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Abstract

Microelectromechanical (MEMS) gyroscopes are small devices used in different industries such as automotive and robotics
systems due to their small size and low costs. The MEMS gyroscopes constantly encounter external disturbances, which
introduce some mechanical and electromechanical nonlinearity in those systems. In this paper, the Koopman theory is applied
to the nonlinear dynamic model of MEMS gyroscope to the linear dynamics model. Dynamic mode decomposition (DMD)
is used to obtain eigenfunctions using Koopman’s theory to linearize the system. Then, a linear quadratic regulator (LQR)
controller is used to control the MEMS gyroscope. The simulation results verify the performance of the proposed controller

in terms of high-tracking performance.
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1 Introduction

A microelectromechanical system (MEMS) gyroscope can
effectively perform an important task nowadays, which is
detecting and measuring the angular motion of an object.
They measure the rate of an object around a particular axis.
They have been employed in industrial, automated, and med-
ical applications due to their low cost. The external noises
that MEMS gyroscope constantly encounters include tem-
perature change, shock, and vibration. A MEMS gyroscope
needs to be developed with an appropriate control technique
to suppress the problems [1-3]. Different control systems
have been applied to control MEMS gyroscope. Rahmani in
[4] proposed a new hybrid fractional sliding mode control
to reduce the chattering phenomenon. The main drawback
of conventional sliding mode control is creating a chattering
phenomenon. A novel parallel control method is applied to
reduce the chattering created by the sliding mode controller.

The fractional controller continuously evaluates the error
and corrects the error value. Zhou et al. [S] proposed an adap-
tive fuzzy proportional derivative integral (PID) controller to

B<I Mehran Rahmani
mrahma6 1 @asu.edu

Sangram Redkar
sangram.redkar @asu.edu

The Polytechnic School, Ira Fulton School of Engineering,
Arizona State University, Mesa, AZ 85212, USA

Published online: 16 January 2023

have the minimum value of the maximum overshoot prob-
lem. According to the input error and error change rate, the
fuzzy controller online modifies the PID controller’s settings.
Response time of the gyroscope’s closed loop is decreased
from 1.09 to 0.54 s, and overshoot is decreased from 20 to
0.004%, with no deterioration of angle random walk or bias
instability. Rahmani et al. [6] introduced a compound PID
sliding mode control method to control the x and y direc-
tion of the MEMS gyroscope. Then, a multi-objective bat
algorithm is applied to tune the proposed controller param-
eters. The proposed control method reduced the chattering
phenomenon, improved tracking performance, and reduced
maximum overshoot. The mentioned controller methods and
most of the other works [7-14] are applied to the linear
dynamic model of the MEMS gyroscope.

The Koopman operator is a strong tool for use in complex
nonlinear dynamic systems. This theory will use the data-
driven method to control nonlinear dynamic systems with
high-dimensional nonlinearity [15]. Abraham and Murphey
[16] proposed a Koopman-based controller that provides fast
learning. They demonstrate the enhanced model-based con-
trol performance with an actuated van der Pol system to
linearize the nonlinear model by using the Koopman operator.
The Koopman operator model of dynamical systems is then
used in conjunction with information-theoretic approaches
to design a controller for active learning of robot dynam-
ics. It is demonstrated that the active learning controller

@ Springer



M. Rahmani, S. Redkar

accelerates the rate of information concerning the Koop-
man operator. The proposed method is applied on a real-time
quadcopter. Korda and Mezi¢ [17] proposed a novel data-
driven method predictor for generating the eigenfunction of
the Koopman operator. The predictor thus developed is a lin-
ear controlled dynamical system and is easily implementable
in the Koopman model predictive control framework to con-
trol nonlinear dynamical systems using the linear control
method. The numerical simulations verified the controller
and predictor performance. Bruder et al. [18] proposed a
Koopman-based controller design to control a soft robot. To
build explicit dynamical models of soft robotics and control
them using model-based control techniques, the Koopman
operator theory offers a solution. This method is data-driven,
but it produces a control-oriented model that is explicit rather
than merely a “black-box” input—output mapping. The con-
trol design for soft robotics is discussed in this article along
with the Koopman-based system identification methodology
used to identify the system. The Koopman-based technique
is used to create three controllers for a pneumatic soft robot
arm, and their performance is assessed in relation to several
practical trajectory-following tasks. These Koopman-based
controllers have an average tracking error that is more than
three times lower than a benchmark controller built on a
linear state-space model of the same system, proving the
effectiveness of the Koopman technique in soft robot control.
Folkestad and Burdick [19] proposed a nonlinear controller
based on Koopman’s theory to improve computational effi-
ciency for a planar quadrotor. In [20], the Koopman operator
is suggested for the reachability analysis of an autonomous
dynamical system. The scholars specifically show how to use
the Koopman operator’s spectrum analysis, which involves
eigenvalues and eigenfunctions, to approximately compute
forward and backward accessible sets for an independent
dynamical system. The Hausdorff distance between sets,
which calculates how far the approximate reachable set is
from the actual reachable set, is used to offer formal guar-
antees for the approximation reachable sets. The Koopman
spectrum and the approximate reachable set can be calculated
using a computational framework based on convex opti-
mization. The simulation results verified the effectiveness
of the proposed method. A common data-driven technique
of approximating the Koopman operator’s action on a linear
function space covered by a dictionary of functions is called
extended dynamic mode decomposition (EDMD) [21]. In
this study [22], the Koopman operator is used as an emergent
pure data-driven modeling strategy to capture the inher-
ent dynamics of the driver—vehicle system and provide an
explicit control-oriented driver—vehicle model in an infinite-
dimensional space. To further increase the finite-dimensional
approximation accuracy of the Koopman operator, an online
hybrid delay-embedded extended dynamic mode decompo-
sition approach is suggested. Because of the simple linear
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structure of the resulting driver—vehicle model, shared con-
troller design is made easier. To gather driving data for the
identification and verification of the proposed modeling tech-
nique, driver-in-the-loop experiments are carried out on a
driving simulator. Experimental findings show the effective-
ness and superiority of the suggested modeling approach.
Using the Koopman operator on the systems will improve
the controller in the data-driven form [23] to have high-
tracking performance and less maximum overshoot [24, 25].
The Koopman operator can be used for the linearization of
the nonlinear dynamic model.

LQR is an optimal control method that can be used to
control the linearized dynamic model [26]. A data-driven
paradigm for the linear embedding of nonlinear systems is
presented in [27]. The authors provide a systematic, data-
driven strategy for developing a linear representation in
terms of higher-order derivatives of the underlying nonlinear
dynamics by utilizing structural knowledge of generic non-
linear dynamics and the Koopman operator. The nonlinear
system is then regulated using an LQR feedback strategy,
whose gains only need to be calculated once, using the linear
representation. The proposed control method is compared
with backstepping control by implementing it on the fish
robot. The results verified the proposed control method.

In this paper, an optimal Koopman control method is
implemented on a MEMS gyroscope. The main contribution
of this paper is to propose a data-driven control method to
control a nonlinear MEMS gyroscope, which did not address
in any other paper. The contribution of this paper will be

described in detail:
1 Discussion of nonlinear MEMS gyroscope dynamic mod-

els.

2 Eigenfunctions obtained by using the DMD method.

3 Koopman operator generated by using eigenfunctions
obtained from the DMD method.

4 A LQR controller used to control created linear dynamics
by Koopman theory.

5 The performance of the proposed method compares with
conventional integral sliding mode control, in which the
proposed controller has better performance.

The remaining portions of this work are arranged as fol-
lows. Section 2 demonstrates the dynamic model of the
MEMS gyroscope. Section 3 presents the sliding mode con-
trol method. Section 4 describes the optimal controller based
on the Koopman operator. Section 5 shows the simulation
results. Section 6 provides the conclusion.

2 Dynamic model of MEMS gyroscope

Figure 1 illustrates a typical z-axis MEMS gyroscope design.
The typical MEMS vibratory gyroscope design consists of
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Fig. 1 MEMS gyroscope structure [28]

sensing mechanisms, a proof mass hung by springs, and an
electrostatic actuation system for producing an oscillatory
motion and measuring the location and velocity of the proof
mass [28].

The gyroscope rotates at a slowly varying angular velocity
2., while the proof mass is mounted on a frame that moves
with a constant linear velocity. Due to the small displace-
ments x and y, the centrifugal forces mQ%x and mQE y are
predicted to be negligible. The direction in which the Coriolis
forces, 2mQ2¥y and 2m Q7 x, Are developed is perpendicular
to the driving and rotational axes [29, 30]. The following
equations determine the dynamics of the gyroscope.

mE 4+ df ok dE Y + K ox KLY+ Bx = uk 4 2mQEy
ey

my +di 3+ + ki x + Ky + By =uh - 2mQEx
(2)

Since there is no outside force applied, the origin of the
coordinates in Egs. 1 and 2 is in the center of the proof mass.
The asymmetric spring and damping coefficients are rep-
resented by the coefficients k}, and df,, respectively. The
control forces inthe x and y direction, u} and u;, are generally
known, although they may have small unknown deviations
from their nominal values. The spring constants of springs
acting in the x and y directions, &}, , k;“,y, and damping rates,
d¥, and d;k,y, are also commonly described. Consequently,
Bx3 and By terms will be introduced by both electrome-

chanical and mechanical nonlinearity, in which f is a positive

constant. Equations 1 and 2 could well be represented in vec-
tor form as follows:

qgo  mwoqo mwiqo ' qo  moigo @0 qo
3)
where
g* = x:,u= “E,Q*: 0*_9;,1)*:
y uy Q0
d* d* k*k*
Y L Ka=| ' %) |, and nondimensional param-
dyy dyy ky ksy
eters as follows:
* d* ! Q*
q= L dyy = = Q =— C)]
40 mao wo
Uy = ; Uy ; (5)
mawsqo mawgqo
k k Ky
oy = | oy = |2 oy = — (6)
mawg mawg maj

where the reference length is gp and each axis’ natural fre-
quency is wp. The MEMS gyroscope’s dynamic equations
are provided following.

G=—(D+29)4§—Kpqg —Bg> +u+E ©)

E is an external perturbation that could be represented as:
j=-Y§—Pqg—Bg>+u+E ®)
where P = Kp and Y = (D + 2€2) are some parameter
variation uncertainties that are determined by AY and AP.

As a result, Eq. (8) could be written as:

§=—Y+AY)g— (P+AP)q—Bg>+u+E 9)
where

g = X Cu= Uy Q= 0 —Q ’
y iy Q.0

D — dyx dxy , k= w)zc w;y
dyy dyy Wyy Wy

Equation (9) could well be demonstrated as:

N

§=-Yq—Pq—Bq’ +ut)+ D) (10)
D(t) describes as:

D(t)=—AY§— APg+E (11
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3 Integral sliding mode control

A popular and reliable control technique is sliding mode
control. Sliding mode control’s primary benefits are strong
tracking performance and robustness against external pertur-
bations. In most works, sliding mode control has been used
with linear dynamic model of MEMS gyroscopes [7, 31].
We apply the sliding mode control on the nonlinear MEMS
gyroscope dynamic model. The main part of sliding mode
control design is how to select sliding mode surface. The
sliding mode surface defines as:

t
n=é+A/ en ()dt (12)
0

where e = g, m, n and A is a positive constant. The equivalent
control strategy is obtained when 1 = 0.

N=é+ren =0 (13)

In Eq. (13), substituting the first and second derivatives
from the error will result in the following.

§+rgn =0 (14)
Equation (10) is substituted with Eq. (14) to generate
~Y§ — Pq—Bg> +u(t) + D) + g7 =0 (15)

The right side of the equation is introduced by moving all
elements except u(?).

Ueq(t) = Y4 + Pg + Bg® — D(t) — ag (16)

Equation (16) shows the equivalent controller. Uncer-
tainties in the model and external disruptions cannot be
compensated for by the equivalent control. To overcome

these problems, a reaching control approach is introduced.
The reaching control defines as:

ur(t) =—Kn amn

where K, is the positive constant.
The control input defines:

”([):ueq(1)+”r(t) (18)

Sliding mode control is shown to be stable using the Lya-
punov theory.

1
L(t) = ErmT 19)
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When the controller is stable, the following conditions are
met:

L=n"<0.n#0 (20)
Derivative from Eq. 19 yields

L=n"j @n
Substituting Eq. 21 with a derivative of Eq.19 results in

i= nT(E+Ae%) 22)
Equation 22 gave an illustration that

L=nT(ii+Aq%) 23)
Equation 10 is substituted for Eq. 23 to introduce

L=n"(=Y4=Pg=Bg’ +u®) + D) +1q%) @4

Substituting Eq. 18 in Eq. 24produces

L=n"(=Y4— Pg = B>+ ueg®) + u, () + D) + 247 )

(25)
Using Eq. 16 in Eq. 25 shows
L= nT(—Yc} - Pq—Bg’ +Yq+ Pqg+Bq’
—D() =A% +u () + DO + g7 ) (26)
Simplifying Eq. 26 results in
L=n"(u ) @n
Substituting Eq. (17) in Eq. (27) demonstrates
L=n"(-K,m =—K:n* (28)

Equation (28) shows that L < 0. Therefore, the condition
in Eq. (20) is satisfied and the controller is stable.

4 Optimal control based on the Koopman
operator
4.1 Koopman theory

Recently, Koopman operator theory has become a key
methodology for deriving data-driven linear representations
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of nonlinear dynamical systems. For the prediction, estima-
tion, and control of nonlinear systems, it is very encouraging
to be able to predict nonlinear dynamics in a linear frame-
work. Numerous traditional findings have been expanded to
Koopman formalism [32].

For x and y directions, Eq. (10) could well be expressed
as

HER (R Eas
%’z)‘ﬁy]ﬁ][‘32][’;?}[&?}[51

The dynamic equations of the first order will be converted
from Eq. (27) by choosing the following parameters:

X =21
X =22
y=2z3
Yy =124

Then, we have

21=22
f = —0?z1 — Bz} — dix7a — wxy23 + (29 — dry)za + Uz, + D,
3=124
4= —Wxyll — (dxy + 29:)22 - w'%z.? - :Bzg - d,\',\'Z4 + Uz + Dy
(30)
Equation (30) demonstrates
2= A(z)+ Bu (€20)]
The classical form of Eq. (31) can be shown as
d ()= f(2 (32)
a z(t) = f(z
The dynamics in discrete time are provided by [32]
Zk+1 = F(zi) (33)
where F can be defined as
fo+t
F(z(10)) = z(t0) +f f(z(r))dr (34
10

Using the Koopman operator theoretic perspective, the
dynamics of a finite-dimensional nonlinear system are lifted
to an infinite-dimensional function space, where the devel-
opment of the original system becomes linear. A component

of an infinite-dimensional Hilbert space known as an observ-
able, g, is a real-valued, scalar measurement function [33].
Based on this observable, the Koopman operator produces

Kg=goF 35)

A continuous system is available for smooth dynamics.

d
ag(Z) = Kg(2) = Vg(2).f(2) (36)

where K is a Koopman operator. The Koopman operator is
infinite-dimensional, which is interesting but creates issues
for representation and computation. Applied Koopman anal-
ysis approximates the evolution on a subspace spanned by a
limited number of measurement functions rather than captur-
ing the evolution of all measurement functions in a Hilbert
space. By limiting the Koopman operator to an invariant sub-
space, one may derive a representation of the operator in
a finite-dimensional matrix. Any combination of the Koop-
man operator’s eigenfunctions spans a Koopman invariant
subspace [32]. When eigenvalue X is satisfied by the eigen-
function ¢(z) of the Koopman model.

rp(z) = @(F(2)) 37

A Koopman eigenfunction ¢(z) is satisfied in continuous
time.

d
3, 9@ =200 (38)

Inexisting dynamical systems, obtaining Koopman eigen-
functions from data or analytically is a key issue. The
identification of these eigenfunctions makes it easy to charac-
terize nonlinear dynamic systems in terms of these intrinsic
observables.

4.2 DMD method

A straightforward numerical approach DMD uses the
strongly estimated Koopman operator. The method for esti-
mating the Koopman operator is explained in the following
equations:

Equation (31) is solved to get z using Runge—Kutta fourth
order. The following equations are then used to construct two
spatiotemporal patterns:

s1 = sech(z + 3)(62'3”) 39
52 = (sech(z)tanh(z))(262'8”) (40)
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Fig. 2 Block diagram of the
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where s defines as:
s =51+ 52 “41)

The U,, S, and V, generate by using a second shortened
SVD on s with a truncation rank of 4. The eigenvalues are
calculated as:

T =UsV,S ! (42)

where @ eigenvalues and A eigenvectors will be obtained
from . The Koopman operator will be obtained by using
the following equation:

K=o 'Ad 43)

The Koopman operator is generated by Eq. (43). The linear
dynamics equation can be defined based on Koopman theory
as

d
Ey:Ky-i—Bu(t) (44)

4.3 LQR control

One strategy for making control decisions is LQR, which
considers the states of the dynamical system and the control
input [34]. The block diagram of the proposed control method
is shown in Fig. 2. The goal of the LQR design challenge is to
create a state feedback controller that minimizes the objective
function. Having a cost function that is

J =/:o(yTQy+uTRu)dt (45)

where Q and R are the weight matrices [35]. Following is
the feedback control law that minimizes the cost function’s
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u=-Cy (46)
where C defines as:
C=R"'B"P “@7)

By resolving the continuous time Riccati algebraic equa-
tion, P is obtained.

K'P+PK+Q—-PBR'B"P=0 48)

5 Simulation results

Simulation is done using the MATLAB program. The fourth-
order Runge—Kutta technique, known as the ode45 order
in MATLAB, is used. The integral terminal sliding mode
(ITSMC) parameters are chosen as:

A=10,m=125n=15and K, =11.

The initial conditions for ITSMC are selected as: gox =
0.4, oy = 0.6, gox = 0, and go, = 0.

The LQR control items are selected as:
01 10
102 o1

The nonlinear model of MEMS gyroscope is controlled
by two control methods such as ITSMC and LQR controller
linearized by Koopman theory (Koopman-LQR). Figure 3
shows the position tracking of x and y under Koopman-LQR
and ITSMC. The Koopman-LQR controller has better perfor-
mance in comparison with ITSMC in terms of high-tracking
performance and low settling time. The Koopman-LQR con-
troller does not have any oscillation in comparison with
ITSMC. It demonstrates that the proposed Koopman-LQR
has better performance.

A=K,B= ,andR = 1.



Optimal control of a MEMS gyroscope based on the Koopman theory

05
f = = =Koopman-LQR
ITSMC

0.4

1
[
1
03,
1
02H1
1
01H YV

Position tracking of x-axis

_05 1 1 1 1
0 5 10 15 20 25 30

Time (sec)

= = =Koopman-LQR
ITSMC \

0.5I I\~

o
T
]
|
1
]
|
1

o
o

Position tracking of y-axis

1
-
(6]

_25 1 1 1 1 1 |
0 5 10 15 20 25 30
Time (sec)
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6 Conclusions

This research introduces Koopman-LQR and ITSMC for
controlling the nonlinear dynamics of MEMS gyroscopes.
First, a nonlinear dynamic model of MEMS gyroscope was
introduced. Then, Koopman’s theory was used to linearize
the nonlinear dynamics of the MEMS gyroscope. The most
important part was to calculate the Koopman operator. DMD
method was applied to estimate eigenfunction. An LQR con-
troller is used to control the MEMS gyroscope system. The
proposed Koopman-LQR method compared with ITSMC
had better performance in terms of high tracking, low settling
time, and zero oscillation. The effectiveness of the proposed
Koopman-LQR method was verified by numerical simula-
tion.

Author’s contribution All authors contributed to the study conception
and design. Material preparation, data collection, and analysis were
performed by MR and Dr. SR. The first draft of the manuscript was
written by MR and Dr. SR commented on previous versions of the
manuscript. All authors read and approved the final manuscript.

Funding This article is based upon work supported by the National
Science Foundation (Grant No. 1828010).

Declarations

Conflict of interest There is no conflict of interest.

Ethical Statement I hereby declare that this manuscript is the result
of my independent creation under the reviewer’s comments. Except
for the quoted contents, this manuscript does not contain any research
achievements that have been published or written by other individuals
or groups. Mehran Rahmani and Sangram Redkar are the only authors
of this manuscript. The legal responsibility of this statement shall be
borne by me.

References

1. Cui J, and Zhao Q (2021) A tactical-grade monolithic hori-
zontal dual-axis mems gyroscope based on off-plane quadra-
ture coupling suppression silicon gratings. In 2021 IEEE 34th
International Conference on Micro Electro Mechanical Systems
(MEMS) (pp. 814-817). IEEE.

2. Wang Z, and Fei J (2021) Double loop neural fractional-order ter-
minal sliding mode control of MEMS Gyroscope. In 2021 Second
International Symposium on Instrumentation, Control, Artificial
Intelligence, and Robotics (ICA-SYMP) (pp. 1-4). IEEE.

3. Varghese PM, and Priya PL (2018) Robust control of a dimen-
sionless dual axis MEMS vibratory gyroscope-a sliding mode
approach. In 2018 International CET Conference on Control, Com-
munication, and Computing (IC4) (pp. 57-62). IEEE.

4. Rahmani M (2018) MEMS gyroscope control using a novel com-
pound robust control. ISA Trans 72:37-43

5. Zhou Y, Fan Q, Liu M, Ren J, Zhou T, Su Y (2021) Design of
force-to-rebalanced system with adaptive fuzzy-PID controller for
N= 3 MEMS disk gyroscope. IEEE Sens J 21(12):13384-13393

@ Springer

20.

21.

22.

23.

24.

. Rahmani M, Komijani H, Ghanbari A, Ettefagh MM (2018) Opti-

mal novel super-twisting PID sliding mode control of a MEMS
gyroscope based on multi-objective bat algorithm. Microsyst Tech-
nol 24(6):2835-2846

. Luo S, Yang G, Li J, Ouakad HM (2022) Dynamic analysis, circuit

realization and accelerated adaptive backstepping control of the FO
MEMS gyroscope. Chaos, Solitons Fractals 155:111735

. Zirkohi MM (2022) Adaptive backstepping control design for

MEMS gyroscope based on function approximation techniques
with input saturation and output constraints. Comput Electr Eng
97:107547

. Zirkohi MM (2022) Adaptive interval type-2 fuzzy recurrent

RBFNN control design using ellipsoidal membership functions
with application to MEMS gyroscope. ISA Trans 119:25-40

. Shi Y, Shao X, Zhang W (2020) Neural observer-based quantized

output feedback control for MEMS gyroscopes with guaranteed
transient performance. Aerosp Sci Technol 105:106055

. Shao X, Shi Y, Zhang W (2021) Input-and-measurement event-

triggered output-feedback chattering reduction control for MEMS
gyroscopes. IEEE Trans Syst, Man, Cybern: Syst. 25:54

. Shao X, Shi Y, Zhang W, Cao H (2020) Neurodynamic

approximation-based quantized control with improved transient
performances for MEMS gyroscopes: theory and experimental
results. IEEE Trans Industr Electron 68(10):9972-9983

. Shao X, and Shi Y (2021) Neural-network-based constrained

output-feedback control for MEMS gyroscopes considering scarce
transmission bandwidth. IEEE Trans Cybern

. Shao X, Si H, Zhang W (2021) Fuzzy wavelet neural control with

improved prescribed performance for MEMS gyroscope subject to
input quantization. Fuzzy Sets Syst 411:136-154

. Arbabi H (2018) Introduction to Koopman operator theory of

dynamical systems. Introduction to Koopman operator theory of
dynamical systems.

. Abraham I, Murphey TD (2019) Active learning of dynamics for

data-driven control using Koopman operators. IEEE Trans Rob
35(5):1071-1083

. Korda M, Mezi¢ I (2020) Optimal construction of Koopman eigen-

functions for prediction and control. IEEE Trans Autom Control
65(12):5114-5129

. Bruder D, Fu X, Gillespie RB, Remy CD, Vasudevan R (2020)

Data-driven control of soft robots using koopman operator theory.
IEEE Trans Rob 37(3):948-961

. Folkestad C, and Burdick JW (2021) Koopman NMPC: Koopman-

based learning and nonlinear model predictive control of control-
affine systems. In 2021 IEEE International Conference on Robotics
and Automation (ICRA) (pp. 7350-7356). IEEE.

Umathe B, Tellez-Castro D, Vaidya U (2022) Reachability analy-
sis using spectrum of Koopman operator. IEEE Control Systems
Letters 7:595-600

Haseli M, Cortés J (2022) Temporal forward-backward consis-
tency, not residual error, measures the prediction accuracy of
extended dynamic mode decomposition. IEEE Control Syst Lett
7:649-654

Guo W, Zhao S, Cao H, Yi B, Song X (2023) Koopman operator-
based driver-vehicle dynamic model for shared control systems.
Appl Math Model 114:423-446

Mamakoukas G, Castano ML, Tan X, Murphey TD (2021)
Derivative-based koopman operators for real-time control of
robotic systems. IEEE Trans Rob 37(6):2173-2192

Son SH, Narasingam A, and Kwon JSI (2021) Integration of
offset-free control framework with Koopman Lyapunov-based
model predictive control. In 2021 American Control Conference
(ACC) (pp. 2818-2823). IEEE.

. Goswami D, and Paley DA (2021) Bilinearization, reachability, and

optimal control of control-affine nonlinear systems: a Koopman
spectral approach. IEEE Trans Autom Control.



Optimal control of a MEMS gyroscope based on the Koopman theory

26.

27.

28.

29.

30.

31.

32.

33.

Brunton SL, Brunton BW, Proctor JL, Kutz JN (2016) Koopman
invariant subspaces and finite linear representations of nonlinear
dynamical systems for control. PLoS One 11(2):e0150171
Mamakoukas G, Castano M, Tan X, and Murphey T (2019) Local
Koopman operators for data-driven control of robotic systems.
In Robot: Sci Syst

Rahmani M, Rahman MH, Nosonovsky M (2020) A new
hybrid robust control of MEMS gyroscope. Microsyst Technol
26(3):853-860

Yan W, Hou S, Fang Y, Fei J (2017) Robust adaptive nonsin-
gular terminal sliding mode control of MEMS gyroscope using
fuzzy-neural-network compensator. Int J Mach Learn Cybern
8(4):1287-1299

Su'Y, Xu P, Han G, Si C, Ning J, Yang F (2020) The characteristics
and locking process of nonlinear MEMS gyroscopes. Microma-
chines 11(2):233

Zhang R, Shao T, Zhao W, Li A, Xu B (2018) Sliding mode control
of MEMS gyroscopes using composite learning. Neurocomputing
275:2555-2564

Kaiser E, Kutz JN, Brunton SL (2021) Data-driven discovery of
Koopman eigenfunctions for control. Mach Learn: Sci Technol
2(3):035023

Snyder G, and Song Z (2021) Koopman operator theory for nonlin-
ear dynamic modeling using dynamic mode decomposition. arXiv
preprint arXiv:2110.08442.

34.

35.

Prasad LB, Tyagi B, Gupta HO (2014) Optimal control of nonlinear
inverted pendulum system using PID controller and LQR: perfor-
mance analysis without and with disturbance input. Int J Autom
Comput 11(6):661-670

Anjali BS, Vivek A, Nandagopal JL (2016) Simulation and analysis
of integral LQR controller for inner control loop design of a fixed
wing micro aerial vehicle (MAV). Procedia Technol 25:76-83

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

@ Springer



