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ABSTRACT

At the biosphere–atmosphere interface, nonlinear interdependencies among components of an ecohydrological complex system can be
inferred using multivariate high frequency time series observations. Information flow among these interacting variables allows us to rep-
resent the causal dependencies in the form of a directed acyclic graph (DAG). We use high frequency multivariate data at 10 Hz from an eddy
covariance instrument located at 25 m above agricultural land in the Midwestern US to quantify the evolutionary dynamics of this complex
system using a sequence of DAGs by examining the structural dependency of information flow and the associated functional response. We
investigate whether functional differences correspond to structural differences or if there are no functional variations despite the structural
differences. We base our analysis on the hypothesis that causal dependencies are instigated through information flow, and the resulting inter-
actions sustain the dynamics and its functionality. To test our hypothesis, we build upon causal structure analysis in the companion paper to
characterize the information flow in similarly clustered DAGs from 3-min non-overlapping contiguous windows in the observational data.
We characterize functionality as the nature of interactions as discerned through redundant, unique, and synergistic components of informa-
tion flow. Through this analysis, we find that in turbulence at the biosphere–atmosphere interface, the variables that control the dynamic
character of the atmosphere as well as the thermodynamics are driven by non-local conditions, while the scalar transport associated with CO2

and H2O is mainly driven by short-term local conditions.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0131469

The biosphere–atmosphere interface is a dynamic system where
the propagation of fluctuations among hydrometeorological vari-
ables, such as air temperature, H2O, and CO2, create different
types of causal structures over time. The causal structure is repre-
sented by a directed acyclic graph (DAG), where non-linear per-
turbations propagate among variables through dynamic channels
for communication between a set of lagged sources of informa-
tion. In the companion paper,1 we found that different types of
DAGs arise in the dynamics of daytime turbulence using high fre-
quency (i.e., 10 Hz) hydrometeorological data and that there are
patterns of similar behavior at the biosphere–atmosphere inter-
face. In this study, we argue that the daytime dynamics are sup-
ported by the information flow among its multiple components
and we aim to explore if the information flow changes over time

for different causal structures. We implemented a causal history
analysis based on a SUR framework, where the total informa-
tion is decomposed into complementary synergistic information,
S, information only provided in the presence of all variables;
unique, U, contributions from the self- and cross-dependencies;
and redundant information, R, overlapping information from
the sources. We explore self-dependence, the influence of a vari-
able’s own history on its present state, and cross-dependence, the
influence of all other variables arising through interactions in the
DAG. Our results show that functional differences are a reflec-
tion of causal structural differences to maintain the dynamics of
the system, and we discuss how interdependencies in the system
are the cause of long-range dependencies, which is a property of
stationary processes.

Chaos 33, 073144 (2023); doi: 10.1063/5.0131469 33, 073144-1

Published under an exclusive license by AIP Publishing

 19 July 2023 13:49:29

https://pubs.aip.org/aip/cha
https://doi.org/10.1063/5.0131469
https://doi.org/10.1063/5.0131469
https://pubs.aip.org/aip/cha/action/showCitFormats?type=show&doi=10.1063/5.0131469
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0131469&domain=pdf&date_stamp=2023-07-19
https://orcid.org/0000-0001-8830-345X
https://orcid.org/0000-0002-4787-0308
mailto:kumar1@illinois.edu
https://doi.org/10.1063/5.0131469


Chaos ARTICLE pubs.aip.org/aip/cha

I. INTRODUCTION

High frequency data at the biosphere–atmosphere interface
encode the dynamics of a complex and open dissipative system
where turbulent processes occur. In this complex system, multiple
variables, such as horizontal (WS) and vertical wind speed (Uz),
air temperature (T), water vapor (H2O), and carbon dioxide (CO2),
exhibit nonlinear dynamical dependence. In the companion paper,1

we use high frequency (10 Hz) data to identify the causal struc-
ture of dynamic interdependencies among these components. Such
dependencies arise as fluctuations in a variable that instigate varia-
tions in other linked variables at a future time,2 thereby creating a
causal structure of interdependencies in a system that can be rep-
resented by a directed acyclic graph (DAG).3 In a DAG, the edges
linking states of variables, which are denoted as nodes, are used
to capture paths for information flow in a forward direction in
time. These edges can be seen as dynamic channels for commu-
nication between a set of lagged sources of information, named
“parents,” influencing the current state of a target variable.4,5 We
combined information-theoretic measures to estimate causal influ-
ences and explored the evolution of the causal structure in the
land–atmosphere exchange during a clear sky day and during a
solar eclipse that reflects a transient intervention on the whole sys-
tem dynamics. We used high frequency (10 Hz) data from an eddy
covariance flux tower located in an intensively managed agricultural
landscape in the Midwestern US. We estimated a series of con-
secutive DAGs over non-overlapping windows using the Tigramite
algorithm,6–9 which are based on information theory metrics.10

We then used a distance-based classification in conjunction with
a k-means clustering approach to cluster the DAGs with similar
structures.

Our results show that the system is likely to experience a tem-
porary reduction in its connectivity due to a sudden reduction in
solar radiation, which is eventually recovered. We observed a tem-
poral “decoupling” of variables, meaning a significant reduction of
self-dependence and cross-connectivity, such as for T and CO2.1 We
proposed the concept of “system resilience to information flow,”1

which refers to the ability of a system to remain within a stable range
of the organizational state of its causal structure, sustaining the flow
of information even under the effect of an intervention.

From the study of the evolution of the causal structure, we
found how information is encoded in the dynamics that arise
from interdependencies among components of the system.1 Does
the evolution of the causal structure reflect different underlying
behavioral dynamics? To answer this question we analyze the rep-
resentative dynamics of the clusters using the DAG nearest to the
cluster centroid. Given that each of those representative DAGs is
formed by edges linking the lagged variables through which infor-
mation flows, we ask what does change in information flow over
time tell us? Here, we aim to explore the relationship between
the causal structure and the associated function of the system. We
argue that the function of the system is the ability to sustain its
dynamics through the different types of interactions that support
the information flow among its multiple components. We aim to
explore if the information flow is changing over time, is it because
(1) the associated functional differences are a reflection of structural
differences or (2) structural differences do not lead to functional

differences. Here, we hypothesize that functional outcomes arise due
to different types of interactions among component variables and
the associated structure of connectivity between them that supports
the information flow, these places constraints on and support the
processes.2

To test our hypothesis, we build upon the causal structure
analyses1 to estimate the information flow in each DAG cluster
using a multivariate causal history approach.5,11 The information
transfer from the causal history of a multivariate system, devel-
oped by Jiang and Kumar,4,5 accounts for all interactions among
the variables through the entire time history of the system as they
influence the outcome of any variable at the current time, t. Using
this approach, we characterize the joint influence of lagged self-
and cross-dependencies in determining the current state of each
variable.4,5 While self-dependency refers to how a variable’s own
history influences its present state, cross-dependency refers to the
influence of all other variables arising through interactions as rep-
resented in a DAG.5 Using a partitioning time lag τC, that can be
varied, the causal history can be partitioned into immediate and dis-
tant causal histories, each of which can be further partitioned into
self- and cross-dependencies.11 Furthermore, these interactions can
be partitioned and characterized as unique, synergistic, and redun-
dant (SUR) information flow to capture information that a variable
contributes uniquely to the outcome of a target variable, or jointly,
or redundantly with another variable, respectively. This partition-
ing of interactions is called the partial information decomposition
(PID) approach12,13 and uses momentary partial information decom-
position (MPID)11 as the basis for estimation.4,5 Using this SUR
framework, we estimate the contribution of each information type
for each target variable in the system. We also determine whether
the dynamics of the turbulent system exhibit long- or short-term
memory, and how the influence of the self- and cross-feedback inter-
actions from the immediate and distant causal history sustains the
short- and long-term dynamics of the system.

While a few previous studies of causality in turbulence looked
at information from the lens of transfer entropy,14–17 we propose
that the use of a SUR framework provides more insights regard-
ing the underlying dynamics of the system, in terms of the type
and amount of information flowing among the system components.
To answer our research question, we further compare our results
between the different clusters of DAGs as identified in the compan-
ion paper1 to determine if the different causal structures as captured
by the representative DAGs reflect differences in their self-organized
dependencies and associated information flow. Based on our results,
we further discuss the relationship between interactions in the causal
history of a variable and the observed long-range dependency as
exhibited through spectral analysis.

The paper is organized as follows: In Sec. II, we summarize the
concepts and metrics to estimate the information flow in the SUR
framework. In Sec. III, we present the results of the causal history
analysis for each of the clusters found in the exploration of the evo-
lution of the causal structure of turbulence.1 Section IV discusses
the relationship between the evolution of the causal structure and
the corresponding functionality of the system. Section V concludes
the study while mentioning the potential implementation of our
findings and future work.
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II. CHARACTERIZING CAUSAL DEPENDENCY

A. Quantifying information

Here, we review the basic information-theoretic measures
based on Shannon’s entropy10 used to quantify the information
flow from nonlinear dependencies among multiple variables. The
uncertainty of a dynamic variable Xt is quantified by Shannon’s
entropy,

H (Xt) = −
∑

xt∈Xt

p (xt) log p (xt) , (1)

where p (xt) is the probability of Xt. Now, if we consider a variable
Yt, the conditional entropy accounts for the uncertainty of Xt that
remains given the knowledge of another variable Yt,

H (Xt | Yt) = −
∑

xt∈Xt ,yt∈Yt

p
(

xt, yt

)

log
p
(

xt, yt

)

p
(

yt

) , (2)

where p(xt, yt) corresponds to the joint probability of Xt and Yt.
The mutual information accounts for the dependency between Xt

and Yt, symmetrically measuring the reduction of uncertainty of one
variable given the knowledge of the other

I (Xt; Yt) =
∑

xt∈Xt ,yt∈Yt

p
(

xt, yt

)

log
p
(

xt, yt

)

p (xt) p
(

yt

)

= H (Xt) − H (Xt | Yt) = H (Yt) − H (Yt | Xt) . (3)

Given an additional variable Zt, which is influenced by the
union of Xt and Yt, the mutual information takes the form of
I(Zt; Xt, Yt). Further, the partial information decomposition (PID)13

decomposes this total information shared with Zt from Xt and Yt

into three components. The components of PID are Synergistic
information, S, which is the information jointly provided by Xt and
Yt; Redundant information, R, which is the overlapping information
between Xt and Yt; and, unique information, UX and UY, which is the
information provided by Xt and Yt individually. They satisfy

I (Zt; Xt, Yt) = S + R + UX + UY. (4)

In other words, the SUR framework decomposes the mutual infor-
mation between the three variables. To estimate PID for time series
data, we use the approach developed by Goodwell and Kumar.12

B. Estimating information flow using DAGs

The causal structure of a dynamical system is represented
as a DAG,3 a structural causal model of the dynamics of a mul-
tivariate complex system. We consider that the main function
of the causal structure is a cause and a consequence of infor-
mation flow among interacting variables. Here, we describe the
information-theoretic measures used to estimate information flow
using DAGs for multivariate time series,5 which represent the tem-
poral dependencies of the system. In a multivariate system with
N variables, EXt = {Xt, Yt, Zt, . . .}N, varying in time t, the current
state of any variable Zt ∈ EXt encapsulates the result of all ear-
lier interactions of its dynamics.4,5 Such prior dynamics are called
causal history, denoted as EX−

t =
{

EXt−1, EXt−2, EXt−3, . . .
}

.4,5 We esti-
mate information flow using a DAG representation for time series,

G =
(

EX−
t+1, E

)

, where each node refers to the state at time t of a

variable in EXt and E is the collection of edges. If a directed edge
E links two nodes Yt−τ and Zt, it is denoted by Yt−τ → Zt, where
τ is a positive time lag. The parent set of a target variable at
time t, Zt, is denoted as PZt ≡

{

Yt−τ : Yt ∈ EXt, τ > 0, Yt−τ → Zt

}

.4,5

A node Yt−τ can also be linked to a target indirectly through
a causal path CYt−τ →Zt , which is a set of nodes connected by
a sequence of edges linking from Yt−τ to Zt, that is, CYt−τ →Zt

=
{

Vt−τV
: Vt ∈ EXt, τV > 0, Yt−τ → . . . → Vt−τV

→ . . . → Zt, τ
> τV} ∪ {Yt−τ }. To estimate the information flow from one or mul-
tiple sources on the current state of a variable, we use one of the
following possibilities: through a direct edge [Fig. 1(a)],7 by one8

Fig. 1(b) or two causal paths [Fig. 1(c)],11 or by the whole causal
history [Fig. 1(d)].4,5

Information flow through a directed edge between two nodes,
Yt−τ and Zt, denoted by Yt−τ → Zt [Fig. 1(a)], exist only if a pertur-
bation in Yt−τ propagates to Zt, and it is measured as the conditional
mutual information (CMI),7

I
(

Zt; Yt−τ | EX−
t \Yt−τ

)

≥ 0, (5)

where \ is the exclusion symbol, such as EX−
t \Yt−τ represents all the

nodes in the causal history excluding Yt−τ . CMI estimates the infor-
mation flow from a lagged variable Yt−τ to the current state of a
target variable Zt, conditioned on the knowledge of the rest of the
dynamics of all interacting variables in the causal history EX−

t exclud-
ing Yt−τ .5 However, the computation of CMI is infeasible due to the
potentially infinite number of nodes arising from the causal history
(i.e., curse of dimensionality). To make the computation possible,
the momentary information transfer (MIT) was developed18 using
the Markov property for DAG,19 which states that a node Zt is statis-
tically independent of the rest of the history of its parents PZt are

given, where PZt =
{

Xt−τ : Xt−τ ∈ EXt−τ , τ > 0, Xt−τ → Zt

}

.4,5 MIT
quantifies the direct interaction between two nodes, Yt−τ and Zt, act-
ing as source and target, respectively, and excludes any information
from other nodes that may be flowing through the source or directly
to the target.5 MIT is defined by Eq. (7) in Runge et al.,18

IMIT
Yt−τ →Zt

(τ ) = I
(

Yt−τ ; Zt | PZt\{Yt−τ }, PYt−τ

)

. (6)

In addition to a direct influence through an edge, information
flow through a causal path [Fig. 1(b)] occurs when a lagged source
node Yt−τ indirectly affect a target node Zt. The implementation
of the Markov property for information flow through a causal path
is called momentary information transfer along causal path (MITP)
and is defined by Eq. (18) in Runge,6 as follows:

IMITP
Yt−τ →Zt

(τ ) = I
(

Yt−τ ; Zt | PZt\CYt−τ →Zt , PCYt−τ →Zt
, N

Zt
Yt−τ

, P
(

N
Zt
Yt−τ

))

,

(7)

where PCYt−τ →zt
is the parent set of the causal path CYt−t→Zt , and

N
Zt
Yt−τ

is the neighbor set of the causal path.6

As an extension of the MITP, the information flow through two
causal paths [Fig. 1(c)] estimates the influence of two lagged sources
Xt−τX

and Yt−τY
on a target Zt, through the corresponding causal

paths CXt−τX →Zt and CYt−τY →Zt , respectively.11 The momentary inter-

action information for separable causal paths (MIISCPs)11 quantifies
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FIG. 1. Illustration adapted from Jiang and Kumar5 that shows the information flow to a target node Zt in a quadvariate complex system from (a) Yt−1 through a directed
edge; (b) Yt−3 through the corresponding causal path CYt−3

→ Zt ; (c) Xt−4 and Yt−2 through the union of the corresponding two causal paths CXt−4 ;Yt−2
→ Zt ; and (d) the

entire causal history, which can be partitioned into immediate and distant causal histories based on a partition time lag τC.

the information transfer to a target from a preceding causal sub-
graph starting with two sources with separable causal paths, and is
defined by Eqs. (10) and (11) in Jiang and Kumar,11

IMIISCP

{Xt−τX ,Yt−τY}→Zt
= I

(

Xt−τX
; Yt−τY

; Zt | EW
)

, (8)

where

EW = EW1 ∪ EW2 ∪ EW3, (9a)

EW1 = PZt\
(

CXt−τX →Zt ∪ CYt−τY →Zt

)

, (9b)

EW2 = PCXt−τX
→Zt

\CYt−τY →Zt , (9c)

EW3 = PCYt−τY
→Zt

\CXt−τX →Zt (9d)

where the condition set EW represents the parents of the union set
of the target and the causal paths from the two sources to the tar-
get, CXt−τX →Zt and CYt−τy →Zt .

11 When the influence through two

causal paths affects a target, their interaction can be characterized
through PID in what is defined as momentary partial information

decomposition (MPID),11

IMSCP

{Xt−τX ,Yt−τY}→Zt
= Sc + Rc + UX,c + UY,c (10)

where the subscript c on the right-hand side represents that the PID
is associated with causal paths.4 MPID accounts for the informa-
tion only going through the pathways linking the sources and the
target, with the influence from earlier dynamics excluded through
conditioning.4

The state of a target variable Zt is the result of the prior states
of all interdependent variables in the system, i.e., causal history EX−

t ,
with information flowing through a multitude of different pathways
in the DAG [Fig. 1(d)].4 The total information flow (�풯) from the
causal history can be partitioned into two different complementary
components. The immediate causal history arising from all the pre-
vious states from time step t − 1 up to the time step t − τC, called
immediate causal history (�풥), and the remaining earlier dynamics,
called distant causal history (�풟), respectively [Fig. 1(d)],4 and can be
estimated as follows:

�풯 = I
(

Zt; EX−
t

)

= �풥 (τC) + �풟 (τC) , (11)

with

�풥 (τC) = I
(

Zt; CEXt−τC
⇒Zt

| EX−
t \CEXt−τ ⇒Zt

)

, (12a)
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�풟 (τC) = I
(

Zt; EX−
t \CEXt−τC

⇒Zt

)

, (12b)

where immediate (�풥) and distant (�풟) causal histories are the par-
titioning of the total information �풯 at time lag τC. Further, the
Markov property of the DAG provides the feasibility of computing
Eq. (12) by simplifying ℐ(τC) and �풟(τC) as4

�풥 (τC) = I

(

Zt; P

C→
X t−τC⇒zt

Zt
| EWτC

)

, (13a)

�풟 (τC) = I
(

Zt; EWτC

)

, (13b)

where EWτC
refers to the total information from the distant causal

history, quantified as �풟 in Eq. (13b).
Furthermore, the analysis of multivariate time series using

DAG representation allows for the partitioning of the immediate
and distant causal histories of any target node Zt ∈ EXt of a sys-
tem into self- and cross-dependencies.5 Self-dependency refers to
the variable’s own history influencing its present state, denoted by
EZ�풟 ≡

{

Zt−τ : Zt−τ ∈ EWτC

}

. Cross-dependency refers to the influ-
ence of all other variables arising through interactions in a DAG,

denoted by EZ′
�풟 ≡ EWτC

\EZ�풟 . Using the PID framework, the inter-
actions in the distant causal history �풟 between a target and other
variables can be quantified as a function of the partitioning time lag
τC as follows:

�풟 (τC) = I
(

Zt; EWτC

)

= I
(

Zt; EZ�풟 , EZ′
�풟

)

(14a)

= S�풟 (τC) + R�풟 (τC) + Uself ,�풟 (τC)

+ Ucross ,�풟 (τC) , (14b)

where S�풟 and R�풟 are the synergistic and redundant information
from distant causal history, respectively, and Uself ,�풟 and Ucross,�풟

are the unique information from the self- and cross-dependencies,
respectively. Likewise, for the immediate history,�풥, the partitioning
is given by

�풥 (τC) = I

(

Zt; P

C→
X t−τC⇒zt

Zt
| EWτC

)

= I
(

Zt; EZ�풥 , EZ′
�풥 | EWτC

)

(15a)

= S�풥 (τC) + R�풥 (τC)

+ Uself ,�풥 (τC)

+ Ucross, �풥 (τC) . (15b)

Therefore, from Eqs. (13) to (15), we can estimate the PID of the
information from the entire causal history, �풯, as follows:

�풯 = I
(

Zt; PZt

)

= �풥 + �풟 (16a)

= S�풥 + R�풥 + Uself ,�풥

+ Ucross ,�풥 + S�풟 + R�풟 + Uself ,�풟 + Ucross ,�풟

(16b)

= S�풯 + R�풯 + Uself ,�풯 + Ucross ,�풯 , (16c)

where

S�풯 = S�풥 + S�풟 , (17a)

R�풯 = R�풥 + R�풟 , (17b)

Uself,�풯 = Uself,�풥 + Uself,�풟 , (17c)

Ucross,�풯 = Ucross,�풥 + Ucross,�풟 . (17d)

We use the rescaled redundancy approach of Goodwell and
Kumar12 incorporated by Jiang and Kumar4,5 for computing the
PID for �풟, �풥, and �풯, where the redundant information is esti-
mated by considering the mutual dependency between two sources
and ensures a non-negative information partitioning.5 We com-
pute �풟 and �풥, along with their PIDs, using Eqs. (15) and (14),
respectively. Equations (16) and (17) indicate that the information
contained in the entire causal history of a variable encompasses
both its immediate and distant histories, including both self- and
cross-dependencies.4,5

This review of information flow metrics has summarized how
to quantify the dynamics that sustain the whole multivariate system.5

Two important aspects should be considered when implementing
the previous information flow metrics. First, the dimensionality can
be high for reliable estimations when computing �풥, �풟, and PID,
even after using the Markov property for DAG.7 The dimensionality
grows as the number of variables increases and/or as the number of
lags that influence a target increases.5 Therefore, we use the momen-
tary information weighted transitive reduction (MIWTR),5 which
reduces the dimensionality of the DAG under analysis. Briefly,
MIWTR removes edges linking EWτC

with the immediate causal his-

tory, CEXt−τc ⇒Zt
and then exclude the nodes EWτC

not directly linked to

CEXt−τC ⇒Zt
to obtain a reduced EWτC

. Second, the adequate estimation

of information metrics requires a considerable data length. Jiang and
Kumar5 found that the cardinality reduction based on MIWTR does
not affect the estimation of information-theoretic measures signif-
icantly when the time series data length is sufficient. Data length
greater than 1000 is considered as the minimum needed to achieve
reliable estimations.5

III. RESULTS

We explore the relationship between causal structure and asso-
ciated function, using the representative DAGs of the clusters deter-
mined in Hernandez Rodriguez and Kumar1 (Fig. 2). As stated
earlier, we define functionality as the nature of interactions as dis-
cerned through the SUR components. Our aim is to discern the
structure–function duality in the causal interactions that shape the
observed dynamics in the causal history. If the different causal
structures give rise to different behavior in their information flow,
then we may infer that the functional differences are a reflection of
structural differences. Otherwise, we may infer that different struc-
tural behaviors may give rise to similar functional behavior despite
the structural differences, indicating that there are no differences
in terms of the ability of the system to sustain its dynamics by
reorganizing information flow among its components.

A. Information flow to a target across DAG clusters

To illustrate the approach described above, we consider CO2

and H2O as examples of target variables. To estimate their current
state (Fig. 3, left and right column, respectively), we select a varying
partitioning time lag τC to partition the influence of the historical
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FIG. 2. DAGs from the observed time series that are closest to each cluster’s centroids show the average of the dynamics of (a) cluster #1, (b) cluster #2, and (c) cluster
#3. The DAGs for time series are estimated using the Tigramite package.6–9

dynamics of all interacting components into immediate and dis-
tant history, respectively. By changing τC we can then gauge how
the influence of immediate history declines or continues to persist
through the time history. Furthermore, we explore the differences
in self- and cross-dependencies influencing the current state of a
target variable in both its immediate and distant history. As stated
earlier, self-dependence refers to the variable’s own history influenc-
ing its present state, and cross-dependence refers to the influence of
all other variables arising through interactions as represented in the
DAG [see Eq. (16)].

In Fig. 3, we compare the influences across clusters using the
DAGs for when τC = 10 on the current state of CO2 and H2O. That
is, the immediate history accounts for the influence of the parents
up to one second in the history of the variable. These results show
that the distant history of the vertical wind speed, Uz, influences
the current state of both CO2 and H2O, and it is especially notice-
able for clusters #3 and #1. In general, we observe that both self-
and cross-dependencies are lower in cluster #2 in comparison to the
other two clusters. We also observe that the horizontal wind speed,
WS, does not influence the current state of CO2 and H2O for clusters
#1 and #2. Mechanical turbulence decoupling of the scalar trans-
port from the dynamics is reflected as the absence of information
flow from WS on the dynamics of other variables (Fig. 2, clusters #1
and #2). These results are consistent with observations during total
solar eclipses regarding the slackening of horizontal wind speed due
to boundary layer stabilization.20,21 A time-shift between the time of
totality and the lagged response of ecohydrological variables is also a
recurrent observation.22 It is observed that the stagnant environment
with minimal wind speeds shows turbulence decoupling the canopy
and atmosphere, which produced uncertainty when estimating tran-
spiration rates.21 While the effect of the absence of incoming solar
radiation on the upward longwave radiation is lagged only for a few
minutes, the fluxes that depend on surface temperature or photo-
synthesis, such as latent and sensible heat, and CO2 flux, responded
to the change of the net radiation by reducing their magnitudes,
and then were restored to their typical values after the increase of
turbulence.21,22 For a clear sky day behavior or under the effect of an

intervention on the whole system dynamics, such as a solar eclipse,
the analysis of changes in the structure of information flow across
multiple variables helps us to characterize how the functionality of
the ecohydrological system at a turbulent scale evolves. To deter-
mine the relationship between the causal structure and function
of the system, we determine attributes of the interactions among
components of the system.

B. Characteristics of information flow across clusters

After finding the lagged sources of information to the current
state of a target variable and for a singular partitioning time lag τC,
we now estimate the amount of information flowing from the causal
history of each variable for multiple τC. We estimate the maximum
information from the entire causal history, �풯, which is invariant
with respect to the partitioning time lag τC and the percentage of
information from the distant history as a function of the partition-
ing time lag τC (Fig. 4). Typically, for small τC a significant fraction
of causal information comes from the distant history, �풟, and as
τC increases, the information from �풟 decreases while for informa-
tion from the immediate history ℐ increases. Furthermore, after
the initial high �풟, the percentage of information from distant his-
tory with respect to the total information, �풟/�풯, typically exhibits a
decrease, excepting for the vertical component of the wind velocity,
Uz (Fig. 4). For Uz as τC increases, the signal quickly dies out, which
suggests that the percentage of information coming from its distant
history is small. Therefore, we can say that the vertical wind velocity,
Uz, highly relies on its short immediate history, which is characteris-
tic of a short-term memory process. When the ratio �풟/�풯 increases
at a higher τC, as observed for the horizontal wind speed, WS, in
cluster #2 (Fig. 4), it indicates that the distant history provides more
relevant causal information for intermediate values of τC, before
decreasing in importance at longer time scales.

Overall, as τC increases, �풟 accounts for less than 50% of
�풯, suggesting that the turbulent processes are mostly sustained
by short-term causal interactions although longer-term contribu-
tions constitute an important fraction (Fig. 4). Across the three
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FIG. 3. Partitioned causal history for directed acyclic graphs (DAG) using the causal history approach4,11 with MIWTR5 for the present state of CO2 (left column) and H2O
(right column). The DAGs correspond to the representative time series that is closest to the centroid of each cluster found in the causal structure analysis.1 The nodes refer to
the state of the variables at times t − τ (as marked on top), where τ is a positive time lag, here equal to 0.1s (i.e since data is at 10Hz). We set the partitioning time τC = 10
in this illustration to divide the influence of the causal history based on its immediate and distant history on the current state of the target variable. The nodes influencing the
target (red color solid nodes) can come from the parent set in the immediate (blue color solid nodes) or distant (yellow color solid nodes) history.

clusters, we observe that the magnitude of the ratio between �풟 and
�풯 changes depending on the variable. This suggests that the causal
structure of the clusters contains information about the short- and
long-term interdependencies among variables, which implies that
the differences in information flow among variables reflect how the
process may interact through the identified causal structure.

C. A SUR framework to infer characteristics of

multivariate turbulence

Do the self-dependencies or cross-dependencies dominate the
immediate and distant dynamics of each process? Knowing how
the multivariate system informs the short-term dominated pro-
cesses at a turbulent scale, provides insights into the oscillatory
behavior observed for temperature T in cluster #2 (Fig. 4 red line
in T panel at the bottom), which might be related to a periodic

component as a function of τC. To further investigate the self-and
cross-dependencies for each variable and across clusters, here we
use a partial information decomposition (PID) based causal his-
tory analysis5 described earlier (Sec. II). Using a partitioning of
the total information, we observe how each process sustains its
dynamics and its level of dependency on other components in the
multivariate system (Fig. 5). For instance, for the horizontal wind
speed, WS, the unique information from self-dependency, Uself,�풯 , is
the main contributor sustaining its dynamics for all three clusters,
followed by the synergistic, S�풯 , and unique information from cross-
dependencies, Ucross,�풯 . However, the cross-dependencies are partic-
ularly significant for WS in cluster #3, with contributions coming
from both S�풯 and Ucross,�풯 , in comparison to the other two clusters.
In the case of CO2 and H2O, the redundant information, R�풯 , is the
main contributor in all three clusters. Lastly, marked variables as
“self-dependent” refer to variables that rely only on their own
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FIG. 4. Information flow from the total causal history,�풯 (top), and the ratio between the distant,�풟, and the total causal histories (bottom), over the partitioning time lag τC
for the cluster #1 (blue line), cluster #2 (red line), and cluster #3 (yellow line) based on the directed acyclic graphs for time series in Fig. 2. Notice that τC takes values from 1
to 600, accounting for influences coming from up to one minute.

dynamics. For example, the vertical wind speed, Uz, is causally a
self-dependent variable regardless of the cluster. This means that the
history of the variable itself, rather than causal dependence on other
variables, determines the observed present state.

Now, we explore these findings in more detail regarding their
role in self-or cross-dependencies that dominate these processes, by
exploring their origin in the immediate or distant histories of the
variables. From our results, we can infer some unique characteris-
tics of the system. In Fig. 6, the analysis of the immediate �풥 and
distant �풟 causal histories provides us with three main results. First,
we notice that the processes are mainly sustained by self-dependant
variables in the short-term dynamics. We find that especially for
the horizontal and vertical wind components, WS and Uz, which
reflect the dynamic character of the atmosphere, the unique infor-
mation from self-dependency in the immediate history, Uself,�풥 , is the
main contributor for sustaining its dynamics. On the other hand, the
redundant information in the immediate history, R�풥 , that refers to
the overlapping information from the sources is dominant for CO2

and H2O.
Second, from our results we can classify the variables based on

their origin, whether they are driven by short-term local or non-
local conditions (Fig. 6). Non-local conditions refer to variables

with strong self-dependency, such as Uz and T, whose dynamics
are primarily or even solely supported by their own causal history,
without the influence of other variables. This category also includes
WS, which is mainly influenced by its unique information from
self-dependency in the immediate and distant history, Uself,�풥 and
Uself,�풟 , respectively. Therefore, we can infer that the variables that
control the dynamic character of the atmosphere, WS and Uz, as
well as the thermodynamics, T, are driven by non-local conditions.
On the other hand, CO2 and H2O, which reflect the scalar trans-
port at the biosphere–atmosphere interface, are mainly driven by
short-term local conditions given that the redundant information
for the immediate history dominates, R�풥 , and therefore their
dynamics are sustained by the influence of multiple variables in the
causal history.

Third, our results also show that as τC increases the total infor-
mation is of the same order of magnitude across variables in the
same cluster (Figs. 5 and 6). We notice that the variables in clus-
ter #2 are influenced by a larger amount of information through
their causal histories in comparison with clusters #1 and #3. Clus-
ter #2 shows the causal structure of the average dynamics of the
cluster under the influence of an intervention on the dynamics of
the whole system. Such intervention causes a temporary decrease in
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FIG. 5. Partial information decomposition (PID) for the total causal history for the DAGs for high frequency time series as shown in Fig. 2, for cluster #3 (top), cluster #2
(middle), and cluster #1 (bottom). The total information is decomposed into the complementary synergistic information, ST , the information only provided in the presence
of all variables; the redundant information, RT , the overlapping information from the sources; and the unique contributions from the self, Uself ,T , and cross-dependencies,
Ucross,T .

the connectivity of the system, which refers to the reduced number
of edges representing interdependencies among variables (Fig. 2).1

Such a decrease in connectivity favors a larger amount of infor-
mation flowing among components of the system (Figs. 5 and 6).
Our results suggest that the system potentially reorganizes its causal
structure to some sort of optimality by reducing its dimensionality to
facilitate a larger amount of information flow. This finding suggests
the dynamic creation of preferential channels for information flow:
an attribute that links the causal structure and function of the sys-
tem at turbulent scales. Therefore, we argue that such a minimal and
optimal arrangement of the causal structure is shaped by the system
to efficiently transfer information, i.e., diffuse fluctuations, among
components of the system. Moreover, based on our results, we
argue that the system shapes its causal structure as a mechanism for
resilience to preserve its functionality. We previously discussed that
the system has the ability to temporarily modify its causal structure
to optimally meet its essential function, the transfer of informa-
tion. We argue that the ecohydrological system at turbulent scales
is resilient in the sense that it evolves adjusting its causal structure
to protect its critical functionality from disruption. Here, resilience
refers to the ability of the system to successfully adapt to interven-
tions maintaining the functionality of the system. These support
the concept of “system resilience to information flow,” proposed by

Hernandez Rodriguez and Kumar,1 which refers to the ability of a
system to remain in a stable range of the organizational state of its
causal structure that sustains the flow of information, even under
the effect of an intervention.

Based on the findings on Hernandez Rodriguez and Kumar1

regarding the evolution of the causal structure followed by the causal
history analysis implemented here, we argue that the system copes
with an intervention using two strategies. First, the system can adjust
to a minimal arrangement of causal interactions to favor a larger
information flow from the causal history of each variable, as pre-
viously discussed. Second, although the system is mainly sustained
by short-term dominated processes, it temporarily allows for sig-
nificant support from the distant history to maintain its dynamics
(Fig. 6, cluster #2). Notice that the total information among clusters
is larger for WS, CO2, and H2O, which are the variables that sup-
port their dynamics in both the immediate and distant causal history
(Fig. 4). On the other hand, the self-dependant variables, Uz and T,
highly depend on their immediate causal history regardless of the
cluster.

Based on our analyses, we postulate that in the evolutionary
dynamics of the ecohydrological system at turbulent scales, func-
tional differences in the information flow of the system are the
reflection of causal structural differences promoted by the system
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FIG. 6. Partitioning of information using PID for the self- and cross-dependencies in the immediate,�풥, and distant,�풟, causal histories5,12 of each variable (in columns) and
cluster (in rows) based on the directed acyclic graphs for time series in Fig. 2. The information is decomposed into the complementary synergistic information, ST ; redundant
information, RT ; and the unique contributions from self, Uself and cross-dependencies, Ucross. The black-dotted lines set the division between the immediate, �풥 (below the
black-dotted line), and distant histories,�풟 (above the black-dotted line), respectively.

itself to maintain its dynamics, where functional differences are
detected by the amount and type of dependencies using a SUR
approach in a causal history framework.

D. Causal interdependencies as the cause for

long-range dependencies

In our results for cluster #2, we noticed an oscillatory behav-
ior in the information transferred from the immediate and distant
histories as a function of τC for both sets of variables that have local
and non-local influence. This particular behavior was first noticed in
the ratio between the distant and total information for temperature,
a predominantly self-dependent variable (Fig. 4). Later, we observe
the same behavior for the cross-dependent variables in the PID
analysis (Fig. 6). For instance, for the horizontal wind speed, WS,
the contribution of the unique information from self-dependency
in the immediate history, Uself,�풥 shows an oscillatory negative cor-
relation with the unique information from self-dependency in the
distant history, Uself,�풟 (Fig. 6). This behavior is also observed for the
cross-dependent local variables, CO2 and H2O, which share a simi-
lar periodic signal for the redundant information, R�풥 . Therefore, in
terms of information flow from the causal history, this oscillatory
behavior reveals that the system can experience transitions in the
ratio of the immediate to distant history over time.

Our results suggest that the oscillatory behavior in cluster #2 is
related to the frozen turbulence described by Taylor’s hypothesis.23

Eddies could be changing size and shape as they drift by the sensor.
Taylor’s hypothesis holds when the turbulence intensity is small rel-
ative to the mean wind speed.23 As stated in Hernandez Rodriguez
and Kumar,1 in cluster #2, the dynamics of the horizontal WS, and
vertical wind speed, Uz, are decoupled from the thermodynamics,
T. In such a stagnant environment in which the system temporarily
exists, the mean wind is not contributing to the vertical movement of
scalars, such that eddies can change in composition as are advected
past the sensor, resulting in a larger amount of information coming
alternatively from the immediate and distant history of each variable
carried by the eddies.

Looking at the spectral behavior of the data, we observe that
the high frequency data exhibit fractal 1/f scaling (Fig. 7), which
refers to the inverse proportionality between spectral power and
frequency.24 We also observe the prevalence of 1/f noise,25 also called
Flicker noise26 or pink noise spectrum, which is characterized by a
wide, flat plateau at high frequencies. Typically, the effect of peri-
odic thermal or electrical fluctuations over time is used to explain
the 1/f scaling noise in time series,27 but no causal relationship has
been previously established regarding the information flow in the
system.

We argue that the self-dependency dominance in the causal
history causes the absence of power-law dependence in the spec-
tral plot of a variable. When there is no power-law dependence, we
observe a noise plateau at high frequencies, such as in the case of
temperature and the vertical wind velocity component, Uz (Fig. 7).
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FIG. 7. Fourier power spectrum of the time series of variables at high frequency.
Each row refers to each of the clusters in Fig. 2. The spectra show a noise plateau
at high frequencies and 1/f slope at low frequencies (magenta dashed line). The
Kolmogorov spectrum slope (solid black line) has the form of E ∝ k−5/3, which is
supposed to fit most of the behavior at turbulence scale.28,29

In other words, the temperature is flattened out at high frequencies
in the spectral plot, and therefore, the temperature is not follow-
ing the turbulence power law. There is a basis to infer that when
cross-dependent short-term dominated processes increase their self-
dependency on their distant history, some long-range dependencies
appear. For instance, in cluster #2 we observe the oscillatory behav-
ior for all variables and power-law independence at high frequencies
caused by an increase in the self-dependence on its distant history.
In the case of WS, it is due to the additional unique information from
self-dependency in the distant history, Uself,�풟 . For CO2 and H2O, is
due to the larger dependence on the redundant information from
the distant history, R�풟 (Fig. 6). Therefore, we postulate that incre-
ments of the self-dependence of a variable, especially relying on its
distant causal history, are reflected in its spectral behavior as a lack
of power-law dependency.

IV. DISCUSSION: DUALITY BETWEEN CAUSAL

STRUCTURE AND FUNCTIONALITY

Causal structure and its functionality form a relationship that
evolves to meet the information flow needs of the system. When
we look at the dynamics of turbulence at the biosphere–atmosphere

interface, carbon dioxide, water vapor, and other scalars are trans-
ported away from the Earth’s surface in a well-developed phys-
ical mechanism called ejection-sweep.30 In turbulence, coherent
structures called eddies exhibit recurrent patterns in the presence
of a boundary, such as the Earth’s surface.23,31 Momentum and
energy-containing eddies, which differ on many orders of magni-
tude, self-sustain the cycle of inception of new eddies, and there is
dissipation.14,23 In Lozano-Durán, Bae, and Encinar,14 causal inter-
actions were estimated among eddies using numerical simulations
to determine how the knowledge of the past states of eddies reduces
the uncertainty of their future states. Their results show that energy
eddies in the buffer and logarithmic layers in the atmosphere are
similar and independent of the eddy size. Here, we have taken the
causal look further using the dynamics of turbulence at the bio-
sphere–atmosphere interface, beyond the univariate analysis of the
exploration of the behavior of wind features, by looking at the fluc-
tuations of a multivariate complex system that encode information
about interactions in the time series at high frequency. In this mul-
tivariate system, temperature, scalars such as CO2 and H2O, along
with wind velocity components, create a causal structure of interde-
pendencies that sustain information flow and evolve inside a range
of dynamical behavior instead of being in a fixed configuration.1

Our analysis is based on the hypothesis that causal relationships
are influenced by information flow, which in turn sustains the
functionality of the ecohydrological system at high frequencies
through interactions. Moreover, the causal structure shapes the
network of information flow among variables in the multivariate
complex system and serves as the foundation for the functional
representation of the evolution of the dynamics of the system.

V. CONCLUSIONS

We explore how the causal structure of the dynamics of an
ecohydrological system is related to its functionality. We use high-
frequency observations and information metrics to infer causality
from interactions among multiple components of an ecohydro-
logical system. Here, we see the propagating fluctuations among
interacting components in the system as information flow. Using the
DAGs resulting from the clustering analysis to determine the evo-
lution of the system causal structure,1 our results show differences
in their information flow. We conclude that functional differences
in the information flow of the system are a reflection of causal
structural differences promoted by the system itself to maintain its
dynamics.

We demonstrate how information theory provides a frame-
work to determine the causal structure and functionality of ecohy-
drological systems. The IT-based methods developed and/or used
here allow the inference of the relationship between the causal struc-
ture and functionality of the evolving system. Based on the results of
the causal structure analysis in Hernandez Rodriguez and Kumar,1

and using a causal history approach4,5 that implements a partial
information decomposition framework,12,13 our results suggest that
at a turbulent scale, the processes that shape the dynamics of the
ecohydrological system at the biosphere–atmosphere interface are
mainly sustained by short-term dynamics. In addition, each process
can have a predominantly local origin, such as for CO2 and H2O,
or nonlocal origin in the case of WS, Uz, and T. Our results show
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that the causal structure can be shaped by the system to meet the
information flow needs of the evolving system. In addition, we find
that the system can reduce its dimensionality to facilitate the transfer
of large amounts of information among its components, especially
under the effect of an intervention. Ultimately, we found that the
cause for long-term dependencies in turbulent systems that do not
follow a power law in the spectral plot is caused by self-dependencies
coming from the distant causal history, even when the dynamics are
mainly sustained by its short-term dynamics.

In the study of causal inference of ecohydrological systems, we
recognized the importance of developing and implementing causal
approaches to infer the dynamics of processes when using time
series and other informative datasets. In the machine learning and
big data era, we recognize the need of developing and implement-
ing tools for causal inference in geosciences. Our analyses reveal the
dynamics of the multivariate system at high frequency and provide
some new avenues for causality to be integral to artificial intelligence
and machine learning-driven approaches, which are also sustained
and rely on observations.
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NOMENCLATURE

CO2 Carbon dioxide molar concentration (kg/m3
)

H2O Water vapor molar concentration (g/m3)

T Air temperature (◦C)

WS Horizontal wind speed (m/s)
Uz Vertical wind speed (m/s)
CMI Conditional mutual information
CMI�퓀nn Conditional mutual information based on �퓀nn esti-

mation

DAG Directed acyclic graph
DI Dunn index
EC Eddy covariance
FFT Fast Fourier transform
IT Information theory
MIT Momentary information transfer
MITP Momentary information transfer along causal path
MIWTR Momentary information weighted transitive reduc-

tion
MPID Momentary partial information decomposition
PID Partial information decomposition
TE Transfer entropy
TR Transitive reduction
WTR Weighted transitive reduction
HH:MM:SS Hour:Minute:Second
CST Central Standard Time
US United States of America

DATA AVAILABILITY

The directed acyclic graph for time series are estimated
using the Tigramite software package.7–9,32 The momentary infor-
mation weighted transitive reduction (MIWTR) and the multivari-
ate information flow are estimated by using the Causal History
package4,5,11 https://github.com/HydroComplexity/CausalHistory.
The codes for the evolution of the Causal Structure are available in
GitHub at https://github.com/HydroComplexity/CausalStructure-
Evolution.
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