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Abstract

Carbonate minerals are a major reservoir in the global carbon cycle and a key player in the sequestration and emission of
atmospheric CO,. In addition to the minerals’ frequent use in agriculture and construction, carbonate formation has been tar-
geted for anthropogenic CO, sequestration. Due to carbonate’s importance in geological and anthropogenic realms, research
on carbonate characterization and quantification is of interest. Here, we demonstrate a method to identify and quantify calcite
(CaCO;) and dolomite (CaMg(COs),) in sediment matrices using diffuse reflectance infrared Fourier transform spectroscopy
(DRIFTS). Needing only a few minutes per sample, DRIFTS is a rapid technique that does not require hazardous chemi-
cals and does not destroy samples during analysis. We selected the 2515 +9 cm™! absorbance bands for quantification as
they exhibited little interference from sediment matrix minerals and large peak areas relative to other bands. The DRIFTS
technique was compared to the traditional acidification headspace analysis method on artificial mixtures of sediment and
carbonate as well as natural lake bed and river bank samples from the Upper Sangamon River Basin in Illinois, USA. DRIFTS
offers an additional advantage over acidification in that it permits carbonate mineral identification simultaneously with its
quantification. Though DRIFTS estimates were higher, a good correlation was found between DRIFTS and acidification
estimates for both lake sediments (R>=0.99) and bank samples (R*=0.92), indicating DRIFTS is a reliable method for
carbonate quantification in sediment matrices.
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Introduction

At 60 million Pg C, carbonate rocks are the largest carbon
reservoir in Earth’s lithosphere (Sharp 2007). It has a key
role in long-term climate regulation as carbonate dissolu-
tion/precipitation leads to the sequestration/emission of the
greenhouse gas CO, (Berner et al. 1983). Mirroring the nat-
ural system, prominent anthropogenic carbon sequestration
approaches rely on carbonate formation (Oelkers et al. 2008;
Wang et al. 2020). Two of the most abundant carbonate
minerals are calcite (CaCO;) and dolomite (MgCa(CO5),),
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both commonly used by humans in agriculture, construction,
and carbon sequestration schemes (Biasi et al. 2008; Legodi
et al. 2001; Oelkers et al. 2008; Sun et al. 2014; Wang et al.
2020). Due to its prominence in the carbon cycle and in
anthropogenic activities, carbonate mineral identification
and quantification is a frequent need. Quantitative methods
have relied on FTIR spectroscopy (Bruckman and Wriessnig
2013; Grunenwald et al. 2014; Legodi et al. 2001; Smidt
et al. 2010; Tatzber et al. 2007; Vagenas et al. 2003), Raman
spectroscopy (Kontoyannis and Vagenas 2000; Smith et al.
2013), X-ray powder diffraction (Bruckman and Wriessnig
2013; Kontoyannis and Vagenas 2000), and acid-released
CO, quantification (Morera-Chavarria et al. 2016; Tatzber
et al. 2007).

Transmission FTIR of samples in KBr pellets is one of
the most common methods. FTIR is rapid (a few minutes
per sample), does not require hazardous chemicals, has a
small sample requirement (~ 1 mg), and produces several
distinguishable carbonate bands in its spectrum. However, it
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is challenging to be quantitative with KBr pellets as obtain-
ing reproducible path lengths is difficult. Diffuse reflectance
infrared Fourier transform spectroscopy (DRIFTS) is a form
of FTIR with additional advantages compared to transmis-
sion FTIR. DRIFTS does not require sample dilution in
infrared transparent material, thus reducing sample prepa-
ration time, its sample-holding microcells allow for fixed
volumes, and the sample is recoverable after analysis.

Here, we demonstrate a method for identifying and
quantifying calcite and dolomite in natural sediments using
DRIFTS. Not many previous studies have used spectro-
scopic techniques to quantify carbonate in non-carbonate
geological matrices (Bruckman and Wriessnig 2013; Du
et al. 2013; Tatzber et al. 2007). As geological field samples
rarely feature carbonate in its pure form, developing a reli-
able technique for carbonate quantification in matrices will
be particularly valuable.

Experimental
Field site and sample collection

Field samples were collected from the Upper Sangamon
River Basin in central Illinois, USA. This region is domi-
nated by intensive row crop (corn and soybean) agriculture.
The Sangamon watershed is part of the NSF-supported
Intensively Managed Landscapes Critical Zone Observatory
(IML-CZO)—established to study the impacts of long-term
land use on the critical zone environment (Blair et al. 2018).

River bank samples, alluvial sediments with devel-
oping soils, were collected in 2016 from two locations
along the Sangamon River: Saybrook (lat: 40.426690, lon:
—88.526514), an upland portion of the watershed, and Aller-
ton Park (lat: 39.998273, lon: —88.650671), in the lowland
floodplains (Blair et al. 2018). Bank exposures were scraped
clean of external debris and sampled from the surface down
to stream level. Samples were stored frozen at — 20 °C until
analysis. Likely provenances of collected samples include
oxbow or lacustrine sediments, post-settlement floodplain
alluvium, glacial outwash, and glacial till.

Lake bed sediment samples were collected in 2015 from
Lake Decatur (lat: 39.826115, lon: —88.924801), a reser-
voir at the terminus of the Upper Sangamon River Basin.
The current lake is the result of a dam emplaced in 1922,
and agriculturally driven erosion caused rapid filling of the
lake with sediment (Blair et al. 2018). Sediment cores were
obtained from the lake bed using a vibracorer. The core
used in this study reached a depth of 105 cm, estimated to
be ~ 55 years of sediment accumulation from '*’Cs and *!°Pb
data (Blair et al. 2018). The core was subsampled at 5 cm
intervals, and sediment from each interval was centrifuged
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to separate the solid phase from the pore water. Afterward,
the sediment was stored frozen at — 20 °C until analysis.

Prior to FTIR analysis, all samples were lyophilized. To
obtain the well-resolved and consistent spectra needed for
quantification, samples were homogenized by grinding with
a Crescent Wig-L-Bug ball mill for 2 min.

Carbonate reference materials and standard
mixtures

Standard mixtures were prepared with agricultural calcitic
lime obtained from the Alden quarry near Alden, Iowa,
and dolomite purchased from Thermo Scientific Chemi-
cals (Ward Hill, MA, USA). The identities of the carbon-
ates were verified through analysis of the 877 +6 cm™' and
721+9 cm™! carbonate bands in their DRIFTS spectra for
which Pezzolo (2013) reported peak wavenumbers for cal-
cite at 877 cm~! and 713 em™!, and dolomite at 883 ¢cm™!
and 729 cm™!. Four sets of calibration standards were made,
two with calcite and two with dolomite. Standards were mix-
tures of known carbonate quantities (calcite or dolomite) and
lyophilized, low-carbonate Lake Decatur sediment (initially
thought to be carbonate-free from the absence of a peak
complex in the 2515+9 cm™! spectral region, but head-
space analysis of acidified samples recorded 0.24 +0.1 wt%
carbonate). Two sets of standard mixtures (one calcite, one
dolomite) spanned 0—40 wt% carbonate at 5% intervals. The
other two spanned 0-5% at 1% intervals. All mixtures were
milled for homogeneity.

Carbonate quantification by DRIFTS

Absorbance DRIFTS spectra were recorded using a Bruker
Tensor 37 FTIR spectrometer with a Harrick Praying Mantis
DRIFTS attachment. Each spectrum was recorded from 4000
to 400 cm™! with a 4 cm™! resolution and an average of 16
scans. All spectra were corrected against a KBr background.
A 3-mm-diameter sampling cup capable of holding ~30 mg
of sample was used. Samples were gently tamped down into
the cup, and the sample surface was leveled to the cup rim. A
minimum of two spectra were recorded per sample.

Each spectrum was analyzed using the OPUS Quant 6.5
software (Bruker Optics). Due to the different shapes and
wavenumber ranges for the 2515 +9 cm™! bands of calcite
and dolomite, different calibrations were needed for each
mineral. For samples with more than 5% carbonate, the peak
complex was integrated from 2647 to 2452 cm™! for calcite
and 2679 to 2455 cm™' for dolomite. For samples with less
than 5% carbonate, it was integrated from 2637 to 2466 cm™!
for calcite and 2662 to 2468 cm™" for dolomite. The integra-
tion baseline is a line connecting the left and right edges of
the peak between the wavenumbers to be integrated.
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Carbonate quantification by acidification

Carbonate concentrations measured with DRIFTS were
compared to estimates made via headspace analyses of
acidified samples using a Thermo Scientific GasBench II
coupled to a Thermo Scientific Delta V Isotope Ratio Mass
Spectrometer. Samples were reacted with anhydrous (103%)
phosphoric acid (H;PO,) for 6 h at 70 °C. The instrument
was calibrated and analytical uncertainty estimated with the
international calcite standards NBS 18 and NBS 19. The
precision of the carbonate concentration measurements
is+0.1 wt%.

Results and discussion
Carbonate in the DRIFTS spectrum

Carbonate bands with potential for quantification were iden-
tified in the 2515+9 cm™, 1805+9 cm™', 877 +6 cm™,
and 721 +9 cm™! spectral regions of the DRIFTS spectra
(Fig. 1a). A peak or peak complex at these regions sug-
gests carbonate presence with the exact peak wavenum-
bers varying by carbonate mineral. For the 1805+9 cm™!,
877+6 cm™!, and 721 +9 cm™! regions, calcite had peaks
at 1796 cm™', 875 cm™', and 712 cm™', while dolomite had
peaks at 1814 cm~!, 880 cm™', and 730 cm™". For both min-
erals, peak complexes were observed in the 2515+9 cm™!
region. The maximum peak of calcite is at 2516 cm™! with
a shoulder at 2600 cm™!, while that of dolomite occurs at
2523 cm™! with a smaller shouldering peak at 2625 cm™!
(Fig. 1b). Calibrations were explored for all four spectral
regions. The statistical performance of all 0-40% calibra-
tions was similar (most R%>0.95, and slope and intercept
p <0.05), but not the 0-5% calibrations. For both minerals,
the 1805+9 cm™!, 877+ 6 cm™', and 721 +9 cm™! bands
had small peak areas or peak overlaps from matrix inter-
ference, likely reducing R* for some calibrations. Because
the 2515+9 cm™' bands appeared in a region without peak
overlaps, had the largest integration areas, and resulted in
high R? values, they were selected for DRIFTS calibration.

Calibration for carbonate quantification

Figure 2a shows the relation between spectral peak integra-
tion area and carbonate concentration for the 0-40% calcite
and dolomite calibration mixtures (both R*>=0.99). Figure 2b
shows the same for the 0—-5% mixtures (both R>=0.97). All
calibrations had slope and intercept p < 0.05 except for the
dolomite 0-40% calibration (intercept p =0.93).

In this study, we have focused on single-carbonate
minerals within a sediment matrix. We acknowledge it
is possible for geological samples to contain a mix of
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Fig. 1 Diffuse reflectance infrared Fourier transform spectroscopy
(DRIFTS) was performed on carbonate—sediment mixtures by the
analysis of internally reflected incident infrared light from powdered
samples. a DRIFTS spectra of the 25% calcite and the 25% dolo-
mite calibration standard mixtures. Shaded boxes indicate regions
with carbonate bands considered for calibration. Single peaks were
observed at 1805+9 cm™!, 877+6 cm™!, and 721 +9 cm™!, and peak
complexes at 2515+9 cm™'. b 251549 cm™' carbonate bands of the
la spectra

carbonate minerals. To our knowledge, only one study
has attempted to quantify mixtures of different carbonate
minerals within a matrix (Bruckman and Wriessnig 2013).
However, it required two different methods, transmission
FTIR and powder X-ray diffraction, and relied on the latter
to distinguish different minerals. The DRIFTS approach
alone should be able to resolve and quantify carbonates
in such samples. The redundancy offered by multiple
bands provides a means to avoid matrix interference, and
the overlapping peak complexes at 2515+9 cm™' can be
deconvoluted and deconvoluted peaks characteristic of dif-
ferent carbonates can be used for calibration. As the field
samples in this study did not contain mixtures of different
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Fig.2 Calibration curves for quantifying calcite and dolomite using
the 2515+9 cm™' carbonate bands for a 0-40% standard mix-
tures, and b 0-5% standard mixtures. Both 0—40% calibrations had
R?=0.99, and both 0-5% calibrations had R*=0.97. In both cases,
the dolomite calibration had a steeper slope, indicating a larger peak
area for the same carbonate wt% compared to calcite

carbonate minerals, single-carbonate calibrations were
sufficient.

Comparison of DRIFTS and acidification estimates

Analysis of peak wavenumbers in the 2515+9 cm™!,

877+6 cm™!, and 721 +9 cm™! bands indicated Lake
Decatur contained only calcite, while Sangamon bank
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samples contained only dolomite (Table 1). In lake
sediments, acidification estimates commonly fell below
DRIFTS estimates, with larger differences for samples
with higher calcite contents. On average, DRIFTS esti-
mates were 1.26 times higher than acidification. Tatzber
et al. (2007) found a similar result when comparing cal-
cite estimates made through transmission FTIR and HCI
acidification, the former having estimates 1.56 that of
the latter. The same trend appeared in bank samples with
DRIFTS estimates being 1.09 times higher on average.

It is notable that the DRIFTS-acidification discrepancy
appears only for field samples, not calibration mixtures
(Table 1). Longer sample incubation periods in the GasBench
(48 h, data not shown) did not remove the discrepancy sug-
gesting acidification reaction times were not the issue. That
calibration mixtures had similar DRIFTS and acidification
estimates also suggests instrumental calibrations were not the
issue. Two possible explanations are a matrix effect (wherein
interactions between the carbonate and matrix in field samples
resulted in an incomplete acidification reaction) or a physi-
cal difference between calibration standard carbonates and
field sample carbonates. Despite the discrepancy, the two sets
of estimates had a good correlation (Fig. 3). Lake Decatur
samples had R*=0.99 (slope and intercept p <<0.05), while
Sangamon bank samples had R*=0.92 (slope p << 0.05, inter-
cept p=0.05).

Conclusion

Carbonate mineral analysis, once primarily the purview of
geological studies, has gained a new importance due to efforts
to artificially sequester carbon for climate control. Rapid,
nondestructive analytical methods requiring modest sample
preparation and providing qualitative and quantitative infor-
mation would be of value. The proposed DRIFTS method
can both identify and quantify calcite and dolomite miner-
als in sediment matrices using multiple spectral regions. The
2515+9 cm™! spectral window shows promise for quantifica-
tion in samples where matrix interference may preclude the
use of other bands. Though field sample DRIFTS estimates
systematically differed from acidification estimates, the good
correlation between the two methods (R*>=0.99 for Lake Deca-
tur sediments, R>=0.92 for Sangamon bank samples) suggests
DRIFTS is a reliable method for quantifying calcite and dolo-
mite in sediment matrices.
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Table 1 Carbonate contents of
select calibration standards and
field samples from the Upper
Sangamon River Basin

Sample ID

Carbonate mineral

Estimated carbonate content

DRIFTS (wt%)

Acidifica-
tion (Wt%)

Actual
carbonate
content

Mass (wt%)

Calibration standard mixtures
CCS 25%
CCS 40%
DCS 5%
DCS 25%
DCS 40%
Lake Decatur core
LDC 0-5 cm
LDC 5-10 cm
LDC 10-15 cm
LDC 15-20 cm
LDC 20-25 cm
LDC 25-30 cm
LDC 30-35 cm
LDC 40-45 cm
LDC 45-50 cm
LDC 50-55 cm
LDC 55-60 cm
LDC 60-65 cm
LDC 65-70 cm
LDC 70-75 cm
LDC 75-80 cm
LDC 80-85 cm
LDC 85-90 cm
LDC 90-95 cm
LDC 95-100 cm
LDC 100-105 cm
Sangamon bank samples
AP 151030-1, 0-5 cm
AP 151030-4, mud drape
SB8 151030-1, 0-5 cm
SB8 151030-2, 25-30 cm
SB8 151030-3, 40-45 cm
SB8 151030-4, 70-75 cm
SB8 151030-5, 95-100 cm
SB8 151030-6, 113118 cm
SB10 151030-5, 250-255 cm
SB11 151030-2, 50-55 cm
SB11 151030-3, 65-70 cm

Calcite
Calcite
Dolomite
Dolomite
Dolomite

Calcite
Calcite
Calcite
Calcite
Calcite
Calcite
Calcite
Calcite
Calcite
Calcite
Calcite
Calcite
Calcite
Calcite
Calcite
Calcite
Calcite
Calcite
Calcite
Calcite

Dolomite
Dolomite
Dolomite
Dolomite
Dolomite
Dolomite
Dolomite
Dolomite
Dolomite
Dolomite
Dolomite

25.15
37.92

5.25
25.93
38.13

11.95
15.30
19.62
19.76
18.75
18.48
18.36
12.43
10.98
8.94
5.54
10.08
10.35
9.03
4.12
3.42
6.69
8.63
9.54
9.36

0.60
2.79
7.89
5.43
17.74
8.19
7.45
9.96
25.55
3.62
6.49

24.00
40.75

5.34
26.82
39.96

8.13
11.19
14.94
15.32
13.79
13.63
13.10

9.32

8.38

6.80

4.70

8.19

7.92

6.79

4.30

3.53

5.86

7.47

7.65

7.72

0.90
2.90
8.30
5.14
16.21
7.90
5.80
6.91
16.48
3.96
6.37

25.00
40.01

5.07
25.03
40.00

LDC samples had 3-20% calcite with shallower samples occupying the higher end of the range. SB and AP

samples had 0-25% dolomite

CCS calcite calibration standard, DCS dolomite calibration standard, LDC Lake Decatur core, AP Allerton

Park, SB Saybrook
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Fig.3 Correlation between DRIFTS and acidification estimates
for Lake Decatur sediments (calcite) and Sangamon bank sam-
ples (dolomite). Both correlation lines are very similar indicating
similar degrees of DRIFTS—acidification discrepancies for all sam-
ples. DRIFTS: Diffuse reflectance infrared Fourier transform spec-
troscopy
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