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Eddy covariance measurements quantify the magnitude and temporal variability
of land-atmosphere exchanges of water, heat, and carbon dioxide (CO») among
others. However, they also carry information regarding the influence of spatial
heterogeneity within the flux footprint, the temporally dynamic source/sink area
that contributes to the measured fluxes. A 25 m tall eddy covariance flux tower
in Central Illinois, USA, a region where drastic seasonal land cover changes from
intensive agriculture of maize and soybean occur, provides a unique setting to
explore how the organized heterogeneity of row crop agriculture contributes to
observations of land-atmosphere exchange. We characterize the effects of this
heterogeneity on latent heat (LE), sensible heat (H), and CO» fluxes (F¢) using a
combined flux footprint and eco-hydrological modeling approach. We estimate
the relative contribution of each crop type resulting from the structured spatial
organization of the land cover to the observed fluxes from April 2016 to April
2019. We present the concept of a fetch rose, which represents the frequency
of the location and length of the prevalent upwind distance contributing to the
observations. The combined action of hydroclimatological drivers and land cover
heterogeneity within the dynamic flux footprint explain interannual flux variations.
We find that smaller flux footprints associated with unstable conditions are more
likely to be dominated by a single crop type, but both crops typically influence any
given flux measurement. Meanwhile, our ecohydrological modeling suggests that
land cover heterogeneity leads to a greater than 10% difference in flux magnitudes
for most time windows relative to an assumption of equally distributed crop types.
This study shows how the observed flux magnitudes and variability depend on the
organized land cover heterogeneity and is extensible to other intensively managed
or otherwise heterogeneous landscapes.

KEYWORDS

land cover heterogeneity, eddy covariance, flux footprint, fetch rose, flux partitioning,
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1. Introduction

Agricultural landscapes dominate the US Midwest, influencing
ecohydrological responses where the root-soil-canopy-atmosphere
continuum act as an integrated system. In this region, small-
grain production was replaced about a century ago by maize and
soybean row crop agriculture. Today, a seasonal human-induced
reorganization of vegetation to meet agricultural ecosystem services
determines their spatial distribution (Richardson and Kumar,
2017), and the region experiences seasonal transitions in land
cover every year. Specifically, row crop agriculture consists of
seed planting in early spring, rapid growth in early summer,
maturity in late summer, and harvest during autumn. During
July, the US corn belt is now 40% more productive than the
Amazonian rainforest (Foufoula-Georgiou et al., 2015) as a result
of steady agricultural intensification over the past two centuries.
In the Midwestern US, fertilization plays a critical role in
agricultural intensification. Fertilization refers to the process of
adding nutrients to the soil, such as nitrogen, phosphorus, and
potassium, to improve crop growth and yields. This high level of
fertilization is necessary to meet the demand for food and biofuel
production, contributing to the region’s agricultural productivity
and competitiveness. This dense vegetated land cover during the
growing season contrasts drastically with an almost bare landscape
of soil, roots, and litter left after harvest typically around mid-
October to November (NASS, 2010). During the growing season,
a patchy mosaic of different crops is the dominant landscape
feature, which partially hides other sources of heterogeneity such as
soil properties and micro-topographic variability (Le and Kumar,
2014). In this study we examine the effects of the “organized land
cover heterogeneity,” a term referring to the human-altered spatial
organization of the vegetation in the landscape. Our focus is on
the flux exchange between the landscape and the atmosphere,
observed through measurements at an eddy covariance tower
that encompasses the entire agricultural system, rather than just
individual plots or fields. The organized heterogeneity results from
human decisions regarding cropping patterns in the fields, crop
rotation practices, and planting and harvesting times, which are
distinct from naturally arising self-organized randomly distributed
heterogeneity. For example, in an intensively managed landscape
dominated by maize and soybean fields, such as that located
in Illinois, a 25 m tall flux tower sees hundreds of agricultural
plots in its contributing area that constantly shifts as a result of
wind speed, direction, and atmospheric stability and influences
its measurements of land-atmosphere exchanges of heat, water,
and carbon dioxide (CO;) (Kirby et al., 2008). We quantitatively
address one of the major challenges facing the interpretation
of eddy covariance measurements in heterogeneous landscapes:
Besides other sources of landscape heterogeneity, how can we
partition the contributions of the human-induced “organized
land cover heterogeneity” to the fluxes observed of a 25 m tall
eddy covariance flux tower? Further, we evaluate the relative
contribution of each crop type to the dynamics of the observed
fluxes.

Eddy covariance measurements require a homogeneous flow
field to provide an accurate integration of fluxes at the land-
atmosphere interface (Aubinet et al., 2012; Burba, 2013). However,
for a 25 m tall tower the dynamic upwind surface area where
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the land-atmosphere exchange flux is generated, known as the
flux footprint, generally exhibits spatial heterogeneities and fluxes
from different sources mix at the observation point (Leclerc
and Foken, 2014). The use of footprint models for interpreting
micrometeorological observations is a common practice, but the
process of differential weighting within a temporally varying flux
footprint is a “well-known but frequently overlooked feature of
eddy covariance measurements” (Tuovinen et al., 2019; Chu et al.,
2021). Previous studies have related eddy covariance flux tower
observations to individual land use, mostly using a combination of
different measurement techniques at different scales. One approach
relies on in situ data, from nearby towers at which flux footprints
cover a specific vegetation type (Biermann et al., 2014; Chi et al,,
2019, 2020) or from flux chamber measurements (Tuovinen et al.,
2019). However, in highly heterogeneous systems with mixed
vegetation and soil wetness, it is known that there is a possibility
for a serious mismatch between eddy covariance flux measurements
and in situ measurements for determining specific fluxes associated
with land cover classes (Alfieri et al., 2012; Wang et al.,, 20165
Tuovinen et al., 2019). In our case, when tens of plots are located
inside the several square kilometer dynamic flux footprint, on-
site measurements might not be representative of the average
behavior of each land cover type inside the tower flux footprint,
which can potentially bias the conclusions of a study. Typically,
the use of in situ techniques, such as flux chambers, and remote
sensing including aircraft data are limited to study cases. Previous
studies have focused on extracting time series associated with
a plot near a flux tower. In that case, the time series for the
plot is obtained by extracting the observed fluxes when the plot
intermittently lies within the dynamically changing flux footprint.
For that purpose TOVI software (Licor, 2021), provides a set of
analytical tools to examine eddy covariance flux and meteorological
datasets. It is particularly advantageous for sites located in the
upwind direction of the observing tower, as the area of interest can
be consistently monitored. However, it often requires additional
sources of information such as nearby towers or flux chambers,
to later recreate a full time-series for a plot. Previous studies have
also used a set of towers with overlapping flux footprints and
modeling results for the times when the towers do not see the
area of interest (Biermann et al., 2014). An alternative approach
to estimating the contribution of individual crops to the total
flux observed at the tower at each period is using a statistical
approach to deconvolve the contributions from different types of
vegetation (Tuovinen et al., 2019). However, we would require a
large amount of data to not lose resolution at times when the
flux tower only observes a small area of a certain field (e.g., if
the wind does not blow from a specific direction), otherwise, it is
not possible to get an estimation for a given field. To overcome
these challenges, we combine multiple sources of information to
synergistically inform the flux tower observations at the ecosystem
scale and to decompose the relative contribution of each of the land
cover types inside the flux footprint.

Our work is distinct from these previous efforts in that we
combine observations and ecohydrological modeling to disentangle
the contributions of different crop types to the observed fluxes
where organized landscape heterogeneity dictates their relative
contributions. In particular, it is distinct from and provides further
refinement to the approach by Chu et al. (2021), which proposes
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monthly footprint climatologies for Ameriflux sites, in that we
consider a structured heterogeneity inside the flux footprint whose
contribution is dynamically changing at every measurement time
step (15 min). When aggregating over time, the flux footprint
climatology blends the sources and sinks of the flux while
identifying the spatial extent and temporal dynamics of the areas
contributing to the observed fluxes at a tower site. We adopt a more
detailed perspective to analyze the relative contribution of each land
cover type inside the dynamic flux footprint at each observational
time step that results in clear identifications of the contribution to
the observation from each crop type. The distinctive contribution
of this study is to quantify the relative contribution of each land
cover type inside the flux footprint on the measured exchange of
water, heat, and CO; fluxes at the land-atmosphere interface, which
is a critical aspect when accounting for fluxes’ sources and sinks
from agricultural landscapes (Masson-Delmotte et al., 2021). Using
the observations at the 25 m tall eddy covariance flux tower and
other available data sources in a complementary way, such as flux
footprint and ecohydrological modeling results, we can provide
a more informed interpretation of the behavior of the observed
fluxes with respect to their origin in the landscape. Our combined
framework can be used to study aspects of landscape heterogeneity
beyond what a tower could provide.

This paper is organized as follows: In Section 2, we describe
the Intensively Managed Landscape Critical Zone Observatory
(IMLCZO) study site (Wilson et al., 2018), and in Section 3, we
present the methods to account for organized land cover spatial
heterogeneity, including the considerations for the estimation of
the two-dimensional flux footprint and the description of the use of
the ecohydrological model to estimate the fluxes of the upwind area
sources. Results and discussion are presented in Section 4, where we
describe the ecosystem behavior at the study site as observed by the
flux tower. Then we explain the results of the flux footprint and the
ecohydrological modeling, and we analyze the seasonal and inter-
annual evolution of the flux contribution due to each crop type.
At the end of Section 4, we connect maize and soybean crop yield
at the study site to investigate CO; flux dynamics. In Section 5 we
summarize the main findings and discuss some assumptions used
in this work that could be relaxed in future studies.

2. Study site
2.1. Description

We use hydrometeorological data and flux measurements from
a 25 m tall eddy covariance flux tower in the IMLCZO, located at
40.155N, 88.578W, Goose Creek Township, Piatt County, Illinois,
US (Figure 1). In the Upper Sangamon River Basin, both glacial
and management legacies have shaped soils, topography, and native
land cover resulting in a low-relief landscape with poorly drained
soils (Anders et al., 2018; Kumar et al., 2018). Therefore, the use
of tile drains is a common practice in crop fields for subsurface
drainage (Wilson et al., 2018). The climate at the study site is
humid continental (Koppen climate classification Dfa) with warm
and humid summers and cold winters. Historically, maximum

Frontiersin Water

10.3389/frwa.2023.1033973

precipitation occurs in late spring and early summer (i.e., April to
June) with an average of about 100 mm per month and long-term
observations have shown that Illinois has become wetter during the
crop-growing season (Mishra and Cherkauer, 2010).

In this agricultural landscape, vegetation dynamics are a strong
determinant of land-atmosphere fluxes and their seasonality in
the landscape. These dynamics are highly influenced by the
prevalent practice of crop rotation between maize and soybean
fields every one or two years, along with different intensities
of tillage (Wilson et al., 2018). The region has a return of one
harvest per year. Planting occurs from early April to late May,
and harvest occurs from late September to early November. Maize
is typically planted before soybean and harvested after, such that
it has a longer growing season (NASS, 2010). In this study, we
consider an April-March window as a “crop year” (e.g., April
2016 to March 2017 is denominated in this study as “crop year
2016”). Both crops have a peak vegetation cover with very dense
leaf area index (LAI) reaching 4 for maize and 6-7 for soybean
(Drewry et al., 2010). A distinctive feature of this agricultural
region is how the dense vegetation cover during the growing
season contrasts drastically with the almost bare landscape left after
harvest until the following spring season when planting occurs
(NASS, 2010) (Figure 2). Corn and soybean crops desiccate in the
field prior to harvest, leading to the cessation of photosynthesis.
After harvest, crop residues, i.e., mainly litter, stover, and plant
roots, remain on the surface and in the shallow soil layers
until the following spring when planting occurs (Warner et al,
1989).

2.2. Instrumentation and data

Our 25 m-tall eddy covariance flux tower sees the combined
response of hundreds of different plots every 15-min in the
“patchwork quilt” landscape inside its several square kilometer
dynamic flux footprint. We use a set of detailed land cover maps
(NASS, 2018) to characterize the annually varying spatial land
cover type distribution. Although the underlying vegetation is non-
homogeneous, the tower is situated on terrain that is generally
flat in all directions for an extended distance upwind, making
the study site ideal to explore land-atmosphere flux dynamics
resulting from land cover changes in a human-induced agricultural
landscape. The eddy covariance tower has recorded data from
April 2016 to the present day. The high-frequency instruments that
estimate fluxes from the ecosystem are deployed at 25 m height
(Li-7500 Infrared Gas Analyzer manufactured by LiCor Inc., and
CSAT3 Sonic Anemometer manufactured by Campbell Scientific
Ltd) (see Supplementary material). These instruments sample at
10 Hz and are set to record 15-minute averages. They point
to the south-southwest, the prevailing wind direction (Figure 1).
However, constantly shifting wind directions with meteorological
conditions have implications for this study (described in detail
in Section 3). For more information on the variables used in
the analysis and instrumentation at this flux tower, see the
Supplementary material.

frontiersin.org


https://doi.org/10.3389/frwa.2023.1033973
https://www.frontiersin.org/journals/water
https://www.frontiersin.org

Hernandez Rodriguez et al.

10.3389/frwa.2023.1033973

A @ Flux Tower location in CONUS

FIGURE 1

Goose Creek flux tower location and components. (A) Location of the tower (green dot) and the intensity of maize cultivation [the red area
represents the corn harvested area fraction (high = red, low = light ivory); Monfreda et al., 2008]. (B) Fluxes measured by the 25 m tall eddy
covariance tower come from the underlying heterogeneous landscape consisting of a mosaic of maize and soybean fields, from a fetch that can
reach up to 10 km upwind from the tower. (C) The prevailing wind direction is from the southwest (4/23/2016—-4/30/2019). The relative frequency
with which the wind blows from a particular direction is proportional to the spoke’s length, and colors indicate different wind speed categories.

Wind speed (m/s)
VW, > 14
-12§WS<14
i10£Ws<12
8 <W <10
E6 <Wg <8
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FIGURE 2

Panoramic view of the intensively managed agricultural study site. (A) During the growing season in July 2015, a row crop agriculture mosaic
dominates the landscape, masking features such as micro-topographic depressions and soil variability. The vegetated land cover connects the
heterogeneous ecosystem and the overlaying atmosphere during the growing season. (B) Right after harvest (October 2017) only litter remains over
the surface. “R" marks a common reference point between the two pictures [Photo credit: (A) AG and (B) LH].

3. Methods

Here we describe how we estimate the relative contribution of
different land cover types to land-atmosphere fluxes measured at
the flux tower. First, we use the wind data to obtain the variability
of the areal coverage by using a two-dimensional flux footprint
parameterization. Then we use a process-based ecohydrological
model to obtain the temporally varying ratio of the flux values
for different land covers. We use both the observed data and the
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modeled ratio of fluxes to estimate the contribution of each crop
to the observed fluxes. From this, we can characterize the patterns
of magnitude and variability of fluxes. Knowing that the observed
fluxes at the ecosystem scale also carry the influence of the spatial
heterogeneity within the flux footprint, we deconvolve the signal
of the eddy covariance observation by quantifying the differential
weighting of the plots based on the land cover types inside its
dynamic flux footprint to find the relative contribution of each land
cover type on the observations.
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3.1. Estimation of two-dimensional flux
footprint

Latent heat (LE), sensible heat, (H), and CO, fluxes (F,)
estimated by the flux tower at any given time point correspond to
an uncertain origin on the landscape. This origin can be estimated
as the flux footprint, which is defined as the upwind landscape
area that contributes to the measured vertical flux or concentration
at a specific time (Vesala et al., 2008; Burba, 2013; Kljun et al,
2015). In this study, we use the two-dimensional flux footprint
prediction model (FFP) proposed by Kljun et al. (2015), which
considers the effects of surface roughness, atmospheric stability,
and the crosswind spread of the footprint. For an agricultural
landscape, surface roughness length changes as a function of
vegetation height through the growing season. Also, atmospheric
thermal stability rapidly changes with air temperature and density
at a given pressure, impacting the vertical motion of air parcels. As
a result, the areal contribution associated with each land cover type
changes dynamically. The FFP model provides the width and shape
of the two-dimensional flux footprint at any given time, where the
source/sink area of the fluxes is located on the horizontal surface
(x,y), and the tower height in the vertical direction, z (Figure 3).
The FFP model assumes stationarity over the eddy-covariance
integration period (here, 15-min) and horizontal homogeneity
of the flow, but not of the scalar source/sink distribution. The
variability of roughness over corn and soybean crops, however,
can introduce potential errors in this assumption. These errors can
include inaccuracies in the estimation of flow parameters, such as
velocity and scalar transport.

When estimating the two-dimensional flux footprint, at each
time interval the observed fluxes have their origin in a different
combination of maize or soybean fields. To derive the source area
up to a certain percent of flux contribution, we define a set of five
contours (r) that define the areas that contribute 20, 40, 60, 80,
and 90% of the total flux estimated by the flux tower. At farther
locations beyond rggy, that correspond to a contribution of 90%,
the contributions tail off, so we limit our study to rgge, (we use ry,
or r to represent percentage or equivalent fractional contribution,
respectively). The associated fetch changes direction and length at
every time step. In this context, the fetch is the distance from the
tower to a specific fraction of the flux contribution. For example,
the fetch for a 50% contribution (rsge) will be shorter than for a
90% contribution (rgge) (Burba, 2013).

We used the FFP model as a function on a loop in our
Python code to estimate flux footprints for each 15-min data
point from April 2016 to April 2019. Here we describe the inputs
required for the FFP model. The calculation of the boundary layer
height, blh, is based on the bulk Richardson number, R;, method
(Vogelezang and Holtslag, 1996) which is suitable for convective
and stable boundary layer conditions and has been used in several
previous studies (Seidel et al., 2012; Lee and De Wekker, 2016).
We used the blh retrieved from the fifth generation reanalysis
dataset for the global climate and weather, ERA5 (ECMWTF, 2018)
from the European Centre for Medium-Range Weather Forecasts
(ECMWFE). Near-surface atmospheric turbulence is caused by
thermal and mechanical effects. Thermal turbulence is produced
by temperature gradients and buoyant forces, while mechanical
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turbulence is generated by friction forces driven by wind shear,
and therefore both control atmospheric fluxes. To account for
atmospheric stability we calculate the Obukhov length, L (Foken,
2006), which is positive for stable and negative for unstable
atmospheric stratification, and becomes near-infinite in the limit
of neutral stratification. The standard deviation of the lateral
velocity fluctuations, oy, is estimated using the 15-minute root-
mean-square of the cross main-wind component, v, from the high-
frequency data at the flux tower. In footprint modeling, changes
in roughness are relevant when differences between land surface
covers are significant (e.g., at the same time because of different
vegetation types within the same footprint, or across the time as
a result of the sudden change between vegetation covered and
bare soil resulting from harvest). The displacement height (d),
representing the elevation of a non-vegetated surface required to
produce a logarithmic wind field equal to the observed one, is
estimated during the growing season as a function of average crop
height (d = 0.67 * h) (Jacobs and Van Boxel, 1988; Stull, 2012).
The relationship between canopy height and Leaf Area Index (LAI)
has been established for maize and soybean (Gao et al., 2013;
Alekseychik et al., 2017). Hence, LAI was used as a proxy for
determining average changes in height. LAI data was obtained
from MODIS 8-day dataset with 500 m resolution (Myneni et al.,
2015) and field measurements of Normalized Difference Vegetation
Index (NDVI) (Nguy-Robertson et al., 2012). We used LAI from
maize-only and soybean-only pixels near the tower to estimate 4 for
each crop and used the average value to compute the displacement
height d for the flux footprint model. A more comprehensive
approach could involve iteratively estimating d based on the crop
fractions within a footprint or the area surrounding the tower, but
we maintain this simple averaging approach. The measurement
height above the displacement height (z;,) was calculated as z;, =
z — d, where z = 25 m is the tower height.

3.2. Heterogeneity and flux partitioning
equations

Here we describe the approach to estimating the relative flux
contribution due to heterogeneous land cover. Analytically, the
distribution of a diffusive quantity in the lower layer of the
atmospheric boundary layer is described as an integral diffusion
equation. Therefore, the flux footprint relates the vertical eddy
flux n from a flux tower located at the origin (0,0) and with
an observation height, z,y, to the spatial distribution of ground
source (or sink) fluxes .#(x, y) at the ground (z = 0) at a upwind
distance (x) and crosswind (y) direction from the tower location
(Pasquill and Smith, 1983; Schuepp et al., 1990; Horst and Weil,
1992; Schmid, 1994; Vesala et al., 2008):

10,0, 24p5) = f%ﬁ(x,w-w(x,y)dxdy M
where % denotes the flux footprint and w(x,y) is the relative
contribution to the flux at any location (x,y) (Kljun et al,, 2015).

F(x,y) is the source (sink) flux from the surface at location (x, y),
with the same units as n, where n = (0, 0, z,5). The observed flux
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FIGURE 3

Illustration of a two-dimensional flux footprint that captures the organized heterogeneity of the maize-soybean mosaic. The land cover data from
USDA 2016 (right) shows a mosaic of maize and soybean surrounding the flux tower. The density profile over the mosaic (orange) represents the
relative contribution of the flux footprint as a function of the upwind distance, denominated as the fetch (black dashed line). Here we consider
explicitly the dependence of the distance of the contributions from different patches. The density profile shows that higher contributions come from
locations close to the tower, but not immediately underneath. In the two-dimensional approach (Kljun et al., 2015), the area defined by a set of
contours (re,) of an increased percentage of contribution (bottom) define the strength and location of the sources/sink areas that contribute to the
flux estimated at the tower. w is the weighted flux footprint contribution of each patch of area (a) defined by a given contour. Therefore, the flux
tower measurement is the combined response of the fields inside the flux footprint (left).

@ Flux tower location
Flux tower fetch
=== Flux density profile
Bl Maize field

- Soybean field

1 is then the weighted integration of all the surface fluxes inside the
contour rggy, of flux contribution and has units of W/m? for latent
heat flux, LE, and sensible heat flux, H, and umol/m?s for CO, flux,
F_. This approach assumes horizontal homogeneity of the turbulent
flow field (Horst and Weil, 1992) and temporal stationarity, which
refers to the consistency of statistical properties during the 15-
minute integration period. Consequently, the relative contribution
of each field source or sink is a function of its location within the
flux footprint.

We assume that fluxes are the same within a given patch of
a crop, and there are n landscape patches that contribute to the
measured flux inside the flux footprint. To account for a measure
of surface heterogeneity, the source emission or sink rate for n
different sources (or sinks), Equation (1) is expressed as:

n
n=y Fi-w 2)
i=1

where F; is the ground level flux for patch i and w; is the weighted
flux footprint contribution of each patch of area a;. We further
aggregate these landscape patches and assume that the fluxes are
identical for patches of the same crop type. In other words, we
assume that the crop type is the only contributing factor to flux
variability in the region of the tower. We now use the subscripts
m and s to refer to maize and soybean, respectively. We consider
a given contour r, with area a, and weighting fraction w,. For
example, the region between the 60% and 90% contours has a w, =
0.3, or a 30% contribution to the total flux. Inside a contour, we
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determine the total fraction of areas covered by maize and soybean
and denote as A, and A,,, where A,,, + A;, = 1. Then, we
determine the weighted contribution for contour r for the two crop
types as follows:

Wmyr = Am,r s Wy and Wsr = As,r s Wy 3)

We can then compute the relative contribution from each crop
type over all the contours, denoted as ¢, as follows, where the
summation is over all contours r:

O = Z Win,r and Ps = Z Ws,r (4)

Our assumption that vegetation type is the dominant source of
flux variability could be relaxed if detailed characteristics of each
landscape patch were available. As described in the next subsection,
we use a multilayer canopy model to estimate the vegetation-level
fluxes (LE, H, F.) for each crop type. Since these fluxes are modeled,
here denoted as C,, and C; for maize and soybean, respectively,
their application to Equation (2) results in a total “modeled” flux

Nmod*
Nimod = Cm®m + Css (5)

Notice that the assumption of the linear sum of all the contributions
from the same type of vegetation inside each flux footprint takes
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into account the spatial distribution of the patches of each species
when using the 2D flux footprint model (Kljun et al., 2015) to
determine ¢, and ¢;. In other words, this approach takes into
account the dependence on the distance of each patch from the
measurement point. In addition to the previous assumptions,
model and observation errors exist. Therefore, we expect 1,04 to
be different from the observed tower flux, n. Random errors due
to the nature of turbulence are inevitable, such as the intermittency
of turbulent transport, which increases as flux magnitude increases
(Aubinet et al., 2012; Vitale et al., 2019). Therefore, our aim is
not to validate our modeled results against flux observations, but
to merge flux tower observations with ecohydrological and flux
footprint modeling to improve the crop-specific estimates. Lastly,
we compute the partitions of the fluxes observed at the tower for
maize and soybean fields, respectively, as follows:

n :n_Cm"pm:n_ Cm'¢m (6)
" MNmod Cm'¢m+cs'¢s
Cs- ¢ Cs- ¢
ns=n——=n- . 7)
Nmod Cin » dm + Cs - s

Based on this, we combine the relative fluxes from a process-
based model with a two-dimensional footprint model to determine
both the fractional and actual contributions to the flux.

3.3. Ecohydrological modeling to simulate
maize and soybean behavior

We use an annual land cover product from the United States
Department of Agriculture (USDA) Cropland Data Layer (CDL)
at 30m spatial resolution (Figure 3) to determine the land cover
inside each flux footprint. Some fields see maize-soybean rotation
(i.e, maize and soybean in alternating years) while others see
maize-maize-soybean rotation (i.e., maize for two consecutive years
followed by a year of soybean). Generally, the land cover for a year
does not change until the planting season in the next year (i.e.,
starting around mid-April), and therefore we define a single land
cover from April through March of the next year, as a “crop year".
We use Equation (4) to compute the flux footprint contribution for
maize and soybean, ¢, and ¢, respectively.

We use the well-tested and validated Multi-Layer Canopy
model, MLCan (Drewry et al., 2010; Le et al., 2012), to simulate
the flux response of maize and soybean, C,, and C;s, respectively,
under observed atmospheric drivers. MLCan uses a multilayer
discretization of the canopy and root zone, including a litter layer
on the soil surface, to simulate the below- and above-ground
ecohydrological processes for different vegetation types. At the leaf
scale, ecophysiological (photosynthesis and stomatal conductance)
and physical (leaf-boundary layer conductance and energy balance)
components are coupled to determine flux densities of CO,,
latent, and sensible heat, and then integrated into the canopy
scale. For an extended description of the model and its validation
for maize and soybean, we refer the reader to Drewry et al.
(2010). We compute the fluxes associated with maize and soybean,
which use C4 and C3 photosynthetic pathways, respectively. The
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model is driven by above-canopy measurements of air temperature
(Ta)(°C), barometric pressure (Pa)(kPa), global solar radiation
(ie., incident shortwave radiation) (Rg)(W/m?), precipitation
(PPT)(mm), and vapor pressure deficit (VPD)(kPa) from April
2016 to March 2019. Annually, we calculated the mean Leaf Area
Index (LAI) in the vicinity of the tower from the period between
planting and harvest, using Normalized Difference Vegetation
Index (NDVI) measurements from the Moderate Resolution
Imaging Spectroradiometer (MODIS) 8-day dataset at a resolution
of 500 m (Myneni et al., 2015). Using the Cropland Data Layer
(CDL) for 2016 to 2019, we identified pixels around the tower
of a single crop, comprising an average of 25% maize and 23%
soybean fields. We refined LAI estimates for each crop type
using field measurements of Normalized Difference Vegetation
Index (NDVI) Nguy-Robertson et al. (2012) from the field on the
prevalent wind direction from the tower. LAI is assumed to be
zero during the non-growing season when no vegetation is on the
surface and only litter from the previous season’s crops remains.
Maize and soybean parameters for the model are provided in the
Supplementary material. MLCan simulations provide LE, H, and F,
at 15 minute resolution for maize (C,,) and soybean (C). These
are then used to compute the total modeled flux and relative
contributions [Equations (5)-(7)].

3.4. lllustration of the role of organized
heterogeneity

At a single time step, we consider that the total contributions of
the flux footprint from maize and soybean (¢, and ¢, respectively)
are defined by the sum of their relative contributions (Figure 4),
as shown in Equation (4). As an illustrative example, we consider
three cases (Figure 4, Table 1) where ¢s = ¢, = 0.5 (Case A),
¢s = 0.4 and ¢, = 0.6 (Case B), and ¢s = 0.6 and ¢, = 0.4 (Case
C). Case A corresponds to equal contributions from the two crops
as would be expected if the two were randomly distributed or the
organized heterogeneity incidentally reflected equal contributions,
like in the hypothetical case shown in Figure 4A. Cases B and
C reflect relatively larger contributions from maize or soybean,
respectively. For all three cases, assume that the modeled fluxes are
LE; = 120 W/m? and LE,, = 80 W/m?, and the tower observed
flux is 7 = 105 W/m?. For Case A this leads to a total estimated
flux 71,04 = 100 W/m? (= (0.5)120 + (0.5)80). For Cases B and C,
we would estimate 71,,,4 as 96 W/m? and 104 W/m?, respectively.
Since for all three cases, the observed flux at the tower is the same,
we can estimate the difference between n and 1,,,,4 (Table 1). In this
example, we see that the landscape heterogeneity of Case C leads
to the closest estimate to the flux measured at the tower. We can
also consider the percent difference in 1,,,4 relative to the equal
contributions of Case A. Here, we see that Case B leads to a —4%
difference in LE, due to the higher contribution from maize, which
has a lower LE. The opposite occurs for Case C (Table 1).

This example also demonstrates that the change in the relative
contribution of fluxes due to two crop species can either increase
or decrease the total flux observed at the tower (1) relative to the
hypothetical case of a random distribution of crops. In other words,
an incremental change in flux observed at a tower could either
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correlate to a change in flux from the crops or a shift in relative
land cover contributions. This has significant implications for flux
tower data interpretation in a heterogeneous landscape.

4. Results and discussion

4.1. Flux footprints cover a wide range of
landscape areas

The size of the flux footprint strongly depends on the highly
variable atmospheric stability at the sub-hourly time scale. At
the annual scale or for observations over long periods, the
effect of the atmospheric stability on the footprint climatology,
an aggregation of footprints over several time steps, is weaker
(Kljun et al,, 2015; Zhang and Wen, 2015; Tuovinen et al., 2019).
The climatological footprint for crop years 2016 (Figure 5A),
2017 (Figure 5B), and 2018 (Figure 5C) show the changes in
the average location of the surface source areas, where the
outer contour shows the upwind distance (fetch) for the 90% of
flux contribution, rggy. Figure 5 illustrates flux footprints under
neutral (Figure 5A), unstable (Figure 5C), and, stable (Figure 5E)
atmospheric conditions. Turbulent mixing plays an important
role in the magnitude of fields relative contributions, as the
weighting of fields farther away from the tower increases with
increasing stability. In general, the flux footprint size decreases
with decreasing z,,/L (Section 3.1). Therefore, under unstable
conditions (Figure 5D) we can expect a smaller flux footprint than
under stable conditions (Figure 5F). We found that the average
distance to the flux footprint peak is 168m for unstable conditions
and 268 m for stable conditions (Figure 5G). The footprint is
wider as the standard deviation of the lateral wind fluctuations
increases and, therefore, the crosswind dispersion increases (Kljun
et al, 2015; Zhang and Wen, 2015). On average, the upwind
area described by roge, corresponds to 1.51 km? for unstable
conditions and 3.17 km? under stable conditions. Similarly, the
upwind distance to the contour described by the 90% of the
flux contribution for unstable conditions is closer than for stable
conditions, with 5.8 km and 9.2 km, respectively (Figure 5H).
While the 2D flux footprint provides the upwind source area
up to a certain percentage of flux contribution, the frequency of
the direction and length associated with the prevalent upwind
distance for the 90% of contribution (fetch) is not yet known.
Here we propose the fetch rose, a graph that shows the frequency
of the upwind distance (fetch) from particular directions over a
specified period (Figure 6). The fetch roses for crop years 2016
(Figure 6A), 2017 (Figure 6B), and 2018 (Figure 6C) for roge have
a prevalent south-southwest direction in a 16-point compass.
While the dominant direction is south-southwest, other wind
directions are relatively equiprobable. We see that fetches over 10
km (Figure 6, orange to red) are rare relative to fluxes from 2.5
to 10 km (Figure 6, light blue to yellow) but fetches tend to be at
least 2.5 km. We also see that the longest fetches emanate from
all directions except north, such that distant fields from the north
hardly ever influence tower fluxes. The r9gy, fetch points toward the
prevalent direction 6% of the time on average from 2016 to 2019
(Figure 5D), and its length is 5-7.5km. The implications of these
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results for partitioning flux contributions for each crop type due to
the flux footprint are discussed in the following subsections.

4.2. Flux contributions evolve due to
organized heterogeneity and
hydroclimatological drivers

We estimated the relative contribution of average daily fluxes of
maize and soybean (Figure 7) using the observed flux tower data.
LE, H, and F, exhibit strong seasonality, where LE and H typically
peak between June-August, and F, is negative during these times,
indicating the predominance of photosynthesis over respiration. LE
is always high relative to H, indicating that a greater portion of
available energy returns to the atmosphere as evapotranspiration
instead of a temperature change. Maize dominates in 2016 and
2018, and soybean dominates in 2017, which matches with Figure 5
maps, where most contours cover maize around the tower in
2016 and 2018. However, 2018 has the evenest distribution (e.g.,
time windows 16-21 for LE), and some time windows (16, a, b)
have a dominant soybean influence on LE and H, which might
correspond to a prevalence of distant soybean fields planted in
the SW direction, even though maize is planted in nearby fields.
In terms of flux footprint contribution, ¢ (Figure 7D), a larger
contribution from maize fields was observed in 2016 and 2018
when more fields were cultivated with maize in areas between
168 m and 268 m upwind from the tower. In 2017, soybean
was mostly planted in the same fields. However, both crop types
influence the magnitude of the observed fluxes. In terms of F.
behavior across seasons, we observe that a strong release of CO,
flux, on the order of 2 /LmolCOz/m2 - s into the atmosphere
occurs during planting (Figure 7C, numerals 1, 9, and 17). This
is followed by a much larger uptake of CO;, of approximately
4 umolCO, /m?
This can be explained by rising temperatures and soil moisture

- s, during the following two 6-week windows.

that support heterotrophic respiration of existing biomass on and
in the soil. Agricultural practices that vary among fields, such as
spring tilling, can also spur soil respiration. During the peak of the
growing season, soybean fields in 2017 contributed more toward
a higher CO, uptake (Figure 7C, numeral 11), which suggests that
soybean fields may be more effective for carbon sequestration, while
maize fields in 2016 and 2018 contributed more toward a higher LE
(Figure 7C, numeral 2 and 18), which could be attributed to factors
such as high temperatures or soil moisture deficits. Accordingly,
this 6-week window analysis shows that maize fields inside the flux
footprint contributed more toward daily LE and H than soybean
fields during the 2016 and 2018 growing seasons, whereas soybean
contributed more than maize in 2017. In 2018 however, we note
that the contributions are the most similar between the two crop
types (Figure 7D), where the prevalent wind direction can cause the
footprint to be composed of patches with a more equal distribution
of crop types (Figure 6C).

Next, we explore the seasonal dominance of a given crop type
in terms of the relative flux footprint contribution in magnitude, ¢,
rather than area contribution. We calculated the difference in the
percentage of contribution for the two cases described in Section
3.4. First, for the hypothetical randomly distributed mix of plants,
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FIGURE 4
Conceptual illustration of the flux footprint responses of (A) a random land cover mosaic where maize and soybean equally contribute to the total
observed flux (¢m = ¢s = 0.5), and (B) an organized heterogeneous land cover mosaic as observed at the study site.

TABLE 1 Comparison between the random and organized heterogeneous mosaic cases (Figure 4) toward the estimation of latent heat flux, n = LE.

n(LE) o5 Om LE; LEw T N — Nmod Diff from A
(W/m?) (frac) (frac) (W/m?) (W/m?) (W/m?) (W/m?) (%)
A 105 05 05 120 80 100 0
B 105 0.4 06 120 80 96 4 ‘
c 105 06 04 120 80 104 4 ‘

Case A refers to the “equal contribution assumption" (Figure 4A), whereas Case B (Figure 4B) and Case C are heterogeneous situations in which soybean and maize are more dominant,

respectively.

in a manner that does not reflect any particular spatial pattern,
where the relative contribution of the flux footprint for each crop
type is equal, ¢, = ¢s = 50%. We compare this hypothetical
random distribution to the observed contributions of each crop,
where ¢,, and ¢, are temporally variable and one crop type tends
to dominate the footprint contributions. Specifically, the maximum
values for ¢,, and ¢; are greater than 0.8 (Figure 7). In other
words, we want to find what crop is dominant in each window
resulting from a combination of fluxes associated with each crop
and the fraction they occupy in the flux footprint. To estimate
the contribution percentage of each crop, we first calculated the
average LE, H, and F. for maize and soybean for the 6-week
windows, using Equations (5)-(7) and the corresponding ¢ for each
case. Then, we subtracted the results assuming a random (rather
than organized) distribution of crops from the heterogeneous
results (i.e., organized heterogeneity), to define the dominant
crop for each window. The 6-week averaged analysis shows the
difference between the percentage of the contributions for the
organized heterogeneous mosaic and for the hypothetical random
contribution case (Figure 8). While maize fields contributed more
to the observed LE and H in crop years 2016 and 2018, soybean
fields contributed more in the crop year 2017 (Figures 8A, B). The
largest contribution due to the land cover heterogeneity is observed
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for CO; flux (F,) from June 1 to July 15, 2017 (Figure 8C, bar 10),
when on an average soybean fields contribution toward F, is 24.5%
larger than the random case (Figure 8C).

Given that changes in flux observed at the tower could either
correlate to a change in flux from the crops or a shift in relative land
cover contributions, we analyze the latter based on atmospheric
stability conditions and the significance of the contributing areas
(Figure 9). Besides the overall high contribution due to maize
and soybean areas nearby the tower under unstable conditions,
maize and soybean show a different cumulative distribution
function based on stability (Figure 9A). Particularly under unstable
conditions, the flux footprint is smaller, and therefore there is
a higher probability of observing a single crop type (Figure 9A).
However, ¢ is always less than 100%, meaning that the contribution
comes from a mix of maize and soybean fields (Figure 9B). During
2016-2019 and for unstable conditions, is more likely for ¢,, and
¢ to greatly differ (e.g., phis < 10% and phiy,, > 85%) (Figure 9B).
Our results show that stable conditions tend to homogenize the
relative percentage of contribution of the two crop types. Therefore,
under stable conditions the probability to see large differences
between ¢ and ¢,,, decreases.

Although the main purpose of this study is not to validate our
modeling results against flux observations but to merge flux tower
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FIGURE 5
Flux footprint plots with contours over the mosaic of maize (blue) and soybean (green) crops with the center at the flux tower. Each flux footprint
plot shows the source area defined by the contours of 20, 40, 60, 80, and 90% (outer contour) of the total flux contribution. The climatological (or
average) flux footprint for crop years (A) 2016 (i.e., April 2016 to March 2017), (B) 2017, and (C) 2018, correspond to the aggregation of all single
footprints over the year. A sample of single 15-minutes averaged flux footprints under (D) neutral (05/18/2016 06:00), (E) unstable (08/18/2017 12:00),
and (F) stable (12/19/2018 15:15) atmospheric conditions show the changes in size and location of the source area of the surface flux defined by the
dynamic flux footprint. Histograms of the 15-min FFP analysis for the upwind distance (fetch) to the (G) mode and to the (H) 90% of flux contribution,
illustrate the average behavior under stable (blue), unstable (orange), and neutral (green) atmospheric conditions over the 3 years of analysis. The
probability density function of the upwind (1) area and (J) distance of the 90% of flux contribution show differences based on wind direction.

observations with ecohydrological and flux footprint modeling
to improve the crop-specific estimates, we show here that our
modeling results of daily averaged fluxes for the 6-week windows
of analysis capture the seasonal behavior of the observations for
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F, and LE (Figures 10A, B, respectively). In Figure 10, we include
metrics that provide some quantitative information about the
goodness of fit of observed and modeled results for the daily
averaged data for the 6-week windows analysis, such as the Mean
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A April 2016 — April 2017 B
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FIGURE 6

April 2017 — April 2018

Fetch rose plots show the relative frequency in length and location of the upwind distance (fetch) to the 90% of flux contribution for crop years (A)
2016 (i.e., April 2016 to March 2017), (B) 2017, (C) 2018, and (D) for April 2016 to March 2019. We keep a fixed 15% maximum frequency to compare
the prevalent direction and frequencies across crop years. Using a polar coordinate gridding system, the fetch rose shows the frequency over a time
period by wind direction with color bands showing fetch ranges. The direction of the longest spoke shows the direction of the upwind distance with
the greatest frequency. The concentric circles are used to estimate the relative frequency of the fetch ranges. The fetch rose comprises 4 or more
radiating spokes that represent cardinal wind directions, such as the 16-point compass fetch roses presented here. The fetch rose diagram is based
on a wind-rose tool (Pereira, 2022) and the fetch for roge, of flux contribution (Kljun et al., 2015).

Fetch (km)
B Fetch > 20
I 15 < Fetch <20
[ 10 < Fetch <15
175 < Fetch<10
5 < Fetch<75
I 2 5 < Fetch <5
B 1 - Fetch <25
I O - Fetch <1

Absolute Error (MAE), the Root Mean Squared Error (RMSE),
the Mean Squared Error (MSE) and the Normalized Root Mean
Squared Error (NRMSE). MAE shows the average magnitude of
the difference between the observed and modeled results, in units
of the variable being measured. The RMSE and MSE estimate the
overall accuracy of the model across the range of the observed
results, while the NRMSE provides a normalized measure of the
RMSE, taking into account the range of the observed results. We
observe a better fit of the observed and modeled data comparison
for F. than for LE across metrics, with F, having a lower MAE of 0.7
and a lower NRMSE of 0.13, compared to LE which had an MAE
of 11.42 and an NRMSE of 0.16. While modeling results tend to
slightly overestimate positive F, during non-growing seasons and
match the overall negative F. observed during the growing seasons,
we consider that these results are satisfactory for our purposes given
the complexity of the processes involved and the assumptions taken
in order to estimate the role played by the land cover heterogeneity
on the dynamics of the observed fluxes. If our main purpose were
to replicate eddy covariance observations at finer temporal scales
using a physically-based modeling approach, more processes and
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sources of variability would need to be considered besides the crop
type influence studied here.

4.3. Organized heterogeneity and
hydroclimatological drivers explain high
2017 CO; uptake

Here we use the results of the relative contribution analysis to
determine the relationship between the lowest crop yield and the
largest net CO, budget observed in 2017, in comparison to 2016
and 2018. The USDA provides crop yields at the county scale for
Piatt county, Illinois (NASS, 2018) (Figure 11A), which we assume
is representative of yields at the study site. Here we determine how
the different contributions of maize and soybean inside the flux
footprint can inform the observations. Explicit dependence on the
distance of the contributions from different patches is considered.
From MLCan we obtain the net CO, budget for each crop type
during the growing seasons (Figure 11B). Assuming that the CO,
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FIGURE 7
Seasonal evolution of average daily fluxes due to the relative contribution of maize (blue) and soybean (green) in 6-week windows, for (A) latent heat
flux, LE; (B) sensible heat flux, H; (C) carbon dioxide flux, F; and (D) relative flux footprint contribution, ¢. Each stacked bar refers to a 6-week
average daily flux for each crop type. Dash vertical lines show the years of analysis. The relative contributions due to soybean and maize were
calculated with the method described in Section 3 using 15-minute data, from April 2016 to April 2019.

taken up is only used to produce dry matter (DM) and that the
weight per bushel of DM for maize is 25.4 Kg/bushel and 27.2
Kg/bushel for soybean (Murphy, 1981), we estimate the net CO,
budget per unit yield for each crop type. We make the simplifying
assumption that the CO; taken up by plants is only used to produce
dry matter, and we did not consider any potential changes in
soil carbon storage. We acknowledge that this assumption may
not fully reflect the complex interactions between plants and soil,
where changes in soil carbon storage could potentially influence the
carbon balance. Therefore, we provide a rough estimate of the CO,
emissions or sequestration on a carbon basis. We assume a carbon
content of 45% for soybean and maize dry matter and converted
the kg CO, / kg dry matter to kg CO, / kg carbon, which represents
the amount of CO; sequestered per unit of carbon contained in
the crops (Figure 11C). Given that the net CO; during the growing
season is negative, more CO; is taken up than released. The carbon
sequestered, which is measured kg CO,/kg C, and calculated by:

Carbon sequestration (kg CO; / kg C)
Net CO; during the growing season

- weight per bushel of dry matter x crop yield x 0.45"

This provides a way to compare the carbon impact of soybean
and maize, and we observe that soybean has a larger CO, uptake
than maize (Figure 11C). By using the area of the average 90% flux
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contribution using the climatological flux footprint (Figure 11D),
we can provide a broad estimate of the amount of carbon that is
harvested from each crop within the flux footprint (Figure 11E):

Charvested (kg) = crop yield (kg/ha) x carbon content (%)
x area of the 90% flux contribution (ha)  (9)

To estimate the total amount of CO, sequestered by each
crop inside the flux footprint, we multiply the amount of
carbon harvested by the kg CO,/kg carbon value for each crop
(Figure 11F). Both the C harvested and CO; inside the flux
footprint are larger for maize than for soybean across years, and
the highest C harvested and CO, uptake from soybean fields
occurred in 2017 (Figures 11E, F). Given that soybean fields take
up more CO,, even in a drier, low-yield year, we see more
CO; uptake for a year in which soybean is dominant inside the
footprint; Figure 11D). Also, CO; release is muted from respiration
by the drier conditions, further skewing the net flux toward
high CO, uptake. Therefore, we observe that the higher annual
net CO, budget in the crop year 2017 is not only the effect
of hydroclimatological conditions but the particular contribution
of soybean fields, which play a significant role in the higher
uptake of CO, observed that year. The combination of CO,
taken up by soybean fields and the drying that occurs due to the
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Seasonal evolution of the percent contribution due to organized heterogeneity in 6-week windows, for (A) latent heat flux, LE; (B) sensible heat flux,
H; and (C) carbon dioxide flux, Fc. These plots show the difference between the response of a heterogeneous land cover mosaic and a hypothetical
random assumption where ¢, = ¢s = 0.5. Dash vertical lines show the years of analysis.
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high temperatures and lower rainfall, influence the overall higher
uptake of CO; observed in 2017. These results show how multiple
sources besides the observed F. (i.e., MLCan and flux footprint
modeling, as well as crop yield data), provide elements for an
informed interpretation of the influence of the organized land cover
heterogeneity on the behavior of observed land-atmosphere fluxes.

5. Summary and conclusions

This study illustrates the important role of the organized
land cover heterogeneity on the observed land-atmosphere fluxes

Frontiersin Water

of heat, water, and CO,, where the observations come from
a flux tower that sees the intensively managed agricultural
landscape, instead of a single crop field. When the land cover
is heterogeneous, inconsistencies in data interpretation can arise
when only accounting for the vegetation type in the nearest
field, or alternatively assuming that multiple crop types contribute
equally to the observed flux. Area weighting based on the
relative distribution of crop areas will not work as the fractional
contribution from each crop changes with the dynamically
changing flux footprint. Therefore, our framework combines flux
footprint and ecohydrological modeling with flux tower data
to improve upon the understanding that could be obtained
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given any single information source. The observations reflect the
predominance of the crop fields within the flux footprint and we
determine their fractional weighted contributions to the observed
value resulting from the proximity to the tower.

Our approach to analyzing the relative flux contributions has
some limitations, many of which could be improved upon in
future studies. First, we consider that crops and soil components
are the primary sources of CO, and that extremely low traffic
in the nearby farm roads and other local sources are negligible
contributors (the flux tower is strategically located away from major
highways). Determining the precise contribution of automobile
and mechanized farm equipment emissions to observed CO, fluxes
is a challenging task. However, we assume that such emissions
are likely to have a negligible impact over our 6-week observation
periods. Although there may be a few days during the planting
or harvesting seasons when there is a significant activity within
parts of the flux footprint, the impact of this activity is relatively
small when averaged over all time points. For example, even
if there were significant farm work going on for 40-time steps
during a six-week window, out of a total of 4,032-time steps, the
impact of this activity would be minimal, even if the CO; flux
was doubled during those time steps. Similarly, the contribution of
traffic on country roads to the observed CO; flux is expected to
be negligible when averaged over a long period, given that most of
the roads are rural or far from the tower. Second, the estimation
of the flux footprint is not the only source of error, since tower
observations and the ecohydrological model also have errors and
as a result, they contribute some uncertainty to our estimations.
Third, we do not consider the variability in flux response across
multiple fields cultivated with the same crop, but we assume a
representative modeled flux. Specifically, we distinguish between
“maize” or “soybean” patches and ignore other differentiating
factors. In reality, all maize or soybean fields may not behave the
same due to differences in cultivars, soil type, microtopographic
variability, time of planting, etc. This assumption can be overcome
through a distributed modeling approach if detailed data to support
such modeling is available. For example, given a detailed map of
soil texture or topography, the landscape could be divided into
more than two components that could be modeled and attributed
at higher resolution. Meanwhile, landscape attributes within the
flux footprint may be correlated with meteorological conditions
that define the footprint itself. In this case, it is challenging to
disentangle the influence of landscape heterogeneity versus weather
variables that also shift with wind direction. Further analysis can
include the implementation of the fetch rose for different stability
conditions. The fetch rose can provide a further look into the
spatial distribution of the contributing plots to match areas of
“well-drained maize” or “drier soybean” enabling testing of the
assumption that vegetation type is the dominant differentiating
factor between fluxes at different landscape patches. We anticipate
that our study could be extended to study other natural and human-
induced interventions on heterogeneous agricultural landscapes,
such as varying wetness conditions, LAI, or planting dates, or for
comparison with a remote sensing product. However, specifying
spatially variable precipitation at these resolutions could remain
a formidable challenge. This approach could also be applied
to model evaluation, in that the representation of landscape
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heterogeneity should lead to an improved agreement between
model results and observations, relative to the assumption that
the tower measurements represent a single crop type or a
homogeneous contribution from multiple crop types. In general,
our method is relevant for the understanding of land-atmosphere
fluxes in heterogeneous landscapes and can be extended toward
the use of flux tower data as validation for models of these
fluxes.

Our analyses show that the fluxes observed at the 25 m
tall flux tower are the result of the combined action of (1)
hydroclimatological drivers acting on the ecosystem, and (2) the
difference in the fraction of maize and soybean in the flux footprint
due to the organized heterogeneity of the land cover. In other
words, the change in the flux observed at every time step (15
min) could either correlate to a change in flux from the crops or
a shift in relative land cover contributions within the footprint
due to wind, or both. For instance, we qualitatively demonstrated
that the change in the relative contribution of fluxes due to two
different land cover types can either increase or decrease the total
flux observed at the tower. Therefore, we quantitatively showed
that the spatial structure of the land cover, described here as
“organized land cover heterogeneity” and characterized by the
mosaic of crop fields, impacts the observed fluxes. Our focus on
the relative contribution of maize and soybean fields inside the
flux footprint shows the importance of an accurate description
of the land cover and the use of an accurate flux footprint
method. We recognize that it is equally important to accurately
simulate the flux response of each vegetation species under the
observed atmospheric drivers. All these are used to obtain the
variability of the areal coverage and the temporal variability of
the flux.

In an intensively managed agricultural landscape, where each
land cover patch is easily identifiable by crop type (i.e., maize
or soybean), we quantified the relative flux contribution of LE,
H, and CO;. At the study site, the cultivated fields where the
flux contribution peaks are mainly due to one crop type, which
explains the dominance in fluxes contribution given by maize-
soybean-maize for the 2016-2017-2018 crop years, respectively.
This combined analysis makes it feasible to investigate questions
regarding real and hypothetical land cover changes at an ecosystem
scale and quantify the effects of different vegetation types on
ecosystem fluxes.
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