) performs competitively with
other unsupervised baselines while requiring significantly
less overhead for commonsense NLI. For example, KTL [36]
requires the construction of a specialist knowledge base
geared towards each domain for evaluating each answer
option. QASC [40] is used as the source of knowledge for
answering questions from OpenBookQA, which is from
the same domain as the benchmark and is designed to
ensure overlap with the concepts from OpenBookQA. It also
requires the translation of questions to hypotheses using
a question-specific modifier such as rule-based models to
convert wh-questions and answers to statements to eval-
uate the plausibility of answer choices. Similarly, MR [37]
requires the construction of a unified knowledge graph
from domains similar to the target domain (they construct a
knowledge base called CWWV that utilizes three knowledge
bases: ConceptNet, WordNet, and Wikidata) as well as fine-
tuning RoBERTa [67] on synthetic QA pairs generated in a
sentence in a lexicalization step using a set of pre-defined
templates for each type of question along with a distractor
sampling step (using RoBERTa embeddings for similarity
matching) to prevent the overfitting of the language model
to the synthetic QA pairs. Consistency optimization [45]
uses various trained mechanisms to translate natural com-
monsense questions into ”fill-in-the-blank” cloze sentences.
A language model is then used to compute the probability of
each answer choice being the correct answer for the blanks
in the sentence. Self-talk [46] performs rewriting of the
questions into ”clarification” questions conditioned on the
context by concatenating pre-defined or generated question
prefixes to the context and evaluating the plausibility of each
answer choice using a language model.

On the other hand, we do not require the construction
of additional specialized knowledge bases, mechanisms for
question rewriting, or ensembling for answering questions
and can either outperform or provide competitive per-
formance to these approaches. As expected, fully super-
vised models, augmented with external knowledge, such
as QAGNN [38], OCN [43], and KnowledgePath [39], sig-
nificantly outperform unsupervised and weakly supervised
models. Of particular interest is KnowledgePath [39], which
generates a path that connects concepts in the question-
answer pair from a knowledge graph such as ConceptNet,
and each path is scored by GPT-2 [7]. While similar to our
approach, its graphs have a chain structure that links each
concept to only one other concept and does not capture the
semantic dependencies among multiple concepts or move
beyond one-hop neighbors as is done in our approach.
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TABLE 4
Evaluation on OpenBookQA. We outperform unsupervised baselines

and offer competitive performance to supervised approaches.

Approach Dev Accuracy Test Accuracy
No Training, Only Prior Knowledge

TupleInference [65] 15.9 17.9
GPT-2 [7] 26.6 -
GPT [68] 30.2 -
BERT [6] 27.1 -

DGEM [66] 27.4 24.4
Self-Talk (GPT-2) [46] 28.4 30.8

IBE (Ours) 32.7 -
PT + BERT (Ours) 35.8 34.2

Auxiliary Training, Only Prior Knowledge
KTL [36] 34.8 34.4

RoBERTa+MR [37] 34.8 38.0
Consistency optimization [45] 50.3 49.9

No Training, Prior Knowledge + Training Data
TupleInference [65] 23.6 26.6

DGEM [66] 28.2 24.6
Fully Supervised Models

ESIM [23] 53.9 48.9
BERT [6] 56.6 -
OCN [43] - 67.8

Knowledge path [39] - 71.2
QA-GNN [38] - 82.8

SWAG. Next, we evaluate our approach on the SWAG
dataset, which evaluates the ability of models to perform
commonsense natural language inference about visually
grounded situations. The dataset is constructed from visu-
ally grounded video captions and formulates a CNLI task to
predict which event is most likely to occur next in a video.
The question is the context or the event currently being
observed, and the answer choices are the set of plausible
events that can follow the current observation. Answering
these questions requires general “commonsense” knowl-
edge and an understanding of physical and social dynamics
from textual data. Additionally, this data is augmented with
adversarial filtering, a mechanism that involves the iterative
refinement of hypotheses to present a selection of highly
plausible answer choices filtered through counterfactual rea-
soning. These characteristics pose a challenging benchmark
to evaluate our approach to commonsense reasoning.

We compare against a set of baselines with varying levels
of supervision. Specifically, we compare against unsuper-
vised baselines such as a simple rule-based reasoning engine
using ConceptNet (ConceptNet + Rules) and unsupervised
versions of large language models such as GPT, GPT-2,
and BERT. We also compare against weakly supervised
baselines, which are models trained for textual entailment
(i.e., identify entailment, neutral, and contradiction between
sentence pairs) on SNLI [69] and fine-tuned for SWAG with
these 3-way probabilities as features. Finally, we compare
against fully supervised baselines such as fastText [24],
ESIM [23], LSTM-based models, and BERT. As shown in Ta-
ble 5, PT+BERT outperforms all unsupervised baselines by
large margins. Interestingly, we also outperform the weakly
supervised baselines and early supervised baselines such as
fastText and an LSTM-based model with GloVe embeddings.
We offer competitive performance to other fully supervised
baselines without any labeled data.

HellaSWAG. Finally, we evaluate on HellaSWAG, which
extends the idea of grounded commonsense natural language

TABLE 5
Evaluation on the SWAG dataset. We outperform unsupervised, weakly

supervised and some early supervised baselines.

Supervision Approach Val. Test
Acc. Acc.

None

ConceptNet + Rules [1] 27.0 -
IBE (Ours) 38.4 38.2
GPT [68] 40.2 -
GPT-2 [7] 41.3 41.4
BERT [6] 41.4 -

PT + BERT (Ours) 43.6 43.7

Weak
DualBoW+GloVe [69] 34.5 34.7

SNLI + DecompAttn. [69] 35.8 35.8
SNLI + ESIM [23] 36.4 36.1

Full

fastText [24] 29.4 28.0
LSTM + GloVe [1] 43.1 43.6
ESIM + ELMO [23] 59.1 59.2

BERT [6] 86.6 86.3

entailment by presenting answer choices with targeted ad-
versarial filtering. In addition to video captions, HellaSWAG
also introduces a new challenge to evaluate commonsense
reasoning by framing the CNLI problem to help complete
how-to articles from WikiHow, an online how-to manual.

The adversarial filtering is stepped up to a more chal-
lenging setting by using GPT-2 as a generating mechanism
for alternative answer choices, while BERT is used as a
strong discriminator to distinguish between the actual and
generated answer choices. The resulting dataset poses a
significant challenge for commonsense reasoning that re-
quires both a deep understanding of physical interactions
and social situations, in addition to broad commonsense
knowledge. We summarize the results in Table 6. We report
results for both BERT-base (in italics) and BERT-Large (in
parentheses). Note that we only train the Base version in
PT+BERT to be consistent with all other approaches. While
the language model-based unsupervised baselines perform
reasonably well on the SWAG dataset, the GPT model
performs less than random (22.9%) on the HellaSWAG
dataset. GPT-2 achieves 29.5% on HellaSWAG, but consid-
ering that the dataset is constructed using the GPT-based
model for adversarial filtering, this does not demonstrate
the generalization ability of supervised models to newer
tasks. We achieve 30.2% on the HellaSWAG dataset with
a self-supervised BERT-base model, which is impressive
considering that the fully supervised model achieves 39.5%.

This demonstrates the ability to effectively distill knowl-
edge from ConceptNet into neural network models, even
with adversarial filtering. In addition to the overall accuracy,
HellaSWAG also provides a zero-shot setting to evaluate a
model’s ability to generalize to new situations. The exam-
ples in this set are from activity labels from WikiHow and
ActivityNet that are unseen during training. It is interesting
to note that PT+BERT obtains 30.2% on this setting, which is
more than fastText (28%) and LSTM+GloVe (29.5%), which
are trained under supervised settings, whereas fully super-
vised BERT-base obtains 36.1%. We perform consistently
across all subsets with no labeled training data and pose an
encouraging way forward to reduce the dependency on
labeled data for fine-tuning to a novel task.
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TABLE 6
Evaluation on HellaSWAG. We outperform all unsupervised baselines,

including language models with extensive pre-training.

Supervision Approach Val. Test
Acc. Acc.

None

ConceptNet + Rules [1] 20.6 -
GPT [68] 22.9 25.8
GPT-2 [7] 27.8 29.5
BERT [6] 28.7 -

IBE (Ours) 28.9 -
PT + BERT (Ours) 30.2 30.4

Full

fastText [24] 30.9 31.6
LSTM + GloVe [5] 31.9 31.7
ESIM + ELMO [23] 33.6 33.3

GPT [68] 41.9 41.7
BERT [6] 39.5 (46.7) 40.5 (47.3)

6.2 Explainability of Pattern Theory Interpretations

In addition to evaluating the performance of the proposed
framework, we assess the explainability of the generated
interpretations for each question-answer hypothesis. The
interpretations offer unique insights into the inner mecha-
nisms of the reasoning process. Since interpretability and
explainability are highly subjective, we establish four met-
rics. Specifically, three objective metrics, node relevance, edge
relevance, and graph completeness, are used to quantify the
relevance of each node and edge to the overall interpretation
generated by the pattern theory model, as well as quantify-
ing to the extent which each generated graph provides a
complete picture of the question-hypothesis pair. A subjec-
tive metric, overall explainability, is defined to measure the
ability of the generated graphs to express the relationships
between the concepts and provides a quantitative metric
of the interpretability of the model’s internal reasoning
mechanism. We describe each metric below.

Node relevance is used to measure the significance of the
nodes to understand how all concepts in the sentence are
related to each other, including the presence of ungrounded
generators. In other words, it assesses the impact of drop-
ping a generator from the interpretation to the semantic
coherence of the reasoning graph. Edge relevance is defined as
a metric to quantify the relevance of the bonds derived from
ConceptNet to understand how two concepts are related
to each other. In addition, it provides a mechanism to
understand how much changing the relationship expressed
in a semantic bond can impact the coherence of the interpre-
tation. Graph completeness is used to assess the presence of
all concepts (i.e., words relating to actions, objects, and their
respective qualifiers) in the pattern theory interpretations,
in addition to explaining their provenance using potential
ungrounded generators. Overall explainability is a subjective
measure used to quantify the human user’s satisfaction
with an interpretation’s ability to sufficiently capture the
underlying semantic structure that connects the hypothesis
and the premise.

Evaluation protocol. To assess the explainability of the
pattern theory interpretations, we present 100 hypothe-
ses across three datasets, OpenBookQA, SWAG, and Hel-
laSWAG, to 10 human users. Each user is provided with a
set of instructions describing the evaluation protocol and
a description of metrics. To avoid introducing additional

TABLE 7
Explainability Studies: We perform user studies to assess the

explainability of the proposed approach along with 2 related baselines.

Approach Node Edge Graph Overall
Relevance Relevance Completeness Explainability

IBE 7.45 7.35 7.95 7.85
No contextualization 6.98 7.12 5.86 6.24

2-hop neighbors 5.76 6.85 5.52 4.93

factors such as the accuracy of the answers, we only select
hypotheses from the ground-truth question-answer pairs. In
addition to graphs generated by our model, we also present
graphs from 2 baselines for comparing the explainability of
pattern theory interpretations. First, we choose a variation of
the proposed approach without contextualization, i.e., con-
sidering an interpretation without additional ungrounded
generators. These graphs would only consider the concepts
in each hypothesis and the direct semantic relationships that
are shared by them. Second, we generate a graph with all
2-hop neighbors of concepts from each hypothesis. These
graphs are analogous to PT graphs, except they are not
optimized to contain only the most relevant ungrounded
generators as done in the contextualization process.

The results of the user study are presented in Table 7.
It can be observed that the pattern theory-generated graphs
consistently received higher scores from human evaluators
than the other two baselines on all metrics, with significantly
higher rates when considering the graph completeness and
overall explainability metrics. It should be noted that the
approach with no contextualization has comparable node
relevance and edge relevance metrics to the PT graphs since
they measure the relevance of the retrieved nodes and edges
from ConceptNet to the concepts in the hypothesis but score
significantly lower on the graph completeness and overall ex-
plainability metrics which measure the overall significance of
the graphs themselves to the interpretability of the graphs.
The graphs generated by the 2-hop neighbors’ approach
introduce many nodes and edges that are not directly rel-
evant to the hypothesis and hence score significantly lower
than the other baselines. These results indicate that the
contextualization process consistently returns contextually
and semantically relevant nodes and edges to the final
interpretation that provides greater explainability. It should
be noted that while the pattern theory-generated graphs
received significantly higher scores than the baselines, there
is room for improvement in these metrics for explainability
in all approaches. This could arguably be attributed to the
fact that there are large amounts of noise and bias from the
knowledge bases in the reasoning process.

6.3 Semantic Similarity as Abductive Reasoning

To demonstrate the versatility of the proposed approach,
we show that the abductive reasoning framework can be
applied to other downstream tasks, such as semantic textual
similarity (STS). Semantic textual similarity aims to score the
relationship between texts using a defined metric and is a
core part of many downstream applications, including infor-
mation retrieval and text summarization. The most common
approach is to learn meaningful representations of sentences
in a latent space and use a learned regression model (in

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3287837

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

TABLE 8
Semantic similarity: We evaluate the proposed framework on the

semantic textual similarity using the STS Benchmark.

Approach Spearman Rank Coefficient

BERT CLS vector [6] 16.5
Mean-pooled RoBERTa embeddings [67] 12.9

RoBERTa CLS vector [67] 31.7
Mean-pooled BERT embeddings [6] 46.4

IS-BERT-NLI [22] 69.2

Ours (IBE) 42.6

the case of supervised approaches) or cosine similarity (in
the case of unsupervised approaches) to assign a similarity
score. Spearman’s rank correlation coefficient is used to
ascertain the correlation between the similarity scores and
human-scored similarity scores from the ground truth. A
higher correlation indicates better alignment between hu-
man judgment and the model’s notion of similarity.

We frame the semantic textual similarity problem as an
abductive reasoning task by considering two hypotheses.
The default or null hypothesis is that the semantic coherence
of the first sentence (the premise) is complete and hence
has the lowest energy when contextualized. The addition of
concepts degrades the coherence and increases the energy
of the configuration. The alternative hypothesis is that the
changes in concepts that yield the transformation to the
second sentence provide better semantic coherence and
hence reduce the energy further, providing reinforcement or
entailment for similarity. The resulting energy differential is
indicative of the level of similarity between the sentences.
The higher the energy differential, the higher the similarity
between the two sentences.

We evaluated our approach on the STS Benchmark [17],
which consists of sentence pairs labeled from 0 to 5, indicat-
ing the level of semantic relatedness. The dataset contains a
total of 8628 sentence pairs, with 5749 pairs for training,
1500 for validation, and 1379 for testing. We evaluated
directly on the test set without using any training data. For
quantitative evaluation, we compared our approach against
a variety of recent, unsupervised language model baselines
(BERT [6] and RoBERTa [67]) and considered two variations
of each language model - representations from the CLS
vector and a mean pooled representation from embeddings
of each word in the sentence. We also evaluated variations
(IS-BERT-NLI [22]) optimized for this task. The resulting
embeddings of each sentence were compared using cosine
similarity to assign a score for semantic textual similarity.
Following prior work [22], we used Spearman’s rank corre-
lation between the predicted similarity and the gold labels
as the evaluation metric. The results presented in Table 8
show that our approach, although not optimized for this
task, outperforms many of the unsupervised baselines and
performs competitively with others optimized for this task.
The major advantage of our approach is the generation of a
contextualized interpretation of the two hypotheses, which
offers enhanced explainability (Section 6.2) by providing
insight into the model’s reasoning process and highlighting
potential noise and bias in the knowledge base.

TABLE 9
Sentiment classification: We evaluate the proposed framework with

accuracy as a metric on the sentiment classification task using the
SST-2 and IMDB Benchmarks.

Approach Supervision SST-2 IMDB

BERT [6] Full 92.3 89.2
MTLE [70] Full 88.4 91.3

RoBERTa [67] Full 96.7 95.8

LINDA [71] 5-Shot 63.5 67.3
LINDA [71] 10-Shot 63.5 67.3
DualCL [72] 5-shot 67.1 -
DualCL [72] 5-shot 72.5 -

MTLE [70] None 71.6 67.5
PT + BERT (Ours) None 83.5 81.3

6.4 Sentiment Classification

To demonstrate the versatility of the proposed framework
beyond NLI tasks, we formulate unsupervised sentiment
classification as an abductive reasoning task by considering
the labels ”positive” and ”negative” sentiments as hypothe-
ses (Hi) for a given sentence or phrase, and the evidence
(Et) as input. This setup allows us to adapt our frame-
work for sentiment analysis without significant changes
to the overall structure of the hybrid knowledge distilla-
tion paradigm. Text classification tasks, such as sentiment
analysis, are an integral component of many natural lan-
guage processing and information extraction frameworks.
The prominent approach has been to encode the sentence or
phrase using feature extractors such as bag-of-words [24] or
embeddings from a language model such as BERT [6]. Then
a supervised classifier is trained to make the final prediction
about the sentiment of the given sentence. However, few
efforts have been made to address this task in an unsuper-
vised manner or under resource-constrained settings.

Several unsupervised techniques have been proposed to
tackle sentiment classification. Zhang et al. [70] proposed
an unsupervised sentiment classification framework using
unsupervised matching of learned embeddings to select the
most appropriate label for a given sentence. Kim et al. [71]
proposed LINDA, a data augmentation technique that scales
sentiment classification to work in the low training data
regime with as few as 5 to 10 labeled examples. Similarly,
Chen et al. [72] proposed using dual contrastive learning to
propose a data augmentation routine for low data sentiment
classification. We evaluate our approach on two standard
benchmarks, the Stanford Sentiment Treebank (SST-2) [73]
and the IMDB Sentiment [18] benchmarks, following prior
work. Both datasets evaluate the ability of text classifiers to
distinguish between sentences describing positive or nega-
tive sentiments sourced from movie reviews.

Table 9 summarizes the performance of our approach
and the following comparable baselines. We compare
against a variety of fully supervised, weakly (few-shot) su-
pervised and unsupervised baselines and report the average
accuracy as the quantitative performance metric. Specifi-
cally, we user a fully-supervised BERT [6] and RoBERTa [67]
as the fully supervised large language model baselines, as
well as the weakly supervised models such as LINDA [71]
and DualCL [72]. We compare against both the unsuper-
vised and fully supervised versions of MTLE [70]. As can
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be seen from Table 9, we outperform both unsupervised
and weakly supervised baselines while offering competitive
performance to the fully supervised approaches. Interest-
ingly, we achieve 83.5% accuracy on SST-2, while a fully
supervised BERT achieves 92.3%. This performance is in
line with the performance of the hybrid knowledge distilla-
tion approach on other tasks and datasets, where we obtain
more than 75% of the performance of a fully supervised
BERT without using any labeled training examples. The
pattern theory framework is able to effectively leverage the
knowledge from symbolic knowledgebases such as Con-
ceptNet to provide supervision for unsupervised sentiment
classification, even with the limited context provided by the
single-word labels.

6.5 Zero-shot Text Classification

As a final litmus test, we evaluate the generalization ca-
pabilities of the proposed abductive reasoning framework
to tackle the problem of zero-shot text classification, which
is a core part of many NLP and information extraction
frameworks. Zero-shot text classification aims to correctly
assign a pre-defined yet unseen label to a given span of text.
Large language models such as GPT-2 [7] and GPT-3 [8],
as well as masked language models such as BERT [6] and
RoBERTa [67], have provided powerful baselines for this
task due to their ability to capture contextual information
in their word embeddings, which is gleaned from pre-
training on large amounts of text corpora. The common
approach to zero-shot and few-shot learning using these
models is through “prompting”, a method to transform any
task, such as text classification, into a language modeling or
masked language modeling problem. This method works by
inserting pre-defined (both learned and manually assigned)
“templates” of text for prompting the language model to
complete the sentence to provide the required classification
task. The other form of zero-shot transfer to new tasks
is the idea of in-context learning (ICL) [8], where a short
description of the task, along with a set of examples, is
presented to the model for few-shot adaptation. These are
natural baselines to compare against our approach, which
works by contextualizing (analogous to “prompting”) a
symbolic knowledge base (i.e., ConceptNet) for addressing
the problem of text classification. Note that we do not claim
to perform prompting on symbolic knowledge bases exactly
like large language models, but instead, provide a proof-of-
concept example of how the abductive reasoning framework
can be adapted to a novel task. We leave the problem of
tackling general-purpose neuro-symbolic “prompting” to
future work since it is beyond the scope of the current work.

We evaluate our approach on two standard benchmarks:
RTE [74], [75], [76], [77] and TREC-6 [78]. RTE is a dataset
proposed as a standard benchmark for generic semantic
inference required in many essential tasks, such as informa-
tion retrieval, question answering, and information extrac-
tion. Framed as a text classification task, the goal is to iden-
tify whether the meaning of one sentence can be inferred
from another. TREC-6 is a multi-class, text classification
dataset consisting of open-domain question-answer pairs
that need to be classified as belonging to one of six coarsely
labeled classes. Performance on both datasets is quantified

TABLE 10
Zero-shot Text classification: Generalization ability is evaluated on
the text classification tasks, as evaluated on the RTE and TREC-6.

Approach Supervision TREC-6 RTE Avg

GPT-2

0-Shot 24.0 51.0 37.5
1-Shot 21.5 57.6 39.6
4-Shot 23.1 53.2 38.2
8-Shot 32.7 54.9 43.8

GPT-3

0-Shot 31.0 44.8 37.9
1-Shot 24.3 49.6 36.9
4-Shot 25.8 44.0 34.9
8-Shot 29.3 49.2 39.3

RoBERTa (Prompting) 0-Shot 32.0 51.3 41.7
RoBERTa (ICL) 0-Shot 26.2 60.2 43.3

RoBERTa Full 97.4 80.9 89.2

IBE (Ours) 0-Shot 31.6 53.8 42.7
PT + BERT (Ours) None 57.3 62.4 59.9

with accuracy. We compare against zero-shot and few-shot
versions of GPT-2 [7] and GPT-3 [8], as evaluated by Zhao et
al. [79]. We also compare against the different variations of
zero-shot learning using RoBERTa [67], as reported by Gao
et al. [80]. For a fair comparison, we only compare against
the vanilla versions of prompting and in-context learning,
which use a learned language model in place of a symbolic
knowledge base, as is the case with our approach.

As shown in Table 10, the proposed abductive reasoning
framework, referred to as IBE, performs well on the zero-
shot setting where there is no fine-tuning on the target
dataset domain. We outperform most zero-shot and few-
shot baselines, with only the zero-shot version of RoBERTa
using prompting outperforming our approach. It is interest-
ing to note that we outperform all few-shot baselines except
GPT-2 in the 8-shot setting. When an unlabeled dataset is
available for training, the proposed hybrid knowledge dis-
tillation approach outperforms all few-shot baselines while
achieving an average accuracy of 59.9% across the two
tasks. Remarkably, this is 67.1% of the performance of a
fully supervised RoBERTa model. Although there is a rela-
tively large gap between the performances of the supervised
and unsupervised approaches, it is encouraging to see that
the proposed approach provides a significant first step in
closing the gap by leveraging large-scale knowledge bases
without any labeled data.

6.6 Ablative Studies
In addition to quantitative analysis, we systematically eval-
uate the different components of the proposed approach.
Specifically, we evaluate three specific components: (i) the
effect of contextualization, (ii) the source of semantic knowl-
edge, and (iii) the student or specialist model. Table 11
summarizes the results of the ablation study.

Effect of Contextualization. First, we evaluate the im-
pact of the use of contextualization (Section 4.1) on the over-
all performance of the proposed approach. We use different
variations of the contextualization approach by varying the
context depth d from 0 (i.e., without contextualization) to
5, which indicates that we look for semantic assertions
between two concepts up to the depth d = 5. As shown
in Table 11, when d=0, the performance drops drastically to
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TABLE 11
Ablative Studies: We compare different source of knowledge and

different student networks. Evaluation results are reported on SWAG.

Approach Val. Accuracy

Effect of Contextualization

No Contextualization (d=0) 33.6
Context depth d=1 34.8
Context depth d=2 35.3
Context depth d=3 37.2

Context depth d=4 (Full Model) 38.4
Context depth d=5 38.9

Different Knowledge Sources

Numberbatch Only 25.9
GloVe Only 26.3

GloVe + Numberbatch 28.1
IBE (No Sentence Structure) 35.2

Different Student Models

PT + LSTM+GloVe 32.4
PT + ESIM+GloVe 39.4

PT + BERT 43.7

33.6%, which is a gap of 6.3%. Each increment in the context
depth d yields improvements, with the best performance
at d=5. After depth d=4, the inference time increases non-
linearly and does not yield significant improvements in ac-
curacy. Hence, our final model uses a depth of d = 4, which
provides a balance between inference time and accuracy.
The use of contextualization to construct interpretations
yields improvements of 6.3% in accuracy.

Here’s the cleaned up paragraph:
Source of Semantics. Our framework can handle dif-

ferent sources of knowledge, but we primarily use Con-
ceptNet’s symbolic knowledge and NLTK’s syntactic knowl-
edge (Section 4.3). To evaluate the performance with other
knowledge sources, we vary the source of semantic knowl-
edge by using GloVe [81] representations and ConceptNet
NumberBatch [10]. The strength of the assertion (φ(·) from
Equation 2) is computed using the dot-product between the
vector embedding of the two concepts, which allows us to
evaluate the use of contextual word embedding instead of
symbolic knowledge for unsupervised QA in the Pattern
Theory framework. Table 11 shows that ConceptNet, along
with contextualization, is essential for robust commonsense
reasoning. ConceptNet Numberbatch, which is trained on
ConceptNet, does not provide the same performance as
ConceptNet as a symbolic knowledge base. Using repre-
sentations learned from pre-computed embeddings such as
GloVe or Numberbatch without ConceptNet assertions does
not generalize to the QA task. The use of the semantic
dependency graph (Section 4.3) to capture the sentence
structure also yields significant gains (3.2%) and shows
that pattern theory representations can integrate multiple
sources of knowledge into the reasoning process without
manual curation of rules for reasoning.

Different Student Models. Besides BERT, we train two
student networks: ESIM and a Unary LSTM model. The
LSTM baseline takes an arbitrary span of text (question +
answer choice) as input and encodes it using a two-layer
Bidirectional LSTM network. The hidden state of the LSTM

network is then max-pooled to obtain a fixed-size represen-
tation, which is used to obtain a probability of occurrence
for that answer choice. The ESIM model is pre-trained
on SNLI with ELMo embedding. The output entailment
prediction layer is replaced with a new classification layer
to predict the probability of co-occurrence of the question
and the specified answer choice. Table 11 shows that BERT
achieves the highest accuracy, but the LSTM model with
GloVe embedding obtains 32.4% accuracy when trained
in an unsupervised manner with the predictions from IBE
and knowledge distillation. Compared to the fully super-
vised performance of 43.1%, the performance of the LSTM
student model is remarkable and represents 75% of the
supervised model’s performance. Similarly, ESIM trained
with ELMo embedding obtains 39.4% accuracy, compared
to 59.1% from the fully supervised version. These results
show that our framework can be used to train a variety of
student models and still perform competitively with fully
supervised baselines.

7 LIMITATIONS AND FUTURE WORK

While the approach performs well on different CNLI tasks
(Section 6), as well as on other downstream tasks such
as semantic similarity (Section 6.3) and sentiment classi-
fication (Section 6.4), we observe that the framework has
some limitations and specific error modes that can be the
focus of future work to improve the abductive reasoning
mechanism. For example, we note that the performance
gap between the fully supervised model and our approach
reduces as the complexity of the model decreases. The
knowledge distillation approach (Section 5.2) as well as
the inherent noise from the weak-labeling in the pattern
theory framework (Section 5.1) add a measure of regulariza-
tion. However, we still observe that the addition of labeled
data does not always result in increased performance. This
effect was acute in the semi-supervised learning setting
(Table 2), where it took more than 100 labeled training
examples, in addition to the unlabeled data, to outperform
the completely unsupervised transfer using PT+QA. This
effect could arguably be attributed to the fact that larger
models such as BERT tend to pick up on spurious patterns
in the data and tend to overfit certain training examples [1],
[5]. Further regularization techniques [82] can help mitigate
this effect.

The other key limitation of the approach is the possible
propagation of noise and bias from the knowledge bases
into the reasoning process. ConceptNet is a large, general-
purpose knowledge base that spans various domains. It
captures concept-based semantic relationships mined from
a wide variety of sources. Hence, there is a strong poten-
tial for the injection of noise into the reasoning process,
particularly by generic assertions such as RelatedTo, which
do not provide specific, verified semantic relationships be-
tween concepts. We limit this effect by defining a strong
constraint using the contextualization process, where the
additional context depth improves the accuracy of the un-
derlying pattern theory reasoning framework. However, we
find that noise seeps into the process, as indicated by the
relatively lower explainability scores (Table 7), although it
does outperform comparable baselines. Some examples are
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Fig. 6. Qualitative Examples of the generated interpretations that highlight the impact of noise that is inherent in large-scale knowledge bases
such as ConceptNet that can impact the contextualization process. Ungrounded generators are shaded and the predicted answer is underlined.

shown in Figure 6. For example, in the example on the
right, while the contextualization process correctly equated
BMI with ”body mass index”, there are some unnecessary
concepts such as index that add noise to the interpretation.
This is much more acute in the other middle example,
where the concepts ”house” and ”flower” were forced into
the interpretation while not directly related to the query.
Some ungrounded generators introduced due to noise or
bias in the knowledge base can greatly affect the frame-
work’s performance, particularly on those with adversarial
filtering, such as HellaSWAG. Other mechanisms, such as
affordance constraints [83], can help further mitigate this
effect. Similarly, the contextualization process has additional
computational overhead since it requires reasoning over
possible subgraphs connecting the grounded concepts from
ConceptNet. Using graph generative transformers [84], [85]
can help reduce the computational overhead by learning to
sample contextualized subgraphs from ConceptNet.

Finally, our approach is designed for tasks where the hy-
potheses are predefined and the goal is to select the correct
hypothesis. Extensive experiments have demonstrated that
the approach can be used for various tasks that follow this
general problem setup. However, its potential applications
to generative tasks such as translation or summarization
have not been explored in this work. We envision its use
in grounding and constraining the outputs of generative
models to enhance their semantic coherence, factual correct-
ness, and interpretability. Our future work aims to expand
the scope of the abductive reasoning process to include
multimodal grounding and event comprehension beyond
text-based semantics, moving towards open-world reason-
ing with limited training requirements.

8 CONCLUSION

In this work, we present one of the first attempts to distill
symbolic knowledge from large-scale knowledge bases for
task transfer in commonsense natural language inference.
Based on the notion of abductive reasoning and hybrid
knowledge distillation, we show that a global source of com-
monsense knowledge can be distilled into neural networks
without requiring large amounts of annotations. We demon-
strate the use of pattern theory to express the evidence
in a highly interpretable and contextualized interpretation
for validating the plausibility of natural language expres-
sions, without training highly expensive models. Extensive
experiments demonstrate the applicability of the approach

to different tasks, such as commonsense natural language
inference (CNLI), sentiment classification, text classification,
and semantic textual similarity, and its highly competitive
performance with respect to fully supervised transfer learn-
ing baselines. We aim to extend the framework for general-
purpose neuro-symbolic reasoning over multimodal data.
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